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A Product Formula and Its Application to
the Schrodinger Equation

By

Takashi ICHINOSE*

Abstract

A product formula is given which represents the unitary group for the form sum of a
pair of nonnegative selfadjoint operators in a Hilbert space.

Introduction

The form sum of nonnegative selfadjoint operators A and B in a Hilbert

space .#% denoted by A + B, is the nonnegative selfadjoint operator associated

with the closed nonnegative quadratic form

u i - > \\A"2u\\2+\\Bli2u\\2

defined on D[^41/2] n D[jB1/2], the intersection of the form domains for A and

B. Here it is assumed for simplicity that this intersection is dense in <tff .

The aim of the present paper is to prove the following product formula

representing the unitary group for A + B :

(0.1) s-lim (ieiEtA/n EA(tQ, nd/W^ + e^^ EA((n6/\t\, oo))]

.[*'•''/" £B([0, ndl\t\]) + e*'""*EB((ndl\t\9 oo))]}"
= eist(A+B)y -00<*<00, S = ± l .

Here (EA(X)} and {EB(X)} are the spectral families associated with A and B

respectively, a >0, fc>0 and Q<5<n/2 are arbitrary fixed constants.

Kato [8] and Kato-Masuda [9] have proved the Trotter product formula

of the selfadjoint case which represents the selfadjoint contraction semigroup

(0.2) S-lim {e-tA/ne-tB/n}n=e-t(A+B)9 ,>().

Communicated by H. Araki, January 12, 1979.
* Department of Mathematics, Hokkaido University.
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The proof makes use of the Chernoff theorem [1] and the techniques employed

in Kato [8]. Although the formula (0.1) deviates from the Trotter product

formula of the unitary case, i.e. the formula (0.1) with <5 = oo, the approximation

procedure involved may be of some use; the contributions from A and B are

obtained first by replacing their spectral values outside a finite interval [0, n<5/[f|]

with fixed constants 0>0 and fc>0 and then by taking a limit w-»oo.

The formula (0.1) is applied to an integral representation of the solution of

the Schrodinger equation

(0.3) i-W,x)

in Rm with initial condition ^(0, x) =f(x). Here V(x) is a real-valued measurable

function bounded from below. A characteristic feature of the present result is

the truncation process of the operators — (IJ2)A and Fin obtaining an integral

representation of the solution of (0.3).

Section 1 is devoted to statement of the main results. The proof is given

in Section 2. Section 3 is concerned with a general class of product formulas

including (0.1).

For related problems see Chernoff [1], Chorin et al. [2], Faris [3], Kato

[7], [8], Kato-Masuda [9] and Nelson [11].

§ 1. The Main Results

1.1. A product formula.

Let A and B be selfadjoint operators in a Hilbert space 3? with domains

D\_A~\ and D[B] and with spectral families {EA(fy} and {EB(X)}9 respectively.

Assume that A and B are semibounded, in fact, without losing any generality,

bounded from below with lower bounds yA and yB\ they need not be the greatest

ones. A and B have the spectral representations

A=
-oo

Let JJ?Q be the closure of

(1.1)

JF o is a Hilbert space as a closed subspace of 3? . Let P be the orthogonal
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projection of 3? onto 3P 0. We denote by A + B the form sum of A and B9

which is the selfadjoint operator in 3? 0 bounded from below associated with

the closed quadratic form bounded from below

(1.2) u\—*r M\\EA(Z)u\\2 + T *,d\\EB(Z)u\\*
J— 00 J — 00

defined on the subspace (1.1) of tf^ (see Kato [5], Reed-Simon [12]). The

form sum A + B coincides with the closure of the operator sum A + B with do-

main D[A + B]=D[A] n D[B], if A + B is essentially selfadjoint in 3f.

The main result is the following theorem.

Theorem 1. For e=± l andf

{&•"'* EA([yA9 yA + nSlf]) + e^^EA((yA + nSlt9 oo))]

(1.3) -»e«<*<^+*>/, n-»oo,

uniformly on bounded intervals in t>Q.^ Here a, b and 8 are arbitrary fixed

real constants satisfying

a>yA9 b>yB, 0<6<n/2,

Remarks

1. The sign e in the formula (1.3) has a double purpose. It replaces t

with — t and semibounded operators from below with those from above.

