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On the Homotopy Types of the Groups
of Equivariant Diffeomorphisms
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Kojun ABE*

§0. Introduction

The purpose of this paper is to study the homotopy type of the group of
the equivariant diffeomorphisms of a closed connected smooth G-manifold M,
when G is a compact Lie group and the orbit space M/G is homeomorphic to a
unit interval [0, 1].

Let Diffg (M), denote the group of equivariant C* diffeomorphisms of
the G-manifold M which are G-isotopic to the identity, endowed with C*®
topology. If M/G is homeomorphic to [0, 1], then M has two or three orbit
types G/H, G/K, and G/K,. We can choose the isotropy subgroups H, K,
K, satisfying H=K,n K;. Moreover the G-manifold structure of M is de-
termined by an element # of a factor group N(H)/H, where N(H) is the nor-
malizer of H in G (see §1). Let Q(N(H)/H; (N(H)N N(Ky)/H, (N(H)n
N@#K,n~1))/H), denote the connected component of the identity of the space of
paths a: [0, 11— N(H)/H satisfying a(0) e (N(H) N N(K,))/H and a(1) e (N(H) n
N@Kn")/H.

Theorem. Diff§ (M), has the same homotopy type as the path space
Q(N(H)/H; (N(H) N N(Ko))/H, (N(H) N N(nK 1™ 1))/H)o-

The paper is organized as follows. In Section 1, we study the G-manifold
structure of M and give a differentiable structure of M/G such that the func-
tional structure of M/G is induced from that of M. This differentiable structure
is important to study the structure of Diffg (M),. In Section 2, we define a
group homomorphism P: Diff@ (M),—Diff* [0, 1], and prove that P is a
continuous homomorphism between topological groups. In Section 3, we
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prove that there exists a global continuous section of P and Ker P is a deforma-
tion retract of Diff§ (M),. In Section 4, we study the group structure of Ker P.
In Section 5 and Section 6, we prove our Theorem.

§1. G-Manifold Structure of M and the Functional Structure of M/G

In this paper we assume that all manifolds and all actions are differentiable
of class C*.

In this section we study the G-manifold structure of M. First we see that
it is sufficient for us to consider =1 (see Lemma 1.1). Next we give a differ-
entiable structure of M/G such that the functional structure of M/G is induced
from that of M (see Lemma 1.2).

Let M be a closed connected smooth G-manifold such that M/G is homeo-
morphic to [0, 1]. We denote this homeomorphism by f. Let n: M—>M/G
be the natural projection. Put My=(fon)"1([0, 1/2]) and M,=(fon)"%([1/2,
1]). Let x; be a point of M with f(n(x;))=1i for i=0,1. Then M; is a G-
invariant closed tubular neighborhood of the orbit G(x;) (c.f. G. Bredon [3,
Chapter VI, §6]). Moreover M is equivariantly diffeomorphic to a union of
the G-manifolds M, and M, such that their boundaries are identified under a
G-diffeomorphism #': 0M,—0M,. Let V; be a normal vector space of G(x;) at
x; and K; be the isotropy subgroup of x; for i=0, 1. Then Vis a representation
space of K;. From the differentiable slice theorem, M; is equivariantly diffeo-
morphic to a smooth G-bundle G x g, D(V;) which is associated to the principal
K; bundle 7;: G—G/K;, where D(V}) is a unit disc in V;.

Let H be a principal isotropy subgroup of the G-manifold M. We can
assume that H is a subgroup of K, N K;. Let e;e S(V)) be a point such that the
isotropy subgroup of e; is H for i=0, 1, where S(V;) is a unit sphere in V;. There
exists a G-diffeomorphism h;: G/H—G x g, S(V;) given by h(gH)=[g, €],
i=0, 1. Then we have a G-diffeomorphism

n": G/H -t Gx x S(Vo)=0M, 5 0M ;=G x g, S(Vy) =5 G/H.
Since any G-map G/H—G/H is given by a right translation of an element of
N(H)/H, n" defines an element n € N(H)/H.

Put x;=#-x;. Then the isotropy subgroup K} of xj is nK,n~!. Let V;
be a normal vector space of the orbit G(x})=G(x;) at x;. Put ej=(dn),,(e}) €
S(V1). There exists a G-diffeomorphism u: G x g, D(V;)—G x x; D(V}) given
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by u(lg, v)=[gn", n-v]. Then (uon’)(lg, eo])=u(lgn, e;1)=Lg, €] for [g, v]
€ G xg,S(Vy). Therefore M is equivariantly diffeomorphic to a union of the
G-bundles G x x, D(V,) and G x g; D(V}) such that their boundaries are identified
under a G-diffeomorphism ucy’. Now we have

Lemma 1.1. Let M be a closed connected smooth G-manifold such that
M|G is homeomorphic to [0, 1]. Then M has two or three orbit types G/H,
G/K, and G/K, with HcKyn Ky, and there exist representation spaces V;,,
i=0, 1, of K; such that M is equivariantly diffeomorphic to a union of G-
bundles G x g, D(Vy) and G x g, D(V;) with their boundaries identified under a
G-diffeomorphism n: G x g, S(Vy)=>G x g, S(Vy). Moreover we may assume
that n([g, ex])=1[g, e;], where e; is a point of S(V)) such that the isotropy
subgroup of e; is H for i=0, 1.

Hereafter we shall assume that M is a G-manifold as in Lemma 1.1. Let
¢: [0, 1]-R be a smooth function such that

Er)=r* for 0<r<l1/2,
E(r)>0 for O<r<l1 and
&(r)y=r—1/2 for 7/8<r<l.

Let 0: M=G x g, D(Vo)\JG X g, D(V;)—[0, 1] be a map given by
n

6(Lg, vD)=&dlvlD) for [g,v]eGx g, D(Vo),
0(Lg, v)=1-&(lv[)  for [g,v]eGxg, D(V}).
Since 0 is a G-map, there exists a map ¢: M/G—[0, 1] such that gor=6. Itis

easy to see that ¢ is a homeomorphism. We give a differentiable structure of
M/|G by ¢.

Lemma 1.2. In the above situation, we have

(1) 0 is a smooth map,

(2) there exists a G-diffeomorphism o: 671((0, 1))>G/H x (0, 1) such
that oa~! is the projection on the second factor, and

(3) f: M/G-R is smooth if and only if for: M—R is smooth.

Proof. (1) Let o;: Gxg, (D(V)—0)—G/Hx(0,1] be a map given by
o[g, re;)=(gH, r) for ge G and re(0, 1] (i=0, 1). Then it is easy to see
that «; is a G-diffeomorphism. Since o o1 =0y on G x g, S(V;), the composition
B 07H(0, 1) =G % (D(¥o) =0/ G x g, (D(V2)=0) 22225 GIH x (0, 11V 10yt
G/H x (0, 1]=G/H % (0, 2) is a G-diffeomorphism. Note that
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E(r) for 0<r<i,
1—-¢(2—r) for 1<r<2.

(0 (g H, )=

Thus 6of~! is a smooth map, and 0 is a smooth map on 6-1((0, 1)). From the
definition, 6 is a smooth map on 6~!(r) for r#1/2. Therefore 0 is a smooth map.
(2) Let8: (0, 2)—(0, 1) be a smooth map given by

&(r) for 0<r<l,

g(r)z{l—é(Z-—r) for 1<r<2.

Since 8'(r)>0 for O0<r<2, 8 is a diffeomorphism. Let a: 6-1((0, 1))»G/H
x(0,1) be a G-diffeomorphism given by a=(l, 8)of. Then (foa~1)(gH, r)
=(0-8~1)(gH, 8~1(r))=r, and Boa~! is the projection on the second factor.

