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Holonomic Quantum Fields. V

By

Mikio SATO*, Tetsuji MiWA*1" and Michio JIMBO*

Introduction

The present chapter V of our series is an application of the theory of ro-

tation ([!]) to the lattice models. Included here are the two-dimensional Ising

model ([5], [6]), a bosonic counterpart of it, the one-dimensional XY model

([12]) and the free fermion model ([14] [15] [16]). In each case we shall

compute exactly the norm representation of spin operators, and hence their

n-point correlation functions. The materials in this article are "time-ordered"

according to the development, but we could have unified the treatment by using

the path integral formalism exposed in Section 5.4 (symplectic case) and in

Section 5.7 (orthogonal case). Since the first announcement of our result on

the Ising model ([2] [4]), there have appeared several independent papers [9]

[10] [11] that deal with the exact computation of n-point functions. We

emphasize that these results are made most transparent by considering directly

the explicit form of spin operators. (For instance the arbitrariness in the in-

finite series expression of n-point functions for T>TC is neatly described in this

way. See p. 548.)

The plan of this paper is as follows. The first three sections 5.1-5.3 are

devoted to the Ising model. We shall see that a systematic application of the

original method of Onsager ([5]) enables one to express explicitly not only the

free energy but also the spin operator itself. We first review the diagonalization

procedure of the Hamiltonian (see [5] [7]) in Section 5.1, and compute the

norm representation of spin operators in Section 5.2. Using these results we

derive in Section 5.3 infinite series expressions for n-point correlation functions

(an application of the product formula in [1]). We also verify their con-

vergence and several symmetry properties. In Section 5.4 we present a two-
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dimensional lattice model which constitutes the symplectic version of the

Ising model. The reader will easily see that the path integral formulation

utilized here admits of an immediate extension to give higher dimensional

similar models. In the next Section 5.5 we take the scaling limit, and show

that the spin operators in Sections 5.2 and 5.4 are scaled to give (pF(x), <pF(x)

and cpB(x) introduced in [2] [3]. In Section 5.6 we treat the 1-dimensional

XY model (cf. [13]). This time the spin operators give in the various scaling

regions (pF(x), q>F(x)9 their time-derivatives, and also the tensor products of their

copies. Lastly in Section 5.7 we consider the free fermion model, to which

we refer as the orthogonal model in contrast with the one in Section 5.4.

Our path integral treatment differs from the methods in the literature [14] [15]

[16] and seems to be a simpler one. This model includes as a special case

various Ising-like models, such as those for the triangular (cf. [18]) or the

generalized square lattice, so that the /i-point functions for these models are

obtained exactly. (For the latter we may deal with only the vertices of the

same type.)

The authors would like to thank Professor M. Suzuki for informing them

of related literatures.

Chapter V. Spin Operators in Various Lattice Models

§5.1. Diagonalization of the Hamiltonian

We shall review here the diagonalization procedure of the Hamiltonian of

the 2-dimensional rectangular Ising lattice. The content of this section is well

known (see [5], [7]), but we have included it here so as to make this paper

accessible to non-specialists, and also to fix the notations.

We consider a rectangular lattice of size MxJV, where a spin variable
crm r t=±l is attached to each site (m, n) (Ogra^M-1, O^n^AT-1). The

total energy of this system is given by

M-l N-l M-i N-l
(5.1.1)- E(a)=-El^ ^amtlam+ln-E2^ "£ vmnffmn+1

m=0 n=0 m=0 »=0

where El9 E2>Q are interaction strengths. We have chosen the cyclic conven-

tion crm+Mk!H+NI = amn, k, I eZ (i.e. the lattice is wrapped on a torus). Our main

objectives are the grand partition function
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(5.1.2) ZMW=2>-'*<*>
(*)

and the correlation functions for arbitrary lattice points (mj9 HJ) (j = l,..., k):

(5.1.3) pk((ml9 «!),..., (mk, nk)) = Z-M
l
N £ <rminC~°m*n*e~*EW •

(<T)
In (5.1.2) and (5.1.3) the sum is taken over 2MjV possible spin configurations

cr00= +1,..^ cr M _ ] > ] V _ 1 = ±1, and j3 = l /kT>0 (fc: the Boltzmann constant,

T: temperature).
We shall follow the method of transfer matrix. For an M- vector <j =

(<TO, (T!,..., o"M-i) with- entries 0^= ±1, we set

(5.1.4) *, = *,O®-®*,M-I. «+i

These 2M vectors {eff} constitute a basis of (C2)®M. We introduce matrices Kl5

F2 whose (eff? eff')-dements are given by
M-l

(5.1.5) (FJ^.^-expCS:! Z°mam+1)
m=0

m=0

where 5^ = 5^^-^.^^ and

(5.1.6) «i=j8£i, X2 = /JJE2.

The definition (5.1.2) then reads

ZMN—L*'" X (^l)ooffo(^2)<ro0i'"(^l)ffN-iGN- 1(2 &N- iff o
0O <fN-l

= trace (V1V2)
N

where eyn = ((70n,..., <JM-IW) (« = 0, 1,..., N-l). If we set
m

(5.1.7) Jm = /2®-®(1 L^S-8/2

(w = 0, 1 ..... M-l)

F1? F2 are written as

(5.1.8) F1

F2 = (2 sinh 2K2)
M/2 exp (X J(C0 + Q + • • • + CM „ 0) -

Here for K>0, X* = X*(K)>0 is determined by the formula
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(5.1.9)

The operators {sm, Cm} satisfy the following relations.

(5.1.10) smsm'

smCm' = Cm>sm (m * m') , smCm = - Cmsm

(m, m' = 0, 15...,M-1).

Making use of the symmetrized transfer matrix

(5.1.11) F=FPF2F1/2=FI1/2(F1F2)F1/2

the partition function is given by

(5.1.12) ZMJV=traceF".

Similar reasoning yields the following expression for correlation functions.

Taking into account the symmetry of pk in its arguments we may assume nl

S-Sn».

(5.1.13) Pt((wi, MI),-.-, (mk,

where

(5.1.14)

The key point of Onsager's ingenius method is his observation that the
transfer matrix F and the spin operator smn both belong to the Clifford group
G(W) over an orthogonal vector space W, which we shall now describe. We

introduce operators pm, qm as follows.

(5.1.15) pm = C0C1...Cm_lSm5 Po = s0

4m = CuCl. '

= trace (. > .... • Y») <...<
trace VN \ i — —

= VnsmV~n

By virtue of (5.1.10) we have, for m, m'=0, 1,..., M-l,
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In terms of pm9 qm, sm and Cm are given by

(5.1.17) sm = pmtm9 tm = qm

M-l
Now (5.1.16) shows that W= © (Cpm®Cqm) is equipped with an orthogonal

m=0
structure, with respect to which the basis {pm, iqm}m=o,it.,.tM-i is orthonormal.
Since nr (pm)9 nr (gm)7^0, (5.1.17) implies that sm9 tm e G(W). Moreover we have
from (5.1.8) and (5.1.17)

(5.1.18) V1

where £w=qM-iPM-i'"QoPo denotes an orientation of W(Chapter I, p. 242).
In the sequel we shall modify the definition of Vl as

to avoid complexity, without altering the essence of calculation. This makes
the transfer matrix invariant under the horizontal translation JV-»pm+i, qm*-*
qm+l. From (5.1.18) and (5.1.18)' it is clear that Ve G(W).

We fix an expectation value on A(W) given by (ay=ZMl
NtmcQ(aVN) =

tiace(agK)(aEA(W))9 where 0K = F"/trace VNeG(W) (Chapter I, pp. 261 ~
262).

In order to obtain the norms of sm9 tm and V9 let us compute their induced
rotations (cf. [8]). We have

-TV(5.1.19) Ttmpm,

T =1 ""*'

(5.1.20) Ty{'*pm

(5J.21) TV2pm--

where q~i = qM-i and PM=PO in (5.1.20).
If we introduce the Fourier-transformed basis
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(5.1.22) W,) = Mi>'l"V»
m=0

$(0,,)=Jz;1«-""S,.
m=0

(9^ = 2njLi/M9 ^ = 0, 1,..., Af-1 modM)

the table of inner product becomes

(5.1.23)

with (5 / t j_v = 0 GU^ — vmodM), =1 (n= — vmodM), and we have from (5.1.20)

and (5.1. 21)

(5.1.24) Ty^p(eii) = p(eil)-coshK,-^(eil)-e^-smhKl

Tvl'ig^) = -p(9/l)-e
ie" sinh K, + Q(OJ-cosb. K,

(5.1.25) TyJWJ^PWJ -cosh 275:| + 4(0 J-sinh 2K$

(5.1.26) TYWJ = p(6f)- co

TV^M) == ̂ (^) ' a(8J sinh y(^) + «(^ • cosh 7(6,) .

