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On the Homotopy Types of the Groups

of Equivariant Diffeomorphisms

By

Kojun ABE*

§ 0. Introduction

The purpose of this paper is to study the homotopy type of the group of

the equivariant diffeomorphisms of a closed connected smooth G-manifold M,

when G is a compact Lie group and the orbit space M/G is homeomorphic to a

unit interval [0, 1].

Let Diffg3 (M)0 denote the group of equivariant C°° diffeomorphisms of

the G-manifold M which are G-isotopic to the identity, endowed with C°°

topology. If M/G is homeomorphic to [0, 1], then M has two or three orbit

types G/H, G/K0 and GjKl. We can choose the isotropy subgroups H, K0,

K^ satisfying HdK0nK1. Moreover the G-manifold structure of M is de-

termined by an element r\ of a factor group N(H)/H9 where N(H) is the nor-

malizer of H in G (see §1). Let Q(N(H)/H; (N(H) fl N(K0))IH, (N(H) n

N(rjK1ri~iy)IH)0 denote the connected component of the identity of the space of

paths a: [0, l]-+N(H)IH satisfying a(0)e(N(H) n N(X0))/H and a(l)e(N(H) n

Theorem. Diffg1 (M)0 has the same homotopy type as the path space

Q(N(H)/H; (N(H) n N(X0))/H, (N(H) n N^K^1))/^.

The paper is organized as follows. In Section 1, we study the G-manifold

structure of M and give a differentiate structure of M/G such that the func-

tional structure of M/G is induced from that of M. This differentiable structure

is important to study the structure of Diffg5 (M)0. In Section 2, we define a

group homomorphism P: Diffg)(M)0-»Diffco [0, 1]0 and prove that P is a

continuous homomorphism between topological groups. In Section 3, we
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prove that there exists a global continuous section of P and Ker P is a deforma-

tion retract of Diff g5 (M)0. In Section 4, we study the group structure of Ker P.

In Section 5 and Section 6, we prove our Theorem.

§ 1. G-Manifold Structure of M and the Functional Structure of M/G

In this paper we assume that all manifolds and all actions are differentiate

of class C°°.

In this section we study the G-manifold structure of M. First we see that

it is sufficient for us to consider r\ = \ (see Lemma 1.1). Next we give a differ-

entiable structure of M/G such that the functional structure of M/G is induced

from that of M (see Lemma 1.2).

Let M be a closed connected smooth G-manifold such that M/G is homeo-
morphic to [0, 1]. We denote this homeomorphism by /. Let n: M-»M/G

be the natural projection. Put M0 = (/ 071)- *([(), 1/2]) and M1 = (/o7c)-1([l/2J

1]). Let Xi be a point of M with f(n(x$ = i for i = 0, 1. Then Mt is a G-

invariant closed tubular neighborhood of the orbit G(xt) (c.f. G. Bredon [3,

Chapter VI, § 6]). Moreover M is equivariantly diffeomorphic to a union of

the G-manifolds M0 and Mt such that their boundaries are identified under a

G-diffeomorphism rj'i dMQ-^dM^. Let Vi be a normal vector space of G(xt) at

xt and Kt be the isotropy subgroup of xt for i = 0, 1. Then Vt is a representation

space of Kt. From the differentiate slice theorem, Mf is equivariantly diffeo-

morphic to a smooth G-bundle GxK.D(Vt) which is associated to the principal

Kt bundle nt: G-*G/Ki9 where D(V^) is a unit disc in Vt.

Let H be a principal isotropy subgroup of the G-manifold M. We can

assume that H is a subgroup of K0 n K^ Let e{ e S(Vt) be a point such that the

isotropy subgroup of et is H for i = 0, 1, where S(Vt) is a unit sphere in Vt. There

exists a G-diffeomorphism ht: G/H->GxK.S(Vi) given by ht(gH) = [g9 eJ9

i = 0, 1. Then we have a G-diffeomorphism

GxKo S(VQ) = dM0 -JL+dM^Gx^ S(VJ iili G/fl.

Since any G-map G/H-+G/H is given by a right translation of an element of

N(H)/H, tj" defines an element rjeN(H)/H.

Put x-=f7-;q. Then the isotropy subgroup K( of x( is riK^rf1. Let V(

be a normal vector space of the orbit G(x'1) = G(xi) at *i. Put e'1 = (dri)Xl(e1)e

S(Fi). There exists a G-diffeomorphism M: Gx^^FJ-^Gx^^Fi) given
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by u(\jg, v}) = \_gr\-\r\'V]. Then (Moj/')([0, e0J) = u(lgri, ej) = ig, ^] for [g, v\

EGxKoS(Vo). Therefore M is equivariantly diffeomorphic to a union of the

G-bundles G x KQ D(V0) and G x xi D(Fi) such that their boundaries are identified

under a G-diffeomorphism u°rj'. Now we have

Lemma 1.1. Let M be a closed connected smooth G-manifold such that

M/G is homeomorphic to [0, 1]. Then M has two or three orbit types G/H9

G/KQ and G/K! with H C ^ K Q ^ K ^ , and there exist representation spaces Vt,

z = 0, 1, of Kt such that M is equivariantly diffeomorphic to a union of G--

bundles GxKoD(F0) and Gx^D^) with their boundaries identified under a

G-diffeomorphism rj: GxKoS(V0)^Gx KlS(Fi). Moreover we may assume

that rj([g, e0J) = [g, e^j, where et is a point of S(Vt) such that the isotropy

subgroup of et is H for z = 0, 1.

Hereafter we shall assume that M is a G-manifold as in Lemma 1.1. Let

£: [0, !]-># be a smooth function such that

£(r) = r2 for 0<r<l /2 5

<f(r)>0 for 0<r<l and

{(r) = r-l/2 for 7/8<r<L

Let 9: M = GxKoD(F0)UGxXlD(F1)->[0, 1] be a map given by
n

Since 6 is a G-map, there exists a map 0: M/G-»[0, 1] such that $071 = 9. It is

easy to see that 0 is a homeomorphism. We give a differentiate structure of
M/G by 0.

Lemma 1.2. In the above situation, we have

(1) 9 is a smooth map,

(2) there exists a G-diffeomorphism a: 9~1((Q, l))-»G/Hx(0, 1) such

that 9°ct~1 is the projection on the second factor, and

(3) /: M/G^R is smooth if and only iff°n: M-*R is smooth.

Proof. (1) Let a£: GxXi(D(Ff)-0)->G/Hx(0, 1] be a map given by

«i([05 rei]) = (gH, r) for g e G and re(0, 1] (i = 0, 1). Then it is easy to see

that a£ is a G-diffeomorphism. Since 0^077 = a0 on GxXoS(F0), the composition

ft: 0-K(Of l)) = GxXo(fl(F0)-0)WGxKl(I)(^^^

G/H x (0, 1] = G/H x (05 2) is a G-diffeomorphism. Note that
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r) for l < r < 2 .

Thus 00/?-1 is a smooth map, and 9 is a smooth map on ^((O, 1)). From the

definition, 9 is a smooth map on 9~l(r) for r^ 1/2. Therefore 9 is a smooth map.

(2) Let 9\ (0, 2)-»(0, 1) be a smooth map given by

for

for

Since 0'(r)>0 for 0<r<2, 9 is a diffeomorphism. Let a: fl'KCO, l))-»G/#

x(0, 1) be a G-diffeomorphism given by a = (l, 0)o/J. Then (floor1)(#H, r)

= (9of}-1)(gH9 9~1(r)) = r, and 0oa-1 is the projection on the second factor.