(3) Let f: M/G—-R be a function such that for: M—R is smooth. We
shall prove that fo¢~1: [0, 1]—R is smooth. Since

(femea™) (gH, r)=(fo¢p~ b0 !) (gH, r)=(fo¢™")(r) for O0<r<i,
fe¢p™! is smooth on (0,1). Let iy: Dy, (Vo)={veD(Vy); [v]<1/2} G x g,
D(V,) be an inclusion given by iy(v)=[1, v]. Note that (feiy)(v)=|v||*> for
veD; (V). By Corollary 5.3 of G. Bredon [3, Chapter VI, §5], fo¢™! is
smooth if and only if (fo¢p=1)e(feiy) is smooth. Since (fod=1)o(foiy)=fc moiy,
which is smooth, then fo¢~! is smooth on [0, 1/4]. Similarly we can prove
that fo¢~! is smooth on [3/4, 1]. Since (fo¢p™1)(r)=(fo¢p1oboa~1)(1H, r)
=(fomoa 1) (1H, r) for 0<r<1, fopp~! is smooth on (0, 1). This completes
the proof of Lemma 1.2.

Remark 1.3. Lemma 1.2 is essentially proved by G. Bredon [3, Chapter
VI, §5], and (3) implies that the functional structure of M/G is induced from
that of M.

§2. On the Group Homomorphism P

In this section we shall define a group homomorphism P: Diffg (M),—
Diff* [0, 1], and we shall prove P is continuous.

We shall identify the orbit space M/G with [0, 1] by the homeomorphism
¢ in § 1, therefore the projection n: M—M|G is identified with the smooth map
0: M—[0,1]. Let h: M—M be a G-diffeomorphism of M which is G-isotopic
to the identity 1,,, and let f: [0, 1]—[0, 1] be the orbit map of h. Since fon
=moh is a smooth map, f is a smooth map by Lemma 1.2 (3). Similarly the
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inverse map f~! of f is smooth, and f is a difftomorphism. Then there exists
an abstract group homomorphism P: Diff@ (M),— Diff* [0, 1] which is given
by P(h)=f, where Diff* [0, 1] is the group of C* diffeomorphisms of [0, 1],
endowed with C* topology.

Proposition 2.1. P: Diff§ (M),—Diff* [0, 1] is a continuous homomor-
phism of topological groups.

Let C*(M,, M,) denote the set of all smooth maps from a compact smooth
manifold M, to a smooth manifold M,, endowed with C*® topology. Before
the proof of Proposition 2.1, we begin with some lemmas.

Lemma 2.2. Let M, be a compact smooth manifold and N; be a smooth
manifold for i=1, 2. Then we have:

(1) Let ¢: Ny—N, be a smooth map, and let ¢y: C*(M, N,)->C*(M4,
N,) be a map which is given by ¢.(f)=¢of. Then ¢, is continuous.

(2) Let ¢p: M,—>M, be a smooth map, and let ¢p*: C°(M,, N,)—»C*(M,,
N,) be a map which is given by ¢*(f)=fopp. Then ¢* is continuous.

(3) Let ¢: M;—N, be a smooth map and let ¢,: C°(M,, N,)—»C*(M,,
N xN,) be a map which is given by ¢,(f)=(f, $). Then ¢, is continuous.

(4) Let ¢p: M,—N, be a smooth map and let ¢y: C°(M{, N;)—»C®(M, X
M,, Ny x N,) be a map given by ¢(f)=fx¢. Then ¢, is continuous.

(5) Let x: C°(M,, N))xC®(M,, N;)»>C®(M,, N, xN,) be a map given
by x(f, 9)(x)=(f(x), g(x)) for xe M. Then K is continuous.

(6) Let L be a smooth manifold. Let comp: C°(M,, N;)x C*(N,, L)~
C®(M, L) be a map given by comp (f, g)=gof. Then comp is continuous.

Proof. (1) and (2) are proved by R. Abraham [2, Theorems 11.2 and 11.3].
It is easy to see (3), (4) and (5). From J. Cerf [4, Chapter I, §4, Proposition
57, (6) follows.

Lemma 2.3. Let X be a topological space. Let M be a compact sniooth
manifold and N be a smooth manifold. Choose an open covering {U;} of M
such that each closure U, of U, is a regular submanifold of M which is contained
in a coordinate neighborhood of M. Then a map ¥: X—C*(M, N) is con-
tinuous if and only if each composition ¥;: X —¥ C*(M, N) i, c*(U, N)
is continuous for each i, where j;: USSM is an inclusion.

Proof. From Lemma 2.2 (2), if ¥ is continuous, then ¥; is continuous
for each i. We can choose {U,} as a coordinate covering of M. Let {V,} be a
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coordinate covering of N. Let fe C*(M, N) and K< U, be a compact subset
such that f(K)<V, for some A. N"(f, U, V,, K, &) (r=0, 1, 2,..., 0<eg< 0)
denotes the set of C" maps g: M— N such that g(K)=V, and | D* f(x)— D*g(x)||
<eg for any xeK, k=0, 1, 2,..., ». Then the C® topology on C®(M, N) is
generated by these sets N"(f, U, V;,, K, €) (see M. Hirsch [6, Chapter 2, § 1]).

Let x e X and let f=%¥(x). For any open neighborhood W of f, there exist
above sets N,=N"«(f, U,, V, , K;, &), k=1, 2,..., n, such that N\}_; N,cW.
Note that j} : C°(M, N)-»C>(U,, N) is an open map and (j¥) " '(j#(N))=N,.
Since ¥, is continuous, ¥Y~1(N,)=¥;}(j§ (N,) is an open neighborhood of
x in X, for each k. Then N}.; Y~1(N,) is an open neighborhood of x in X.
Since Y(N}-; P I (NY)=Ni-y N.cW, ¥ is continuous at x. This completes
the proof of Lemma 2.3.

Remark. Lemma 2.2 and Lemma 2.3 hold in the cases of manifolds with

corners.

Let CX([—1/2, 1/2], R) denote the set of all smooth functions f: [—1/2,
1/2]-R satisfying f(—x)=f(x), endowed with C® topology. Let T:
C2([—1/2, 1/2], R)»C*([0, 1/4], R) denote a map defined by T(f)(x)
= f(/x). Then we have

Lemma 2.4. The above map T is well defined and continuous.
Proof. Put f=T(f) for each feC®([—1/2,1/2], R). Since fis a C®
even function, we have the Taylor expansion
F)=F O+ (©/2)x>+ - +(FC=D(0)/(2n—2))x?"~2
+({ @=vrj@n- e jer
for —1/2<x<1/2, n=1,2,.... Thus we have
Fx)=FO)+(F"(0)/2)x + -+ +(f2*=2(0)/(2n—2))x"~
+ (g: (A= 02m1)2n= 1)) f (1 %)dr )

for 0<x<1/4. By the composite mapping formula, we can compute the n-th
derivative

D"(fen(ty/ % )x")
= S0 Xm0 Siprttamp BBy frvenne ig) M0t 3) 2028,

i1>0,...,i4>0

where B(p, iy,..., i ) is a real number. Put f;= T(f) for fie C2([-1/2, 1/21, R)
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(i=1, 2). Then there exists a positive number A, such that

SUPo<x<1/a [D" f1(X) — D" f5(x)]
<A, maxXgg,<an (SUP - 1/2<x<1y2 D1 (X)— D1fy(x)])

for each n=1, 2,.... Note that

SUPo<xciya | f1(X) = f2(X) | =Sup_12cecif2 |f1(x) —fz(x)l .

Therefore Tis a continuous map, and this completes the proof of Lemma 2.4.

Proof of Proposition 2.1. Let J denote a closed interval [0, 1/4], [1/5,
4/5] or [3/4,1]. By Lemma 2.3, it is sufficient to show that the composition
P,: Diffg (M), —£- Diff* [0, 1] —I*, C*(J, [0, 1]) is continuous, where j: J&
[0, 1] is an inclusion map.

We shall first consider the case J=[0, 1/4]. Let ¢: [—1/2, 1/2]-[0, 1/4]
be a map given by «(x)=x2. Let 7: [—1/2, 1/2]>G x x, D(V;)>M be a map
given by (r)=[1, rey], where e, is a point of S(V,) as in §1. Then 7of=¢.
Let P, denote the composition Diffg (M), —i*» C*([—1/2, 1/2], M) ==,
C*([—1/2, 1/2], [0, 11). Then P,(h)=mnohot=P(h)oc=c*P(h) for he
Diff® (M),, and the image of P, is contained in CP([—1/2, 1/2], R). Note
that P,=ToP,. Combining Lemma 2.2 and Lemma 2.4, P, is continuous.