Another formulation of Theorem 1 is the following : For e = + 1 and for

/e^f 0 = Pc*f , (1.3) with nd/\t\ in place of nd/t is valid, uniformly on bounded

intervals in — oo <t< oo. In this case, e is used only for the second purpose.

2. The problem is open whether Theorem 1 is valid for <5 with n/2<6< oo.

However, whenever A + B is essentially selfadjoint in J^, the formula (1.3) with

(5 = oo and ^f0 = jf and with the closure of A + B in place of A + B9 i.e. the

Trotter product formula of the unitary case holds, even if A and B are not neces-

sarily semibounded.

3. It is not clear whether a and b can be replaced by yA + nd/t and yB + nd/t,

respectively.

4. Suppose that ^0 = ̂  and A is nonnegative. In a case where B may

not be semibounded, Faris [3] has given another product formula, but with an

assumption that B is relatively form-bounded with respect to A with relative

1) For t=Q the upper member of (1.3) is supposed to be/.
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bound <1 (cf. Simon [13, pp. 51-53]). This case is not covered by Theorem

1, the proof of which greatly depends upon semiboundedness or nonnegativity

of both A and B. We note that the Faris formula contains two limits, however.

5. The selfadjoint analogue to Theorem 1 is valid for 0 < 6 < oo ; for /e 3? ,

{[.€-"" EA([yA9 yA + n5lf}) + -*«*EA((yA + n8lt, oo))]

(1.4) -»£T'<x+fl>P/, n -»oo ,

uniformly on bounded intervals in £>0, and on bounded intervals in t>0 when

fej^Q. Here a >yA and b>yB. This is contained in the result of Kato [7].

6. In the case J^Q^JJ?, the limit of the left-hand side of (1.3) cannot

exists for every /e^f and for every £>0. In fact, if it exists, by [1, Corollary

2.5.4] it should have the form ei£tcf for some selfadjoint operator C in jf, so

that the limit of (1.4) in Remark 5 above should be e~tcf because the left-hand

side of (1.3) is holomorphic in the upper half plane Im e>0. This is only

possible if P = l or ̂ 0 = jf.

1.2. An integral representation of the solution of the Schrodinger

equation.

We apply Theorem 1 to the Schrodinger equation (0.3) with potential a

real-valued measurable function V(x) in Rm. When the operator sum —(l/2)A

-f Fis essentially selfadjoint in L2(JZm), Nelson [11] has used the Trotter product

formula of the unitary case to illustrate the Feynman path integral representation

of the solution of (0.3).

We are interested in the same problem in the case — (1/2) A + V may not

necessarily be essentially selfadjoint. We assume that V(x) is bounded from

below, V(x) > y, and that

(1.5) ={cj)eW1(Rm); \V\l'2<t>eL2(Rm)}

is dense in L2(Rm). Let H be the selfadjoint operator associated with the

closed quadratic form bounded from below

«
V(x)\<t>(x)\2dx

defined on the subspace (1.5) of L2(Rm).



A PRODUCT FORMULA 589

If Vis in L2
oc(K

m) and bounded from below, then, by a result of Kato [6]

(see Reed-Simon [12, Theorem X.28]), -(l/2)A + V is always essentially self-
adjoint. However, there are examples of V(x) for which D[ — (l/2)zi] fl D[F]
= {0} but (1.5) contains sufficiently many elements of L2(Um) (see Simon [13, in

particular, 1.6. Examples] and Chernoff [1, §5]).
The following result is a direct consequence of Theorem 1. The phase

space path integral may come to mind.

Theorem 2. For t > 0 and for fe L2(Hm),

(1.6) (*-»*/)(*)

= lim \ »-\ Qxp{i[_(x-x^1 + (x1-x2)^2
n-»00 jR2m JjR2m

+ - + (*„-! -*,)£,,]}

•/(*„) nj-i (2nrmdtjdxj .

Here E, E', X and X' are functions in Rm defined by

, ^/2>a// f 10,

a>0, fo^y and 0<d<n/2 are arbitrary fixed real constants. The limit

is taken in the sense of L2(Rm). The n-ple integral is a repeated one, and each

integral is taken in the sense

the limit taken in the sense of L2(Rm) with respect to the variable x / _ l 5 where

x0 = x.