(3) Let /: M/G-+R be a function such that /QTC: M-^R is smooth. We

shall prove that/00"1: [0, 1]-».R is smooth. Since

.) = (f0(A-i)( r) for

/o^-1 is smooth on (0,1). Let iQ: D1/2(VQ) = {vED(VQ)i \\v\\< 1/2}-^GxKo

D(V0) be an inclusion given by i0(v) = [l9 v\. Note that (0°io)00=IMI2 f°r

yeD1/2(F0). By Corollary 5.3 of G. Bredon [3, Chapter VI, §5], f^(j)~l is

smooth if and only if (/0^~1)0(^°zo) is smooth. Since (/°0~1)0(^oz'o)=/o7l°^05
which is smooth, then /o^"1 is smooth on [0, 1/4]. Similarly we can prove

that /o^"1 is smooth on [3/4,1]. Since (fo(j)-i)(r) = (fo(])-io9oa-i)(lH,r)

= (/o7ioa~1)(lJ[f, r) for 0<r<l J /o0~1 is smooth on (0, 1). This completes

the proof of Lemma 1.2.

Remark 1.3. Lemma 1.2 is essentially proved by G. Bredon [3, Chapter

VI, § 5], and (3) implies that the functional structure of M/G is induced from

that of M.

§ 2. On the Group Homomorphism F

In this section we shall define a group homomorphism P: Diffg>(M)0-^

Diff00 [0, 1], and we shall prove P is continuous.

We shall identify the orbit space M/G with [0, 1] by the homeomorphism

(j) in § 1, therefore the projection n: M->M/G is identified with the smooth map

9: M-»[0, 1]. Let h: M-+M be a G-diffeomorphism of M which is G-isotopic

to the identity 1M, and let /: [0, 1]-»[0, 1] be the orbit map of h. Since f°n

= n°h is a smooth map, / is a smooth map by Lemma 1.2 (3). Similarly the
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inverse map/"1 of/is smooth, and /is a diffeomorphism. Then there exists

an abstract group homomorphism P: Diffg5 (M)o^DirT00 [0, 1] which is given

by P(h)=f, where Diff00 [0, 1] is the group of C°° diffeomorphisms of [0, 1],

endowed with C°° topology.

Proposition 2.1. P: DifFg1 (M)0->Diff°° [0, 1] is a continuous homomor-

phism of topological groups.

Let C°°(M1, M2) denote the set of all smooth maps from a compact smooth

manifold M1 to a smooth manifold M2, endowed with C00 topology. Before

the proof of Proposition 2.1, we begin with some lemmas.

Lemma 2.2. Let Mt be a compact smooth manifold and Nt be a smooth

manifold for i — 1, 2. Then we have:

(1) Let 0: Nl-+N2 be a smooth map, and let </>*: C°°(Ml5 NJ-^C^M^

AT2) be a map which is given by $*(f) = <p°f' Then $* is continuous.

(2) Let (/): M1-^M2 be a smooth map, and let <£*: C°°(M2, Nl)-^Ccc(Ml,

NI) be a map which is given by </>*(/) =/°0. Then 0* is continuous.

(3) Let 0: M1-+N2 be a smooth map and let <£s: C°°(Ml5 N1)-^C°°(M1,

Ni x N2) be a map which is given by 0s(/) = (/, </>)• Then (j)$ is continuous.

(4) Let 0: M2->AT2 be a smooth map and let 0r: C^fM^ NO-^C^CM! x

M2, JVt x JV2) fee a map given by 4>i(f)=fx 0- Then 4>\ is continuous.

(5) Let K: C°°(Ml5 JV t)x Cm(Ml9 N2)-*C™(M^ N1 x N 2 ) be a map given

by K(f> 9)(x)==(f(x)> 9(x)) for xeM1. Then K is continuous.
(6) Let L be a smooth manifold. Let comp: C^(M^ NJ x C^N^ L)->

C°°(M1, L) be a map given by comp(/, g) = g°f. Then comp is continuous.

Proof. (1) and (2) are proved by R. Abraham [2, Theorems 11.2 and 11.3].

It is easy to see (3), (4) and (5). From J. Cerf [4, Chapter I, § 4, Proposition

5], (6) follows.

Lemma 2.3. Let X be a topological space. Let M be a compact smooth

manifold and N be a smooth manifold. Choose an open covering {17J of M

such that each closure Ut of Ut is a regular submanifold ofM which is contained

in a coordinate neighborhood of M. Then a map !F: X^>C°°(M, N) is con-

tinuous if and only if each composition Wt: X -Jt> C°°(M, JV) Jl+ Cm(Ui9 N)

is continuous for each i, where jt: U£-*M is an inclusion.

Proof. From Lemma 2.2 (2), if W is continuous, then ¥t is continuous

for each f. We can choose {l/J as a coordinate covering of M. Let {FA} be a
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coordinate covering of N. Let /eC°°(M, N) and KaUi be a compact subset

such that /(X)cFA for some L Nr(f, Ui9 FA, K, e) (r = 0, 1, 2,..., 0<s<oo)

denotes the set of Cr maps #: M-»N such that g(K)aV^ and ||£fe/(x)-Z>fc0(x)||

<£ for any xeK, fc = 0, 1, 2,..., r. Then the C°° topology on C°°(M, N) is

generated by these sets Nr(f, Ut, FA, K, e) (see M. Hirsch [6, Chapter 2, § 1]).

Let xeX and let /= W(x). For any open neighborhood W of/, there exist

above sets Nk = Nfk(f, Uik, FAfc, Kk, efc), fc=l, 2,..., n, such that r\2=i Wfcc:W:

Note that jfk: C°°(M, ̂ -^C^^, N) is an open map and (jflc)-
1(J*k(^

r
fe)) = ^.

Since Yije is continuous, ^f~1(Nk)=W^(jfk(Nk)) is an open neighborhood of

x in X, for each k. Then AJUi ^~l(Nk) is an open neighborhood of x in X.

Since !F(Afe=i S3r~1(^Vfc))c:/^k=i-^fcc=^ ^ i§ continuous at x. This completes
the proof of Lemma 2.3.

Remark. Lemma 2.2 and Lemma 2.3 hold in the cases of manifolds with

corners.

Let C?([-l/2, 1/2], £) denote the set of all smooth functions /: [-1/2,

1/2] -*R satisfying /(-x)=/(x), endowed with C°° topology. Let T:

Cf (1-1/2, 1/2], K)->C°°([0, 1/4], U) denote a map defined by T(/)(x)

= f(yflc). Then we have

Lemma 2.4. TTze above map T is well defined and continuous.

Proof. Put f=T(f) for each /eC?([-l/2, 1/2], jR). Since / is a C°°

even function, we have the Taylor expansion

/(x) =/(0) + (/"(0)/2)x2 + - - - + (/(2-2)(0)/(2n - 2) !)x2"-2

((1 - i)2n~ll(2n

for ~l/2<x<l/2, n = l, 2,.... Thus we have

2«-2)(0)/(2n-2)!)x-1

((1 - i)2n-ll(2n - 1)!)/ <

for 0<x<l/4. By the composite mapping formula, we can compute the n-th

derivative

where B(p, ilv.., i,) is a real number. Put /, = T(/0 for /, G C?([-1/2, 1/2], JR)
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(i = 1, 2). Then there exists a positive number An such that

<An - max0<^3n (sup_

for each n = l, 2, ____ Note that

Therefore Tis a continuous map, and this completes the proof of Lemma 2.4.

Proof of Proposition 2.1. Let J denote a closed interval [0, 1/4], [1/5,

4/5] or [3/4, 1]. By Lemma 2.3, it is sufficient to show that the composition

Pji Diffg (M)0 -^> Diff00 [0, 1] -H> C°°(J, [0, 1]) is continuous, where 7: jc>

[0, 1] is an inclusion map.

We shall first consider the case J = [0, 1/4]. Let ,: [-1/2, 1/2] ->[0, 1/4]

be a map given by c(x) = x2. Let ?: [-1/2, l/2]->GxZoD(70)C->M be a map

given by ?(r) = [l, re0], where e0 is a point of S(V0) as in §1. Then nof = e.