Next consider the case J=[1/5, 4/5]. By Lemma 1.2, there is a G-diffeo-
morphism «: n~1([1/5, 4/5])»G/H x [1/5, 4/5]. Let i: n=1([1/5, 4/5]))M be
the inclusion map and let k: [1/5, 4/5]—G/H x[1/5, 4/5] be a map given by
k(r)=(1H, r). Then P, is the composition

Diff® (M), Liea=tob)*, C=([1/5, 4/5], M) = C*([1/5, 4/5], [0, 1])
which is continuous by Lemma 2.2.

We can prove that P; is continuous in the case J=[3/4, 1] similarly as in
the case J=[0, 1/4], and this completes the proof of Proposition 2.1.

§3. A Continuous Global Section of P

In Section 2 we have proved that P: Diffg (M),— Diff* [0, 1] is continuous.
Thus the image of P is contained in the connected component Diff* [0, 1],
of the identity. In this section we shall construct a continuous global section of
P: Diff® (M),—~Diff* [0, 1],.

Let f be an element of Diff* [0, 11,. We shall define a map ¥(f): M—»M
as follows: ¥(f) is defined on #n~1((0, 1)) by the composition #~1((0, 1)) —%-
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G/H x (0, 1)- %2, G/H x (0, 1) ==% 7=1((0, 1)), and ¥(f)=1 on =~ 1(0) U =~1(1).
Proposition 3.1. YP(f) is a G-diffeomorphism of M.

In order to prove Proposition 3.1, we need the following lemma and nota-
tions.

Lemma 3.2. Let ¥,: Diff* [0, 1],— Diff® (D") be a map defined by

Aol vl for v#0,

vi(nw={ ¥ PN

where D" denotes an n-dimensional unit disc. Then ¥, is well defined and

continuous.

Notations 3.3. For i=0, 1, we shall use the following notations
n;: G-G/K; the natural projection,

U; an open disc neighborhood of 1K; in G/K;,

0;: U;=>G a smooth local cross section of n;,

i

0,4: aU;>G (aeG) a smooth local cross section of m; defined by
0, (x)=a-oa"1x).
Put M;=G x ¢, D(V;) and M(r)=G X ,DV;), where D(V)) is a closed r-disc in
V;(0<r<l).
Dt M;—»G[K;, p;,: M(r)-G/K; the bundle projections,
002 P7N(aU)—-U;xD(V)) (aeG) a chart of p; over aU; defined by
¢:.[g, v])=(a"'m(g), ((0;,0om) (9))"'g - v),
7,: G—->G/H the natural projection,
U, an open disc neighborhood of 1H in G/H,
0,: U,—»G a smooth local cross section of =,.

Proof of Proposition 3.1. Put h=%(f). We shall first prove that h is
smooth on 7~1(0). Since f(0)=0, there exists a real number & such that 0<e<
1/2 and f(e*)<1/4. Then k(= ([0, e2]))=nY([0, 1/4]), and h(My(e))<=
Mo(1/2). For [g, reg] € Gx g, D(Vo—0) (0<r<e), h([g, reo])=(a""o(1, f)oar)
(g, reaD=(x"te(1, 1)) (gH, r)=a"Y(gH, f(r}))=[g, /f(r?)eo]. Then, for
[9, v]€ G x g, D.(Vo—0), h(lg, vD)=Lg, /f([Io[»/Iv] vI=[g, ¥1(f)(®)]- Since
h(lg, 0D =Ly, 01, h([g, vD)=[g, ¥1(f)(®)] for any [g, v]e Mo(e). Then the
composition

h: Uyx D (Vo) @o.a)7, Po(aly)
—t— poli 2(aly)
282, [fy % D, ;5 (Vo)
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is given by fi(x, v)=(x, ¥,(f)(v)) for aeG. Since ¥,(f)is a smooth map by
Lemma 3.2, h is smooth on #~(0). Similarly we can prove that k is smooth on
n~1(1). Since h is smooth on n~*((0, 1)) by the definition, & is a smooth map.
Since h~t=WY(f~1), h™! is also a smooth map. Thus 4 is a G-diffeomorphism
of M, and this completes the proof of Proposition 3.1.

In order to prove Lemma 3.2, we need the following assertion.
Assertion 3.4. Let @: Diff* [0, 1],—C*([0, 1], R) be a map given by

\/f(x)/x for x#0,
J7(0) for x=0.

Then ® is well defined and continuous.

(/)0 ={

Proof. For fe Diff* [0, 1],, we have the Taylor expansion

f(x)=f'(0)x+x2S:(l—t)f"(tx)dt for 0<x<1.
Put F(x)=f(0)+x Sl (1—0)f"(tx)dt for 0<x<1. Then &(f)=yF. Note
that F(x)>0 for OSxog L. Tt is easy to see that @ is continuous.
Proof of Lemma 3.2. Let N: D"—[0, 1] be a map given by N(v)=|v|?.
Let i: D"R" be the inclusion and let p: Rx R"—>R" be the scalar multipli-
cation. Since ¥,(f)@)=o(f)(|v]|*)v, ¥,(f) is a smooth map by Assertion
3.4. Since P,(f~H=Y,(f)"1, ¥,(f)!is also a smooth map. Thus ¥,(f) is
a diffeomorphism of D”. Note that ¥, is the composition Diff* [0, 1], —2-»
c*([o, 1], R) -2, C*(D", R) &, Co(D", R x R*) —t+, C®(D", R"). Combining
Assertion 3.4 and Lemma 2.2, ¥, is continuous. This completes the proof
of Lemma 3.2.

Proposition 3.5. ¥: Diff* [0, 1],—»Diff§ (M) is continuous.

Proof. Let B;=U; be a closed disc neighborhood of 1K; in G/K; for
i=0,1. Let B,cU, be a closed disc neighborhood of 1H in G/H. We can
choose {int (p5L(aBy)), int (p7i(aB,)), int (a"'(aB, x [&/2, 1—¢/2])); ae G} as
an open covering of M for 0<e<1/2. Put W={fe Diff* [0, 1]y; f([0, e*]) =
[0, 1/4), f([1—¢&2, 1])=(3/4, 1]}. Then W is an open neighborhood of the
identity in Diff* [0, 1],. Since ¥ is a homomorphism as an abstract group, it
is enough to show that ¥ is continuous on W. Let C denote one of the sets
po4(aBy), pri(aB;) or a}(aB, x [e/2, 1—¢/2]) for ae G. If we can prove that
the composition
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Y. W ¥, Diffg (M), -2 C*(C, M)

is continuous for each C, then ¥ is continuous on W by Lemma 2.3, where
i: CSM is an inclusion map.

First consider in the case C=pgi(aB,). ¥Y(f)(C)is contained in pg} ,(aly)
for each feW. Note that ¥(f)([g, v])=[g, Y.(f)(®)] for [g,v]eC and
(D0, ¥(f)ed5,a) (x, v)=(x, ¥1(f) (v)) for (x, v) € By x D(V;). Thus ¥ is given
by the composition

W —Lts C=(D,(V,), D(Vy))
— I, C®(Byx D,(Vy), Uy x D(Vy))
bo.a, C=(C, Uy x D(Vy))

tkedsla), co(C, M),

where j: By U, and k: pgi(aUg)M are inclusions. Combining Lemma 3.2
and Lemma 2.2, ¥ is continuous.
Now consider the case C=a"1(Byx[¢/2, 1—¢/2]). Y. is given by the
composition
W —_ C*([g/2, 1—¢[2], (0, 1))
I, Co(Byx [¢/2, 1—¢/2], G/Hx (0, 1))
—= _, C*(C,G/Hx (0, 1))
(ea)e, C(C, M),
where ¢: [¢/2, 1 —g/2]S[0, 1], j: B¢&G/H and k: n=1((0, 1))SsM are inclusion
maps. By Lemma 2.2, ¥ is continuous.
We can prove that ¥ is continuous in the case C=pjyi(aB,) similarly as in
the case C=p;L(aBy), and this completes the proof of Proposition 3.5.

By Proposition 3.5, P: Diffg (M),—Diff* [0, 1], is a globally trivial
fibration. Then we have

Corollary 3.6. Diffg (M), is homeomorphic to Diff* [0, 1], x Ker P.

