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On the Convergence of the Initial-Value Adjusting
Method for Nonlinear Boundary Value Problems

By

Taketomo MITSUI*

Introduction

We shall consider numerical methods for solutions of a nonlinear differential

equation

(0.1) - - = AT( / , je ) f a<t<b

subject to a general constraining condition represented by a functional of x

(0.2) /(*)=0.

Here x and X(t, x) are n -dimensional vectors, x(t) is considered as a function

J = [a, fc]-»J?" and / is an rc-dimensional vector-valued functional on some

subset of Q7).

Recently Ojika and Kasue [5] have proposed a numerical procedure called

"initial- value adjusting method" to solve the multi-point boundary value

problem, which is considered to be a powerful algorithm for rather complex

constraining conditions. And Ojika [4] has given a proof for convergence of

their method.

The present paper is devoted to an analysis of the method by the different

way from his and to obtaining sufficient conditions for convergence of the

iteration. Roughly speaking, for the initial-value adjusting method, which

can be regarded as a systematical version of the shooting methods, the con-

vergence holds when X and / are sufficiently smooth and the starting value of

iteration is taken sufficiently close to the isolated exact one. Moreover, it will

be shown that the inverse of the "adjusting matrix" is a good example of the

contractor that has been introduced by Altman [1].
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In the present paper, we shall denote the Euclidean norm of ra-dimensional

vector x by ||x||. C(T) stands for the Banach space of vector-valued continuous
functions on I, equipped with the norm

tel

Cl(I) means the subset of C(/) of continuously differentiate functions on /.
The norms for matrices Rn->Rn and other linear operators should be taken as

the induced norms by vector norms.

§ 1. The Initial-Value Adjusting Method and the Newton Iteration

We shall consider solutions for the problem of a nonlinear differential

equation

(1.1) ^ = *(/,*), a<t<b

and

(1.2) /(x)=0.

This supposition of (1.2) may be extremely general one which includes the

multi-point boundary value condition, not to mention the initial value condition,

the linear two-point boundary value condition, the periodic condition and so

on. However, the supposition that will be often mentioned in the sequel, is the
nonlinear multi-point boundary value condition (MPB in abbreviation): Let

/ be an operator mapping N direct product of Rn into Rn

/:/«i, {*->«*), &sK" (* = 1, 2,..., IV)

and define the functional/: C(I)-+R* by

(i.3) /(*)=/«a*(a..., <**)),
where a = t1<t2<~-<tN=b.

Let $ be a domain of the te-space bounded on x, intercepted by two

hyperplanes t=a and t=b. The boundary points of @ on the hyperplanes
t = a and t=b are supposed to be included in ^ and to make an open set on

each hyperplane. Put

D = {xeCi(I) l(t,x(i))e& for tel}

for tel}.
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Then it is evident that DaD' and D and £>' are open respectively in C^I) and

c(/).
In the problem we assume the following conditions.

Assumption 1. X(t, x) is defined and twice continuously differentiate

with respect to x on &, and f(x) is defined and twice continuously Frechet dif-

ferentiable on Df. (For MP5,/(£l?..., £N) is twice continuously differentiate

with respect to each <^ satisfying (ti9 {£)e^.)

Here we shall specify some constants.

ATt = sup
2

C0 = sup |
D'

Ci = sup
D'

where Xx(t, x) and fx(x) stand for the Jacobian matrix of X(t9 x), the Frechet

derivative of /(x) respectively.

The initial-value adjusting method for MPB proposed by Ojika-Kasue [5]

can be given essentially as following :

Step 0. Choose suitable positive perturbation parameter e and initial value

?!Q 6 jR", and set fc=0.

Step 1. Compute the numerical solution xk(f) of (1.1) for the initial con-

dition xk(d) = rik, and obtain the resulting value of the nonlinear boundary
condition (1.3), i.e.

(1-4) /*=/(**)•

Step 2. If the vector fk is sufficiently close to 0 by the previously given

criterion, terminate the iteration. Otherwise, go to the next step.

