
Publ RIMS, Kyoto Univ.
16(1980),499-511

On the Uniqueness of Dyer-Lashof Operations
on the Bott Periodicity Spaces
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Masatsugu NAGATA*

§ 1* Introduction

Bott periodicity ([5], [8]):

(1.1) BOxZ~Q(UIO)9 UIO^Q(Sp/U), Sp/UczQSp, Sp^QBSp,

BSpxZ~Q(U/Sp), U/Sp^Q(0/U), Q/U^QO, OczQBO

and

(L2) BUxZ^QU, U^QBU

shows that each of these spaces is an infinite loop space.

Dyer-Lashof operations Qr (r>0) are defined on the mod p homology

(p prime) of any infinite loop space, depending on its infinite loop structure.

If p=2, they are natural homology operations of degree r such that Qn(x^)=x%9

G^J—O if r<n, which satisfy Cartan formula, Adem relations, Nishida

relations, etc. Details are given in Section 3.

Dyer-Lashof operations on the mod 2 homology of the spaces in (1.1) and

(1.2) have been determined by S. O. Kochman [10] and S. Priddy [14], where

the infinite loop structure of each of these spaces is the one determined by Bott

periodicity.

The purpose of this paper is to compute Dyer-Lashof operations on the

mod 2 homology of 0, 0/17 and 17/Sp, with the infinite loop structure deter-

mined by Bott periodicity, by a slightly different method from that of Kochman

[10], and to show that the action is determined only by the £f-space structure

for the infinite loop spaces SO and SO/IT (Theorem (6.9))e

The plan of the paper is as follows: The Hopf algebra structure of the
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mod 2 homology of the spaces in (1.1) and (1.2) is summarized in Section 2.

In Section 3, we list the main properties of Dyer-Lashof operations. The com-

putations are done in Section 4, and the results are summarized in Section 5.

In Section 6, we consider some conditions which determine the operations on

the homology of these spaces, half of these depending on the result of J. F.

Adams and S. Priddy [1] on the uniqueness of the infinite loop structure, and

the other half depending on the computations in Section 4.

The author would like to thank Professor H. Toda, Dr. G. Nishida and Dr.

A. Kono for their many valuable suggestions and encouragement. He would

also like to thank Professor J. P. May for informing him of S. O. Kochman's

work [10].

§ 2. The Hopf Algebra Strtcture of the Mod 2 Homology

Notation. In this paper, BO x Z, 17/0, etc. will mean the space with the

infinite loop structure determined by Bott periodicity.

All homology will be with Z2-coefficients (Z2 denotes Z/2Z) and the ele-

ments will always be indexed by their degree.

Z2[<z, &,...] and A 2(a, b,...) will denote the polynomial algebra and the

exterior algebra, respectively, over Z2 with generators a9 b,... .

Z2{a, b,...} will denote the free module over Z2 generated by a, b,... .

For any Hopf algebra A9 we shall denote the coproduct by \// and the sub-

module of primitive elements by P(A).

It is known that ([8], [7])

(2.1) /f*(BOxZ) = Z2[z1,z2,z3...]®Z2[[-l],[l]]/([l][-l] = l),

^(zJ=Zz,®zII_J (z0 = l),

2, x69

^^^

H*(U/Sp)= A2(6 l f b59 b99...)9

A2(d2, d49 d6,.»)®
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l9 u2,

and

2 i , 3 , 5,...,

The generators are taken as follows :

(2.2) ZB e # *(£0 x {0}) (resp. P2n e H*(BU x {0}), w4n e H*(BSp x {0}))

is the dual of the n-th power of the first Stiefel- Whitney class in Hl(BO) (resp.

the first Chern class in H2(BU), the first symplectic Pontrjagin class in H4(BSp)).

uneH*(SO) is defined by wB = 0*(O> where eneHn(RPao) is the unique
generator and 0: RP^-^SO is the map defined in [7].

d2n£H*(SO/U) is defined by d2n = p*(u2n), where p: SO^SO/U is the

canonical map ([8]).
V2n-i> x4n-2> a4n-i-> ^4«-3> a2«-i are the unique non-zero primitive elements

in their degree. Then Proposition 4.21 of Milnor-Moore [12] shows that

0 - > ptfA) - > P(A) - > Q(A)

is exact, where Q(A) is the module of indecomposables and £A is the sub Hopf

algebra generated by the squares of elements, and hence, in the polynomial

algebras H*(U/O) and H*(SplU) the primitives are {£s (above generator)},

and in the exterior algebras H*(Sp), H*(U/Sp) and H*(U) the primitives are

{above generator}.