Let Pj denote the composition Diff g (M)0 -^ C°°([- 1/2, 1/2], M) -^

C°°([-l/2, 1/2], [0, 1]). Then Pj(K) = n°hoi = P(K)oi = c*P(K) for fce

Diff{j?(M)0, and the image of Pj is contained in C?([-l/2, 1/2], U). Note

that Pj = T°Pj. Combining Lemma 2.2 and Lemma 2.4, Pj is continuous.

Next consider the case J=[l/5, 4/5]. By Lemma 1.2, there is a G-diffeo-

morphism a: ^([l/S, 4/5])->G/ff x [1/5, 4/5]. Let i: irl([ll59 4/5])C>M be
the inclusion map and let k: [1/5, 4/5]->G/Hx [1/5, 4/5] be a map given by

k(r) = (lH, r). Then Pj is the composition

Diff? (M)0-^^>% C°°([l/5, 4/5], M) -^ C°°([l/5f 4/5], [0, 1])

which is continuous by Lemma 2.2.

We can prove that Pj is continuous in the case J = [3/4, 1] similarly as in

the case J = [0, 1/4], and this completes the proof of Proposition 2.1.

§ 3, A Continuous Global Section of F

In Section 2 we have proved that P: Diff g(M)0-> Diff00 [0, 1] is continuous.

Thus the image of P is contained in the connected component Dirf00 [0, 1]0

of the identity. In this section we shall construct a continuous global section of

Let /be an element of Diff00 [0, 1]0. We shall define a map W(f): M-+M

as follows: ¥'(/) is defined on ^((Q, 1)) by the composition ^((O, 1)) — £_*
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G/#x(0, l)-lii/l»G/#x(0, 1) J^> Tu-^CO, 1)), and !?(/) = 1 on Tr1^) U TT^l).

Proposition 3.1. *F(/) is a G-diffeomorphism of M.

In order to prove Proposition 3.1, we need the following lemma and nota-

tions.

Lemma 3.2. Let W1 : Diff °° [0, l]0-»Diff°° (/>") 6e a map de/Zned by

0 for 0 = 0,

where Dn denotes an n-dimensional unit disc. Then !FX is well defined and

continuous.

Notations 3.3. For i = 0, 1, we shall use the following notations

nt: G-*G/Ki the natural projection,

Ui an open disc neighborhood of 1K£ in G/Kt,

fft: Ut-+G a smooth local cross section ofnt,

0ita: aUt-+G (aEG) a smooth local cross section of nt defined by

Put M£ = GxK .D(F f) and M£(r) = GxK.Dr(Ff), where Dr(V^) is a closed r-disc in

i, pisr: M^rJ-^G/Ki the bundle projections,

i,a: PTi(aUi)-^UixD(Vi) (aeG) a chart of pt over aUt defined by

7T2: G-+G/H the natural projection,

U2 an open disc neighborhood of 1H in G/H,

o2\ U2-^G a smooth local cross section of n2-

Proof of Proposition 3.1. Put h=¥(f). We shall first prove that h is

smooth on n~1(G). Since /(0) = 0, there exists a real number e such that 0<£<

1/2 and /(e2)<l/4. Then h(n'l([09 e2D)<=n-i([_Q9 1/4]), and fe(M0(e))c

M0(l/2). For [^reo]eGxKoD f i(70-0)(0<r<6), h([0, rgo]) = (a-1o(l>/)oq)

(l9, re0-]) = (*-i°(l, /)) (flfJff, r2) = a-1(gg>/(r2)) = to> V/53)^]- Then, for

[^ ^]eGx^D£(Fo-0), /i([^, t;]) = [^5 V/(NF)/bll »] = &, ^i(/)W]- Since
*(&, 0]) = b, 0],fc(to,t?]) = to, IP !(/)(»)] for any [gr,t;]eM0(e). Then the
composition
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is given by h(x, v) = (x, *Pi(f)(v)) for a e G. Since V^f) is a smooth map by

Lemma 3.2, /i is smooth on ^(O). Similarly we can prove that h is smooth on
n~l(l). Since /? is smooth on TT~ *(((), 1)) by the definition, h is a smooth map.

Since h~l = W(f~1), h~l is also a smooth map. Thus h is a G-diffeomorphism

of M, and this completes the proof of Proposition 3.1.

In order to prove Lemma 3,2, we need the following assertion.

Assertion 3.4. Let <£>: DifT00 [0, 1]0->C°°([0, 1], &) be a map given by

for * = 0.

/s well defined and continuous.

Proof. For/e Diff00 [0, J]0, we have the Taylor expansion

/(x)=/'(0)x + x2 (\l-f)f"(tx)dt for 0<
Jo

Put F(x)=/'(0) + x\ (l-t)f"(tx)dt for 0<*<1. Then $(f) = JF. Note
Jo

that F(X)>0 for 0<x< 1. It is easy to see that <P is continuous.

Proof of Lemma 3.2. Let N: £B->[0, 1] be a map given by N(v)= \\v\\2.

Let i: Dn^Rn be the inclusion and let //: RxR"-*Rn be the scalar multipli-

cation. Since ^i(/)(u) = $(/)(bl|2X F^/) is a smooth map by Assertion

3.4. Since ^i(/"1) = 5/i(/)"1, ^iC/)""1 is also a smooth map. Thus ^C/) is
a diffeomorphism of D". Note that ^ is the composition Diff00 [0, 1]0 -^

C°°([0, 1], K) -^ C°°(D", R) -^> C°°(D», ^ x Rn) -J±> C°°(D", Rn). Combining

Assertion 3.4 and Lemma 2.2, W1 is continuous. This completes the proof
of Lemma 3.2.

Proposition 3.5. W: DifT00 [0, llo-^Diffg5 (M) is continuous.

Proof. Let B^cz[/. be a closed disc neighborhood of lKt in G/K^ for

i = 0, 1. Let B2^U2 be a closed disc neighborhood of IH in G/H. We can

choose {int (po.U^o)), int (pr.UflBi)), int (a-1^^ x [e/2, l-e/2])); aeG} as
an open covering of M for 0<e<l/2. Put W={feDiffco [0, 1]0;/([0, e2])c:

[0, 1/4), /([I -e2, l])c(3/4, 1]}. Then W is an open neighborhood of the

identity in Diff00 [0, 1]0. Since *¥ is a homomorphism as an abstract group, it

is enough to show that W is continuous on W. Let C denote one of the sets

p^aBo), pifaBJ or a~l(aB2 x [e/2, l-e/2]) for a G G. If we can prove that

the composition
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iff£ (M)0 -£-» C°°(C, M)

is continuous for each C, then !F is continuous on TF by Lemma 2.3, where

i: C^M is an inclusion map.

First consider in the case C = pQi
1

E(aB0). W(f) (C) is contained in jpoA 72(0^0)

for each/ePf. Note that ¥(f)([g, t?]) = [0, ^(/Xu)] for [0,t>]eC and

(K.^C/Wo.yte t;) = (x, S^C/XtO) for (x, t;)eB0 xDe(F0). Thus Vc is given
by the composition

x Z)e(F0), £/o x Z)(F0))

, £/0x/)(F0))

C°°(C, AO,

where j: B0(->U0 and k: pQ
1(aU0)

(:->M are inclusions. Combining Lemma 3.2

and Lemma 2.2, Wc is continuous.

Now consider the case C = a~1(50x [e/2, 1— e/2]). *FC is given by the

composition

W—-£-> C°°([e/2, l-e/2], (0, 1))

—il—> C°°(£0x [e/2, l-e/2], G/tf x (0, 1))

—*!-> C°°(C, G7#x (0, 1))
(feog"1)*> C°°(C, M),

where ;: [e/2, l-e/2]C-»[0, 1], j: BQ<->G/H and k: TT *(((), 1))<-»M are inclusion

maps. By Lemma 2.2, Wc is continuous.

We can prove that Wc is continuous in the case C = pi^(aBl) similarly as in

the case C=Po*£(aBo), and this completes the proof of Proposition 3.5.