Remark. Occurrence of the cutoff functions S(f/n; £,.), H'(f/n; ^-) and
X(t/n ; Xj), X'(t/n ; Xj)9 l<j<n, makes the formula (1.6) deviate from the formal

approximation formula (i.e. the formula (1.6) with 3 = X=l and E'=X'=. 0) to the
phase space path integral (e.g. Garrod [4], Mizrahi [10]). However, it is worth
noticing that (1.6) does involve an interesting approximation procedure in which

the potential V(x) is cut down to a fixed constant b>y outside the region y<
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V(x)<n5/t in the configuration space, and the free Hamiltonian —(1/2)4, in the

momentum representation, cut down to a fixed constant a > 0 outside the region

£2/2 < nd/t. For another choice of the cutoff functions see Remark 2 to Theorem

3 in Section 3.

§2. The Proof

In Section 2.1 we prove Theorem 1, using the techniques in Kato [8].

The proof needs some lemmas, whose proofs will be given in Section 2.2.

2.1. Proof of Theorem 1.

We shall only treat the case e= — 1. It is not difficult to see that the general

case can be reduced to the case 7,4 = 75 = 0 by considering A-yA and B-yB instead

of A and B. Thus we assume that both A and B are nonnegative selfadjoint

with 7,4 = 75 = 0. Set C=A + B. C is a nonnegative selfadjoint operator in
«#%, C: DEClc^fo-^^o, such that

(2.1)

||C1/2ti||2= \\Al'2u\\2

Let 0>0, ft>0 and 0<6<n/2 be fixed. Define for

(2.2) F(0) = l,

9 oo))]

oo))] ,

Then {F(r)}f^o is a family of linear contractions in 3F . We must show that,

(2.3) F(t/n)nf-* e~itcf,

uniformly on bounded intervals in

We apply now the Chernoff theorem [1, Theorem 1.1], which can be

modified to fit the present case. (For this context we refer to Kato [8].) We

note also the fact [5, IX-Theorem 2.16]. Thus to prove (2.3) we have only to

show that

(2.4)

Let us introduce a few notations. Set
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(2.5) A(t) = (tt)-1{l-[.e-itAEA([p,5li]') + e-t«EA((8ltt co))]}

, oo)),

(2.6) B(t) = (itY^{\-\_e-^EB(\_Q,51(]-) + e-MEB((dlt, oo))]}

For L4(f) we denote by \A(f)\ the absolute value, and by G^(r) and HA(f) the real

and imaginary parts :

fi Qo))>

, oo))

For 0<i<7i/a(0<i if a=0), \A(f)\, GA(f) and Hx(t) are all bounded, non-
negative selfadjoint operators on 30*. For iB(i) we use similar notations

I B(t) | , GB(0 and HB(i), replacing A, a by B, b, respectively.
It can be easily verified by the spectral theorem and the Lebesgue dominated

convergence theorem that, for T=A and T=B,

lim(10Gr(01/2u=0,

whenever u
Further define bounded positive selfadjoint operators in

(2.8)

(2.9) N(t) =

where 0<f<min(7i/a, n/b). Here and in the following we understand I/a = 00
(resp. 1/fc = oo) if a = 0 (resp. b = 0). We have

(2.10)
= 1 + i(l + A(i) + 5(0) + tA(t)B(t) .

Set



592 TAKASHI ICHINOSE

(2.11) S0(0 = l
= 1 + GA(t) + GB(t) + i(l + HA(t) + HB(f)~) .

To prove (2.4) we first show that

(2.4a) S0(t)-
l

and then that

(2.4b) SoW-'

I. Proof of (2.4a). Let/e^f. Note that i^4(() and iB(t) are m-accretive

in 3f for t>Q. Set ut = S0(f)-
lf. Let 0<«min(7i/a, rc/fc). Then f=S0(i)ut

and

(2 12) (/' "t)= W2+ IIG^1/2",II2+ l|GB(01/2«rll2

It follows that {«,}, {Gx(0
1/2«,}, {GB(01/2"(}, {^(f)1/2",} and {HB(t)V2ut} are

all uniformly bounded in j^ as f | 0. There exists a subsequence {fn}"=i with

fn->0 as n->oo along which

(213) «

We first claim that

(2.14) ii 6 DEC1/2], SU = <7B = 0, ^

and next that

(2.15) M6D[C], P/=(l + i+iC)« or w=

In fact, if veD^A1/2] then by (2.7) we have

«,, o)=lim(u,, f

the limits taken along fn-»0. Since D[y41/2] is dense in ^f, we obtain ^^ = 0

and hAeD[A1'2'}, hA=Al/2u. The same is true for B. This proves (2.14).