Note that the H-space structure of the spaces is determined by the de-

looping in (1.1) and (1.2).

Notation (2.3) For any infinite loop space X with n0(X) = Z or Z2 (resp.

n0(X) = 0 and n^(X) = Z or Z2), let X0 be its connected component of the base

point (resp. X be its universal 1-connected covering space), with the infinite

loop structure naturally induced by that of X.

SOcO, BOcLBOxZ, Spin = SO, etc. will be considered to be with such

infinite loop structure.
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§ 3. Mod 2 Dyer-Lashof Operations

Dyer-Lashof operations and their properties are defined and studied in [3],
[6], [9], [13] and [11]. The main properties of mod 2 Dyer-Lashof operations
are as follows :

(3.1) Let X be an infinite loop space.
Dyer-Lashof operation

Q':H*(X) — >H*+F(X) (r>0)

is a natural homomorphism of degree r
such that

( i ) Q°(l) = l and <2r(l)=0 if r>0, where 1 is the unit element of the

( ii) ar(*n)=0 if r<n and Q"(xn) = x2
n;

(in) GQr = QrG, where a: H*(QX)-+H* + i(X) is the homology suspension
(the infinite loop structure of QX is canonically induced by that of X);

(iv) xQr = Qr%9 where x: H*(X)-+Hx(X) is the conjugation (induced
from the reversing of the loop coordinate);

( v ) (Cartan formula) Qf(xy) = £ QJ(x)Qf-J(y)
j

and tQr(x) = 'Z'LQj(xn)®Qr--i(x"), where <K*) = I x'®x";

(vi) (Adem relations) If a>2b, then

(vii) (Nishida relations) If t> k, then

, where Sql:H+(X)—*H+.k(X)

is the dual of the Steenrod squaring operation Sqk (fc>0), and ( m J denotes the

binomial coefficient (see (5.2)).

§ 4. Computations #*(<>), H*(O/ U) and HHc( U/Sp)

Theorem (4.1) Lei B be an "allowable AR-Hopf algebra" (i.e., Hopf
algebra over Z2 with Dyer-Lashof operations and dual Steenrod operations
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which satisfies (3.1) (except (iii)), see [11]) such that

= A2(wi, u2, u39...) as algebra,
i (u0 = l) as coalgebra

and Sqr*(un)=(n~~r Jun,f+ decomposables (r<n9 n>l) as for dual Steenrod

operations.

If G2(«i)*0, then er(«n)= S
a+b+c=r+n

with notation (52).
I/G2(wi)=0, then e'(wn)=0 (r>0,

Lemma (42) // Q2(Mi)^0, then Qt+1(ut)£Q mod decomposables in B

Proof: Nishida relations (3.1 (vii)) show that: For n>2r,

lJ^
which follows from (3.1 (ii)) and the fact that

n+l — 2r + i>n-i if and only if 2i>2r.

(Note that deg Sqlx(un) = n — i and that B is an exterior algebra.)