Step3. Set j = l.

Step 4. Compute the numerical solution )4J)(0 of (1.1) for the initial
condition jlj)(«) = f?fc + eej., where e^ is the j-th unit vector of Rn.

Step 5. Replace j by j + 1, and return to Step 4 until j = n.

Step 6. Determine the matrix S(e; xk) such that

(1.5) S(e;Xk)
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Step 7. By the equation

determine the initial value y\k+ L for next iteration. Then replace k by k+1, and

return to Step 1.

In the above process, the numerical integrations of the differential equation

(1.1) are carried out by a suitable step-by-step method, for example, the Runge-

Kutta method. It should be noted that, although we are considering MPB, the

method can be easily extended to apply for a more general condition (1.2).

We shall call hereafter the matrix 5(e; xk) the adjusting matrix (of /c-th

iteration) which plays an important role in the iteration.

On the other hand, we may construct the Newton iterative procedure for

the problem of (1.1) and (1.2) (Urabe [7]). Let F be an operator mapping

CA(/) into & = C(I)xRn, where & is considered as a Banach space equipped

with the norm
l(_ -JI

(1.7)
-/(*)

The problem of (1.1) and (1.2) has been transformed to that of finding a root

for the operator equation

(1.8) F(x) = 0

in D. Put J(x) as the Frechet derivative of F(x), then J(x) : Cl(I)-+&, is addi-

tive and homogeneous and

(1.9) J(x)y=\ dt "»-~" for

As a well-known result, there exists a non-singular matrix <&(t; x) depending

on x such that

*(a; «) =

where £„ is the unit matrix of n-dimension. We shall call it a matrizant for the

moger

) by

homogeneous differential equation —j- — Xx(t, x~)z. Let us define a G-matrix
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(1.11) G(x)

then the nonsingularity of G(x) yields the invertibility of /(x), and vice versa.

In the case of MPB, the Frechet derivative fx(x) means such operation that

(1.12) fx(x)y = ̂ *L (*(/,),...,

for y e C(I). Hence the G-matrix is given by

(1.13) G(x)=f,&(x(tl),...,x
i=l OQi

Again returning back to the general case (1.8), we shall prescribe the Newton

iteration. Under the assumption that G-matrix is nonsingular, /(x)"1 is repre-

sented by

(1.14) J(xr1b = $(t; x)G(x)~1v + ̂ (ti x){* Q-^s; x)y(s)ds
J a

- $(t ; x)G(x)-lfx(x) {*(*; x)f *-'(*; x)y (

The Newton iterative process:

Starting from a suitable XoeC1^), generate the sequence {xJciC3^/) by

the recurrence form

(1.15) x*+i=x*-A*0-^(**), fc = 0, 1,2,....

In the iteration (1.15) let us assume that it happens that the value ~^~xk

— X(xk9 f) vanishes, then we have

(1.16) xk+1 = xk-$(t; xk)G(xk)~
1f(xk).

Putting t — a in the above, we easily obtain the equation

(1.17) xk+i(a) = xk(a)

Comparing (1.17) with (1.6) in the initial- value adjusting method, we shall

examine the relation of two matrices G(x) and S(e; x) in the next section.

§ 2. The Nonsingularity of the Adjusting Matrix

First, we mention a fundamental result on the continuous dependence of
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the solution on the initial value for a differential equation.

Lemma 1 ([2]). Let £ and r\ be two vectors in R" such that the solutions

x(t) and y(i)for the differential equation

t , z } > a<t<bdt v' ' '
subject to the initial condition

z(a) = £ (in the case of x(t))

or

z(a)=rj (in the case of y(i))

exist in D. Then we have

Next we state

Assumption 2. The problem (1.1) and (1.2) has an exact solution x = x(f)

belonging to D, and the condition

(2.1) det G(*)=

is fulfilled for x(f).