By Proposition 3.5, P: Diffg (M^-^Diff00 [0, 1]0 is a globally trivial

fibration. Then we have

Corollary 3.6. Diffg3 (M)0 is homeomorphic to Diff00 [0, 1]0 x Ker P.

§4 On the Group Ker P

In this section we shall define a group homomorphism L: KerP->2» where

2 is a subgroup of C°°([0, 1], N(H)/H), and we shall prove that L is a group

monomorphism between topological groups (see Lemma 4.5 and Proposition

4.6).
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Let h be an element of Ker P. Let n be the composition

G/Hx (0, 1) -^ TrKCO, 1)) -*-* TTKCO, 1)) -*-* G/#x (0, 1).

Then fi is a level preserving G-diffeomorphism. Let a: (0, 1)->N(H)IH be a

smooth map satisfying h(gH, r) = (ga(r), r) for (0/f, r) e G/H x (0, 1).

Proposition 4.1. With the above notations, there exists a smooth map

a: [0, l~]-*N(H)IH such that

(1) 5 = acm(0 , 1),

(2) a(i)

To prove Proposition 4.1, we need the following lemmas.

Lemma 4.2. Ler G be a compact Lie group. Let K and N be closed

subgroups of G. Let n: G-+G/K be the natural projection. Then there exists

a smooth local section a of n, which is defined on an open neighborhood U of

IX, such that a(lK) = 1 and a(x) eNforxe n(N) fl U.

Proof. Let ni: N-»N/(JV n X) be a natural projection. Let i; JV^G be

the inclusion and let /: N/(N fl K)-^G/K be a map satisfying n°i = I°n1. Since

/(JV/(NnX)) = 7r(N) is an orbit of the natural action NxG/K-tG/K, I is an
imbedding. Let U be a disc neighborhood around 7i(l) in G/X and let U1 be a

disc neighborhood around 7^(1) in N/(N fl X). Since I is an imbedding, we

can assume I(Ul) = U fl I(N/(N fl X))= U" n 7r(N). Let o^ : C/i-^JV be a smooth

local section of 7rt satisfying o-1(7r(l)) = l. Then a±°I~l is a smooth section

defined on 1(11^). We can extend ciiO/-1 to a smooth local section defined on

U. Then cr(7r(l)) = 1 and a(U fl n(NJ) cz JV. This completes the proof of Lemma
4.2.

Lemma 4.3. Let G be a compact connected Lie group. Let V be a rep-

resentation of G such that G acts transitively and effectively on a unit sphere

S(V) of V. Let H be the isotropy subgroup of a point of S(V). Then we have

the following list:

G

H

N(H)/H

S0(n) (n>3)

S0(n-l)

zz

SU(n) (n>2)

SU(n-l)

t/(l)

U(n) (n>l)

U(n-l)

£7(1)

Sp(n) («>1)

Sp(n~l)

Sp(\)

Sp(n)xZ2S* (n>l)

Hi

Z2
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Sp(n}xz^ (n>\)

Hz

S1

G2

SU(3)

Z2

Spin(7)

G2

z,

Spin(9)

Spin(7)

Z2

where H^ = {[_(q, A), q'1] e Sp(n) x Z2S
3 ;(q,A)e Sp(l) x Sp(n - 1) c Sp(n)} and

Proof. It is known that G and H are the above Lie groups (c.f. W. C.

Hsiang and W. Y. Hsiang [7, § 1]). We can determine the Lie group N(H)/H

by an immediate calculation except for G = G2, Spin (7), Spin (9). For the cases

G = G2, Spin (7), Spin (9), we can determine N(H)/H by using I. Yokota's

definitions of these Lie groups in [9, Chapter 5].

Lemma 4.4. (1) Let F: [ — 1, l]-»jR be a smooth function such that

F(0) = 0. Putf(x) = F ( x ) / x f o r x ^ Q a n d f ( x ) = F'(Q)forx = Q. Thenf: [-1, 1]

->R is a well defined smooth function.

(2) Put Q([-l, 1], ̂ ) = {FeCco([-l, 1], R)i F(0) = 0}5 endowed with

C00 topology. Let &: Cg^-l, 1], ^)->C°°([-l, 1], R) be a map given by

<P(F)(x)=f(x). Then $ is continuous.

Proof. For FeCg>([-l, 1], fl), we have <f>(F)(x)=/(x) = F(0)

+ x T (l-t)F"(tx)dt. Then the n-th derivative fW(x) = x (* (l-t)tnF^2\tx)dt
Jo Jo
ri

+ n\ (i — t)tn~lF(n+l\tx)dt. Thus there exists a positive number A such that

||^(F)°L<^||Fi|n+2, and Lemma 4.4 follows.

Proof of Proposition 4.1. Let e(0<e<l/2) be a real number. Let W{

and Ut be open neighborhoods of lKh satisfying W^V^ for f = 0, 1. Put

0 = {/ieKer P; ft^K^^PF.K^i) for ?' = °» !}• Then ° is an °Pen neighbor-
hood of the identity in Ker P. By Corollary 3.6, Ker P is connected, and 0

generates the topological group Ker P. Thus we can assume heO.

Let h be the composition

Let pL: C/oX^eC^o)-^^ an(l Pa: ^ox As(Pro)~>AJ(J'o) ^e projections on the
first factor and the second factor, respectively. Let i: [-e, e]-»PF0 xD£(F0)

be an imbedding given by i(f) = (lK0, re0). Then the compositions ^^p^hoi:

[ — e, e]->L/0 and h2 = p20h°i: [ — s, s]-»£e(F0) are smooth maps. Let n0: G/H

-»G/K0 be the natural projection. Note that
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l, re0J)

= (/!<.«) ([1, re0])

= (a(r2),r2) for |r|<s,

Then

and

for |r|<e,

Here we can assume that <70(1K0) = 1 and aQ(n0(N(H))r\UQ)<^N(H) by

Lemma 4.2. Let &: [ — e, e]-»G be a smooth map given by b(r) = a0(h1(rj).

Then 6(r) = (T0(n0(a(r2))) e a0(n0(N(H)) n l/0), and fc(r) e JV(#) for r / 0. Since

6 is a smooth map, 6(r) e N(H) for r = 0. For [1, 0] e TT^O), we have fc([l, 0])

= (fc°^)(l«o,0) = (fto^)OXO)) = 0oMfii(^ Note that ^Po is
a G-diffeomorphism on the zero section of p0 and /z(7r~1(0)) = 7i"1(0). Then the

composition p0°h°pQ1: G/K0-*G/K0 is a G-diffeomorphism, and (po°h°pQ1)

Thus 6(0)eJV(X0), and 6(0) e

Put J = [ — e, 0)U (0, e]. Let c: J->N(H)IH be a smooth map given by

C(r) = b(r)-i.^2). Since 7c0(c(r)) = 7Co(ffo(7roW'<2)))"1 -«(r2))-lK05 then c(r)
e KQ/H. Thus c(r) e Ar(H, K0)/H for r e J. Since Ker P is connected, the maps

a, b and c are homotopic to the constant maps. Note that the identity com-

ponent (N(H, K0)IH)° of N(H, K0)IH is contained in (N(H, K0)nK8).H/H,

and there exists an isomorphism (N(H, K0) n Kg) • H/H ^ (N(H, K0) n Kg)/

(H n Kg) as a Lie group, where Kg is the identity component of K0. Then there

exists a smooth map t: J -?-> (N(H, KQ)/H)°^(N(H, K0) n K§) - HIH~(N(H,

KO) n K$)I(H n K$)^N(H n Kg, K$)I(H n Kg). Now we shall prove that c

can be extended to a smooth map on [ — 8, e], and so is c.

