On the Homotopy Types of the Groups of Equivariant Diffeomorphisms

By

Kōjun Abe*

§0. Introduction

The purpose of this paper is to study the homotopy type of the group of the equivariant diffeomorphisms of a closed connected smooth G-manifold M, when G is a compact Lie group and the orbit space M/G is homeomorphic to a unit interval [0, 1].

Let $\operatorname{Diff}_{G}^{\infty}(M)_{0}$ denote the group of equivariant C^{∞} diffeomorphisms of the G-manifold M which are G-isotopic to the identity, endowed with C^{∞} topology. If M/G is homeomorphic to [0, 1], then M has two or three orbit types G/H, G/K_{0} and G/K_{1} . We can choose the isotropy subgroups H, K_{0} , K_{1} satisfying $H \subset K_{0} \cap K_{1}$. Moreover the G-manifold structure of M is determined by an element η of a factor group N(H)/H, where N(H) is the normalizer of H in G (see §1). Let $\Omega(N(H)/H; (N(H) \cap N(K_{0}))/H, (N(H) \cap$ $N(\eta K_{1}\eta^{-1}))/H)_{0}$ denote the connected component of the identity of the space of paths $a: [0, 1] \rightarrow N(H)/H$ satisfying $a(0) \in (N(H) \cap N(K_{0}))/H$ and $a(1) \in (N(H) \cap$ $N(\eta K_{1}\eta^{-1}))/H$.

Theorem. Diff $_{G}^{\infty}(M)_{0}$ has the same homotopy type as the path space $\Omega(N(H)/H; (N(H) \cap N(K_{0}))/H, (N(H) \cap N(\eta K_{1}\eta^{-1}))/H)_{0}$.

The paper is organized as follows. In Section 1, we study the G-manifold structure of M and give a differentiable structure of M/G such that the functional structure of M/G is induced from that of M. This differentiable structure is important to study the structure of $\text{Diff}_{G}^{\infty}(M)_{0}$. In Section 2, we define a group homomorphism $P: \text{Diff}_{G}^{\infty}(M)_{0} \rightarrow \text{Diff}^{\infty}[0, 1]_{0}$ and prove that P is a continuous homomorphism between topological groups. In Section 3, we

Communicated by N. Shimada, April 10, 1979.

^{*} Department of Mathematics, Shinshu University.

Köjun Abe

prove that there exists a global continuous section of P and Ker P is a deformation retract of $\text{Diff}_{G}^{\infty}(M)_{0}$. In Section 4, we study the group structure of Ker P. In Section 5 and Section 6, we prove our Theorem.

§1. G-Manifold Structure of M and the Functional Structure of M/G

In this paper we assume that all manifolds and all actions are differentiable of class C^{∞} .

In this section we study the G-manifold structure of M. First we see that it is sufficient for us to consider $\eta = 1$ (see Lemma 1.1). Next we give a differentiable structure of M/G such that the functional structure of M/G is induced from that of M (see Lemma 1.2).

Let *M* be a closed connected smooth *G*-manifold such that M/G is homeomorphic to [0, 1]. We denote this homeomorphism by *f*. Let $\pi: M \to M/G$ be the natural projection. Put $M_0 = (f \circ \pi)^{-1}([0, 1/2])$ and $M_1 = (f \circ \pi)^{-1}([1/2, 1])$. Let x_i be a point of *M* with $f(\pi(x_i)) = i$ for i = 0, 1. Then M_i is a *G*invariant closed tubular neighborhood of the orbit $G(x_i)$ (c.f. G. Bredon [3, Chapter VI, §6]). Moreover *M* is equivariantly diffeomorphic to a union of the *G*-manifolds M_0 and M_1 such that their boundaries are identified under a *G*-diffeomorphism $\eta': \partial M_0 \to \partial M_1$. Let V_i be a normal vector space of $G(x_i)$ at x_i and K_i be the isotropy subgroup of x_i for i=0, 1. Then V_i is a representation space of K_i . From the differentiable slice theorem, M_i is equivariantly diffeomorphic to a smooth *G*-bundle $G \times_{K_i} D(V_i)$ which is associated to the principal K_i bundle $\pi_i: G \to G/K_i$, where $D(V_i)$ is a unit disc in V_i .