Hence the coefficient of u2n+i in (2n+2r"
2r"}Qn+l(un) is e^ual to that of

u2n+i-2r in^^Q^-^u^if n>2r. ^^(^r^^r) mod 2

and (n~r )=0 if r<n<2r, this means that:

n>r sthen

mod decomp. if and only if fiw"'r"fl(wii--p)^0 m°d decomp,

As ^(MW)=X W|®un_^ the only non-zero primitive element of degree 3 is

2. Hence Q2(w1)^0 implies Q2(w1)^0 mod decomposables.
Using "if "-part of (*), we get Q2s+1(w2s)f£Q mod decomposables, and if we

consider the 2-primary expansion of t, we get Qt+1(ut)^Q mod decomposables
for alH>ls using "only if "-part of (*),

Lemma (4.2)' // Q2(M1)=0, then Qt+i(ut)=0 mod decomposables in B

Proof: Same as the proof of (4.2).
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Lemma (4.3) //g2(wi)^0, then Qr(un) = (r"^ jnr+n + decomposables in

Proof: Put Qr(un) = et.)nur+n + decomposables, Bftn = Q or 1.

Nishida relations show that : For k < r,

^ler(O = ('7*V~^\ / C / i>0\K — Z,l /

We shall prove by induction on n that the numbers {er,n} are uniquely

determined by this relation and the condition (4.2).

Let n> 1, and assume that er>n are known for m<n. (If n = l, Sqi^(u1) = 0

for i>0 and the induction hypothesis is not necessary.)

Then the relation implies

(**) ~ * r . « - ~ e r k . n = knOM (k < r) .

Put k = 2s~l
9 r = 2st (t, s>l). Thenr~ = ~ = 1 mod 2.

Hence s2S-2
s-in

If we consider the 2-primary expansion of r, we get:

srn = known for 1 <r<2s if e2*,n = known.

Thus it suffices to know e2Vl.

If 5 = 0, then Q1(un) = Q (Since 5 is an exterior algebra) and £i jW = 0. Now

assume inductively that s2s-i>n is known.

In case n<2s-1, put k = 2s~1, r = 2s in (**). Then (r + ^~/:)

= 1 and er-fc)n=£2*-i,Fi = ^woww' and hence fi2^w is known.
In case 2s~l<n<2s-l, put fc = n+l , r = 2s in (**). Then

/2 s - IN= f j= I and r—/c = 2s — n — l<2s~1, and hence e2^/i is known.

In case n = 2s - 1? then e2*,2*- 1 = 1 by (4.2).
In case n>2s, then Q2\un) = Q since 5 is an exterior algebra, and hence

C2M, = 0.

Induction is now complete and it suffices for our purpose to show that

r>fj = ̂  r~ jl satisfies Nishida relations, i.e., that

for fc<r, or equivalently, that
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( >, r k + m — i ~ i r m + « ~ i , ^ r w ~ i r « — * ~i ["""*+/—11 n ~~A ->
<***> L « JL A: \+^lk-2i\l i J[ »-/ J = 0mod2

for k, m>0, «>1,

, , „: , , , u , if a>0
where

0 if a<0.

(***) can be proved easily by an induction on m and n, using the identity:

Thus we have proved (4.3).

Lemma (4.3)' // Q2(u1) = Q, then Qr(un)=Q mod decomposable^ in B

l).

Proof: Same as the proof of (4.3).

Now we shall prove (4.1).

Cartan formula and (3.1 (i)) imply

0 < i < n j

Hence if we assume inductively that Qr(um) are known for m<n and r>0, then

Qr(un) is known mod primitives.

But since B is an exterior algebra, Proposition 4.21 of Milnor-Moore [12]

shows that

is injective. Hence non-zero primitives are indecomposables, and Qr(un) is

known, by (4.3).

Hence it suffices to prove that

Qr(un}= Z
a+b+c=r+n

0 if

satisfies Cartan formula and the condition (4.3).

Since ( ~n~l ) = (-l)"(^) = 0 if n>l and ( ~^~l )=0 if /->0, (4.3)

is satisfied. Cartan formula is also satisfied, by virtue of Theorem 25.3 of

Adem [2]:
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Thus the proof of (4.1) is completed,,

The following results (4.4), (4.5) and (4.6) are due to S. O. Kochman [10]
(Theorems 52, 61, 68, 84 and 88).