Here 7(6) =}>(- 0)^0 and 0(0) are denned by

(5.1.27) cosh y(0)=cosh 2Kt cosh 2Kf -sinh 2Kt sinh 2X| cos 0

= cosh 2(Xj - Xf ) + 2 sinh 2Kt sinh 2KJ sin2 (0/2)

(5.1 .28) a(0)±1 sinh y(0) =2(cosh K^ cosh ATJ -e±ie sinh K^ sinh AT|)

x (cosh KI sinh .STf -e±i9 sinh ^ cosh K%)

= cosh2 ATi sinh 2#f (1 -<xie
±ie)(l -a.2le±ie)

a(Q)2 _ (l-« i e")(l-<gl«")

*• j ~(l-a! «-'•)(! -oj^-")

with

(5. 1 .29) at = tanh Xi • tanh X| < 1

«2 =(tanh KI)~I tanh Xf .

The critical temperature T= Tc is defined by the condition

(5.1.30) a2ii<*rirc .
Notice that for 0=0, y(0) = 2|Xt - X| | and a(0) = + 1 (T^ Tc). For T > Tc,
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is a single-valued function of z = eie on the unit circle S'1 = {|z| = l}? while for

T<Te,

(5.1.31)r<7c aT<Tc(6)= -e-">a(e) = bT<

enjoys the above property. Here the branch of square root is so chosen that

The rotation TK in (5.1.26) is diagonalized in the following basis for T^ Tc,

respectively.

. 1 .3.2} j> 7-
'

(5.1.32)T<Tc

In either case ^T(0M) = ̂ r5rt.(^)' "AC^)= "?rarc(^) satisfy the canonical anti-
commutation relations

(5.1.33) DrC^X !r (0V)] + =0, [\ff(9^9 $(0V)]+ =0

M (n = v mod M)

0 (ju ̂  v mod M),

and we have, using y(9) = y( — 9),

(5.1.34) 7 (̂0.,) = *~y(C

(/j = 0, 1,..., M —1 modM).

The table K of the expectation value in this basis is computed by applying the

formula (1.5.13), i.e. K = (J + H)I2, H = J(l-TvN)(l + TvNT1. We find

7 o ,J.,_ ^
j A0,,.(5.1.35)

0
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Proposition 5.1.1. We have

(5.1.36) (2sinh2£2)-
M/2F=exp(-.5f)

If we set F /=exp( — «^), its norm is #

(5.1.37)

< O2 =Mn cosh ((AT+ l)7(0M)).(cosh
/i=0

i M-I n — £-y<*i*)Vl 4-£-#y(
P'/2- -£ Eo

 U *1+g-&\tX.»)

Proof. By virtue of the anti-commutation relations (5.1.33), F' induces

the same rotation as in (5.1.34). It is also clear that nr(F')=F'F'* = l. On

the other hand, by (5.1.18) and (5.1.18)', the spinorial norms of F}/2 and

of (2sinh21C2)~
M/2F2 are easily computed to be 1. Therefore we have

(2 sinh 2K2)~
M/2V= ± V. In order to determine the sign consider the extreme

case Kl=Q. In this case V1 = 19 0(0) = 1, and it is easy to see that the correct

choice is the plus sign. This shows (5.1.36). The norm of V is computed

directly from the formula (1.5.7), (1.5.8).

Corollary 5.1.2.

(5.1.38) Z2
fN=(2smh2^2)^-1l12(l+cosh^(^))en=o

Proof. Straightforward from the formula (1.5.18).

In the limit M, JV-KX) (5.1.38) reproduces the celebrated Onsager's formula

for the free energy per unit site

(5.1.39)

As has been noted by Onsager, it is rewritten into the symmetrical form

(5.1.39)'

by using the identity

Here we set

(5.1.40) C~cosh2^9 St = sinh 2Kt
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Sjl (/=!, 2).

The calculation of Nr (tm), Nr (sm) will be carried out in the next section.

§ 5828 Spin Operators

Actually the explicit computation of Nr(smw) is performed only in the

infinite lattice limit M, JV-»oo. For convenience we replace the lattice size

M, N by 2M + 1, 2JV + 1 respectively. A lattice site will now be represented

as (m, ri) with — M^m^M, —N^n^N. The spin operators are defined to

be tm = gm_1pM_1-q.Mp-M, sm = pmtm and t^VW*, smn=V»smV-».

In the limit M, N-+CQ the finite lattice and its Fourier image Z/(2M-hl)Z

xZ/(2N+i)Z become Z2 and the torus (R/2nZ)2, respectively. First we fix

M, T(^TC) and let N tend oo. The table of expectation values (5.1.35) be-

comes(*)

y \ / o \
(5.2.1) =

In other words the expectation value < > is now the one induced by the holo-
M M

nomic decomposition W =7T©7, Ft= © C$T(0A F= © C^(0J.
M=-M M=~M

In view of the simplicity of the rotation Ttm in (5.1.19), a convenient basis

for the calculation of Nr (*m) is {pm, qm} or its Fourier transform {p(6ll)9

From (5.2.1) and (5.1.32)r>Tc, we have

(522)
' ' )T>Tc

(
(5.2.2)r<Tc | '

I "~"" I

(*) In what follows we often drop the subscript r^rc in case there is no fear of confusion.
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where we have set
\L--M

Now we go to the limit M-»oo. If we set

(5.2.3)

the auxiliary operators pmn = e-
nP°-impl p00 e

nP°+impl, qmn = e-
nP°-impl qOQ

x enP°+impl are expressed as

(5.2.4)r> Tc pmn = J" ̂  *L (

(5.2.4) r<Tc

In this limit (5.2.1) and (5.2.2)r>Tc become respectively

0

1
(526) '

' ' ;

(5.2.6)r<Tc

T<rc,-m+m'-l
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where aT>Tc(0) = £ e~imd aT>Tc>m.
m=-oo

We distinguish the two cases T> Tc and T< Tc,

(i) The case T>TC.

We shall first consider the even element ?m0 = 4Jo) on the lattice of size

(2M+l)x oo. From the formula (1.5.7) (or directly from (A.26)' of [3]) we

have

where tfmf) = flrxrc,m- Now we *et ̂ ->0° (m fixed) and obtain in the infinite
lattice

a0
(5.2.8)

Finally we take the limit m-»oo. The right hand side of (5.2.8) in this limit is

evaluated by appealing to Szego's theorem ([17]). Using the fact that (tOQtm0y

-»<*oo>2 as ^-»oo we obtain

(5.2.9) </00>=(l-^^i)1/8(cosh^1)-1

in the infinite lattice, where Siy S2 are given in (5.1.40).

In particular tffi^Q for sufficiently large M. This implies that the norm

of 4if } has the form

(5.2.10) Nr(4f )) = <4f )>^- ) /2

where R(M> eEndc(W) corresponding to (R^M^(6^ 0V))M,V=-M,...,M is related to
p(M)j £(M) through (cf. (1.5.8))

(5.2. 1 1)

In the limit M-»oo the operators P(M), £(M) become

(5.2.12)
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(5.2.13) (Em,

Consider the factorization of E(0) given by

(5.2.14) X-(Q) =

bT>Tc(-e)
Clearly X±(9) is holomorphic and invertible on jz^1^! (z = ete). This implies
that

Therefore by applying (A.18)F—(A.19)F in Chapter IV we obtain R =
— 2X~l-PX+J~l\ namely the corresponding kernel R'(9, 9') in the basis

is given by

( bT>Tc(-9')\
*.,» „., p-W+O')(5.2.16)

Remark. It is easy to verify that P, E and X+ are bounded linear operators
on (L2^1))2. Hence K + *KT= J(1-P + £P) has a unique inverse (X+^l-F)
+ Xl.1P)X+J~1 in L2 according to the Remark below Proposition A.2, Chapter
IV.

For general (m, ri), the rotation Ttmn = l — 2Pmn induced by tmn is obtained
by the replacement P(0, 0')»Pmn(69 9') = Umn(9)P(9, e')Umn(Q'Tl with Umn(6) =
eime(coshny(9)-E(6)smhny(0)). Since Umn commutes with £, (5.2.14) and
(5.2.15) are valid if we replace X± by UmnX±U~*. It is easy to see that the
expectation value </mn> is not changed. Returning to the basis ^t(0), $(0) we
have thus the following result.