§4. On the Group Ker P

In this section we shall define a group homomorphism L: Ker P—Q, where
Q is a subgroup of C*([0, 1], N(H)/H), and we shall prove that L is a group
monomorphism between topological groups (see Lemma 4.5 and Proposition
4.6).
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Let h be an element of Ker P. Let /i be the composition
G/Hx (0, 1) ==5 =~1((0, 1)) - n=1((0, 1)) —= G/Hx (0, 1).

Then £ is a level preserving G-diffeomorphism. Let a: (0, 1)—N(H)/H be a
smooth map satisfying h(gH, r)=(ga(r), r) for (gH, r)e G/H x (0, 1).

Proposition 4.1. With the above notations, there exists a smooth map
a: [0, 11> N(H)/H such that

(1) a=aon(0,1),

(2) a()e(N(H)n N(Ky))/H fori=0, 1.

To prove Proposition 4.1, we need the following lemmas.

Lemma 4.2. Let G be a compact Lie group. Let K and N be closed
subgroups of G. Let n: G—>G/K be the natural projection. Then there exists
a smooth local section o of m, which is defined on an open neighborhood U of
1K, such that 6(1K)=1 and a(x)e N for xen(N)n U.

Proof. Let m;: N>N/(NnK) be a natural projection. Let i: N&G be
the inclusion and let I: N/(N n K)—G/K be a map satisfying noi=1Iom,. Since
I(N/(N nK))=n(N) is an orbit of the natural action N x G/K—G/K, I is an
imbedding. Let U be a disc neighborhood around n(1) in G/K and let U, be a
disc neighborhood around (1) in N/(N n K). Since I is an imbedding, we
can assume I(U,)=UNI(N/(NnK))=Unn(N). Letg;: U;—N be a smooth
local section of =, satisfying o,(n(1))=1. Then o,°oI"! is a smooth section
defined on I(U,). We can extend o,°/"! to a smooth local section defined on
U. Then a(n(1))=1and o(U N n(N))=N. This completes the proof of Lemma
4.2.

Lemma 4.3. Let G be a compact connected Lie group. Let V be a rep-
resentation of G such that G acts transitively and effectively on a unit sphere
S(V) of V. Let H be the isotropy subgroup of a point of S(V). Then we have
the following list:

G |SO(n) (n23)|SU(n) (nzz)iU(n) (n=1) |Sp(n) (n=1)| Sp(n) X 2,8* (n=1)

H SO(n—1) | SUMn-1) Un—1) Sp(n—1) H,

N(H)/H Z, u) v | Sp(1) Z,
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Sp(m)xz,S' (n=1)| G, |Spin(7) | Spin(9)

H, SU@3) G, Spin(7)

St Z, Z, Z,

where H,={[(q, A), g~'1€ Sp(n) x z,53; (¢, A) € Sp(1) x Sp(n—1)=Sp(n)} and
H,={[(z, A), z71]1e Sp(n) x z,8*; (z, A) e S* x Sp(n— 1) = Sp(n)}.

Proof. 1t is known that G and H are the above Lie groups (c.f. W. C.
Hsiang and W. Y. Hsiang [7, §1]). We can determine the Lie group N(H)/H
by an immediate calculation except for G=G,, Spin (7), Spin (9). For the cases
G=G,, Spin(7), Spin (9), we can determine N(H)/H by using I. Yokota’s
definitions of these Lie groups in [9, Chapter 5].

Lemma 4.4. (1) Let F:[—1,1]-R be a smooth function such that
F(0)=0. Putf(x)=F(x)/x for x#0and f(x)=F'(0) for x=0. Thenf:[—1, 1]
—R is a well defined smooth function.

(2) Put C3([—1,1], R)={FeC>([—1, 1], R); F(0)=0}, endowed with
C* topology. Let ®:C3([—1, 1], R)»C*([—1, 1], R) be a map given by
®(F)(x)=f(x). Then @ is continuous.

Proof. For FeC¥([—1,1], R), we have &(F)(x)=f(x)=F'(0)
1

+xgl (1—)F"(tx)dt. Then the n-th derivative f(")(x)=xg (1 — ) F+2)(tx)dt
0 (0]

1

+ng (1= 1F(+U(tx)dt. Thus there exists a positive number A such that
0

|@(F)|,<A|F|,+2, and Lemma 4.4 follows.

Proof of Proposition 4.1. Let ¢ (0<e<1/2) be a real number. Let W,
and U; be open neighborhoods of 1K, satisfying W;<U,, for i=0, 1. Put
O={heXKer P; h(p7 A (W))<p;Y(U)) for i=0, 1}. Then O is an open neighbor-
hood of the identity in Ker P. By Corollary 3.6, Ker P is connected, and O
generates the topological group Ker P. Thus we can assume /€ 0.

Let i be the composition

Wox Dy(Vo) {20071, Dok (Wo) — pok(Us) 0.1, Uy x D,(Vy).

Let p: UgxDy(Vo)—» Uy and p,: Ugx D,(Vy)—Dy(V,) be projections on the
first factor and the second factor, respectively. Let i:[—e&, e]—W,x Dy(V,)
be an imbedding given by i(r)=(1K,, re;). Then the compositions /i, = p,ohoi:
[—e, 6] U, and fi,=p,ohioi: [—¢, s]—»Da(Vo)n are smooth maps. Let 7,: G/H
—G/[K, be the natural projection, Note that T -
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(oohops ) (1K , req)=(ach) ([1, rey])

=(how) ([1, reo])
=h(1H, r?)
=(a(r?), r?) for |r|<e, r#0.
Then
k(1K , reg)=(¢o,10071) (a(r?) , r?)
=(7o(a(r?)), (o0°To) (a(r?))™! - a(r?)-rey),
and

hy(r)=7o(a(r?),
ha(r)=(00°70) (a(r?) ™1 - a(r?) - re,,
for |r|<e, r#0.

Here we can assume that g,(1K,)=1 and oy(no(N(H)) N Uy)=N(H) by
Lemma 4.2. Let b: [—e, ]G be a smooth map given by b(r)=0c,(,(r)).
Then b(r)=o0y(To(a(r?))) € oo(no(N(H)) N Uy), and b(r) e N(H) for »#0. Since
b is a smooth map, b(r) e N(H) for r=0. For [1, 0] e n~1(0), we have h([1, 0])
=(hod5}) (1Ko, 0)=(ho¢h5}y) (i(0)) =5} (h1(0), 0)=[b(0), 0]. Note that p, is
a G-diffeomorphism on the zero section of p, and h(x~1(0))=n"1(0). Then the
composition pgohepyl: G/Ky—>G/K, is a G-diffeomorphism, and (pgehopg!)
(1Ko)=(pooh) ([1, 0D =po([b(0), 01)=b(0)K,. Thus b(0)e N(K,), and b(0)e
N(H) n N(K).

Put J=[—¢ 0)U(0,e]. Let ¢c: JoN(H)/H be a smooth map given by
c()=b(r)"t-a(r?). Since 7To(c(r))="7o(oo(To(a(r®)))1-a(r?))=1K,, then c(r)
€ Ko/H. Thus c(r)e N(H, Ky)/H for reJ. Since Ker P is connected, the maps
a, b and ¢ are homotopic to the constant maps. Note that the identity com-
ponent (N(H, K)/H)° of N(H, K,)/H is contained in (N(H, Ky)nK§)-H/H,
and there exists an isomorphism (N(H, K,)NKS§) - H/H~(N(H, K,) n Kg)/
(H n K§) as a Lie group, where KJ is the identity component of K,. Then there
exists a smooth map &:J —< (N(H, Ky)/H)°S(N(H, Ky) N K§)-H/H~(N(H,
Ko NKY/(HNKHSN(H N K, KY/(HNKF). Now we shall prove that &
can be extended to a smooth map on [ —g¢, ¢], and so is c.