Corollary (4.4) In H+(O\ Q'(un}= Z
a+b+c=r+n

Proof: Since [— 1]2 = 1, <2r([— 1]) is in the homology of the zero compo-
nent, namely, in H*(SO)= A2(wi, u2, w3,...)- (See the construction of Dyer-
Lashof operations in [9].) Hence applying Cartan formula to

2r([-l]) is inductively determined, and we get Qr([— l]) = iir, since
7^0 because <T([— lj) = zl eH%(BO) (see the arguments below).

As for Qr(un), we shall apply (4.1) to

/\2ul9 u29

Since wn = <WO, eneHt(RPJ ((2.2)),

Hence it suffices to prove that Q2(w1)^0 in H*(SO).
Consider the homology Serre spectral sequence of the fibering

SO^QBSO - > * - > BSO.

Let y2 e H2(BSO) be the unique generator. Then clearly y2 = ̂ (u^, and ffQ2(uj)
= Q2(<r(u1)) = Q2(y2) = y2

2eH4(BSO) by (3.1 (iii)).
Hence it suffices to prove that j|^0 in H4(BSO), or equivalently (by

duality), that there is a non-primitive element in H\BSO). Indeed,

where w$ is the Stiefel- Whitney class and

4. (See [8].)

Corollary (4.5) In H*(0/U), Q2'(d2n)= Z ('~*~*~ l )d2ad2bd2c
a+b+c-r+n\ n~ a /

(r>0, n^l) and Q2l-([-l])=d2r

Proof: Since d2n=p*(u2n) ((2.2)),
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(Note that (2l£2rXl7r) mod 2.)

Hence again (4.1) (which still holds if all the degrees are doubled) is applied,

and it suffices to prove that Q4(d2)^0.
Consider the fibering

SO/U~QSpm - > *

Then a(d2) = u3eH3(Spm), which maps to u3 + decomposableseH3(SO).

Since Q4(u3) = u7 + decomposableseH^(SO) by (4.4), 24(i4)^0 and so Q4(d2)

Theorem (4.6) In H*(U/Sp), Q^(b4n-3)=^b4f+4n.3 (r>n>l\

Proof: Consider the cohomology Serre spectral sequence of the fibering

UjSp^Q(SOIU) - » * - > SO/17.

It is known that

where ^4n_2 is the dual of d4n-.2 + decomposables£H*(SO/U) (see [8])0

Then the Borel transgression theorem shows that

where a*: H*(SO/U)-+H*-l(Q(SO/U)) is the cohomology suspension.

Hence by duality,

Since ^b^^^eH^SO/U) is primitive, it is indecomposable in H^SO/U)

(see the proof of (4.1)), that is:

v(b4n _ 3) = d4n _ 2 + decomposa b les,

and (4.6) follows from (4.5), since P(H*(U/Sp)) = Z2{b4n.3} .

§5, The Results

We list here the values of Dyer-Lashof operations for the Bott periodicity

spaces, which are due to S. Priddy [14] and S. O. Kochman [10].

(5.1) ln
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Cr(*n) = Z [A1,...,A,+J^zf1---z^" (with notation (5.2) below)

In H*(UJO), fi^tO^JlJ)^!, (r>n>l) with notation v2n = v2
n.

In H*(Sp/U)9 Q2r(x2n)=( r i )x2r+2n (r>n>l) with notationx4n = x%n.

in ^(5/7), e4r(^-i)=r.^l}
In

24r(H'4J= S

4r+4n + decomposable* (r>n> 1),

1), g2'([- I])

E ('"J"?"1 )«.«»««
a+i>+c=r+n\ « " /

(r>n> 1), g'([- !]) = «,

2n)= Z

-i])= z

And the other Q' (generator in (2.2)) are all zero.

Notation (5.2) ( ~™ \ is the coefficient of X" in the power series (1 +X)~m,

A,
and
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i|(r)= y fr-j-n + u-\'

with priviso: if j = r — n and w=0, replace by (A l5..., An —2,.. . , A r + M); if u = n,

replace by (A l5..., A r_,-+n-l,..., Ar+II).