Furthermore, there exists a positive constant e such that for 0<s^e the

initial value problem

X(t,y), a<t<b

has a unique solution in D for every j. (Throughout the paper we shall restrict

s such that

The first half of Assumption 2 shows the isolatedness of the solution x(t)

in D (Urabe [7]). Since D is open in Cl(I\ for a positive constant M0 we can

take a positive number A such that in the A -neighbourhood DA of x

G(x)~1 exists and the inequality

(2.2) ||G(*)-

holds. We shall take and fix the number A. Define the constant C2 by
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(2.3) C2=sup sup
xeD' \ \ S \ \ c Z A IKc

Next we employ on the vector X(t, x)

Assumption 3« In &9 there exist a positive number <50 and a mapping
R(£ ; • ) : Rn-*Rn such that the equality

(2.4) X(t, x + ®=X(t, x) + Xx(t, x)«+Jl«; x)

holds whenever ||£|| ^50 for each (t, x)e&. For R(£; x) there exists a positive
number K2 satisfying in 60-neighbourhood ofx

(2.5)
uniformly to (t,

Let x(f) be an element of DA satisfying

(2.6) =*[/, *(/)], a<t<b.

We shall analyse one iteration starting from x(f). Let <pW(t\ x) be the j-th
column vector of the matrizant $(t; x), then <pW> is governed by the differential
equation

(2.7)

subject to the initial condition

(2.8)

As is readily seen, the norm Hp^Uc has a bound depending on Kl9 and the
operator norm || $(•;*) II depends on the norm ||9a)||c. Hence we have a
positive constant Ml such that

(2.9) ii^
and

(2.10)

for x e DA and every j.
In the initial-value adjusting method we make the sequence {yu\t)} (j=!3

2,..., n) in C^J) such that

(2.11) *2L = x(t9yU))9 a<t<b
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(2.12)

To each y(j'> we have

Lemma 2. yu\t) has the following expression

(2.13) /;>(0 = x(f) + e{<Pa>(0 + yU)(0} on

where v(i)(t) satisfies the differential equation

(2.14) -

-X[t, x(ty]}-X,[t, x(t)W»(t) , a<t<b

subject to the initial condition

(2.15)

Proof. Easy consequence from (2.7), (2.8), (2.11), (2.12).

Since the Assumption 2 the unique existence of a solution vu\t) of (2.14)

and (2.15) is evident. However we need a more precise result.

Lemma 3. For arbitrary small positive e there exists a positive constant

C* such that the exact solution v^(t) for (2.14) and (2.15) satisfies

(2.16) ||i;^>|

Proof. Putting e sufficiently small, we may apply Assumption 3 to the

right-hand side of (2.14). Hence we have

(2.17) - = AT,[/, x(tKvW + RW»(i)-x(ty9 *], a<t<b

and

(2.18) i><-»(fl)=0.

By the transformation of (2.17) and (2.18) into the integral form

for

we obtain the following inequality:



NONLINEAR BOUNDARY VALUE PROBLEMS 521

for a^

Applying Lemma 1 to yu) and x gives us

(2.20) \\y<»- x\\c£\\eej\\e2K

Therefore the inequality

(2.21) 11^(011^1 \vM(s)\\ds + eK2e*K«b-a> for a^t^
J a

holds. By virtue of the Gronwall's lemma, we have the estimate

(2.22) \\vU\t)\\£eK2e
5Ki<b-a> for

Then

holds, which gurantees the conclusion by setting C* = K2e
5Kl(b~a). D

By virtue of the above Lemmas, we have

Theorem 1. There exists a small positive number e0 such that for 0<e

^s0 the adjusting matrix S(e; x) in (1.5) is nonsingular while xeDA.

Proof. Substituting (2.13) into (1.5), we have for the j-th column vector of

S(e; x), say s/e; x),

(2.23) S j ( B ; x ) =

where 9 is a variable in 0^0 :g 1 . On the other hand the j-th column vector of

G-matrix G(x), say #/x), is given by

(2.24) gfc)=Mx).<pU>.