Note that K0 acts transitively on the unit sphere 5(F0) of V0. If dim S(V0)

= 0, then K0/H = Z2 and JV(ff, K0)/H = Z2. In this case £ is a trivial map, and

it is clear that c can be extended to a smooth map on [ — e, e]. Now we assume

dimS(Fo)>0. Since S(F0) is connected, Kg acts transitively on S(F0) and

Kg/(Kg n#) is diffeomorphic to 5(70). Put D= fl^g^Kg nH)^-1 which is
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the kernel of the action Kg x 5(F0)-»S(F0). Put K0 = Kg/D and H = (H n Kg)/

D. Then K0 acts transitively and effectively on 5(F0) and K0/H is diffeomorphic

to 5(F0). Put N0 = N(H, KQ)/H which is isomorphic to N(H fl Kg, Kg)/

(H n Kg) as a Lie group. The pair (K0, JV0) is one of pairs (G, N(H)/H) in the

list of Lemma 4.3. Now we shall prove that c can be extended to a smooth

map on [ —e, s]. If JV0 = Z2, this is clear since c is a trivial map.

Consider the case K0 = SU(n) (n> 1) and NQ = 17(1). In this case F0 is an

n-dimensional complex vector space and JV0 = 17(1) acts on F0 as a scalar multi-

plication. We can regard C" as a 2n-dimensional real vector space R2n and

N0 as 5O(2). Then there exist smooth functions ct: J-^R, i = l, 2, such that

for re/.

Note that h2: [ —e, e]-^^£(F0) is a smooth map and Ji2(r) = c(r)-re0 = £(r)-re0

for r^O. In this case e0 = (l, 0,..., 0)eS2"~1 and £2(r) = (c1(r)r, c2(r)r, 0,..., 0)

for re J. Put ci(0) = limr_>0 ct(r) for i = l, 2. From Lemma 4.4, q: [ — 8, e]-»

jR, i = l, 2, are smooth functions and c can be extended to a smooth map on

[-e, e].

Now consider the case K0 = Sp(n) (n>l) and N = Sp(i). In this case F0

is an n-dimensional quaternionic vector space Hn and NQ = Sp(l) acts on F0 as

a scalar multiplication. We can regard Hn as R4n and SKI) as a subgroup of

50(4) naturally. By the similar way as in the case K0 = SU(n), there exist smooth

functions ct: J-»R, i = l, 2, 3, 4, such that h2(r) = (c1(r)r, c2(r)r, c3(r)r, c4(r)r,

0,..., 0) for re J, and we can extend c to a smooth map on [ — e, e].

The proofs of the other cases are similar to those of the above cases. Thus

we can extend c to a smooth map on [ —s, e]. Since c(r)eN(H, K0)/H for

r^O, we see c(0) e N(H, K0)/H. Put fl(0) = 6(0)-c(0). Since b(0)eN(H)n

N(K0) and c(0) e JV(H, K0)/H, we have a(Q)e(N(H)nN(K0))IH. Let fi:

[-1/2, 1I2]-*N(H)IH be a map given by a(r) = a(r2). Since a(r) = b(r)-c(r) for

— s<r<e, & is a smooth map. Since ^ is an even map and a(r) = &(^/r) for

0<r<l/4, a is a smooth map on [0, 1/4] by Lemma 2.4. Thus we can extend

the map a to a smooth map a on [0,1) satisfying a(0) e (N(H) n N(K0))/H.

Similarly we can extend a to a smooth map a on [0, 1] satisfying a(l)e(N(H) n

N^^IPI. This completes the proof of Proposition 4.1.

Let Q denote the set of smooth maps/: [0, 1]->JV(H)/H satisfying /(?') e

(N(H) n N(K$/H for i = 0, 1, endowed with C°° topology. Using Proposition
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4.1, we define a map L: KerP-»g by L(h) = a~l.

Lemma 4.5. L: KerP-»2 is a group monomorphism.

Proof. Let ht e Ker P for i = 1 , 2. For 0 < r < I and g e G, we have

, r)

", r)

Thus L(ft2oft1) = L(h2)-L(/i1) on (0, 1). Since L^), L(/i2) and L(h^h2) are

smooth maps on [0, 1], L(h2°hl) = L(h2)-L(hl) on [0, 1]. Thus L is a group

homomorphism. Suppose L(7j)=l for freKerP. Then (h°ti~l)(gH, r)

= a~l(gH, r) for g e G and 0< r < 1, and h = 1 on TT KCO, 1)). Thus h = 1 on M,

and L is a monomorphism.

Proposition 4.6. L is a continuous map.

Proof. We shall use the notations in the proof of Proposition 4.1. Since

L is a group homomorphism, it is sufficient to show that L: O-»Q is continuous.

Let I denote a closed interval [0, e2], [e2/2, l-e2/2] or [1-e2, 1], By Lemma

2.3, it is sufficient to prove that L7: O -£-> g -^U C0^/, N(H)/H) is continuous,

where j: /^[O, 1] is an inclusion map.

First we shall consider the case / = [0, e2]. Let L± be the composition

),, c°°([-e, e],

where /c: po.eC^o)^^ is an inclusion map. Then LA is continuous by Lemma
2.2. Note that Ll(h) = b.

Let L2:0-+C*>([-B,8]9(N(H,K0)IH)0) be a map given by L2(ft) = c.

We shall prove that L2 is continuous. This is trivial in the case N(H, K0)IH

= Z2. Consider the case R0 = SU(n) (n>2). In this case V0 = Cn = R2n and

JV0 = 17(1) = SO(2). Put C?([-fi, e], F0) = {Fe C°°([-e, e], F0); F(0) = 0}, en-

dowed with C00 topology. Let ^: Cf([-fi, s], F0)-^Ca)([-£, e], .R2) be a

map defined by cp(F) = (^(F1), ^(F2)), where F=(FV.., F2") and <P(F') is a

map defined in Lemma 4.4. Then <P is continuous by Lemma 4.4. Let

m: R2-*M2(R) denote a smooth map defined by

x -y
m(x,y)=\

y x
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where M2(R) denote the set of all 2x2 matrices over R. Let L'2 denote the

composition

O

From Lemma 2.2, L'2 is continuous. Note that L2(h) = h2 and L2(O) is con-

tained in CQ([ — e, e], F0). Let L2 denote the composition

<9_^Q°([-£,£], F0)

Then L2(h) = c and L2 is continuous. This implies that L2 is continuous by

using Lemma 2.2. Similarly we can see that L2 is continuous in the other

cases.

Let \JL\ GxG/H-*G/H be a map defined by the left translation and let

c: (N(H, Ko)/H)oc->G/Hbe an inclusion map. Then the composition

£. 0 <L '"*oL*>>coo([-e. e], G)x C°°([-e, e],

is continuous by Lemma 2.2, where K is defined by K(fl,f2)(r) = (fl(r),f2(r)).

Note that L(h) = b-c = a and L(0) is contained in C?([-e, e], N(H)/H).

Here C^([ — e, s], N(H}/H) denotes the set of all smooth even maps /: [ — e, s]

-+N(H)IH, endowed with C°° topology. Let T: C?([-e, s], N(H)/H)^>

C°°([0, e2], N(H)/H) be a map defined by T(f)(r)=f(y/~f). By the same argu-

ment as in the proof in Lemma 2.4, we can prove that T is continuous. Thus

Lr=T°L is continuous.

Now consider the case J = [e2/2, 1— e2/2]. L7 is given by the composition

where k: Tc"1^)^]^ is an inclusion, r.I-*G/HxI is a map given by ^(r)

= (1H, r) and q2: G/Hx J->G/H is the projection on the first factor. Thus Lj

is continuous. We can see that L7 is continuous in the case 1 = [1 — e2, 1] simi-

larly as in the case / = [0, s2], and this completes the proof of Proposition 4.6.
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§ 5. Subgroups of the Topological Groups Q and Ker P

In this section we shall consider subgroups Q1 and S of the topological

groups Q and KerP, respectively, such that L(S) = Ql9 and we shall prove that

the inclusions Qi^Qo and S^KerP are homotopy equivalences, where Q0 is

the identity component of Q.