Let *H* be a principal isotropy subgroup of the *G*-manifold *M*. We can assume that *H* is a subgroup of $K_0 \cap K_1$. Let $e_i \in S(V_i)$ be a point such that the isotropy subgroup of e_i is *H* for i=0, 1, where $S(V_i)$ is a unit sphere in V_i . There exists a *G*-diffeomorphism $h_i: G/H \to G \times_{K_i} S(V_i)$ given by $h_i(gH) = [g, e_i]$, i=0, 1. Then we have a *G*-diffeomorphism

$$\eta'': G/H \xrightarrow{h_0} G \times_{K_0} S(V_0) = \partial M_0 \xrightarrow{\eta'} \partial M_1 = G \times_{K_1} S(V_1) \xrightarrow{h_1^{-1}} G/H.$$

Since any G-map $G/H \to G/H$ is given by a right translation of an element of N(H)/H, η'' defines an element $\eta \in N(H)/H$.

Put $x'_i = \eta \cdot x_i$. Then the isotropy subgroup K'_1 of x'_1 is $\eta K_1 \eta^{-1}$. Let V'_1 be a normal vector space of the orbit $G(x'_1) = G(x_i)$ at x'_1 . Put $e'_1 = (d\eta)_{x_1}(e_1) \in S(V'_1)$. There exists a G-diffeomorphism $u: G \times_{K_1} D(V_1) \to G \times_{K_1} D(V'_1)$ given

Homotopy Type

by $u([g, v]) = [g\eta^{-1}, \eta \cdot v]$. Then $(u \circ \eta')([g, e_0]) = u([g\eta, e_1]) = [g, e_1']$ for $[g, v] \in G \times_{K_0} S(V_0)$. Therefore M is equivariantly diffeomorphic to a union of the G-bundles $G \times_{K_0} D(V_0)$ and $G \times_{K_1} D(V_1')$ such that their boundaries are identified under a G-diffeomorphism $u \circ \eta'$. Now we have

Lemma 1.1. Let M be a closed connected smooth G-manifold such that M/G is homeomorphic to [0, 1]. Then M has two or three orbit types G/H, G/K_0 and G/K_1 with $H \subset K_0 \cap K_1$, and there exist representation spaces V_i , $i=0, 1, of K_i$ such that M is equivariantly diffeomorphic to a union of G-bundles $G \times_{K_0} D(V_0)$ and $G \times_{K_1} D(V_1)$ with their boundaries identified under a G-diffeomorphism $\eta: G \times_{K_0} S(V_0) \rightarrow G \times_{K_1} S(V_1)$. Moreover we may assume that $\eta([g, e_0]) = [g, e_1]$, where e_i is a point of $S(V_i)$ such that the isotropy subgroup of e_i is H for i=0, 1.

Hereafter we shall assume that M is a G-manifold as in Lemma 1.1. Let $\xi: [0, 1] \rightarrow R$ be a smooth function such that

$$\xi(r) = r^2$$
 for $0 \le r \le 1/2$,
 $\xi'(r) > 0$ for $0 < r \le 1$ and
 $\xi(r) = r - 1/2$ for $7/8 < r \le 1$.

Let $\theta: M = G \times_{K_0} D(V_0) \bigcup_n G \times_{K_1} D(V_1) \rightarrow [0, 1]$ be a map given by

$\theta([g, v]) = \xi(v)$	for	$[g, v] \in G \times_{K_0} D(V_0),$
$\theta([g, v]) = 1 - \xi(v)$	for	$[g, v] \in G \times_{K_1} D(V_1).$

Since θ is a G-map, there exists a map $\phi: M/G \to [0, 1]$ such that $\phi \circ \pi = \theta$. It is easy to see that ϕ is a homeomorphism. We give a differentiable structure of M/G by ϕ .

Lemma 1.2. In the above situation, we have

(1) θ is a smooth map,

(2) there exists a G-diffeomorphism $\alpha: \theta^{-1}((0, 1)) \rightarrow G/H \times (0, 1)$ such that $\theta \circ \alpha^{-1}$ is the projection on the second factor, and

(3) $f: M/G \rightarrow R$ is smooth if and only if $f \circ \pi: M \rightarrow R$ is smooth.