To show (2.15) let v e DEC1/2]. Then the right-hand side of

is by (2.7) convergent to
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(u, v) + i{(u9 v)

along r?l-»0. It follows that /=(l + z + /C)w or « = 0 according as / belongs to
^0 or #?%, which yields (2. 15).

We have thus seen the weak limits of (2.13) do not depend upon the sub-
sequence chosen. A standard argument concludes that (2.13) holds as i J, 0
without taking any subsequence.

Finally we show strong convergence of (2.13). Since the left-hand side of
(2.12) converges to

ttiO = ((l + i>K>,tt)=IW^

it follows in view of (2.13) and (2.14) that

ll«r-"ll2+l|G^(01/2«rll2+l|Gn(01/2W,ll2

+ 1'{|k_w||2+||^(0l^

is convergent to 0. This proves strong convergence, and, in particular, (2.4a).

II. Proof of (2.4b). In order to make the proof transparent we first list
some useful facts in the following three lemmas, whose proofs will be given in
Section 2.2.

Let Q<t<mm(n/a9 TC/&), where I/a = 00 if a = Q, and 1/6 = 00 if 6 = 0.

Lemma 1.

(i) ||M(0-1/2|<1, ITO-1/2II<1.
s-lim^o M(0~1/2 = s-limao N(0"1/2 = (l + C)"1/2P .

(ii) lim^io M(01/2w = lim,;o ]V(01/2w = (l + C)1/2M , u 6
(iii) For 0<*<min((5/a, 5/fe),

||JV(01/2M(f)-1/2

(iv) || \A(W2N(trl/2\\ < i , II I W2Ar(o-1/2ll
limtio

limtlo

Lemma 2.

||M(01/2S0(0-1M(01/2||<1.

limrio M(01/2S0(t)-
1M(01/2/=(l + C) (1 + i + zC)-1/, fe ^o

Lemma 3. Let 0<^<min((5/a, d/b).
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(i) ||AT(0-1/2^4(0£(0^(0~1/2II <2 sin (6/2)

||tf(01/2S(0-W(01/2ll <(cos 0/2) -sin
(ii) limtloN(tri/2tA(t)B(f)N(t)-1/2f=0,

Now we turn to the proof of (2.4b). Observe

• (JV(01/2M(0"1/2) (M(01/2S0(0~1M(01/2)M(0"1/2.

By Lemmas 1-3 all the six factors in the last formula above are uniformly

bounded as operators on 3?. As t J, 0, the third, fourth and fifth factors con-

verge strongly on j^0 to 0, 1 and (l + C)(l + i + iC)~1, respectively, while the

last factor converges strongly on jj? to (1 + C)~1/2P, by Lemma 1. This proves

(2.4b), completing the proof of Theorem 1.

2.2. Proofs of Lemmas 1-3.

Proof of Lemma 1. (i) The assertions can be shown by a similar argu-

ment used in the proof of (2.4a) in Section 2.1. In fact, for fejf consider

instead of (2.12)

a ^)=ii^p
a t>,)= wi2+ n \

(ii) We give the proof only for M(f). For N(f) the proof is similar.

Let u e DEC1/2]. In view of (2.1) and (2.7),

converges to ||w||2+ ||C1/2w||2=l|(H-C)1/2w||2 as f| 0. It remains to show

M(01/2«V(l + O1/2w. By boundedness of {M(01/2u} there exists a subse-
quence {*„}"=!, with tn->0, along which M(f)1/2u-^g. We have

| =lim

and by Lemma 1 (i) for v E 3?