Put Q1 = {aee0; fl(r) = a(0) for 0<r<l /4 and a(r) = a(l) for 3/4<r<l}.

Then Ql is a topological subgroup of Q0. Let i: Qi^Qo be an inclusion.

Lemma 5.1. i: Q^Qo is a homotopy equivalence.

Proof. Let a: [0, 1]-*[0, 1] be a smooth map such that

a(r) = 0 for 0<r<l/4,

(j(r) = l for 3/4<r<l.

Let \it\ [0, 1]-»[0, 1] (0<f<l) be a smooth homotopy given by fit(r) = ta(r)

+ (1 -Or. Since (ao^t)(i)e(N(H) n N(K$IH for z = 0, 1, a<% is an element of g.

Define 4: Go x [0, 1]->Q by g(a, 0 = *°^. Let /x: [0, 1]->C°°([0, 1], [0, 1]) be
a map given by n(i) = iit. Then it is easy to see that \JL is continuous. Note that

q is given by the composition

Q0x[0, 1] -JI^e0xC°°([0, 1], [0, 1])
c o m p > C°°([0, 1], N(H)/H),

where comp is given by comp(a,f) = a°f. By Lemma 2.2 (6), g is continuous.

Then q(00 x [0, 1]) is contained in g0. Let qt: Q0^>Q0 be a map given by

qt(a) = q(a, i). Since ^1=a, ^i(Q0) is contained in Qj. Thus ^ is a homotopy
between q0 = lQo and q1 = i°qi. Note that #,(61) is contained in Q! for any t,

Then ^f: Qi x [0, l]->6i is a homotopy between !Ql and q^i. Therefore

Lemma 5.1 follows.

Put S = L~1(Q1)c:KerP. Let c : S^->KerP be an inclusion.

Lemma 5.2. c. S^KerP is a homotopy equivalence.

Proof. Put a = L(h~l) for /zeKerP. Let /if: M->M (0<^<1) be a map

as follows: ht is given on ^((O, 1)) by the composition ri~l((®, !))—«

x(0, l)-^G/Hx(0, l)-^->7i-1((0, 1)), where lzf is defined by ht(gH,r)

= (9'<lt(<*)(r)>r). ht(gKi) = ga(i)-Ki(i = Q y l ) for geG. Here we need the

following
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Assertion 5.3. ht is a smooth map for any t.

Proof. By the definition, ht is smooth on rrHCO, 1)). We shall prove that

ht is smooth on n~l(G). Let aQ be an element of G such that aQH = a(Q)

and a0eN(H)(]N(K0). For [g, 0] ep^1/2(lK0), (p0tl/2oh)([jg9 0]) = n0(ga0)

= n0(aQ)Ea0UQ. Then there exists a neighborhood W0 of IKQ in G/K0 such

that (p0,i/2°^)(Po,1i/2(Wo)) is contained in a0U0. For [#, re0] epo/i 72(^0) and

(Po, i /2°^) (fe, ^o]) = no(94fc) (r2))

which is contained in (po,i/20^)(Po5
Ji/2(^o))c:(3o^O" Then ht(Poh/2(9^0)) i§

contained in po^/2(ga0Uo) for g e G and 0< t< 1.

Let h: W0xD1/2(VQ)-+U0xD1/2(VQ) be a map given by /i = 0o^a0
0^0^o,^

for geG. Let p^ t/ox-^1/2(^0)"^ ̂ o and P2: ^o x j^i/2(^o)~^^i/2(^o) be the
projections on the first factor and the second factor respectively. Put g' = ga0

and put hi=piofi for i = 0, 1. Then h1 is a smooth map and

/?20c, rkeo) = ff0ig>(g(r0(x)k - nQ

for xe WQ and /CGJ£O , where TTO : G/H-*G/K0 is the natural projection. Put

^J = Pi°0ojff'
0^00o^ for i = 0,l. Then

} a r • r e 0

for x e Pf0 and /c e K0.

Since tr(r2) = 0 for r<l/2, /^(r2, r) = (l-^>2 for 0<r<l/2. Then h\(x, v)

= hl(x, ^/T^tv) for 0<*<1 and h2(x, v) = ll^/T:^th2(x, jT^tv) for Q<t<l.

Thus /zj (0<r<l) and /t2 (0<f<l) are smooth maps.

By the Taylor formula (c.f. J. Dieudonne [5, Chapter VIII, (8, 14, 3)]), we

have

where Dh2 is the derivative of h2. Since fi2(x, 0) = 0,

for
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Then hl(x, v) = \imt^l K*(x, v) = (Dh2}(x, 0)u, and /if is a smooth map. There-

fore ht is smooth on Tr"1^) for any 0<r<l . Similarly we can prove that ht is

smooth on 7i~1(l), and Assertion 5.3 follows.

Proof of Lemma 5.2 continued. Let q: KerPx[0, !]->KerP be a map

defined by q(h, t) = ht. By Assertion 5.3, ht and h^1 are smooth maps, and q

is a well denned map. Next we shall prove that q is continuous. Let Wt be a

neighborhood of IX, in G/X£ satisfying P^ c C7£ for i = 0, 1 . Put 0 = {h e Ker P ;

fe(pr, 1/2(^1)) ̂ 7,1/2(^1) for z = 0, 1]. Then O is an open neighborhood of 1M

in Ker P. For heO,geG and 0<t<!9 ht(plt\/2(gWi)) is contained in

JPr,i/2(0^i)(i = 0» !)• Let PF2 be an open neighborhood of Mi in G/JFf satisfying
W2aU2. Let C be one of the sets {pl\/2(gW^ (i = 0, 1, 0 eG), or1^^
x [1/5, 4/5]) (g E G)}. By Lemma 2.3, it is sufficient to show that the composi-

tion qc: 0 x [0, 1] — i-> Ker P -^ C°°(C, M) is continuous for any C, where

jc: C^M is an inclusion map.

First consider the case C = pQ^/2(gWo). Let vl: C°°(PF0 xD1/2(F0), l/0)x

[0, l]^C°°(^0xD1/2(F0), t/0) be a map given by Vl(/, t)(x, »)=/(x, VT^»)-
Let v2:C-(^0xD1/2(F0),D1/2(F0))x[0, 1]-C-(IF0 xD1/2(F0), D1/2(F0)) be a

map given by v2(/, 0(^» u) = ( \ (Af)^? \/l — ̂ C^XCj(^)- It is easy to see that

vx and v2 are continuous. Note that qc is the composition

Ox [0, 1] J l i > C°°(C, P^ll2(gU^) x [0, 1]

((*o.g)^o..)M), CGO(^O x Dl/2(Fo)f c/0 x Z)1/2(F0)) x [0, 1]

( ( P 1 ) * ' ( P 2 U > 1 ) > C°°(IF0 x Z)1/2(F0), t/0)

x C«(W0 x Z)1/2(F0), 2)1/2(F0)) x [0, 1]

-^ C~(W0 x Z)]/2(F0), I70) x C-(PF0 x D1/2(F0), D1/2(F0))

Here v is given by v(/l9 /2, 0 = (vi(/i5 0» v2(/2» 0) and K: is the map defined in
Lemma 2.2 (5). Then qc is continuous by Lemma 2.2.

Next consider the case C = a~1(gW2 x [1/5, 4/5]). Let m: N(H)/HxGIH

-+G/H be a map defined by m(nH9 gH) = (gn)H and p2 : G/ff x [1/5, 4/5] ->[0, 1]

be a map given by p2(gH, r) = r. Let 5: Q0^Go be a map given by S(a) = o~1.

Then the map ^c is the composition



620 KOJUN ABE

Ox [0, 1] -̂ 1U g0x [0, 1] -ts* 2o -^ C*(G/Hx [1/5, 4/5],
( l c / H x [ l / 5 ' 4 / 5 3 ) ! > C°°(G/#x [1/5, 4/5],

N(H)/HxG/Hx [1/5, 4/5])

-^> C">(G/Hx [1/5, 4/5], G/#x [1/5, 4/5])

- s 4/5]))c,c°°(C, M),

which is continuous because L and g are continuous.