§ 6. Some Conditions for the Uniqueness of the Dyer-Lashof Action

In this section, X always denotes an infinite loop space, BX denotes its

first delooping space, ~ expresses a homotopy equivalence of topological spaces

and ^ expresses an H-equi valence of H -spaces.

R denotes the mod 2 Dyer-Lashof algebra ([11]).

J. F. Adams and S. Priddy have proved in [1] the following:

(6.1) // A"(2) — BSO(2)> then X^2) — BSO^2) as infinite hop spaces.

If X(2)-BO(2) and xf^O/or the generator x^H^X), then X(2}~BO(2}

as infinite loop spaces.

(Here X(2) denotes the localization at 2 of X.)

As a corollary,

(6.2) // X~BO and x f^O for the generator x1eHi(X), then R-action on

is the one in (5.1).

(6.3) IfX^ U/, th™ R-action on H*(X) is the one in (5.1).

Proof: X~UIO means QX~Q(U/O)^BO, and a homology transgression
H H

theorem shows that H*(X) is generated by cr-image of the polynomial generators

of H*(BO). Thus ^-action on H*(X) is determined by (3.1 (iii)).

(6.4) If X-U/0 and H*(X)^H*(U/0) (or, in particular, Xc*U/0), then
H

R-action on H*(X) is the one in (5.1).

Proof: Since H^(U/0) is a polynomial algebra, ^-action on H*(X) is

determined by that on H*(X} and Cartan formula (Qr(v1j)
2 = Q2r(vl).

(6.5) I f X c z S p / U , then R-action on H*(X) is the one in (5.1).

Proof: Since QX^U/0, this follows from (6.4), as in the proof of (6.3).
H

(6.6) I f X c z S p , then R-action on H*(X) is the one in (5.1).
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Now suppose that X^SO. Then H*(X)^H*(SO) as a Hopf algebra over

the Steenrod algebra. Hence we can apply (4.1) to H*(X), and we get:

(6.7) IfX^SO and Q^uJ^Qfor the generator u1eH1(X), then R-action on

H*(X) is the one in (4.4).

(6.7)' IfX^SO and Q2(w1) = 0, then R-action on H*(X) is trivial.
H

Similarly,

(6.8) If X^ SO/U and Q4(d2)^Qfor the generator d2eH2(X\ then R-action
H

on H*(X) is the one in (4.5).

(6.8)' If X^ SO/U and Q4(d4) = 0, then R-action on H+(X) is trivial.

For X-SO/U, H*(Q2X)^H*(BSpxZ) as an algebra. Then Nishida

relation

implies that Q8(w4) is a non-zero primitive element in H12(Q
2X), and hence is

indecomposable.

Then as in the proof of (6.3), a homology transgression theorem shows that

Qs(b5) is also non-zero and primitive in H*(QX\ where b5 e H5(QX) is the

generator.

Since H*(QX)^H*(U/Sp) is an exterior algebra on generators of odd

degrees, Borel's big transgression theorem ([4] Th. 13.1) shows that H*(X) is

a polynomial algebra generated by the transgression of the generators of H*(QX).

Then as in the proof of (4.6), cr(fo4n_ 3)7^0 by duality, and Q8(d6) is non-zero

in H*(X). Namely (6.8)' does not occur. Similar arguments show that (6.7)'

does not occur.

Thus we have obtained our main theorem :

Theorem (6.9) Dyer-Lashof action on H*(X), with X^SO, SO/U or

X^Sp, SpjV, U/09 is independent of the infinite loop structure of the space.

Remark (6olO) The condition X^SO, SO/U is a little too restrictive.
H

Indeed, one can show that if Xc*SO/U, then H*(X)^H*(SO/U) as a Hopf

algebra. Since H*(QX)^H#(U/Sp) as a Hopf algebra over the Steenrod

algebra, the action of Sq%k on d4n_2 is determined (mod decomposables).

Thus one can replace the condition of (6.9) to be

and Sql(d2r^ = d2r^.2 (r>2)



DYER-LASHOF OPERATIONS 511

or

X^SO and Sq^(u2r) = u2r-1 (r>2) .
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