(5.2.17) Nr (/wn) = </mn>^-»/2

dOdff(fr(nt(nJ*=>(0,0') R-+n(999')\in9>)\
^2^(^W(e)Hte^ R+me>)]($(9>) J

where <rmn> = <r00> is given by (5.2.9), and
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Computation of Nr (smn) is now a relatively easy task. Since smn=pmn-tm

we have from (5.2.17) and (1.4.1)

(5.2.19)

Here we have used

(ii) The case T<TC

In this case we shall deal with the operator smn=VnsmV~n, sm = sl|fsm =

Pm<lm-iPm-i<Im-2~'P-M + i<l-M> instead of smn itself. This amounts to setting
the boundary condition s_M = l before taking the limit M-»oo.

More precisely we start with the following:

(5.1,2)' ZU=Z'^£(ff)

(ff)
(5.1.3)' p'k«mlt nj,..., (mb Bt))=ZJfK-i E' (Tmini-ermfcniie-^W

(ff)

where X' stands for the sum with the restriction ff0n = l (Q^n^N—i). Fol-
(ff)

lowing the procedure of Section 5.1 we find

(5.1.12)' Z'MN = 2-i trace (V'»)

(5.1.13)' piftm^ Fii),..., (mfc5 nfc)) = (2Z^rl trace (s^.

where

(5.1.11)' V' = V'^V'2V
f^

(5.1.14)' s-mn=F'»JmF'-'', sm=pm^m_1

and pms gm satisfy (5.L16). If we replace V'l9 V2 by those given in (5.1.18)
and (5.1.18)' respectively, we return to the situation described above. It is not
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difficult to verify that this replacement does not affect the result in the limit

M, N->ao.

Calculation of Nr (smn) is quite parallel to the case of tmn by using the basis

{eiep(9), 4(0)}. Explicitly the rotation TSoo= 1 -2P reads

_ f>-i(0-ef)(5.2.20) p(o, e')=i2--
e_ie_9,_i0 .

Accordingly (5.2.13), (5.2.14) and (5.2.16) are replaced by

(5.2.21)

,* 9 m(5.2.22)
bT<Tc(v)

(5.2.23) K'(0,0')=-

respectively.

As a result we have

(5.2.24)

--(9, 6') R£(6, 0')

where fr(e) = frT<T,(e), $(6) = $ T < T f ( 6 ) and

(5.2.25) <S-mn>=(l-ST2^2)1/8

In Chapter 4 we constructed the operator (pF(a) starting from the 2-dimen-

sional Dirac equation. Likewise we can begin with the following difference

equation for v = (Om,n6«» ^m» = '(4V>
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< + ) _^ /^*-,(+) e e* ^ ni- in "t" ^ifi+i
1> inn -t-l — ̂ l^2Vmn ~~^1^2 -

C, + J
^ -

+ * *

Vm-ln ~^~ Vm+ln- -

We denote by W the set of solutions of (5.2.27) satisfying

I l « > i , V l 2 + Z l i > i r . ) l 2 < ° o
?r»eZ »?eZ

for a fixed w. The inner product in W is defined by

(5.2.28) < v, v' > = 2 Z (»S,+>i,V - ^(,r>L" ) -
meZ

A little computation shows that the right hand side is independent of n.

From (5.1.16) and (5.2.28) we know that if we identify pmo (resp. qmo)E W

with the solution v of (5.2.27) satisfying vm0 = * ((5mmo, 0) (resp. i>m0 = '(0, -<5mwo))5

Wand W are isomorphic as orthogonal vector spaces. Moreover, from (5.1.24)

and (5.1.25) pmono (resp. ^rmono) represents the solution v such that vmno =
 t(Smmo, 0)

Let us introduce "the mass shell" for the difference equation (5.2.27).

Denoting by z and w the translations

respectively, we can rewrite (5.2.27) in the form

(5.2.27)' A> = 0

where

r =
1 1

Noting that Cf S2 = C2 and SJS2 = 1, we have detr =

S1S|-^^)w + l = -2SJwJ(z, w) where

(5.2.29) J(z. w)^C1C2-S1-^^-S

We denote by Mc the complex mass shell
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(5.2.30)

Mc is a non-singular elliptic curve. The projection n^: MC->P1(C), 7T1(C05 Ci»
£2) = (£0s f j) is a two-sheeted covering with branch points a? x, af1 (see (5.1.25)
and (5.1.26)). We set

(5.2.31) M = {(z, w)eMc | |z| = l},
(5.2.32) M± = {(z,w)

An Abelian differential of the first kind on Mc is given by

dz - dz(5233)
' ' '

We choose a uniformizing parameter U on Mc so that dU = dz/niz(w — w""1).
We identify M± with JR/27rZ by

z = cw, w = ̂ W if (z ,w)eM+ ,

z = e-'
0, w = e-yw if ( z ,w)eM_ 5

respectively. Then on the real mass shell M the 1-form dU is expressed as

(5.2.34)V y

For a f unction /(I/) defined on M we have the following identities.

(
J

where U±(9)=(e±ie, e±*W) for 0 e jR/2;rZ.
Set for T>rc

(5.2.35)

and set for T<TC

(5.2.36) ^t(0)=zVsmh7(5)^J.<rc(0) UeM_,

We have then

(*) We use z=Ci/C0 and H^Ca/Jo as the inhomogeneous coordinates.
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i
where 5(0, 0') = sinh y(0) • 27rc5(6> - 0')- We also set

t / e M _ ,
(5-2.38) r v _ , , ,_ UeM+.

From (5.1.28) and (5.1.31) we have the following identities.

(5.2.39) |&r>rc(0)|2 = s

(5.2.42) l^o.mn
V 2 -

dUzmwnil/(U)

Theorem 5.2.2. For T < Tc ,

(5.2.43)

Making use of (5.2.39) we obtain the final form of the spin operators

Theorem 5.2.1. For T > Tc,

(5.2.40) Ni(smn) = (l-Sl

(5.2.41) pmn

= \\M«MdUdU'Rmn(U*

Raa'(Q 6'}— siflk^K^—sinhcr'y^'

x el

Rmn(U, U') =

x g i (m-l)(CT6>+<r '0 ' ) + n ( o - y ( 0 ) + f f ' y ( 0 ' ) ) ^^ 0"'= ±)
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Rmn(U, U')= '"'

For T>TC we may change pnin by pmn+^i,mn^o,mn for any \l/ltmne W (see

Theorem 1.2.8). The particular choice

JM

leads to the following.

Theorem 5.2.3- For T>TC,

(5.2.45)

= \\ dUdU'R'mn(U, U'
J J M x M

2sin
Rfffa'(0 8'}=^mn \u> v ) _

((7, (?' = ±) ,

Proof. We note that for (z, w), (z', w') e Mc we have

r ^ 2 4 7 > i q w ~ w / z""z/
(5.2.47) ^ 2 _ - l / -

Without loss of generality we may assume that m = 1 and n = 0. Using (5.2.47)

we have

Pio + ^i, 10^0,10

-Z Z

HM X M 1̂ —

M*MdUdU\l-^z'^+^

dUdU'
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Remark. By different choices of i//1?mM the following kernels are also

admissible as R'mn(U, Uf).

(5.2.46), , w"^-i W-L(w'Y.

(5.2.46)2

(5.2.46)3

Finally we express the auxiliary operators pmn and qmn in terms of

For T>TC

(5.2.48) /7mn = J(C~+I)S*J2 dUJ(T^z^)(l -^z~^zmw^ (U) ,

J Af

where e(L/)=±l for L7eM±.
For T<TC

(5.2.49) pmn ~
M

§ 53. Correlation Functions

In this section, applying the product formulas (Theorems 1.4.3 and 1.4.4)

we derive infinite series expressions (cf. [9], [10], [11]) for fc-point correlation

functions directly from the norm representations of spin operators.

Let C±? C± denote the 1-cycles on Mc defined by

(5.3.1) C± = {(z, w)eM c |z = eie, |w|^l, 9eR/2nZ},

(5.3.2) C'±={(z, w)eMc\w = eie, |z|^i, 6eR/2nZ}.

In Figures 5.3.1 and 5.3.2, we show their locations.
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Figure 5.3.1 z-plane

w= — I

(T<TC),

(T>TC).