Similarly as in the case C = po^1/2(gWo), we can see that qc is continuous in

the case C = pi*1/2(gW1). Thus q is continuous. Since #1(60)^619 ?i(KerP)

cS. Therefore g is a homotopy between g0 = liter p and #i= '°<7i- Since

«(6ix[0, l])cQl9 5(Sx[0, l])cS. Then 5:Sx[0, 1]-»S is a homotopy

between ls and q^i. Thus t is a homotopy equivalence, and this completes

the proof of Lemma 5.2.

§ 6. Proof of Theorem

In this section, we shall see that L: S-»2i is an isomorphism between topo-

logical groups, and we shall prove our Theorem.

Proposition 6.1. L: S-»2i *s an isomorphism between topological groups.

Before the proof of Proposition 6.1, we begin with some lemmas. For

any topological subgroup K of G, K° denotes the identity component of K.

Lemma 6.2. For any a e N(K0)° n N(H), there exist af€N(H°)nK%

and we Cent (Kg) such that a = n-a', where Cent (Kg) is the centralizer of K$

in G.

Proof. Since N(KQ)° is a compact connected Lie group, there exist a torus

group T and a simply connected semi-simple compact Lie group G' such that

N0 = Tx G' is a finite covering group of N(K0)° (c.f. L. Pontrjagin [8, §64]).

Let q0: NO-»N(KQ)° be the covering projection. Put K0 = qoi(K$). Since Kg

is a normal subgroup of JV(K0)°, K0 is a normal subgroup of JV0. Then Kg is

also a normal subgroup of N0. Here we need the following

Assertion 6.3. There exists a closed normal subgroup K'0 of N0 such

that NQ is isomorphic to the product group Kg x K'0 as a Lie group.

Proof. There exist simply connected simple Lie groups G£ (1< i<r) such

that G1 = G1 x • • • x Gr. Since Kg is a compact connected Lie group, there exist
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simply connected simple Lie groups Kj (1 < j<s) and a torus group T1 such that

KQ = T'xKl x ••• xKs is a finite covering of Kg. Let poiKo-^Kg be the

covering projection. Let pt: N0 = TxGlx---x Gr-*G{ be a projection on the

direct factor G, (!</<r). Since Kg is a normal subgroup of #0, PiC^o) is a

normal subgroup of Gt, Since G,- is a simple Lie group, pt(Kg) = G£ or {!}. If

pi(Kg) = Gf? pi(p0(Kj)} is a normal subgroup of Gf. Thus pi(p0(Kj)) = Gi or {!},

for l<z<r , 1< j<5.

Put pi = p£op0. If p;(X</1) = p;(Kj2)a1^j2), then pK0i)-Pi(02) = P&7i •
02) = Pi(02'0i) = P'i(02)'Pi(0i) for gieKjl,g2EKj2. Then pKK,-,) is a com-
mutative normal subgroup of Gf, and p'i(KJ-1) = {l}. If p-(Kj) = Gf, then

pJ(T') is a normal subgroup of G£, hence p-(T') = {l}. Therefore, if p^Kj)

= G,, then p'f(r) = {l} and P;(Kn) = {l} for n^ j .

Assume p'.i(KJ-) = Gfl and P
f
i2(Kj) = Gi2 for z^^. Let p': K0-+GtlxGi2

be a map defined by p'(k) = (p'il(k)9 p'i2(kj). Since Kg is a normal subgroup

of JV0 and pr(K.o) = pf(Kj), p'(Kj) is a normal subgroup of G£l x Gi2. Then, for

x,yeKj, there exists fee 1C,- such that (p^^x), l)p'(y)(pf
il(x)-1, i) = pf(k).

Then p;i(xj;x-1) = p;i(x)p;i(j)p;iW
1=PilW and p;a(y) = pja(fc). Since KJ9

Gin (w = l, 2) are simply connected simple Lie groups, pjn: Kj-»Gin is an isomor-

phism between the Lie groups. Thus x.yx~1 = fc = }; for any x, yeKp and K7-

must be a commutative Lie group, which is a contradiction since Kj is a simple

Lie group.

Thus we may assume that pfj(Kj) = Gj and pt
i(KJ) = {l} (i^j) for 1< j<s,

l<i<r. For z>s, pi(K$) = p'i(KQ) = pr
i(T

t) which is a commutative normal

subgroup of Gi9 hence p-(T/) = {l}. Then p0(T') is a subgroup of T, and there
exists a torus subgroup S of Tsuch that T= p0(T

r) xS. Put K' = S x Gs+ x x • - - x

Gr. Then N0 = K% x K'0, and Assertion 6.3 follows.

Pro0/ o/ Lemma 6.2 continued. By Assertion 6.3, there exists a closed

normal subgroup Kf
0 of JV0 such that N0 = K$xK'0. Since Kg is a connected

group, 40(Kg) = Kg. Then JV(K0)° = <70(^o) = ^0(^8) -«o(*o) = Kg -
Note that ^r0(^o) is contained in Cent (Kg). Thus, for a e JV(K0)° n

there exists a' e Kg and n e Cent (Kg) such that a = a'-n. Since N(H)aN(HQ)

and H°c:KlH0 = aH0a-1=afnH0n-1a'-1==a'H0af-1. Thus fl'eJV(H°) and

Lemma 6.2 follows.

For a e Ql9 we define a map h: M-^M as follows:

-1, r)) for (^H, r)eG/tf x(0, 1),
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(0-1, 0] for [ f f . f f J s T T H O (i=0, 1).

Lemma 6.4. h is a smooth map.

Proof. Choose a0E(N(H) n N(K0))° c: N(H)° n A/^o)0 such that a

= a0H. There exists a neighborhood FF0 of 1X0 in G/K0 such that 7Co1(^0)-fl0

is contained in flo'^oK^o)- Since a(r) = a(0) for 0<r<l/4, KPo?i/ 2(0^0)) *s

contained in po/i/iG^o^o)- Let / ? j : W7
0 xD1/2(F0)->L/0 be a map given by the

composition Pi^oW^^o,1^ and let ^2" ̂ o x ^1/2(^0)-^ ̂ 1/2(^0) be a maP
given by the composition p2

00o,0ao0^0^o,V Note that

for xe PF0, keK0, 0<r<l/2. Since a0e]V(X0), /ca0K0 = a0IC0. Then

o for (^ ^)e FF0 xD j /2(F0), and

for xePf0 , keX0 , 0<r<l/2. Thus Kl is a smooth map and h2 is smooth

on W0x(Dl/2(V0) — G). We shall prove that K2 is smooth on PF0
X0? hence h

is smooth on TT^O). This is trivial in the case dim S(F0) = 0.

Let £a0ig: WQ-*G be a map given by ^ao,g(x) = a0igao(g(70(x)a0K0)-
1gaQ(x).

Then {flo^ is a smooth map. By Lemma 6.2, there exist #o e N(H°) n Kg an(l

n E Cent (JCg) such that a0 = na'0. Then h2(
x> rke0) = ^ao>g(x)knafQ • rke0

= £aotg(x)nka'0-re0 for xeWQ,keK$ and 0<r<J/2 . Note that N(H°) n Kg

= JV(#°, Kg).

Assertion 6.5. For fleN(//°,K8), /ef ^fl: D(F0)->D(F0) foe a map de-

fined by \l/a(rkeo) = rkae0 for 0<r<l , keK. Then \]/a is a diffeomorphism.

Moreover, let \l/: N(H°, Kg)->Diff°°(D(F0)) be a map given by \j/(d) = \l/a, then

\l/ is continuous.