Proof. (1) Let $\alpha_i: G \times_{K_i} (D(V_i) - 0) \to G/H \times (0, 1]$ be a map given by $\alpha_i([g, re_i]) = (gH, r)$ for $g \in G$ and $r \in (0, 1]$ (i=0, 1). Then it is easy to see that α_i is a G-diffeomorphism. Since $\alpha_1 \circ \eta = \alpha_0$ on $G \times_{K_0} S(V_0)$, the composition $\beta: \theta^{-1}((0, 1)) = G \times_{K_0} (D(V_0) - 0) \cup G \times_{K_1} (D(V_1) - 0) \xrightarrow{\alpha_0 \cup \alpha_1} G/H \times (0, 1] \cup_{1_G/H \times 1} G/H \times (0, 1] = G/H \times (0, 2)$ is a G-diffeomorphism. Note that

$$(\theta \circ \beta^{-1})(gH, r) = \begin{cases} \xi(r) & \text{for } 0 < r \le 1, \\ 1 - \xi(2 - r) & \text{for } 1 \le r \le 2. \end{cases}$$

Thus $\theta \circ \beta^{-1}$ is a smooth map, and θ is a smooth map on $\theta^{-1}((0, 1))$. From the definition, θ is a smooth map on $\theta^{-1}(r)$ for $r \neq 1/2$. Therefore θ is a smooth map.

(2) Let $\overline{\theta}$: (0, 2) \rightarrow (0, 1) be a smooth map given by

$$\bar{\theta}(r) = \begin{cases} \xi(r) & \text{for } 0 < r \le 1, \\ 1 - \xi(2 - r) & \text{for } 1 \le r < 2. \end{cases}$$

Since $\bar{\theta}'(r) > 0$ for 0 < r < 2, $\bar{\theta}$ is a diffeomorphism. Let $\alpha: \theta^{-1}((0, 1)) \to G/H$ $\times (0, 1)$ be a G-diffeomorphism given by $\alpha = (1, \bar{\theta}) \circ \beta$. Then $(\theta \circ \alpha^{-1})(gH, r)$ $= (\theta \circ \beta^{-1})(gH, \bar{\theta}^{-1}(r)) = r$, and $\theta \circ \alpha^{-1}$ is the projection on the second factor.

(3) Let $f: M/G \to R$ be a function such that $f \circ \pi: M \to R$ is smooth. We shall prove that $f \circ \phi^{-1}: [0, 1] \to R$ is smooth. Since

$$(f \circ \pi \circ \alpha^{-1})(gH, r) = (f \circ \phi^{-1} \circ \theta \circ \alpha^{-1})(gH, r) = (f \circ \phi^{-1})(r)$$
 for $0 < r < 1$,

 $f \circ \phi^{-1}$ is smooth on (0, 1). Let $i_0: D_{1/2}(V_0) = \{v \in D(V_0); \|v\| \le 1/2\} \to G \times_{K_0}$ $D(V_0)$ be an inclusion given by $i_0(v) = [1, v]$. Note that $(\theta \circ i_0)(v) = \|v\|^2$ for $v \in D_{1/2}(V_0)$. By Corollary 5.3 of G. Bredon [3, Chapter VI, §5], $f \circ \phi^{-1}$ is smooth if and only if $(f \circ \phi^{-1}) \circ (\theta \circ i_0)$ is smooth. Since $(f \circ \phi^{-1}) \circ (\theta \circ i_0) = f \circ \pi \circ i_0$, which is smooth, then $f \circ \phi^{-1}$ is smooth on [0, 1/4]. Similarly we can prove that $f \circ \phi^{-1}$ is smooth on [3/4, 1]. Since $(f \circ \phi^{-1})(r) = (f \circ \phi^{-1} \circ \theta \circ \alpha^{-1})(1H, r) = (f \circ \pi \circ \alpha^{-1})(1H, r)$ for $0 < r < 1, f \circ \phi^{-1}$ is smooth on (0, 1). This completes the proof of Lemma 1.2.

Remark 1.3. Lemma 1.2 is essentially proved by G. Bredon [3, Chapter VI, § 5], and (3) implies that the functional structure of M/G is induced from that of M.

§2. On the Group Homomorphism P

In this section we shall define a group homomorphism $P: \operatorname{Diff}_{G}^{\infty}(M)_{0} \rightarrow \operatorname{Diff}^{\infty}[0, 1]$, and we shall prove P is continuous.

We shall identify the orbit space M/G with [0, 1] by the homeomorphism ϕ in §1, therefore the projection $\pi: M \to M/G$ is identified with the smooth map $\theta: M \to [0, 1]$. Let $h: M \to M$ be a G-diffeomorphism of M which is G-isotopic to the identity 1_M , and let $f: [0, 1] \to [0, 1]$ be the orbit map of h. Since $f \circ \pi = \pi \circ h$ is a smooth map, f is a smooth map by Lemma 1.2 (3). Similarly the

inverse map f^{-1} of f is smooth, and f is a diffeomorphism. Then there exists an abstract group homomorphism $P: \operatorname{Diff}_{G}^{\infty}(M)_{0} \to \operatorname{Diff}^{\infty}[0, 1]$ which is given by P(h)=f, where $\operatorname{Diff}^{\infty}[0, 1]$ is the group of C^{∞} diffeomorphisms of [0, 1], endowed with C^{∞} topology.