\z\>l

We define the /-form £2, on (Mc)' by

(5.3.3)
j=l -

where we set z,+1=z1 and wl+l = wl. If we introduce another uniformizing
parameter G on Mc through

dO= . (
dw =~s±.du.niw(z — z~L) S2

QI is rewritten as

(5.3.3)' Q

Here we have used (5.2.47) and the following.
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(5.3.4) Siz(w-w-i)+S*w(zd-z-i)=0'

Ql is holomorphic except for simple poles at

0" = !,..., /) where Ul+l = U1. The residue at A\j) is given by

where we identify Jp> with (MC)'-M*>
Let (ml9 n1)5...5(mfes nk) be k distinct lattice points. We choose permu-

tations a and T so that m f f ( 1 ^ " - ^ m f f ( k ) and n t(1)<^---:g?iT(fc), respectively. We
denote by < the ordering by er, namely for 1 ^v, V^k

in

v < v' o cr~1(v) < cj""1(v') .
m

Likewise < is defined. We set
n

and denote by Cvv. the 1-cycle defined by

(5.3.7) Cvv ,= 0 if v = v'5
[c_ if v < v ;

Bn

We also set

rc; if v>v' ,
(5.3.8) C'vv, = l 0 if v = v'5

Id if v<v' .

First we assume that T<TC. From (1.4.12), (5.2.43) and (5.2.44) we have
the following ([9]).

Theorem 5.3.1. For T<TC9

(5.3.9) Pfc((^i» ^i)5«..5 (^fcj nk))= (l—Si2S22)

where F^= £

(5.3JO)

V|,

(*) For a closed form w with a simple pole at J= {/=0}9 the residue res^oi is defined to be
&)/dlog/14=0\A where a)=dlogf^0+<p (6, <p: holomorphic).
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In (5.3.10) if CVJ_lVj = CVjVj+i for some j, we deform these cycles so that

(5.3.11) kj-il>|z;|.

Let £>4 denote the dihedral group of order 8, i.e. D4 has two generators Al

and A2 satisfying Al = A% = (A2Al)
4 = l.

By the definition the correlation function satisfies the following invariance

with respect to D4.

(5.3.12) Al pfc((ml5 nO,..., (mfe, fik); Kl9 K2)

For the infinite series (5.3.9), (5.3.12)^ is easily checked using the invariance

of QI under the automorphism (z, W)H-»(Z, ^-1) of ^c- To check (5.3.12)^2
is equivalent to show that

JL
(5.3.9)' P f c((m l 5^3 . . .5(m f c ,^) = (l-^T2^2)8

where Fk«>= Z . . . v 5

(5.3.10)7 -F ,̂...̂

Here we used (5.3.4). In (5.3.10)' if C'VJ_lVj = C'VjVj+l for some j, we deform

these cycles so that

(5.3.12)' K-iMw,!.

As mentioned in [9] F^ is not equal to F^(l) in general. When we deform

the cycles from C+ into C± in order to obtain F'$lt_tVJ from F^^ jVj, residual

terms arise from (5.3.6). We shall give a sketch of the direct proof of the
oo

cancellation in the whole sum T f"k 121.
1=2

A residual term in F^v
}

lf> >V| appears from A\j) in the following six cases.

Case 1. Vj<Vj+l<vJ+2 and Vj , vj+2<vj+1 .

Case 2. Vj>Vj+l>vJ+2 and vy, vj+2<vj+i .

Case 3. v^ < Vj+1 < v7-+2 and v;- < vj+1 < vj+2 •

Case 4. Vj>vj+1>vj+2 and v i / >v < / + 1 >v y + 2 .

Case 5. vj9 vj+2<vj+1 and Vj<vJ+1<vJ+2.
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Case6. Vj9vj+2<vj+l and Vj>vJ+l>vJ+2.

In Case 1, at first CV j V j + l is located to the right (in Figure 5.3.2) of CVJ+lVj.+2

because of the condition (5.3.12). Since CVjVj+l (resp. CVJ+LVj+2) is deformed

into CL (resp. C'+) in this case, we must reverse their positions. Thus we get

— 2Fy~f.).Vj.Vj+2...Vj as the residue. Likewise we need to reverse the order of

cycles in the above six cases.
00

After the reversing corresponding to Cases 1 and 2, the sum £ F(
k°/21

changes to f) 1F(
k°/2/ where

1=2

#1(v1 , . . . , v/) = the cardinal number of the set

(v\vj<v<vj+i> vj> vj+i<v for some;}

U {v\Vj>v>Vj+i, vj9 Vj+i<v for some 7} .

Here lF$lt_tVl is given by (5.3.10) with the following prescription for a pair

satisfying CVj _IV. = CVjV. + { .

(5.3.11)! |z7.1|<|zy| if CVj_lVj = CL and C'vjVj+l = C'+ ,

\zj-l\>\Zj\ otherwise.

Next we perform the reversing for the Cases 3 and 4. The result is

f 2F^I2l where

^ 2 ( v i J - - - 3 v/) = the cardinal number of the set

{v | v y <v<vy + 1 , v < / < v < v y + 1 for some j}

U {v |v j>v>v y + 1 , v y > v > v y + 1 for some j } .

Here 2F^I
V

)
1 ..... Vl is given by (5.3.10) with the following prescription for a pair

satisfying CV ._ 1 V . = CW1.

(5.3.11)2 ky- i l< l^ l if C'Vj_lVj = C_9

\zj^\>\zj\ if C'Vj_lVj = C+.
00

Now we deform C+ into C± and obtain ]T 3F(
k
l)/2l where

1=2
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jf
Z «i(vi,..., vde2(vl9...9 v^eaCVi,.. . , v,)

V I . . . . . V l = l
x 3 /?'(/)
^ Z fcVl,...,Vj 9

.., vl) = (-)*3(vi""'vi)

#3 (v 15...5 Vj) = the cardinal number of the set
[j\Vj<VJ+l9 Vj<Vj+1} U {j\Vj>Vj+l9 Vj>Vj+1} .

Here 3F^1
)
j>>.>Vfc is given by (5.3.10)' with the following prescription for a pair

satisfying C'Vj_1Vj = CVjVJ^.

(5.3.11)i \wj-i\<\wj\ if CVJ_1VJ=C. and CW+1 = C+,

I wj- il > I w/l otherwise.

We can show that

«i(vi,..., vl)e2(v1,...J vfafa,..., v,) = (-)tl(Vl ..... v<>
*i(viJ---» V|)=the cardinal number of the set

{ v ' v ' 'm v m v ; + l 9 VJ> vJ+1f v for some j}

U {v|v j->v>v j-+1, Vj, Vy + 1 <v for some/} .

Hence after reversing cycles for the Cases 5 and 6, we obtain the desired sum

,?/;"'•
00

If |nv — TV|»! for any pair (v, v'), the convergence of the sum S F^fel is
1 = 2

obvious by the same argument as in Proposition 4.5. Indeed |wJ-|~Wvjv^+i is
much smaller than 1 on CVjV._¥i and serves as a damping factor. Now we shall

show that (5.3.9) is convergent if for any pair (v, v') either |nv — nv»|»l or
|mv — mv.|»l. In fact, if |mv — mv>|»l, we deform Cvv> into C'vv/. Then
|z|-mw is much smaller than 1 on C'vv,. Of course we should estimate the

residual terms. Let

Z v r' /r'Cs) J_Y Y r /r(s)
Z- ^-^1,...,^^ fc^l,...,/fs ' Z-r Zrf cA»if».f^s' i kftl,'-,PsI s=o jii,...s/*s=i

be the terms obtained from F^ ..... Vz. Then it is easy to see the following

conditions, which are sufficient for the convergence proof.

\c' I<2 I~S \c \<2l~s
l c M i » — , M s l ^-^ 3 lcMi8...,^sl ^^

The cardinal numbers of the sets

ire less than 2l for a sufficiently large L Hence
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=° if s

for a sufficiently large L

Now we consider the case T> Tc. We set J-form Oz on (M°)1.

^5j is holomorphic except for simple poles at A\j) (; = !,..., / — I) and (zt, w,) =

(oo, oo) and (z,, w,)=(0, 0). The residues are as follows.

(5.3.14) res^> <2J = (-)J'£/-i/w .

(5.3.15) ics^d^d^lm.
Wj = 00

(5.3.16) resZ|=0£j = (-)'<Vi/7».
W|=0

From (1.4.12) and Theorem 5.2.35 we have the following ([9]).

Theorem 5.3.2. For T > Tc,

(5.3.17) P*(0»i, «i)s.-.9 (wfes wfc))
/ oo
( - £
\ 1=2

where F|° i"j //?e jams a^ //i Theorem 5.2.1, a?i^ Gfc= X ^fcl} ^ « skew-sym-
1=1

metric kxk matrix given by

(5.3.18) G<<VV= S

(5.3.19) GiV,,...,,.,,-

= \ z^mvviwjwvvizjmviv2M;2nviv2"o^rmvi- i v 'M;rnv i-av '^i .
« ' C v v 1

x C v 1 v 2 X " " X ^ ' V j _ j v '

The expression (5.3.19) is derived from (5.2.46). We may adopt any one

of (5.2.46)! ~(5.2.46)3. Then the following are substituted for Gj^...^-.^'-

(5.3.19)!