Note that K, acts transitively on the unit sphere S(V,) of V,. If dim S(V,)
=0, then Ky/JH=Z, and N(H, K,)/H=Z,. In this case ¢ is a trivial map, and
it is clear that ¢ can be extended to a smooth map on [—¢, ¢]. Now we assume
dim S(V,)>0. Since S(V,) is connected, K§ acts transitively on S(V;,) and
K3/(K§ n H) is diffeomorphic to S(V,). Put D= N ,k39(K§nH)g™' which is



614 KoiuN ABE

the kernel of the action K§x S(Vy)—S(V,). Put Ky=K$§/D and H=(H n K9)/
D. Then K, acts transitively and effectively on S(V,) and K,/H is diffeomorphic
to S(Vp). Put No=N(H, Ky)/H which is isomorphic to N(H nK§, K3)/
(H nKY) as a Lie group. The pair (K, N,) is one of pairs (G, N(H)/H) in the
list of Lemma 4.3. Now we shall prove that ¢ can be extended to a smooth
map on [—¢, ¢]. If Ny=Z,, this is clear since ¢ is a trivial map.

Consider the case Ky=SU(n) (n>1) and No=U(1). In this case V, is an
n-dimensional complex vector space and N,=U(1) acts on ¥, as a scalar multi-
plication. We can regard C" as a 2n-dimensional real vector space R?" and
N, as SO(2). Then there exist smooth functions ¢;: J—R, i=1, 2, such that

cy(r) —ca(r) _:eSO(i’-) for reld.

c,(r) cy(r) -

aa=[

Note that f,: [—¢, e]>D(V,) is a smooth map and fi,(r)=c(r)-reo=2(r) - rey
for r#0. 1In this case e;=(1, 0,..., 0) € 52"~ and h,(r)=(c,()r, c,()r, 0,..., 0)
for reJ. Put c(0)=lim,.qc(r) for i=1,2. From Lemma 4.4, ¢;: [—¢, ]
R, i=1, 2, are smooth functions and ¢ can be extended to a smooth map on
[—e, €].

Now consider the case K,=Sp(n) (n>1) and N=Sp(1). In this case V,
is an n-dimensional quaternionic vector space H" and N,=Sp(1) acts on V, as
a scalar multiplication. We can regard H” as R*" and Sp(1) as a subgroup of
SO(4) naturally. By the similar way as in the case K,=SU(n), there exist smooth
functions ¢;: J—=R, i=1, 2, 3, 4, such that h,(r)=(c,(¥)r, c,(r)r, c5(r)r, c(H)r,
0,..., 0) for re J, and we can extend ¢ to a smooth map on [—e¢, €].

The proofs of the other cases are similar to those of the above cases. Thus
we can extend ¢ to a smooth map on [—¢, &]. Since c¢(r)e N(H, K,)/H for
r#0, we see c(0)e N(H, Ky)/H. Put a(0)=>b(0)-c(0). Since b(0)e N(H)n
N(K,) and ¢(0)e N(H, Ky)/H, we have a(0)e(N(H)n N(K,))/H. Let a:
[—1/2, 1/2]—N(H)/H be a map given by &(r)=a(r?). Since a(r)=>b(r)-c(r) for
—e<r<eg, 4 is a smooth map. Since 4 is an even map and Zz(r):é(\/—f) for
0<r<1/4, a is a smooth map on [0, 1/4] by Lemma 2.4. Thus we can extend
the map a to a smooth map a on [0, 1) satisfying a(0)e (N(H) n N(K,))/H.
Similarly we can extend a to a smooth map a on [0, 1] satisfying a(1)e (N(H) n
N(X,))/H. This completes the proof of Proposition 4.1.

Let Q denote the set of smooth maps f: [0, 1] N(H)/H satisfying f(i) e
(N(H) n N(K})/H for i=0, 1, endowed with C® topology. Using Proposition
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4.1, we define a map L: Ker P-Q by L(h)=a"'.
Lemma 4.5. L: Ker P—Q is a group monomorphisni.

Proof. Let h;eKer P for i=1,2. ForO<r<l and g e G, we have

(g - L(hgohy) (r)™!, r)=(achyohica™')(gH, 1)
=((achzoa™)o(achyea™)) (g H, 1)
=(owchyea™ ") (g - L(hy) (r)7', 1)
=(g-L(h) ()™ -L(h) (r)74, 7).
Thus L(h,oh,)=L(h,)- L(h,) on (0, 1). Since L(h,), L(h,) and L(hch,) are
smooth maps on [0, 1], L(hyoh,)=L(h,)- L(h,) on [0, 1]. Thus L is a group
homomorphism. Suppose L(h)=1 for heKerP. Then (hea 1)(gH, r)
=a"Y(gH, r) forge G and O<r<1, and h=1 on n7%((0, 1)). Thus h=1o0n M,
and L is a monomorphism.

Proposition 4.6. L is a continuous map.

Proof. We shall use the notations in the proof of Proposition 4.1. Since
L is a group homomorphism, it is sufficient to show that L: 0—Q is continuous.
Let I denote a closed interval [0, 2], [£2/2, 1 —82/2] or [1—¢2?, 1]. By Lemma
2.3, it is sufficient to prove that L;: O -L Q -*, C*(I, N(H)/H) is continuous,
where j: IS[0, 1] is an inclusion map.

First we shall consider the case I =[0, ¢*]. Let L, be the composition

(koopglioh)* _
0_0—‘—> o ([—89 3], PO,ls(UO))

Loocerrbo.x, Co([ —g, €], G),

where k: pgY(Wo)©M is an inclusion map. Then L, is continuous by Lemma
2.2. Note that L,(h)=b.

Let L,: O—=C>*([—¢, €], (N(H, Ky)/H)®) be a map given by L,(h)=c.
We shall prove that L, is continuous. This is trivial in the case N(H, Ky)/H
=Z,. Consider the case K,=SU(n) (n>2). In this case Vy=C"=R2" and
No=U1)=S0Q2). Put CZ([—s, €], Vo)={FeC([—s, ¢], V,); F(0)=0}, en-
dowed with C® topology. Let @: C¥([—¢, &], Vo)=C®([—¢, €], R?) be a
map defined by @(F)=(P(F'), ¢(F?)), where F=(Fl,..., F?") and &(F?) is a
map defined in Lemma 4.4. Then @ is continuous by Lemma 4.4. Let
m: R?—M,(R) denote a smooth map defined by

m(x,y)=[ Y ]
J)

X
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where M,(R) denote the set of all 2 x2 matrices over R. Let L; denote the
composition

(kogpg lyoi)®

0 > C*([—e&, ], po1(Uy))

~ebeutde, C2([ —e, €], D,(Vo)).

From Lemma 2.2, L} is continuous. Note that Lj(h)=h, and L5(0) is con-
tained in CF([—s¢, €], V,). Let L, denote the composition

0 L2, Cco([—¢, €1, Vo)
-2, C*([—¢, &], R?
—me, C°([—e, €], Ma(R)).

Then L,(h)=¢ and L, is continuous. This implies that L, is continuous by
using Lemma 2.2. Similarly we can see that L, is continuous in the other
cases.

Let u: GXxG/H—G/H be a map defined by the left translation and let
¢: (N(H, Ky)/H)° G/ H be an inclusion map. Then the composition

-~

L. 0-tueld), co([—g g], G)x C°([ —s¢, €], G/H)
-, C*([~s,¢], GXG|H)
M, C®([—e, ], G/H)

is continuous by Lemma 2.2, where k is defined by (f;, f5) (¥)=(f1(r), f2(r)).
Note that L(h)=b-c=4a and L(0) is contained in C®([—¢, ¢], N(H)/H).
Here C®([—¢, €], N(H)/H) denotes the set of all smooth even maps f: [—¢, &]
—N(H)/H, endowed with C® topology. Let T:C%([—s, &], N(H)/H)—
C*([0, €], N(H)/H) be a map defined by T(f)(r)=f(y/ ). By the same argu-
ment as in the proof in Lemma 2.4, we can prove that T is continuous. Thus
L,=T-L is continuous.
Now consider the case I=[¢?/2, 1 —¢2/2]. L, is given by the composition
0k, C2(rn~1(I), n~1(1))
(e=te, Co([, 7=1(1))
L0, Co(], G/H),
where k: n7'(I)>M is an inclusion, ¢: I->G/HxI is a map given by «(r)
=(1H, r) and q,: G/H xI—>G/H is the projection on the first factor. Thus L,

is continuous. We can see that L; is continuous in the case I =[1—¢?, 1] simi-
larly as in the case I=[0, 2], and this completes the proof of Proposition 4.6.