Proposition 2.1. $P: \operatorname{Diff}_{G}^{\infty}(M)_{0} \to \operatorname{Diff}^{\infty}[0, 1]$ is a continuous homomorphism of topological groups.

Let $C^{\infty}(M_1, M_2)$ denote the set of all smooth maps from a compact smooth manifold M_1 to a smooth manifold M_2 , endowed with C^{∞} topology. Before the proof of Proposition 2.1, we begin with some lemmas.

Lemma 2.2. Let M_i be a compact smooth manifold and N_i be a smooth manifold for i=1, 2. Then we have:

(1) Let $\phi: N_1 \to N_2$ be a smooth map, and let $\phi_*: C^{\infty}(M_1, N_1) \to C^{\infty}(M_1, N_2)$ be a map which is given by $\phi_*(f) = \phi \circ f$. Then ϕ_* is continuous.

(2) Let $\phi: M_1 \to M_2$ be a smooth map, and let $\phi^*: C^{\infty}(M_2, N_1) \to C^{\infty}(M_1, N_1)$ be a map which is given by $\phi^*(f) = f \circ \phi$. Then ϕ^* is continuous.

(3) Let $\phi: M_1 \to N_2$ be a smooth map and let $\phi_*: C^{\infty}(M_1, N_1) \to C^{\infty}(M_1, N_1 \to N_2)$ be a map which is given by $\phi_*(f) = (f, \phi)$. Then ϕ_* is continuous.

(4) Let $\phi: M_2 \to N_2$ be a smooth map and let $\phi_1: C^{\infty}(M_1, N_1) \to C^{\infty}(M_1 \times M_2, N_1 \times N_2)$ be a map given by $\phi_1(f) = f \times \phi$. Then ϕ_1 is continuous.

(5) Let $\kappa: C^{\infty}(M_1, N_1) \times C^{\infty}(M_1, N_2) \rightarrow C^{\infty}(M_1, N_1 \times N_2)$ be a map given by $\kappa(f, g)(x) = (f(x), g(x))$ for $x \in M_1$. Then κ is continuous.

(6) Let L be a smooth manifold. Let comp: $C^{\infty}(M_1, N_1) \times C^{\infty}(N_1, L) \rightarrow C^{\infty}(M_1, L)$ be a map given by comp $(f, g) = g \circ f$. Then comp is continuous.

Proof. (1) and (2) are proved by R. Abraham [2, Theorems 11.2 and 11.3]. It is easy to see (3), (4) and (5). From J. Cerf [4, Chapter I, §4, Proposition 5], (6) follows.

Lemma 2.3. Let X be a topological space. Let M be a compact smooth manifold and N be a smooth manifold. Choose an open covering $\{U_i\}$ of M such that each closure \overline{U}_i of U_i is a regular submanifold of M which is contained in a coordinate neighborhood of M. Then a map $\Psi: X \to C^{\infty}(M, N)$ is continuous if and only if each composition $\Psi_i: X \xrightarrow{\psi} C^{\infty}(M, N) \xrightarrow{j_i^*} C^{\infty}(\overline{U}_i, N)$ is continuous for each i, where $j_i: \overline{U}_i \hookrightarrow M$ is an inclusion.

Proof. From Lemma 2.2 (2), if Ψ is continuous, then Ψ_i is continuous for each *i*. We can choose $\{U_i\}$ as a coordinate covering of *M*. Let $\{V_{\lambda}\}$ be a

coordinate covering of N. Let $f \in C^{\infty}(M, N)$ and $K \subset U_i$ be a compact subset such that $f(K) \subset V_{\lambda}$ for some λ . $N^r(f, U_i, V_{\lambda}, K, \varepsilon)$ $(r=0, 1, 2, ..., 0 < \varepsilon \le \infty)$ denotes the set of C^r maps $g: M \to N$ such that $g(K) \subset V_{\lambda}$ and $||D^k f(x) - D^k g(x)||$ $<\varepsilon$ for any $x \in K$, k=0, 1, 2, ..., r. Then the C^{∞} topology on $C^{\infty}(M, N)$ is generated by these sets $N^r(f, U_i, V_{\lambda}, K, \varepsilon)$ (see M. Hirsch [6, Chapter 2, §1]).