This is the choice of [9],
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(5.3.19)2 ^ fcwr-vi - iv '

= \ ZimvviWinvvi-'zYmvi-iv'wJnvi-ivt----l .
J c V V l x - x c V l _ l V > \wl/

(5.3.19)3

VL..^.^' is transformed into — 2C4'v
}

vl_Vj_iV' under the action of A±.

(5.3.20)

Since the n-ordering is entirely reversed by Al9 (5.3.20) implies the invariance

In order to show the invariance of pk under the action of A2, we must prove

by deforming cycles from C± into C'± that

(5.3.21) Pfaffian Gk = Pfaffian G'k

where Gi = f) G;(/) is given by
1=1

k

(5.3.18)' G'kvv'= ^ G / C T-I ( V ) V I . . .VI-IT-^V') j
vi, . . . ,vj-i=l

C5 3 19V ^(l)
^.J.17^ ^^fcwi- '-Vi- iV

= — \ Zim v v iw^W v v i - - -z7m v i - i v 'w7 n v i - i v 'O l .
JC'vv^-XCv^jv'

By the same argument as for F(
k
l) we can show that G&vv, is equal to

— e(v, v')-Gf
kvv> where

It is also easy to see that for any partition

{ v i , v 2 } u { v 3 5 v 4 } U - U { v k _ l J v f c } of (I,..., fc}
k_

(-)2e(vls v2)---e(v fc_ l5 vfc) = sgncr-sgnT.

Hence (5.3.21) is valid.

The convergence of Gk is similarly shown as for (5.3.9) .

§ 5.4. The Symplectic Model

Let us now proceed to the construction of a lattice model which constitutes

the symplectic counterpart of the Ising model.
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This time we start with a rectangular lattice L of size M x N with cyclic

boundary, on which a continuous variable xmn e R is attached to each site (m, ri)

UOgn^IV- l ) . The total energy is given by

/c A i \ EV ~\ V V^ ((~* C1 -v-2 Vvv ^ * v v ^
^J.H.IJ J^\x)— 2Li 2-i \^1^2-^mn "l-^mn-^m+l n ^2-^mn^m n+l) ?

m=0 «=0

where Q, S£ denote those in (5.1.40). The grand partition function is defined

by the integral

(5.4.2) ZMN

M-lN- ldx= n n dxm.
m=0 n=0

Let F be a finite union of open polygons on the dual lattice L*, and regard

it as a simplicial 1-chain with coefficients in Z2 (Fig. 5.4.1). Given a F, the

signature of a bond b on L is defined to be -1 if F crosses b, and to be 1 other-

wise. We denote by e^r) (resp. 4m(r)) the signature of the horizontal (resp.

vertical) bond joining (m, n) and (m+1, n) (resp. (m, n) and (m, n+1)).

Figure 5.4.1

In the sequel we shall deal with only those F's which lie entirely in the interior

of L. In this case the homology class of T depends only on the boundary <3F

(=the set of endpoints of F). Now set

(5.4.3) £r(*)=MZ NZ (C1C2xL-^l41
1

n
)(^)^mn^n+l „

m=0 n=0

-S2e%(nxmnxmn+1)

and define an analogue of the correlation function (5.1.3) by
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(5.4.4)
JRMN

The notation p(dF) is justified by the following:

Proposition 5.4.1 The definition (5.4.4) depends only on dF.

Proof. Denote by pr the right member of (5.4.4). We are to prove that,

if two chains F, F' are homologous, then pr = Prf- It suffices to consider the

case F' = F + dn, where D denotes a minimal square on the dual lattice L*

centered at some point (m0, n0) e L. Set

(545) jc' =| Xmn (("*>*)*("*<»'

Then it is easy to verify that Er(x) = Er(x'). Therefore the change of in-

tegration variable (5.4.5) proves our assertion.

Calculation of the partition function (5.4.2) is straightforward. More

generally we consider the generating function

(5.4.6) ZMNtJ]

M-l N-l

Oln'i'iV-l m=0 n=0

In terms of the Fourier transformation

M-l N-l/5 4 7\ $ = y y p-ime^-ine^ r{J.**./J Xfiv 2* 2L, e * xmn
m=0 n=0

M-l N-l

m=0 H=0

;M=0, 1 M-l mod M

v=0, 1 N-l mod N\

we have

(5.4.8)

with J(^5 0/
v) = C1C2~S1 cos 0M-S2 cos 0;>0. Since (x^^^fMN'1^) is a

unitary transformation, (5.4.8) shows that the eigenvalues of the quadratic form

E(x) are A(6fl9 0'v) (0 ̂  JLX g M - 1 , 0 ̂  v g N - 1). Making use of the formula

M-l N-l
~
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(5.4.9) ( ••• ( dx1-dxNe-t*A* = Jn"(totA)-1'2
j JRN

(tx = (xl9 ...9 XN), A = *A, Re A. is positive definite)

we obtain the following.

(5.4.10) ZMJV= 7^(Mn n1 A(e,, e;))-w2
li=0 v=0

(5.4.11) ZMW[/]=ZMJVexp(-fE Z 4-««-»'. .-.•/»./»•.•
' 'mn m'n'

1 M-l N-l
n — L V Vamn — MAT 2* 2-*J.VJ.1V =o =

Here we have used A(Q9 Of) = A(-6, er) = A(9, -6'). In particular (5.4.6) and
(5.4.11) imply

(5.4.12) Z

In order to obtain the "correlation functions" p(3F), we use the transfer
matrix formalism. In the sequel we identify an integral operator on RM F:

f(x)i-»\ dx'F(x, x')f(xf) (x = (xQ9 x l9...?xM_1)el?M
5 dx = dx0dxl~-dxM..i)JRM

with the kernel function F(x, x'). Let Vl9 V2 be given by

(5.4.13) V1(x,x')=^p(-M±
m=0

m=0

and let V= V± V2. We have then

(5.4.14) V(x, ̂ ') =
m=0

(5.4.15) ZMN=(dxW-

= trace VN

where we have set trace F=\ dxF(x,x). We introduce also "free bose
JRM

fields" 4>m, nm (OgmgM- 1) through

(5.4.16) ^m(^x')

The canonical commutation relations
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(5.4.17)

(/»,/»' = 0, 1,...,M-1)

M-l
are easily verified. Hence FFB= © (C0m©C7rm) is equipped with a symplectic

m=0
structure. In terms of these free fields, Vl9 V2 are expressed as

(5.4.18) F1 = exp(-Mi;1 (QCf^-S^fc^Wi))
m=0

F2 = v/27r5?exp 4 Z (42 v 2 F\4 £Q

To see the second equality we note the following lemma.

Lemma. Put

(5.4.19) „,(*, *'; c) = .7 f y 2nsmt \ 2sin/ sin/

foroO. We have then

(5.4.20)
u+0(x, x') = 5(x-xr) .

We omit the proof.

Setting t = n/2 in (5.4.19) we obtain the kernel for the operator expf -Jf c2x2

+ ̂ 2 ^)) and (5.4.18) follows. We set also ^mn=V

and

M(5.4.21)
m=0 m=0

As in Section 5.1, we fix an expectation value < > given by

(5.4.22) <*> = Z~M\ trace (aV») , aeA(WB) .

Proposition 5.4.2. The table of expectation values for (5.4.21) reads as

follows:

(5.4.24)
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Proof. As an example we evaluate < A(0^A(0^)>. The rest are calculated

similarly. By the definition we have

+ ( - 2C1C2xm0 + SnlX-i.o + *„,-,- 1 ;0) + S2xml)

x(-2C1C2,vm.0 + ̂ 1(^-i.o + AV + li0) + 52,xm.

Substitution of (5.4.12) shows that the right hand side is equal to

M-l N-l

Taking the Fourier transformation we obtain

Remark. In the limit J!V->oo, (5.4.24) tends respectively to a^l/sinh y(0M

and &M-»g"^fl'*)/smhy(0;i), so that (5.4.23) simplifies into

5.4.23)'

I I 1 -^"M ^<W
e-y(»M) i

The rotations induced by f^, V2 are immediately obtained from (5.4.18).