Homotopry TYPE 617

§5. Subgroups of the Topological Groups ( and Ker P

In this section we shall consider subgroups Q, and S of the topological
groups Q and Ker P, respectively, such that L(S)=Q;, and we shall prove that
the inclusions Q,Q, and S&Ker P are homotopy equivalences, where Q, is
the identity component of Q.

Put Q,={aeQ,; a(r)=a(0) for 0<r<1/4 and a(r)=a(l) for 3/4<r<1}.
Then Q, is a topological subgroup of Q,. Let i: Q;<Q, be an inclusion.

Lemma 5.1. i: Q,%Q, is a homotopy equivalence.
Proof. Leto: [0, 1]-[0, 1] be a smooth map such that

o(r)=0 for 0<r<1/4,
o(r)=1 for 3/4<r<l.

Let u,:[0,1]-[0, 1]1(0<t<1) be a smooth homotopy given by p(r)=ta(r)
+(1—t)r. Since (aop,)(i)e(N(H)N N(K,))/H for i=0, 1, aoy, is an element of Q.
Define q: Q¢ x [0, 1]—-Q by g(a, t)=aou,. Let u: [0, 1]->C>([0, 11, [0, 1]) be
a map given by u(t)=y,. Then it is easy to see that y is continuous. Note that
q is given by the composition

QO>< [Oa 1] Ll"IQ">QO>< Coo([O, 1], [Os 1])
—2=85 C*([0, 11, N(H)/H),

where comp is given by comp (a, f)=acf. By Lemma 2.2 (6), g is continuous.
Then ¢q(Q, %[0, 1]) is contained in Q,. Let q,: Qy—Q, be a map given by
g(a)=q(a, t). Since u,=o0, q,(Q,) is contained in Q,. Thus g is a homotopy
between go,=1p, and g, =ioq,. Note that g(Q,) is contained in Q, for any ¢.
Then q: Q,;x[0, 1]-Q, is a homotopy between 1, and gqei. Therefore
Lemma 5.1 follows.

Put S=L"1(Q,)=Ker P. Let:: S&Ker P be an inclusion.
Lemma 5.2. :: S&Ker P is a homotopy equivalence.

Proof. Put a=L(h™') for heKerP. Let h,: M—>M (0<t<1) be a map
as follows: h, is given on n~%((0, 1)) by the composition =~1((0, 1)) - G/H
x (0, 1) —fi=, G/H x (0, 1) 2= 7=1((0, 1)), where h, is defined by h(gH, r)
=(g-q(a)(@), r). h(gK;)=ga(i)-K; (i=0,1) for geG. Here we need the
following
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Assertion 5.3. h, is a smooth map for any t.

Proof. By the definition, h, is smooth on n~!((0, 1)). We shall prove that
h, is smooth on ©~!(0). Let g, be an element of G such that a,H=a(0)
and aoe N(H) N N(K,). For [g, 0]€ pg}y,2(1Ko), (Po,1/22M) ([g, 01)=mo(ga0)
=mny(ag)€aUy. Then there exists a neighborhood W, of 1K, in G/K, such
that (po,1/2°h) (p5/2(Wo)) is contained in aoU,. For [g, rep] € pgli,2(Wo) and
0<t<1,

(Po,1/2°h) ([9, reo]) =To(gqa) (r?))
=To(ga((1—1)r?))
=(Ppo,1/2°h) (L9, \/,mreo])

which is contained in (po,1,5°h) (5)12(Wo)) =agUy.  Then h(pglh,2(gWy)) is
contained in pgl,,(gaoU,) for ge G and 0<t<1.

Let hi: Wox Dy;5(Vo)—> Uy x Dy 5(Vy) be a map given by h=¢yg g0hodsl,
for ge G. Let p;: UgxDy)p(Vo)=Ug and p,: Ugx Dyp(Vo)—Dy,2(Vo) be the
projections on the first factor and the second factor respectively. Put g’'=ga,
and put hi=pph for i=0, 1. Then k' is a smooth map and

hi(x, rkeg)=g'"'goo(x)k - To(a(r?)),
h*(x, rkeo)=00,,(g00(0)k - To(a(rD) ™ gao(x)ka(r?) - re,

for xe Wy and ke K,, where ©y: G/H—G/K, is the natural projection. Put
hi=piogo gohodsl, for i=0, 1. Then

hi(x, rkeo)=g'1goo(x)k - To(a(p(r?)) »

h2(x, rkeg) =04 ,(goo(x)k - To(a(u(r?)) " goo(x)ka(u(r?) - req
for xe W, and ke K.

Since a(r?)=0 for r<1/2, u(r?, t)=(1—1t)r? for 0<r<1/2. Then hl(x, v)
=h'(x, /T—1tv) for 0<t<1 and h2(x, v)=1/yT—th*(x, /T—tv) for 0<t<1.
Thus h? (0<t<1) and 72 (0<t<1) are smooth maps.

By the Taylor formula (c.f. J. Dieudonné [5, Chapter VIII, (8, 14, 3)]), we
have

o, v) = 20x, 00+ () DR, t)ar)o,
0
where Dh? is the derivative of 2. Since A%(x, 0)=0,

h2(x, v)=<S; (DF?)(x, \/mé’v)d()u for 0<t<l.
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Then h3(x, v)=lim,., h%(x, v)=(Dh?)(x, O)v, and h? is a smooth map. There-
fore h, is smooth on 7~1(0) for any 0<¢<1. Similarly we can prove that b, is
smooth on n71(1), and Assertion 5.3 follows.

Proof of Lemma 5.2 continued. Let g: Ker Px[0, 1]—=Ker P be a map
defined by g(h, t)=h,. By Assertion 5.3, h, and h;! are smooth maps, and g
is a well defined map. Next we shall prove that g is continuous. Let W, be a
neighborhood of 1K;in G/K; satisfying W, U, for i=0, 1. Put O={he Ker P;
h(pi} (W)= pih2(Uy) for i=0, 1}. Then O is an open neighborhood of 1,
in KerP. For heO,geG and 0<t<1, h(pi},(gW;) is contained in
pii2(gU) (i=0, 1). Let W, be an open neighborhood of 1H in G/H satisfying
W,cU,. Let C be one of the sets {p;}, (gW) (i=0,1, geG), a ' (gW,
x [1/5, 4/5]) (g € G)}. By Lemma 2.3, it is sufficient to show that the composi-
tion gc: Ox [0, 1] L Ker P e, C*(C, M) is continuous for any C, where
Jjc: CSM is an inclusion map.

First consider the case C=pgli,,(gW,). Let vy: C®(Wyx Dy ,5(V), Ug) X
[0, 11 C=(W, x Dy ,2(Vo), U,) be a map given by v,(f, H)(x, v)=f(x, \/I—10v).
Let v,: C*(Wy x Dy 5(Vo), D1/z$Vo)) x [0, 115 C®(Wy x Dy ;5(Vo), Dy;5(Vo)) be a
map given by v,(f, 1) (x, v)=<g (D) (x, \/i_——th)dC> (v). Ttis easy to see that
v, and v, are continuous. Notoe that g is the composition

0x [0, 1] -4&:D, C=(C, p5l/2(gUp)) % [0, 1]
(@002, Co(W o x Dy 5(Vo), Up X Dya(Vo)) % [0, 1]
((p1)xs(p2)xs 1) COO(WOXDI/Z(VO): UO)
x C*(Wyx D,,5,(Vo), Dy;2(Vo)) x [0, 1]
2 C®(Wox Dy 5(Vy), Ug) x C*(Wox Dy 5(Vo), Dy;2(Vs))
—X, C®(Wox Dy;5(Vy), Uy X Dy;5(Vy))

(60, '9)x (0, '9)*

> COO(C, pa}l/Z(gUO))(_)Cw(C! M)'

Here v is given by v(fi, f2, )=(f1, 1), v2(f, 1)) and k is the map defined in
Lemma 2.2 (5). Then g is continuous by Lemma 2.2.