(u9 t;) = li

the limit taken along fn-»0. It follows that g = (l + C)^2u. Thus the limit is

independent of the subsequence chosen. A standard argument shows weak

convergence.
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(iii) Let 0 < t < min (8ja, 8/b). We have for g

(\A(i)\g, g)

EA([0, Slf])g, EA([0,

< (cos OS/2))-1 £x([o, Slf])g, EA([0,

and the same is true for \B(t)\ and HB(i). It follows that

=((1 + \A(t)\ + \B(f)\)M(t)-ll2g,

whence follows the first assertion.

Next we show the second one. Now that N(t)1/2M(0"1/2 is uniformly

bounded as operators on JF9 we have only to show that for fe^Q9 M(f)1/2-

Moreover, since ||M(01/2N(0"I/2||<1, it suffices to show that

/- To seeit,let/ t = Af(01/2N(0-1/2/,/6Jf0- Then|l/r||<
H/ l l , and so there is a subsequence {tn}^=1, tn-»Q, along which ft-^f0- A

similar argument used in the proof of Lemma 1 (ii) with Lemma 1 (i) and (ii)

can conclude that /0 =/ and fr^f as t i 0, without taking any subsequence.

(iv) If /e jf ,

(2.16) ||/||2 = ITO-1/2/ll2+ll WOI1/2MO"1/2/ll2 + ll |B(Ol1/2^(0"1/2/ll2-
Hence

|| \A(t)\"*N(trl'2f\\ < 11/11, II |B(Ol1/2N(0-1/2/ll < 11/11 -

Now let f E ^ f 0 . By Lemma 1 (i), N(0"1/2/->(l + C)"1/2/. There is a sub-
sequence {^}?=i, ^w->0, along which

(2.17) \A(t)\i/2N(tri,2f—+fA ^ \B(f)\WN(tri/2f-^*fB •

Analogously to the proof of (2.4a) in Section 2.1 we have /4=41/2(1 + C)-1/2/,

/s=je
1/2(l + C)~1/2/, and (2.17) holds as f | 0, without taking any subsequence.

It remains to show strong convergence. To this end it suffices to establish

(2.18) lim sup,io |
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(2.19) limsupr,0 || \B(t)\^N(trl/2f\\

Suppose there is an/in 3? '0 such that at least one of (2.18) and (2.19), say (2.18),

does not hold. Then it should follow that

<limsup |
sup

-ll(i + cr1/2/ll2

which is a contradiction. Here we have used (2.16) and Lemma 1 (i). This

ends the proof of Lemma 1.

Proof of Lemma 2. Let/e^T. Set for t>Q

or /=

Note M(01/2S'0(0~1M(t)1/2 is a bounded linear operator of ̂  onto itself. Then

(2.20) (/, ut) = (S0(t)M(tr1/2ut , M(t)-i/2ut)

= ((1 + GA(

Since the first term of the last member of (2.20) is real and positive, we obtain
for

(2.21) \(M(trl/2s0(t)M(trl/2g, g)\ > \\g\\2 ,
whence follows the first assertion.

To show the second one, let /eD[C1/2]. By boundedness of {ut} there is

a subsequence {tn}™=l, ^-^0, along which ut-^u0. We have for t;e£>[C1/2]

(iio, i;)=limflo(M(0^2S0(rr
1M(01/2/, v)

Here we have used Lemma 1 (ii) and (2.4a). It follows that Pw0 = (

(l + i + i'C)"1/- This is also valid for/e^0, since DEC1/2] is dense in J^0

and M(t)1/2S0(t)~
iM(t)l/2 is uniformly bounded as operators on #e. Now

(2.20) with/e^T0 yields
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lim sup ||wf||
2 = lim sup Im (/, ut) — lim Im (/, ut)

Hence uQ = Pu0 or t/0==(i + C)(l + i + z'C)"1/. Thus the limit does not depend
upon the subsequence chosen. By the same argument as before, ut converges
strongly to (1 + C) (1 + i + iC)~lf as 1 j 0, without taking any subsequence. This
completes the proof of Lemma 2.