(5.4.25) 7V>m = 0m, rKinm = 7

(5.4.26) rFl0(^) = faej , rKlA(^) = ̂  • 2 cosh ̂  + ̂ (^)
rK

• 2 cosh

The rotation Tv is diagonalized in the following basis :



562 MIKIO SATO, TETSUJI MIWA AND MICHIO JIMBO

(5 4 27) I
\

I

\

We have

(5.4.28)

Moreover from (5.4.23)' and (5.4.27) we have, for W-»oo,

Hence the expectation value < > in this limit coincides with the one induced by

the holonomic decomposition WB=V^®V, Ft=M©1 C^(0^ V= ® €^(0J.
^=0 n=Q

Now we return to the correlation function p(dF) and define the "spin

operator" sB>mB by

(5.4.31) ^>m(^^)

Then sB>m satisfies the following characteristic commutation relation with the

free fields :

f*A*-J\ A,(5.4.32) sB,m4>m'

sB,mnm' =j

Assuming n^ ̂  • • • ̂  nk, we have

/ 01 ... p \ — ̂ ^°~1 1"rjicft

HMK

where x(n;m^ = ( — xl)
n\...,—x^l,x^\...9x

(jSLi)9 and r denotes the polygon

shown in Figure 5.4.2:
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fc, nk)

Figure 5.4.2.

Let us compute the norm of sBfTnn in the infinite lattice. The free fields are

expressed in terms of creation-annihilation operators 0r(0)9 $(0) as

(5.4.33) <J>mn

7T —'*mn ^^

where rf0 = dO/2n sinh ̂ (0). They satisfy the difference equations

(5.4.34) <
7Cm,«+l== ""0mw

and in particular

(5.4.35) Cf^m - y^i(0m+lj» + <t>m-i, n) - y^2(0msn-

Clearly 7rOTB also satisfies (5.4.35).

In the basis $(0)= £ erim9$™ «(0)= S e"lm0^m the rotation Tsoo=
me 2" weZ

1 -2P and the operator E~1=H~1J (in the notation of (A. 17), Chapter IV) read

(5.4.36)

- e-'(«-'')

(5.4.37)
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coshy(0) + l

\cosh 7(0)-1

where Q = ~F^( \ __ j ) = Q'1 - In view of the formula

the factorization (A.18)B is achieved by choosing

(5.4.39)

Here we have assumed T>TC for definiteness, but in the case T<TC all the

formulas are valid by the replacement a2^->aj1. The kernel R(9, 6') is obtained

by applying (A. 19)B:

(5.4.40) P(0, -0')-

The vacuum expectation value <sf l>mn> is evaluated by the same method as in

Section 5.2, p. 541. Making use of the formula (A. 31) and noting s|jmn=l,

<5miJ> >0 in the finite lattice, we obtain

(5.4.41) <JB.mn>=(l-5f52)1 /8 if T>TC,

= (l-5r2S22)1/8 if T<TC.

Finally we rewrite the result using the creation-annihilation operators, and obtain

the following.

Theorem 5.4.3. The norm of sBtmn has the form

(5.4.42) Nr(^,wrt)
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where the kernels R^(99 6') are given by

(5.4.43)

- Vaia2 0
_ ±

/or T>rc. I/T<rc we replace a2 6j aj1.

§5.5. The Scaling Limit

In this section we compute the scaling limit of spin operators of the Ising

model as well as of its bosonic counterpart. We shall see that there result the

fields <pF, <pF and (pB constructed in the previous chapter [3].

Let us consider a square lattice of unit length e. By scaling limit we mean

the simultaneous limit

(5.5.1) T-+TC £-*0; m, n -» oo

where me and ns being fixed and finite.

First consider the Ising model above the critical temperature T>TC. We

set

(5.5.2) xl = me, x°

Here the factor -v/ — 1 is inserted so that in the limit e-»0 (x°, xl)eR2 con-

stitutes a coordinate of 2-dimensional Minkowski space-time. The positive

constant K will be fixed later. Choose constants a, jU, ju; so that 0<a<l? ju>0.

Let the interaction strengths be given through

(5.5.3) a1 = a + e^5 a2 = 1+6/1

where als a2 are defined in (5.1.29)-(5.1.30). We also set

(5.5.4) pl = 6/s.

In the limit e-»0 we have then the following.



566 MIKIO SATO, TETSUJI MIWA AND MICHIO JIMBO

(5.5.5) s

(5.5.6) a^)*1 sinh

2
sinh y(9) =e—^

We set

(5.5.7) *

We introduce a parameter u and an operator \l/(u) by

^.^ +i ,, ,(5.5.8) ii*1 = - - - , i/,(u) = -r for u>09

A*

Then we have in the limit e-»0

(5.5.9) <^(«), ^

(5.5. 10) e~np° = exp (ixQrdupQ\l/(- u)\l/(u)\ ,

(5.5.11) e-^pl

ffor u<0.

where du = du/2n\u\ and p°= ±%/^2+(p1)2 if
From Theorem 5.2.3 we have the following.

Theorem 5.5.1. In the limit e->0, we have

(5.5.12) Nr (O =(2i±^,ue)1/8 Nr (?*

where <pF(x) is given in (4.6.2) 0/[3], Namely

(5.5.13) Nr (9F(^)) = ^oW^pjFW/
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du du' ~"~ e-M*-^"')+*+<»-1+"'

Corollary 5.5,2. In the limit s->0, we have

(5.5.14)r>rc

where x°')=(mj-e, y— 1 ra^e) (j = i5...5 k) and <<pF(x(1))---<PF(x(fc))> zs flf^ew by

(4.6.57), (4.6.59), (4.6.70) and (4.6.71).

Not only the spin operator but also the auxiliary operators pmn and qmn

have the scaling limits.

Theorem 5.5.3. In the limit e-»0, we have

(5.5.15)r>Tc Pmn

qmn = - i

(5.5.16) ^±W

Remark. The difference equation (5.2.27) goes to the 2-dimensional

Dirac equation in the limit. In fact setting

(5.5.17)

we have

Taking (5.5.15) into account we set

(5.5.19)r>rc w±

(5.5.18)r>Tc is transformed into (4.2.42) for w±.

The case T< Tc is similarly treated. We set
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(5.5.3)' OLI =a + s//', a2 = l — s^.

In (5.5.5) and (5.5.6) \JL should be replaced by — ju, but (5.5.8) is unchanged.

Theorem 5.5.4. In the limit e-»0, we have

/ 1 _L_/y \ l /8

(5.5.20) Nr (Sm.) = 2±±-iie Nr (?,(*—

where cpF(x) is given in (4.2.45). Namely

(5.5.21) Nr ((pF(x)) = ef>*W2,

pF(*) = (r dudu' ~i(VM2g"^(""(u+
JJ-oo U-TU — zu

Corollary 5.5.5. In the limit e-»0, we have

(5.5.l4)T<Tc Pk((ml9 /2J,..., (mk,

where x(-/) = (mj-e, ^/ — l Knfi) (7 = !,..., A:) and <<M*(1))'"'<?FOc(fc))>
(4.6.70).

Theorem 5.5.6. In the limit e-*0, we have

(5.5.15)r<rc P«,

Remark. The limit of the difference equation reads

(5.5..8W.

If we set

(5.5.19)r<Tc w±

(5.5.18)r<rc is transformed into (4.2.42).

Now we turn to the bosonic model. Using the parametrization (5.5.3)

for T> Tc or (5.5.3)' for T< TC9 we see from (5.4.43) that in this case

a ~ ~ l
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Rewriting this in terms of the parameter u in (5.5.8) and

*')
we thus obtain

Theorem 5.5.7. In the limit e-*0,

/ I 4_/y V/8

(5.5.23) Nr (sBtmn) = (2-y±^ej Nr (q>B(x)) + O(e9/8)

where (pB(x) is given by ((4.1.66) in IV [3])

(5.5.24) N

x e-in(X-(U+u>)+x (u-i + u'-i)) ^(U)^(u

Hence the fc-point functions of sBitnn are scaled to give those of (pB(x).

Theorem 5.5.8. We have

(5.5.25) 0»,= - * ( * ) + 0(fi)

where

(5.5.26) 0(jc) = (+°° du e-M*-"***"
J-oo

The proof is straightforward from (5.4.33).

§ 5.6. The One-Dimensional XY Model

The one-dimensional X Y model is described by the Hamiltonian

(5.6.1) ^ ^ = M

m=0
m

where a^/2®---®^*®---®^ (* = x, j;, z). Here cr^, oy, oz are the Pauli
matrices

1\ / -/\ H
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respectively. We set

(5.6.2) Pm = <rzo~'<rz
m-i°x

m

4m = iVo'"<rm-l°m

and define p(6fl) and $(0M) by (5.1.22). We adopt the modified Hamiltonian.

(5.6.3) ^M =4- MI {(1 + 7) $WWi - (1 - 7)Pmqm+i ~ 2hqmPm}
^ m=0

M-l
«pfM induces an infinitesimal orthogonal transformation on WM= X
M-l

(5.6.4)

We set

(5.6.5)

(5.6.6)

Then we have

(5.6.7) A±(8)=-

We distinguish the following three phases. (Figure 5.6.1.)