Next consider the case C=a"Y(gW, x[1/5, 4/5]). Let m: N(H)/H x G/H
—G/H be a map defined by m(nH, gH)=(gn)H and p,: G/H x[1/5, 4/5]-[0, 1]
be a map given by p,(gH, r)=r. Let d: Qy—Q, be a map given by d(a)=a"!.
Then the map g is the composition
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0x [0, 1] 2, 0o x [0, 1] 24, 9, 22, C=(G/Hx [1/5, 4/5], N(H)/H)
Agrmxliys,arsP! Cm(G/HX [1/5’ 4/5],
N(H)/HxG|Hx[1/5, 4/5])
_me, C*(G/Hx [1/5, 4/5], G/Hx [1/5, 4/5])
Le2je)e(e"Dr, co(C o~ 1(G/HX [1/5, 4/51))SC2(C, M),

which is continuous because L and g are continuous.

Similarly as in the case C=pg},2(gW,), we can see that g is continuous in
the case C=p1},,(gW;). Thus g is continuous. Since q,(Q)=Q;, 7,(Ker P)
<S. Therefore g is a homotopy between Go,=1k.. p and g,=c¢og,. Since
q(Q, %[0, 1D<=Q,, g(Sx[0, 1])=S. Then g:Sx[0,1]-»S is a homotopy
between 1g and g,oc. Thus ¢ is a homotopy equivalence, and this completes

the proof of Lemma 5.2.

§6. Proof of Theorem

In this section, we shall see that L: S—Q, is an isomorphism between topo-

logical groups, and we shall prove our Theorem.
Proposition 6.1. L: S—Q, is an isomorphism between topological groups.

Before the proof of Proposition 6.1, we begin with some lemmas. For
any topological subgroup K of G, K° denotes the identity component of K.

Lemma 6.2. For any aeN(K,)°nN(H), there exist a’' € N(H°) n K}
and n e Cent (KQ) such that a=n-a’, where Cent (K9) is the centralizer of K}
in G.

Proof. Since N(K,)° is a compact connected Lie group, there exist a torus
group T and a simply connected semi-simple compact Lie group G’ such that
No=Tx G’ is a finite covering group of N(K,)° (c.f. L. Pontrjagin [8, § 64]).
Let go: No—N(K,)° be the covering projection. Put K,=g51(K3). Since K3
is a normal subgroup of N(K,)°, K, is a normal subgroup of N,. Then K is
also a normal subgroup of N,. Here we need the following

Assertion 6.3. There exists a closed normal subgroup K{ of N, such
that N, is isomorphic to the product group R3x K}, as a Lie group.

Proof. There exist simply connected simple Lie groups G; (1<i<r) such
that G'=G, x ---xG,. Since K9 is a compact connected Lie group, there exist
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simply connected simple Lie groups K; (1< j<s)and a torus group T’ such that
Ro=T'xK,x--xK, is a finite covering of K. Let p,: K,—»KJ be the
covering projection. Let p;: Ng=Tx G, x ---x G,—G; be a projection on the
direct factor G, (1<i<r). Since K9 is a normal subgroup of Ny, p(K9) is a
normal subgroup of G;,. Since G, is a simple Lie group, p(K)=G; or {1}. 1If
PR =G, ppo(K ;) is a normal subgroup of G;. Thus p(po(K;))=G; or {1},
for 1<i<r, 1< j<s.

Put pi=ppepe. If pi(K;)=pi(K;,) (J1#j2), then pi(g1)-pi(g92)=pi(g:-
92)=pig2-91)=pig2)pi(g,) for g, €K, g,€K;,. Then pi(K;,) is a com-
mutative normal subgroup of G;, and pyK;)={1}. If pi(K;)=G, then
piT") is a normal subgroup of G;, hence pi(T")={1}. Therefore, if pi(K;)
=G, then pi(T")={1} and py(K,)={1} for n# j.

Assume pj (K;)=G;, and p;(K;))=G,, for i;#i,. Let p': K4—G; xG,
be a map defined by p'(k)=(p},(k), pi,(k)). Since K3 is a normal subgroup
of Ny and p'(Ky)=p'(K i), p'(K;) is a normal subgroup of G;, x G;,. Then, for
x, yeK;, there exists keK; such that (p;(x), Dp'(y)(pi,(x)71, )=p'(k).
Then p;,(xyx~1)=p;,(x)p;,(Vpi,(x)"1=pi,(k) and p;,(y)=pj,(k). Since K
G;, (n=1, 2) are simply connected simple Lie groups, p; : K;—G;, is an isomor-
phism between the Lie groups. Thus xyx~!=k=y for any x, yeK;, and K;
must be a commutative Lie group, which is a contradiction since K; is a simple
Lie group.

Thus we may assume that pj(K;)=G; and pi(K;)={1} (i# j) for 1< j<s,
1<i<r. For i>s, p(R9=pi(K,)=p(T’") which is a commutative normal
subgroup of G;, hence pi(T’')={1}. Then py(T’) is a subgroup of T, and there
exists a torus subgroup S of Tsuch that T=py(T")x S. Put K'=SxGgyq X -+ X
G,. Then Ny=KYx K}, and Assertion 6.3 follows.

Proof of Lemma 6.2 continued. By Assertion 6.3, there exists a closed
normal subgroup Kj of N, such that Ny=K$x K. Since K9 is a connected
group, go(K$)=K§. Then N(K,)°=go(No) = qo(K9)- g0(Ks) = K§ - qo(Kp)-
Note that go(Kp) is contained in Cent(KJ). Thus, for ae N(K,)°n N(H),
there exists a’ € K§ and n e Cent (K§) such that a=a’-n. Since N(H)<N(H®)
and H°cK§, H'=aH% '=a'nH%n‘a’""'=a'H%’'~!. Thus a’'eN(H° and
Lemma 6.2 follows.

For ae Q,, we define a map h: M—M as follows:

b Y(gH, r)=a"((ga(r)1, 1) for (gH, r)e G/Hx(0, 1),
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h(Lg, 0D =[ga()~*, 0] for [g,0]en™'(i) (i=0,1).
Lemma 6.4. h is a smooth map.

Proof. Choose a,e(N(H) N N(Ky)°=N(H)° N N(Ky)° such that a(0)~?
=agH. There exists a neighborhood W, of 1K, in G/K, such that n5!(}¥)-a,
is contained in a,-n5'(U,). Since a(r)=a(0) for 0<r<1/4, h(pgli,2(gWy)) is
contained in pgl,,(gaoU,). Let hy: WoxDy;,(Vo)=U, be a map given by the
composition p;ogg g0hodppl;, and let hy: Wo x Dy 5(Vo)—Dy/2(V,) be a map
given by the composition p,o¢g ye00heds),. Note that

(hotpg ) ((x, rkeg))=h([goo(x)k, reo])
=h(a"'((goo(x)kH, r?)))
=a"!((goo(x)kaoH, r*))
=[goo(x)kao, reg]
for xe W, ke Ky, 0<r<1/2. Since age N(Ky), kagKo=a,K,. Then
hy(x, v)=agloo(x)aoK, for (x,v)e Wox D, (V,), and
Hz(x’ rkeo) =Uo,gao(ga'o(x)aoKo)_lgao(x)kao *Tég
for xe Wy, ke K,, 0<r<1/2. Thus h, is a smooth map and h, is smooth
on W, x(Dy,5(Vp)—0). We shall prove that I, is smooth on W, x0, hence h
is smooth on =~1(0). This is trivial in the case dim S(V,)=0.

Let &, ,: Wo—G be a map given by &, (%)=0¢ 4,,(900(x)a0Ko) 1gao(x).
Then &, , is a smooth map. By Lemma 6.2, there exist aoe N(H°) n K3 and
neCent(K3) such that ay,=nay. Then h,(x, rkeg) =&, [(X)knag - rkeg
=&,.d(X)nkag-rey for xe W, ke K§ and 0<r<1/2. Note that N(H% n K§
=N(H°, K}).

Assertion 6.5. For ae N(H°, K39), let ,: D(Vy)—»D(V,) be a map de-
fined by Y, (rkey)=rkae, for 0<r<1, ke K. Then V, is a diffeomorphism.
Moreover, let y: N(H, K8)—-Diff* (D(V,)) be a map given by Y(a)=y,, then

Y is continuous.