Therefore

In Assumption 1 we supposed that /(x) is twice continuously Frechet
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differentiable on D', which implies the Lipschitz continuity offx(x) on D', i.e.

(2.25) \\fJx)-fJy)\\£2C2\\x-y\\c for x,yeD'a

Besides we have had the estimates

ll^llc^M! and ||t><'>||c£C*e.

Hence we have

For an arbitrary small positive number <5l5 there exists s0 such that for

the inequality

(2.26) \\sj(B;x)-gj(x)\\^'-^d1 for 7 = 1, 2,..., * and xeDA

holds. Then the above inequality means

(2.27) HS(e;x)-G(x)||^lf

which implies the nonsingularity of S(e; x) in D^ . D

Corollary. For 0<e^e0 and xeDA, the matrix 5(e; x)"1 is bounded by

§ 3. The Convergency of the Initial-Value Adjusting Method

In this section we shall prove the convergency of the initial-value adjusting

method. Based on the idea of the method, we shall consider an operator IF

mapping JR" into C^J), which maps the given initial value r\ eRn to a function

of C^J) along the flow generated by the differential equation (1.1):

a<t<b,

Throughout this section, s is restricted in the range 0<e^s0, where e0 is as that

mentioned in Theorem 1. As in the previous section, let us denote the exact

isolated solution of the problem by £ and put ^ = £(a). The following equation

is trivial:
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(3.1) J^ = JL

Corresponding to the iterative process of the initial-value adjusting method,
an operator $2 mapping Rn into itself is defined by the following:

The domain of jaf denoted by Dom (<sf ) is the totality of r\ e Rn such that

(a, TI)E@ and ^r\ e DA hold.

j?n = n - S(e ; &Yi)-lf(&ri) for r\ e Dom (jaf ) .

The desired solution i\ satisfies

(3.2) 4=j/$,

and the iterative process is simply represented by

(3.3) *fc+i=.8rtfc, fc=0, 1,2,....

For *f, { e Dom (jaf), the difference of jaf ?f and sf £> satisfies

(3.4)

The following lemma is well-known.

Lemma 4e 77ze operator & is Frechet differentiable in Dom (jjf ) and its

Frechet derivative is given by

for i| e Dom (#/ ).

Lemma 5. Tlze estimation

(3.6) s(e; *Qrl{f(ri\)
holds.

Proof. By virtue of Lemma 4, the equation

(3.7) ^n-^ = <P(.f^)(n-® + o(\\ri-t\\) as ||*f-£||-»0

holds. Since

f(xl-f(x)=fx(x)(x'-x) + 0(\\x'-xm as ||x'-x||c-»0,

substitution of (3.7) yields (3.6). D

In order to discuss the second term of the right-hand side of (3.4), Assump-
tion 1 should be strengthened slightly.
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Assumption 4. In £>', there exists a mapping r({; x): D'-*Rn such that

the equation

(3.8) f(x + 1) =/(*) +fx(xK +±fxx(x)tt + r(£ ; x)

whenever \\^\\c^50for xeD'. Here fxx(x) means the tensor of the third

order with components d2ft(x)/dXjdxk (i, j, fe=l, 2,..., n). For r(<!;; x)

exists a positive number C3 satisfying in 50-neighbourhood of x

(3.9)
uniformly to

We shall take the following notations.

By virture of (2.23), we have

(3.10) SJ(B;

and

(3.11) SJ(B;

where sy stands for the 7-th column vector of the adjusting matrix.

The equations (3.10) and (3.11) yield

(3.12) j/8

fx(xz)(x\ - Xi)-

-r(x, - x2 ; jc2) -
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-yP;yP)-r(Xl-x2; x2)} .

Application of Lemma 4 brings the following two equations :

(3.13) *i-*2=*(-
(3.14) y^-y^^^(-;y(2J))

Thus we have the following estimations.

and r(yP-yP; y^) and r(Xl-x2;x2) are both o(||i/-£||3).