(5.6.8) #!i 7>0,/ i>l where [a+MJa-^l*
^2: y>0, -l</i<l where [a;1!, |al1|<l,
^3: 7>0,/i<-l where |a+|, lal1^!.

"^
(ii)
1

Figure 5.6.1.

7=0
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We shall diagonalize 3? M in each phase. The results are as follows.

/ 1 —a e>8
=*i(0)/*i(-0), *i(fl) = V /.^"i*,, .

(5.6.9),,

Here, Jf Mjren means the renormalized Hamiltonlan obtained by subtracting the

zero point energy from 3? M.

Now we go to the limit M-»oo, and compute the ground state averages for

products of spin operators. In other words we compute correlation functions

for <r*, ay
m and az

m with respect to the vacuum expectation given by (5.2.5) with

$T(0) = #J(0), $(0) = #./(0) G' = l> 2, 3) in each phase 0t^0i^. Since we have
product formulas (§ 1.4 [1]), it is sufficient to compute the norms of a£ and vy

m.

(oz
m is trivial, since ff^ = qmPm-) In general we shall compute

(5.6.10) a*n

for m e Z and n e R. Here we have set

(5.6.11) P°
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The results are as follows.

(5.6.12)^, Nr (a-,) = Nr (Pmntmn) = tfrf ,mn Nr (/„,„) ,

""""

Nr (itr'ma) = Nr (?mn/mn) = ^\,

/8

Pj,mn O' = l, 2> 3) is given by (5.2.17) and (5.2.18) with $\9), $(0), b(6) and
y(9) replaced by $}(6), $,-(0), fo/0) and - i£(0), respectively. ^>mn and ^>mn

are similarly denned as ty\tmtt and t/^>mn with fci(0), i?I(0) and $i(0) replaced by

by(0), i?}(0) and $j(9), respectively. We note that tm0 induces the rotation

and satisfies tmi0tm20 = qmipmi~-qm2_lpm2_l (m1<m2).

As in the case T< Tc of the Ising lattice, in the phase ^2
 we consider <r*

crgcr^ and d:^ = crgcr^ for the finite lattice, and then take the limit.

Nr (iffL) =

(5.6. 13)^3 Nr (ffi.) = Nr (/7wn4J = ̂ mn Nr (4J ,

Nr OVL) = Nr (^1K4J = - ^mn Nr (

l V/8
-!/ '

The factor (~)m comes from the fact that not the limit lim

«»-iP»-i> but the limit lim <g0Po-g»-iP»-i> (")'" = u i exists-
m-^oo \/2 T-/ — 1 /

We note that t'm0 induces the same rotation as (5.6.13) and satisfies t'mi0t'm2Q =

WW'^mz-iPmz-i (m1<m2).
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Infinite series expressions for correlation functions are obtained by direct

application of the product formula (§ 1 .4 [1] and Appendix of IV [3]). For

our purpose it suffices to consider operators of the following form :

(5.6.14)

(5.6.15)
Nr (0L) = <<?„,„> w^W% e?™'2,

(; = 1, 2)

where \l/_(9) = ̂ (9)9 \j/ +(B) = \I/(Q) satisfy |>(0), ^(0')] + =2x6(9-0'). We have
then

(5.6.16) <gminl'-gmknK> = <gminiy~'<gmknk

. . . v . - "

where Ej = E(0J) and eMV = l 0*>v), =0 (// = v), = -1

fS 6 17^ ^« .. ./jd) ' . . .^ (2) ' ..0/7 N / / / 7 ...// \ — y Al\
\J.\J.LIJ \ t /mini ymklnkl fc/mk2;ik2 w m f e W k / / \ £ /min i » m k « k / Z- ^^^2'

,,(0 _ V <"<')
C f c l f e 2 -^ C f c l / C 2 V i " - V j 9

=l

(^«"l8v^^((mv^^^

C M v i) j R .Mv1 .- .v1v2(00 f flOC-fivivJ

x /fv^.-^v^ 02) x ... x (-e^.^.J^v..^.-^^^^ fl,)

X (-fiv,fc2) c2 e v 'k2(0|) (V0 = ^15 V I + 1 = fc2)

where fc^ka, and if k 1 = =fc 2 the left hand side means {gmini-9^k^'"9mknC>'
In general an arbitrary /c-point function involving gfmn, g^' and ^'^ is expressed

by using a Pfaffian with entries (5.6.17). See formula (1.4.10) in [1]. For
instance we have

\9mini°"9mkinkl'"9mk2nk2"'9mknk/ ' \9mmi' ' ' 9 m^nk /
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and so forth.

Let us now compute the scaling limit of spin operators near the critical

points, i.e. the singularities of the energy E(9). There are three possibilities:

( i ) ± 0-»0, fc->l±0, y>0 fixed.

(ii) y-»0, 0-»±00 with h = cos 00, |ft |<l.

(iii)± 0-»7r, ft-»-l + 0, y>0 fixed.

)+. We set

(5.6.18) h = l+[iye, 0=epl, x° = nys, xi = ms

and take the limit e->0, m, n-»oo under fixed 7, jp1, x° and x1. Here ju>0 is

an arbitrarily chosen constant. We have then

+

As in (5.5.8) we introduce \l/(u) = ̂ /eQ)(p1)\l/1(6) (u>0), =

(w<0) where w*1 =(s(u)co(pl)±p1)/^. The result reads as follows:

(5.6.20) Nr (O = V Nr

Nr (/<„)= -

Here ^0(
x)j PfC*) an(i 9FW are given in (5.5.13).

The third equality of (5.6.20) follows from the fact that ^0(x)-(x) =0

(see (4.3.79), (4.3.80)).

Case (i)_. Set h = 1 — /*ye and define p1, x°, x1 as in (5.6.18). The leading

behavior of E(0) and a+ are given by (5.6.19)+, while al1 = l-/z8+--- and b^S)

is replaced by

(5.6.19). ^)

In this case we modify the definition of \l/(u) as ^(w)= — K/^CP1)1^^) (w>0),

$2(-0) (w<0). Noting the fact that ^lmw^2sm-i,«= -^2tmn(^2,mn
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) + ..., we obtain

(5.6.21) Nr (**„) =

Nr (/*£„) = 'Voto (*) e"C»)/a + 0(89/8)

where cpF(X) is given in (5.5.21).

Case (ii). Here we set

(5.6.22) 7=#e, x° = ns| sin00| , x1 =

and 0= ±00 +
 ejP1 i*1 tne region 0^ ±00. We have

(5.6.23)

according as 0-> ± 00. Consider first p2>wn appearing in (5.6.12)^2. In the limit

m, n-»oo, s-*0, the only contributions come from the regions aO + ar0'=Q

(a, <T'=±)S 0, 6' = OQ or — 00, due to the rapid oscillation of the exponential

factors in (5.2.18) (where b(9) and y(6) are replaced by b2(0) and — iE(0)9 respec-

tively). Writing

we get

-oo 2nco 2nco'

!71')^

1'))-1^^^/'p\_p\ __jQ J

with a) = a)(p1)3 a)' = co(p1'). Making use of the canonical transformation

(5.6.24)
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and setting \l/^(u) = \jj^(pl) (w>0), = \j/W[(-pi) (u<G) we have

(5.6.25) P2,mn = P(Fl\x) + P(F2\x) + o(l).

Here p(
F

n(x) is obtained from (5.5.21) by replacing \j/(u) by mutually independent

free fermion operators \l/u\u) (j = l, 2). The scaled form for ^2,mn^2,m-i,n *s

calculated similarly. Thus we find

(5.6.26) Nr (a*mn)

Nr (/ffJJ

Since the scaled spin operators are the tensor product ^j^Cx)®^2^*) or cpF(1)(x)

®<pF(2)(x) of copies of identical ones, their n-point functions coincide with the

squares of those for the Ising model. (For the 2-point function this result was

obtained in [13].)

Case(iu)+. Setting fc=— l-/iye, 9 = n + sp1 we see that (5.6.19)+ holds,

where a+ should be replaced by — a+. Therefore (5. 6.1 3)^ 3 implies

(5.6.27) Nr ((-)-^n) = - Nr (<p

Nr ((-)m+1/<rL) = - s9'8 Nr

Case(iii)_. In this case h= — 1+fj.ys, 9 — n + sp1, — <x+ = l — ̂ ueH — and

— a_ =(1 +y)/(l -y). (5.6.19)_ holds without any change. Hence we have

(5.6.28) Nr ((-

§ 5.7. The Orthogonal Model

In this section we formulate a general orthogonal version of lattice models

([13], [14], [15]) using the Grassmann integral and solve it analogously as in

Section 5.4.