Proof. If dimS(F0) = 0, then XgcH and \j/a={D(Vo). In this case, the

proof is trivial. We assume dimS(F0)>0. Since S(Vo) = K0/H is connected,

Kg acts transitively on 5(F0). Let L be the ineffective kernel of the action

K%*S(V0)-+S(V0). Put K = K§IL and H = (H n Kg)/L. Then K acts transi-

tively and effectively on S(F0) and H is an isotropy subgroup of this action. By

Lemma 4.3, K, H and N(H, K)/H are G, H and N(H)/H in Lemma 4.3, respec-
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tively. Hence H is connected. Since the identity component of H D K$ is H°,

H = H°'L/L. For aeN(H°, Kg), the left coset aL is an element of N(H, K).

Then a demies an element a£N(H,K)/H. Note that \jja(rkeQ) = rkaeQ = rkaeQ

for 0<r<l , fceKg.

Consider the case K = SU(ri) (n>2), H = SU(n-l) and N(H, K)/J7=(7(1).

In this case, VQ = Cn and (7(1) acts on F0 as a scalar multiplication. Thus

\l/a(rkeo) = a • rke0 for rke0 eD(F0). Hence i/ffl is a diffeomorphism. It is easy

to see that ij/ is continuous.

Next consider the case K = Sp(n) (n> 1), H = Sp(n-l) and N(H, K)/H

= Sp(i). In this case, VQ = Hn and Sp(l) acts on F0 as a scalar multiplication

on the right. Then \l/a(v) = v-d for VGD(V0\ hence i^fl is a diffeomorphism and

\l/ is continuous. Similarly we can see that \f/a is a diffeomorphism and if/ is

continuous in the other cases, and Assertion 6.5 follows.

Proof of Lemma 6.4 continued. Since h2(x, v) = £ao,g(x')n'll/a'0(v), by As-

sertion 6.5, /J2 is
 a smooth map. Thus /ti and /z2 are smooth maps, hence h is

smooth on Ti"1^). Similarly we can see that /? is smooth on 7r~1(l). By the

definition, h is smooth on ^((O, 1)), and this completes the proof of Lemma

6.4.

Let L(a) be a smooth map h: M->M in Lemma 6.4, for aeQ^ Since

£(a~1) = L(fl)"1, /] is a diffeomorphism of M. By the definition, h is an equi-

variant map. Thus we have a map L: Qji-^DiffGCM). Note that L is an

abstract group homomorphism.

Lemma 6.6. L: Q1->Diffg)(M) /s continuous.

Proof. Let H^ be a neighborhood of lKt in G/Kf such that fFfc=l7.

(f = 0, 1), and let W2 be a neighborhood of 1H in G/H such that W2aU2.

Put At = {n e N(Kj)°', n~1WinaUi}. Then ^ is an open neighborhood of the

identity in N(K^)°. Let qt: ^-»N(Kf)° be a finite covering such that Nt is a

direct product T£x G-. Here T^ is a torus group and GJ is a simply connected

semi-simple compact Lie group. Put Kt = q^l(Kf). By Assertion 6.3, there

exists a closed normal subgroup K't of f^i such that fti = ft$xKf
i. Let s^ be a

smooth local cross section of qt defined on an open neighborhood Bt of the

identity in N(JQ°. Since n2: (N(H) n N(Kt))
0-*((N(H) n N(Ki))IH)0 is a fib-

ration, there exists a smooth local cross section ^ of n2 defined on an open

neighborhood Et of 1H such that ti(E^aAi n 5f.
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Put O = {a e Qi ; 0(0" * e Et (i = 0, 1)}. Then 0 is an open neighborhood of

the identity. Since L is a group homomorphism, it is enough to show that L

is continuous on O. Let C denote one of the sets {#T 1/2(0^) 0" = 0, 1> 0 e G)>
orl(gW2 x [1/5, 4/5]) (g e G)}. By Lemma 2.3, if Ic: 0 -^-> Diffg (M)° -^

C°°(C, M) is continuous for any C, then L is continuous, where jc: C^-*M is an

inclusion map.

First consider the case C = pQ^1/2(gWi). Let ^i N0 = K%xKf
0-*K% and

ft 2'- NO-*KQ be the projection on the first factor and the second factor respec-

tively. Let L1 be the composition

O _£_> EQ -^ A0 n B0 0,

Here r, £ and m are given by r(a) = a(0)-1, ^(fl0)W = ^a05ffW
 and m(/» »)W

=/(x) • n, respectively. Put a0 = (tQ°r) (a) for aeO. Then n0(^gtao(x)) = TTO(^O x)

for ;c e W0 and 7ro((^o0^2oso)(flo)) = 7ro(flo)- Therefore Lj(a) e X0 for any 0 e 0,
and L^COcC00^, K0). Let L2 be the composition

O _i-> E0 -£S-> ^(0 n ̂ 0 ^^^ jv(^05 ^g) _!_, Diff »(/>1/2(K0)).

By Assertion 6.5, L2 is continuous. Let L3 be the composition

O ̂ i^» C"(W0, K0) x Diff °°(/>12(F0))

where \JL is given by X/c, v) = k-v, and ?c is the map in Lemma 2. 2. Then L3 is

continuous, and L3(a) = /z2. Let y: A0-^Cco(W0y U0) be a map defined by

y(a0)(x) = 0o%0(X)flo^o- 7 is a restriction map to A0 of a map y: N(K0)
->C°°(G/jK0, G/X0) given by y(n)(gK0) = n~1gnK0. Since 7 is a continuous

map, y is continuous. Let L4 be the composition

O -E-> £0 -^ ^0 -^ C°°(PF0, (70) -^ C°°(IFo x /)1/2, C/0).

Then L4 is continuous and L4(h) = hl. Lc is the composition

O

Thus Lc is continuous.

Now consider the case C = a~1(gW2x [1/5, 4/5]). Let m: gW2xN(H)/H
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be a map defined by m(gH, nH) = ghH, and let p: G / H x [ l / 5 9 4/5]-*

[1/5, 4/5] be the projection on the second factor. Then Lc is given by the com-

position

O -£•«•-* C°°([l/5, 4/5], N(H)IH)

HIS, 4/51, gW2xN(H)IH)

C«(0JF2x[l/5,4/5],G/#)
-^-> C«(gW2x [1/5, 4/5], G/Hx [1/5, 4/5])

a*o(a"1}*> C°°(C, or^G/Hx [1/5, 4/5]))^>C°°(C, M),

where i: [1/5, 4/5]^[0, 1] is the inclusion map and d: N(H)/H^N(H)/H is a

map given by 6(o) = a~1. By Lemma 2.2, Lc is continuous.

We can see that Lc is continuous in the case C = pi^/2(gW1) similarly as in

the case C = pQ^l2(gWo), and this completes the proof of Lemma 6.6.

Proof of Proposition 6.1. From Lemma 6.6, £(2i) is contained in

DiffG(M)0. Then, by the definition, L(Q^ is contained in S9 and L = L~1.

Combining Lemma 4.5, Proposition 4.6 and Lemma 6.6, L: S-^Q1 is an isomor-

phism between topological groups, and this completes the proof of Proposition

6.1.

Proof of Theorem. By Corollary 3.6, DI&G(M)O has the same homotopy

type as KerP. Combining Lemma 5.1, Lemma 5.2 and Proposition 6.1, KerP

has the same homotopy type as g0. Note that Q0 has the same homotopy

type as the path space Q(N(H)/H; (N(H) n N(K0))/H, (N(H) n N(KJ)/H)0.

This completes the proof of our Theorem.

§ To Concluding Remarks

From our Theorem, we have the following

Corollary 7.1. (1) If K0 = K^ = G, then Diff£(M)0 has the same ho-

motopy type as (N(H)/H)°.

(2) IfN(H)/H is a finite group, then Diffg(M)0 is contractible.

Remark 7.2. In K. Abe and K. Fukui [1], we have proved that Diff% (M)0

is perfect if M is a G-manifold with one orbit type and dimM/G>l. But,

by using Proposition 3.1, we can see that DifTg)(M)0 is not perfect in the case

M/G=[0, !]„
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