Let $x \in X$ and let $f = \Psi(x)$. For any open neighborhood W of f, there exist above sets $N_k = N^{r_k}(f, U_{i_k}, V_{\lambda_k}, K_k, \varepsilon_k), k = 1, 2, ..., n$, such that $\bigcap_{k=1}^n N_k \subset W$. Note that $j_{i_k}^* \colon C^{\infty}(M, N) \to C^{\infty}(\overline{U}_{i_k}, N)$ is an open map and $(j_{i_k}^*)^{-1}(j_{i_k}^*(N_k)) = N_k$. Since Ψ_{i_k} is continuous, $\Psi^{-1}(N_k) = \Psi_{i_k}^{-1}(j_{i_k}^*(N_k))$ is an open neighborhood of x in X, for each k. Then $\bigcap_{k=1}^n \Psi^{-1}(N_k)$ is an open neighborhood of x in X. Since $\Psi(\bigcap_{k=1}^n \Psi^{-1}(N_k)) \subset \bigcap_{k=1}^n N_k \subset W$, Ψ is continuous at x. This completes the proof of Lemma 2.3.

Remark. Lemma 2.2 and Lemma 2.3 hold in the cases of manifolds with corners.

Let $C_e^{\infty}([-1/2, 1/2], R)$ denote the set of all smooth functions $f: [-1/2, 1/2] \rightarrow R$ satisfying f(-x)=f(x), endowed with C^{∞} topology. Let $T: C_e^{\infty}([-1/2, 1/2], R) \rightarrow C^{\infty}([0, 1/4], R)$ denote a map defined by $T(f)(x) = f(\sqrt{x})$. Then we have

Lemma 2.4. The above map T is well defined and continuous.

Proof. Put $f = T(\hat{f})$ for each $\hat{f} \in C_e^{\infty}([-1/2, 1/2], R)$. Since \hat{f} is a C^{∞} even function, we have the Taylor expansion

$$\begin{aligned} \hat{f}(x) &= \hat{f}(0) + (\hat{f}''(0)/2)x^2 + \dots + (\hat{f}^{(2n-2)}(0)/(2n-2)!)x^{2n-2} \\ &+ \left(\int_0^1 ((1-t)^{2n-1}/(2n-1)!)\hat{f}^{(2n)}(tx)dt \right) x^{2n} \end{aligned}$$

for $-1/2 \le x \le 1/2$, n = 1, 2, ... Thus we have

$$f(x) = \hat{f}(0) + (\hat{f}''(0)/2)x + \dots + (\hat{f}^{(2n-2)}(0)/(2n-2)!)x^{n-1} + \left(\int_0^1 ((1-t)^{2n-1}/(2n-1)!)\hat{f}^{(2n)}(t\sqrt{x})dt\right)x^n$$

for $0 \le x \le 1/4$. By the composite mapping formula, we can compute the *n*-th derivative

$$D^{n}(\hat{f}^{(2n)}(t\sqrt{x})x^{n}) = \sum_{p=0}^{n} \sum_{\substack{q=0\\i_{1}>0,\dots,i_{q}>0}}^{p} B(p, i_{1}, \dots, i_{q}) \hat{f}^{(2n+q)}(t\sqrt{x})x^{q/2}t^{q},$$

where $B(p, i_1, ..., i_q)$ is a real number. Put $f_i = T(\hat{f}_i)$ for $\hat{f}_i \in C_e^{\infty}([-1/2, 1/2], R)$

(i=1, 2). Then there exists a positive number A_n such that

$$\begin{aligned} \sup_{0 \le x \le 1/4} & |D^n f_1(x) - D^n f_2(x)| \\ & \le A_n \cdot \max_{0 \le q \le 3n} (\sup_{-1/2 \le x \le 1/2} |D^q \hat{f}_1(x) - D^q \hat{f}_2(x)|) \end{aligned}$$

for each $n = 1, 2, \dots$ Note that

$$\sup_{0 \le x \le 1/4} |f_1(x) - f_2(x)| = \sup_{-1/2 \le x \le 1/2} |\hat{f}_1(x) - \hat{f}_2(x)|.$$

Therefore T is a continuous map, and this completes the proof of Lemma 2.4.