First we prepare some generalities on the Grassmann integral. Let W be

an AT-dimensional vector space, and let a> be a non-zero element of AN(W).

The Grassmann integral with respect to CD is a linear form on A(W)9
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/ C *7 1 \ \ 1 A f \ £~*(5.7.1) \(o l: A(w) > C

UJ 01

such that the map a*-+a)co~}a coincides with the projection onto AN(W).

If a> = ceo' for some c e €, we have

(5.7.2)

Let W be another vector space of dimensions N'. For a eA(W®W) we also

define \co~1aeA(Wf) so that a»-»a)AMco~1flJ coincides with the projection

A(W® W')^AN(W)^A(W). If co' e AN'(W), we have

(5.7.3)

Let i> lv.., VN be a basis of W, and set co = tV"%. For an anti-symmetric matrix
1 N

F = (fjk)j,k=i,...,N, we set 5=-y Z /j f c^j^fceyl2(^). Then we have
^

(5.7.4)

(5.7.5)

tn genera], for Wj,. . . , wse W we have

(5.7.6)

where /i j-fc=\co~1

Consider a rectangular lattice L of size M x N with cyclic boundary and with

even M and N. To each site (/«, n) we attach a 4-dimensional vector space

in, and set or J*
m=0 n=0

We set in

M-l N-l
(5.7.7) COy = I! El

m=0 n=0

(5.7.8) ^'°» =Z (f,2umnvmn

M-l N-li z
m=0 n=0
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M-l N-l
^(2) = Z Z vmnvl_n+i.m=0 n=0

The grand partition function is defined by the integral (see (5.4.2))

(5.7.9) ZM)V = Ja>-i

In order to compute ZMN we define the Fourier transformation by

(5.7.10) (U^'e': "inn

vmn

w 0'v)
ffl — 27TjU n/ _ 27EV . _ —M+l M—l
\ "U THf 5 "V AT ' /^ O 9 " * " 9 ^V ^ M T v 2 2

Then we have

(5.7.11)
1 (M-D/2 (2V-D/2

From (5.7.2) and (5.7.4) we have ([14], [15])
(M-D/2 (JV-O/2(5.7.12) ZMN= n n

v=(-JV+l)/2

det

0 /12 /13+fi

-/12 0 /23

-/13-^^ -/23 0

(M-D/2 (N-lt/2= n n
where J(0, 9') = 1 +/f234 +/f 3 +/§4 - 2 cos 0(/1234/24 -/is) - 2 cos 0'(/i234/i 3
-/24)-2COS(0-0')(/12/34-/13/24)-2COS(0+0')(/14/23-/13/24)with

/1234=/12/34~/13/24+/14/23 •

For a l-chain F we set (cf. p. 557)
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(5.7.13) ^(D(D = Mi;1 N±l eSi'OmX+i.,,,
m=0 n=0

ff>m(D=M±l N±l 8<*>(r) vmn Dt .
m=0 n=0

The correlation function for dF is defined by

(5.7.14) p(dF) = Z

depends only on 8F (see Proposition 5.4.1). In order to compute p(8F)

we use the transfer matrix formalism.
M-l M-l

We consider 2M-dimensional vector spaces W= Z C0J,© Z ^vm and

m=0 m=0
M-l M-l

W' = Z C*4,+ Z Cum. We set in yl(PF© W)
m=0 m=0

M-l M-l
(5.7.15) CDW= 0 ^ms tOr'= II *4iWm,

m=0 m=0

(5.7.16) S0 =
 M£ (/i2«m»m+/13«»«i+/14«»»J.+/23»»«l+/24»-»I

m=0

+/34«i»D .
M-l

m=0

We equip PT with an orthogonal structure by the inner product < , > such that

< y L4'>= 0 » <t>m. t>in '>=0 and <4» ^m'>=^mm" We denote by <vac| and
|vac) the vacuums with respect to the holonomic decomposition W= Wcye®

M-l M-l
Wann where Wcre= Z &vm an(l Wam= Z Ct;m. We also denote by (m^-mfcl

m=0 m=0
(resp. |mr..mfc» the state vector <vac| vmi--vmk (resp. ^-u^ |vac».

We define an element Fof A(W) by specifying its matrix elements as follows.

(5.7.17)

Then we have

(5.7.18) ZMN=trace VN.

Thus Fis the transfer matrix of our system.

Proposition 5,1M, F belongs to the Clifford group G(W).

Proof. By Theorem 1.4.4 an element geA(W) such that <#> = 1 belongs

to G(W) if and only if the matrix elements <wr < < m . / l 0 l m f c ' ' t m i> satisfy the
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condition

i ' - -wi> =Pfaffian
•(mimj\g\vacy <ml\g\mf

ky •••

6 <«j

0

Hence the proposition follows from (5.7.6).

Now we define the spin operator sm by

(5.7.19) sm = T

If we set

(5.7.20) Pm = vl

we have

(5.7.21) sm = q,

sm belongs to G(W) and the induced rotation is given by

(5.7.22) T8mv]

Proposition 5.7.2.

(5.7.23) p((mls nO,...,^,

= ZMIN trace K^^

. Note that

Taking F as the polygon in Figure 5.7.1 we can show the proposition,
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(0, Hi)

(0, nj

Figure 5.7.1.

Now we shall diagonalize K We define the Fourier transformation by

(5.7.24)

Then we have

(5.7.25) ^.//=L^^o+s l=
 (Mf|>/2

dej =

For simplicity sake we assume that/12=/34 and/l4=/23. Since p(dr) depends

on/12 and/34 (resp./14 and/23) through the product /12/34 (resp./14/23), this
is not a restriction. We set

(5.7.26) /i2=/34 = c,

Proposition 5.7.3. The induced rotation Tv is given by

(5.7.27) (Tyt^-OJ, Tvv(6J)
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Proof. From (5.7.25) and Proposition 5.7.1 we know that Vtf(-Q^ and

V6(-OJ are linear combinations of tf(-OJV,6(OJV,tf(OJV and t)(-^)F.
The coefficients are determined by computing the matrix elements of the forms

Using (5.7.20) we can rewrite (5.7.27) as

(5.7.28)

Here A±(0) (resp. E(0) below) is given by (5.6.4) (resp. (5.6.5)) with

(5.7.29) h = (al + b2-bl-l)le,

y=2cd/e,

We have set also

(5.7.30)

(5.7.28) shows that the diagonalization of V reduces to that of the XY model in

Section 5.6. The renormalized transfer matrix Vren = e\p( — Jt?Mtren) is given by

(5.6.9) with £(0M) in JeM>ren replaced by

(5731)p./.^lj

Let us consider the expectation value <a> =ZMI
Ntrace (aVN). In the

limit M, N-+OO, ^(9) (resp. $(0)) becomes the creation (resp. annihilation)
operator. Let us compute the norm of smn in this limit. From (5.7.21) and

(5.7.28), this computation also reduces to that of the XY model. Namely in
^i (resp. ^3) Nr (smn) of the orthogonal model is given by Nr (tmn) (resp. Nr (t'mj)

with E(&) replaced by E(9). In ^2
 we must consider sm=fsmp0 for the finite

lattice and then take the limit. Then we have

(5.7.32) Nr (smn)=^,m_ 1>B Nr (<?£„)

with E(&) replaced by £(0) in (5.6.12)̂ .
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Remark. The correlation function (5.7.14)**) coincides with that of Ising

spins on the dual lattice. See [14] for the detailed discussions on this point.

We only note the values of parameters (5.7.26) for i) the triangular and ii) the

generalized square lattices.

i) The triangular lattice.

1

s
'' t,' *

s

X

*
Y~

f

f

,' ^3

r

<»
?

A

•i

it) The generalized square lattice.

K
s O.J. — COSn \Aj~• A-2"~"-**-3\

\ cosh^-

,/--\2

\b/
x
%\

1 *'••'''' \ rk *^ "^ ^ x
\ A4

\ /y/

b. = cosh (A j + A 2 — A

cost

Vcosh ( KI + A^2 — A'S + j
cosh (A"!

Vcosh (^-^2+^3+,

,<„-„«,-«
K:4) cosh (-^+^2+^3+^4)
-A~2 + A'3-A'4)

8T4) cosh (A'I+^+A'S-^)
cosh(A'1-

V'"
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Note added in proof: The authors are indebted to Professor C.A. Tracy for drawing their
attention to the following article: C.A. Tracy and B.M. McCoy, Phys. Rev. Lett., 31 (1973),
1500-1504, which should be added to the references of this series on Holonomic Quantum
Fields. After completion of the manuscript they also learned that the path formulation of
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