Summing up the results, we have for the second term of the right-hand side

of (3.4)

(3.15) S(s

where Z(£) is a tensor of the third order whose j'-th component is the matrix

From (3.4), (3.6) and (3.15), S/Y] — J^£, is expressed by

(3.16)

Now we are ready to state

Theorem 2. Under the Assumptions 1~4, f/iere exists a positive number

Al such that in A ̂ neighbourhood of fj the initial-value adjusting iterative

process converges to tf for 0<e^e0.

Proof. Set £ = $ and remember /(^) = 0, then (3.16) yields

(3.17)

+ o(\\rj-fj\\)
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The first term of the right-hand side is estimated such that

Therefore Jt should be chosen so small that for 0<eS[e0 the norm of

is smaller than a||?j — fj\\, where a is a positive constant such as

_

for an arbitrary positive K<1. This is possible because the term in question is

the order o(||»;-/}||).

Then we have

which implies the conclusion. D

§ 4. The Rate of Convergence

As the direct consequence of (3.16) in the previous section, we have the

following theorem on the Frechet differentiability of sf.

Theorem 3. The initial-value adjusting operator $4 has the Frechet

derivative at every £ in Dom(j/), which is given by

(4.1) *'(£)*!= {Em-S(e;

c

for f |eDom(jaf).

Proof is obvious.

Corollary. The Frechet derivative ^'(f() is given by
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(4.2) j*'(fb=EH-S(e', J^)-IG(^) .

Investigation of the Frechet derivative J/'O?) gives us the assertion that the
convergence of the iteration (3.3) would not be expected quadratically in the
neighbourhood of tf while a fixed e is chosen to be apart from zero. The reason
is following:

As is shown in (4.2),

(4.3) j/'(^={

= S(s;

where ?j e Dom (jaf) and ^ is the j-th component of vector rj. By (2.23) the
equation

holds, where .£ stands for J5"^, and * means to be associated to £. Since e is not

zero, /»t$ + e0{0(y) + fiw)}] —/*(*) and 0^> do not vanish generally.
Hence, {S(e; c^"/}) — Gd^^)}r\ does not always vanish for 77eDom(jaf),

which implies the spectral radius of jtf'(fj) is positive for a fixed e>0. By virtue
of the well-known theorem (e.g. Ortega-Rheinbolt [6], KrasnoseFskii et al. [3])s

the positiveness of the spectral radius of s/ '(ff) brings the linear convergence at
best.

Note that our above assertion does not deny the possibility of quadratic
convergence by choosing e adaptively during the iteration. For the investiga-
tion of this direction, see Ojika [4],

Let us reformulate the problem (1.1) and (1.2) as an operator equation
different from (1.7). Define an operator & : Rn-+Rn by

for

The domain of ^ is identical to Dom(jaf). The problem (1.1) and (1.2) is
transformed into the form finding the root of the equation

(4.4) ^=0.

It is obvious that the Frechet derivative of & airj is given by

(4.5) '̂(»7)
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Now we can state the following result.

Theorem 4. For sufficiently small e, S(e; J*"?/)'1 is a contractor intro-

duced by Altman [1].

Proof. By Example 3.1 of chapter 1 of [1], a sufficient condition for a

contractor is that 5(s; J5"^)"1 satisfies

(4.6) ll^'0?)S(

Employing (4.5), we have

By the same argument which we have often repeated, the right-hand side can be

bounded by q\\rj\\ for 0<<?<1 by choosing e sufficiently small. D

Final Remark. Our discussion implicitly assumes that for any rj€

Dom(j<), ^, i.e. the solution of the differential equation -^ = X(t, x), a<t

<b starting from the initial value x(a) = ̂ , can be exactly computed, which

does not hold strictly. Because of the nonlinearity of X(t, x), the numerical

integration of differential equation is necessary, and the appearance of com-

putational error is unavoidable. However, if we can obtain a total error esti-

mation for the employed numerical integration by some technique, we may

argue the above results within the limits of the error estimation.
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