Proof of Lemma 3. (i) First note the polar decompositions of the normal
operators A(t) and B(t) :

A(i) = 17(0 1 4(01 = \A(i)\ 17(0 , B(t) = 7(0 |B(0| = \B(t)\ V(i) ,

where U(t) and V(t) are partial isometrics on J^. We claim that

(2.22) ||^V(Ol1/2tW(0'1/2|.B(Ol1/2il <2 sin

for 0 < t< min (dja, d/b). To see it we have only to show

(

But this can be easily verified by definitions of |^4(t)l and |£(QI- It follows in
view of (2.22) that, for

(2.24) |(JV(0-1/2M(OB((MO-1/20, 9)1

<2 sin (5/2) |

\\g\\2.

This implies the first assertion.

To show the second one, let g e 3P again. By (2.21) and Lemma 1 (iii)

It follows together with (2.24) that
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>\(N(tr1/2S0(t)N(tr1/29, g)\-\(N(tYl'2tA(t)B(t)N(trl'29, g}\

This yields the second assertion.

(ii) Observe

1/2|>1(OI1/2)(*1/2I^^

All the four factors above are uniformly bounded as operators on 3? , by

Lemma 1 (iv) and (2.23). By the spectral theorem and Lemma 1 (iv) again,

the third factor converges strongly on jf to 0 and the last one strongly on 3F 0

to 51/2(1 + C)~1/2. This proves the assertion, concluding the proof of Lemma

3.

§3. A General Class of Product Formulas

In this section we shall indicate a more general class of product formulas

including (1.3).

For 0<T<oo,0<ju<v<l , y e J R and e= ±1, ^%,M(T' 7' s) denotes the class
of the bounded, complex-valued functions £(f; A) on [0, r)x[y, oo) satisfying

the following conditions :

( i ) for each fixed t, £(t; A) is Borel measurable in A;

(ii) for each fixed A, £(£; A) is continuous in t with

(iii) there exists a positive constant K such that

for all (f, A) e [0, T) x [y, 00);

(iv) for all (f, A) in [0, T) x [y, oo) ,

Re(C(t; A)e-'"»)^l, elm (CO;

Examples. For Q<d<n/2,c>y and e=+l , the following functions

£7>e(f;A) and f;ir(t; A) belong to ^?i/l(«/(c-y), y, e) with v=cos(^/2) and

(3.1) Cy>c(/; A) = e
i^[

- 7)) + e*"cJC(,.«
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(3.2) C'7jC(*; X) = ei<«pLOtn(t (A-y)) + ^c{l-p[0.a](/(A-y))}.

Here %j(A) is the indicator function of a Borel set I in R, and p[o,d](A) is a real-
valued C°° function in R, 0<p[0j5](/l)<l, such that

P[o,5](A) = l, 0<A<3(5/4, and = 0 9 A > < 5 .

The following theorem extends Theorem 1 .

Theorems. Let A and B be the same as in Section 1.1. Let s= + l.

For some O<T<OO and 0<^<v<l , te£ ae J%J)U(T, y^, e) and /? e ̂ "^(T, ys, e),

assume that

supA>^ ]a(*; A)| - sup,>VB \0(t; X)\ < 1, /or t e [0, T) .

Then for

(3.3) {a(t/n; ^)jS(t/n; jB)}»/-> e i E t + B ^ f , n -> oo ,

uniformly in bounded intervals in t>Q .

Proof. We have only to treat the case e= — 1 and };A = 7B = 0, so that both

a and ft belong to J%>M(T, 0, - 1). Define F(f) = a(f; ^))8(t; B\ f>0 5 and

X(0 = (iO"1U-o(^M)}*B(0 = (iO~1{l-^;^)h^>0. The remaining proof
proceeds just in the same way as that of Theorem 1 in Section 2.

.Remarks

1. Theorem 3 is valid with the functions (3.1) and (3.2) in Examples preced-

ing Theorem 3 for oc(t; A) and fi(t; A). The case in which a and /? are the func-

tions Cy,c with (y, c) = (yA, a) and (7, c) = (yB, b) respectively is nothing but

Theorem 1.

2. Application of the case in which a and /J are the functions (y,c with

(y, c) = (yA9 a) and (y, c) = (yB, &) respectively to the Schrodinger equation (0.3)

yields the formula (1.6) in Theorem 2 with the following different cutoff functions :

2) , X(t; x) = p[0j5]«F(x)-y))3

, *'('; x) = l-JT(t; x).

Here notice that 3(tm, £) and Jf(r; x) are regular, respectively, everywhere and

where V(x) is regular.
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