Proof. If dim S(Vy)=0, then K§<H and y,=1py,. In this case, the
proof is trivial. We assume dim S(V,)>0. Since S(V,)=K,/H is connected,
K§ acts transitively on S(V,). Let L be the ineffective kernel of the action
K3xS(Vy)-»S(V,). Put K=K§/L and H=(HnK$§)/L. Then K acts transi-
tively and effectively on S(V;) and H is an isotropy subgroup of this action. By
Lemma 4.3, K, H and N(H, K)/H are G, H and N(H)/H in Lemma 4.3, respec-
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tively. Hence H is connected. Since the identity component of H n K§ is H°,
H=H°.L/L. For ae N(H® K9), the left coset aL is an element of N(H, K).
Then a defines an element @ € N(H, K)/H. Note that  (rkey)=rkae,=rkde,
for 0<r<1, ke K§.

Consider the case K=SU(n) (n>2), H=SU(n—1) and N(H, K)/H=U(1).
In this case, Vo=C" and U(l) acts on V¥, as a scalar multiplication. Thus
VY rkeg)=d -rkey for rkeye D(V,y). Hence Y, is a diffeomorphism. It is easy
to see that ¥ is continuous.

Next consider the case K=Sp(n) (n>1), H=Sp(n—1) and N(H, K)/H
=Sp(1). In this case, Vo=H" and Sp(l) acts on ¥V, as a scalar multiplication
on the right. Then Y, ,(v)=v-d for ve D(V,), hence ¥, is a difftomorphism and
Y is continuous. Similarly we can see that ¥, is a difftcomorphism and y is
continuous in the other cases, and Assertion 6.5 follows.

Proof of Lemma 6.4 continued. Since h,(x, v)=C&,0 (N Yap(v), by As-
sertion 6.5, f1, is a smooth map. Thus /i, and ki, are smooth maps, hence h is
smooth on n~%(0). Similarly we can see that h is smooth on n~1(1). By the
definition, h is smooth on #71((0, 1)), and this completes the proof of Lemma
6.4.

Let L(a) be a smooth map h: M—»M in Lemma 6.4, for aeQ,. Since
L(a=Y)=L(a)™!, h is a diffeomorphism of M. By the definition, & is an equi-
variant map. Thus we have a map L: Q,—-Diffg(M). Note that L is an
abstract group homomorphism.

Lemma 6.6. L: Q,—Diff2 (M) is continuous.

Proof. Let W, be a neighborhood of 1K; in G/K; such that W,cU,
(i=0, 1), and let W, be a neighborhood of 1H in G/H such that W,cU,.
Put 4;={ne N(K))°; n"'Win<=U,}. Then 4, is an open neighborhood of the
identity in N(K;)°. Let q;: N;->N(K;)° be a finite covering such that N; is a
direct product T;x G;. Here T; is a torus group and Gj is a simply connected
semi-simple compact Lie group. Put K;=g¢7}(K?). By Assertion 6.3, there
exists a closed normal subgroup K of N; such that N;=K9xK;. Lets; bea
smooth local cross section of ¢g; defined on an open neighborhood B; of the
identity in N(K;)°. Since 7n,: (N(H) n N(K))°—((N(H) n N(K,))/H)° is a fib-
ration, there exists a smooth local cross section ¢; of n, defined on an open
neighborhood E; of 1H such that t,(E;)c 4, n B;.
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Put O={aeQ;; a(i)te€E,; (i=0, 1)}. Then O is an open neighborhood of
the identity. Since L is a group homomorphism, it is enough to show that L
is continuous on 0. Let C denote one of the sets {p;},2(gW,) (i=0, 1, g€ G),
a1 (gW,x[1/5, 4/5]) (g€ G)}. By Lemma 2.3, if L.: 0 —L, Diff@ (M) &,
C>®(C, M) is continuous for any C, then L is continuous, where Jjc: CSM is an
inclusion map.
First consider the case C=pgl,,(gW). Let B;: No=K§x K;—K$ and
B,: Ny—K{ be the projection on the first factor and the second factor respec-
tively. Let L; be the composition
O —rs Eg %, Ayn By e129%2%50), co(7 - G) x Cent(K3) —ms C*(W,, G).
Here r, £ and m are given by r(a)=a(0)7?, {(ao) (x)=¢,, ,(x) and m(f, n)(x)
=f(x)-n, respectively. Put ao=(teor)(a) for ae 0. Then no(&, (%)) =mo(ag?)
for x e W, and mo((go°B2°50) (ag)) =mg(ag). Therefore Li(a) € K, for any ae O,
and L,(0)=C®(W,, K,). Let L, be the composition
O — Eo %, 4y By 222850, N(HO, K§) - Diff*(D,,,(Vy)).
By Assertion 6.5, L, is continuous. Let L; be the composition
0 LuLa, C=(W,, Ko) x Diff*(D;,,(Vo))
P30 -
:L) C2(Wyx D1/2(V0),Ko) x C®(Wqyx D1/2(Vo)s D]/z(Vo))
—*, C*(W4x Dy,,(Vo), Kox Dy/2(Vo))
L, C2(W 4 x Dl/z(Vo), D1/2(Vo)),
where p is given by u(k, v)=k-v, and « is the map in Lemma 2.2. Then L, is
continuous, and L;(a)=h,. Let y: Ay—»C®(W,, U,) be a map defined by
Y(ag) (x)=agloy(x)agK,. 7y is a restriction map to 4, of a map y: N(Ky)
—-C*(G/K,y, G/K,) given by (n)(gK,)=n"1gnK,. Since y is a continuous
map, y is continuous. Let L, be the composition

O —ts Eg %5 Ay 2 C®(Wo, Ug) 225 C=(Wo x Dy, Up).
Then L, is continuous and L,(h)=Hh,. L is the composition

0 Lala), C2(W, x DI/Z(VO)’ Up) x C*(Wy x D1/2(Vo), DI/Z(VO))
—*, C*(Wyx D1/2(V0)5 Uy x D1/2(Vo))
saennle, Co(C, pi(gUp))SCH(C, M),

Thus L is continuous.
Now consider the case C=a"'(gW, x[1/5, 4/5]). Let m: gW, x N(H)/H
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—G[H be a map defined by m(gH, nH)=ghH, and let p: G/H x[1/5, 4/5]—
[1/5, 4/5] be the projection on the second factor. Then L is given by the com-
position

0 0%+, C°([1/5, 4/5], N(H)|H)
Qe¥2)l, C=(gW,x [1/5, 4/5], gW,x N(H)|H)
—m_, C®(gW,x[1/5, 4/5], G|H)
P, C®(gW,x[1/5,4/5], GIHx [1/5, 4/5])
ar@ D, co(C, a~1(G/HxX [1/5, 4/5]))HC*(C, M),

where i: [1/5, 4/5]5[0, 1] is the inclusion map and 6: N(H)/H—N(H)/H is a
map given by 8(a)=a~!. By Lemma 2.2, L. is continuous.

We can see that L is continuous in the case C=pr},5(¢W,;) similarly as in
the case C=pglj,,(gW,), and this completes the proof of Lemma 6.6.

Proof of Proposition 6.1. From Lemma 6.6, L(Q,) is contained in
Diffg (M),. Then, by the definition, L(Q,) is contained in S, and L=L"1.
Combining Lemma 4.5, Proposition 4.6 and Lemma 6.6, L: S—Q, is an isomor-
phism between topological groups, and this completes the proof of Proposition
6.1.

Proof of Theorem. By Corollary 3.6, Diffg¢ (M), has the same homotopy
type as Ker P. Combining Lemma 5.1, Lemma 5.2 and Proposition 6.1, Ker P
has the same homotopy type as Q,. Note that Q, has the same homotopy
type as the path space Q(N(H)/H; (N(H)NN(K))/H, (N(H) N N(K,))/H),.
This completes the proof of our Theorem.

§7. Concluding Remarks

From our Theorem, we have the following

Corollary 7.1. (1) If Ky,=K;=G, then Diff§ (M), has the same ho-
motopy type as (N(H)[H)°.

(2) If N(H)/H is a finite group, then Diffg (M), is contractible.

Remark 7.2. In K. Abe and K. Fukui[1], we have proved that Diffg (M),
is perfect if M is a G-manifold with one orbit type and dim M/G>1. But,

by using Proposition 3.1, we can see that Diff§ (M), is not perfect in the case
M|G=[0, 1].
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