Proof of Proposition 2.1. Let J denote a closed interval [0, 1/4], [1/5, 4/5] or [3/4, 1]. By Lemma 2.3, it is sufficient to show that the composition $P_J: \operatorname{Diff}_G^{\infty}(M)_0 \xrightarrow{P} \operatorname{Diff}^{\infty}[0, 1] \xrightarrow{j*} C^{\infty}(J, [0, 1])$ is continuous, where $j: J \hookrightarrow [0, 1]$ is an inclusion map.

We shall first consider the case J = [0, 1/4]. Let $\iota: [-1/2, 1/2] \rightarrow [0, 1/4]$ be a map given by $\iota(x) = x^2$. Let $\hat{\iota}: [-1/2, 1/2] \rightarrow G \times_{K_0} D(V_0) \hookrightarrow M$ be a map given by $\hat{\iota}(r) = [1, re_0]$, where e_0 is a point of $S(V_0)$ as in §1. Then $\pi \circ \hat{\iota} = \iota$. Let \hat{P}_J denote the composition $\text{Diff}_G^{\infty}(M)_0 \xrightarrow{2*} C^{\infty}([-1/2, 1/2], M) \xrightarrow{\pi_*} C^{\infty}([-1/2, 1/2], [0, 1])$. Then $\hat{P}_J(h) = \pi \circ h \circ \hat{\iota} = P(h) \circ \iota = \iota^* P(h)$ for $h \in \text{Diff}_G^{\infty}(M)_0$, and the image of \hat{P}_J is contained in $C_e^{\infty}([-1/2, 1/2], R)$. Note that $P_J = T \circ \hat{P}_J$. Combining Lemma 2.2 and Lemma 2.4, P_J is continuous.

Next consider the case J = [1/5, 4/5]. By Lemma 1.2, there is a G-diffeomorphism $\alpha: \pi^{-1}([1/5, 4/5]) \rightarrow G/H \times [1/5, 4/5]$. Let $i: \pi^{-1}([1/5, 4/5]) \hookrightarrow M$ be the inclusion map and let $k: [1/5, 4/5] \rightarrow G/H \times [1/5, 4/5]$ be a map given by k(r) = (1H, r). Then P_J is the composition

 $\operatorname{Diff}_{G}^{\infty}(M)_{0} \xrightarrow{(i \circ \alpha^{-1} \circ k)^{*}} C^{\infty}([1/5, 4/5], M) \xrightarrow{\pi_{*}} C^{\infty}([1/5, 4/5], [0, 1])$

which is continuous by Lemma 2.2.

We can prove that P_J is continuous in the case J = [3/4, 1] similarly as in the case J = [0, 1/4], and this completes the proof of Proposition 2.1.

§3. A Continuous Global Section of P

In Section 2 we have proved that $P: \operatorname{Diff}_{G}^{\infty}(M)_{0} \to \operatorname{Diff}^{\infty}[0, 1]$ is continuous. Thus the image of P is contained in the connected component $\operatorname{Diff}^{\infty}[0, 1]_{0}$ of the identity. In this section we shall construct a continuous global section of $P: \operatorname{Diff}_{G}^{\infty}(M)_{0} \to \operatorname{Diff}^{\infty}[0, 1]_{0}$.

Let f be an element of Diff^{∞} [0, 1]₀. We shall define a map $\Psi(f): M \to M$ as follows: $\Psi(f)$ is defined on $\pi^{-1}((0, 1))$ by the composition $\pi^{-1}((0, 1)) \xrightarrow{\alpha}$

 $G/H \times (0, 1) \xrightarrow{(1, f)} G/H \times (0, 1) \xrightarrow{\alpha^{-1}} \pi^{-1}((0, 1))$, and $\Psi(f) = 1$ on $\pi^{-1}(0) \cup \pi^{-1}(1)$.

Proposition 3.1. $\Psi(f)$ is a G-diffeomorphism of M.

In order to prove Proposition 3.1, we need the following lemma and notations.

Lemma 3.2. Let Ψ_1 : Diff^{∞} [0, 1]₀ \rightarrow Diff^{∞} (Dⁿ) be a map defined by

$$\Psi_1(f)(v) = \begin{cases} (\sqrt{f(\|v\|^2)}/\|v\|)v & \text{for } v \neq 0, \\ 0 & \text{for } v = 0, \end{cases}$$

where D^n denotes an n-dimensional unit disc. Then Ψ_1 is well defined and continuous.

Notations 3.3. For i=0, 1, we shall use the following notations $\pi_i: G \rightarrow G/K_i$ the natural projection,

 U_i an open disc neighborhood of $1K_i$ in G/K_i ,

 $\sigma_i: U_i \rightarrow G$ a smooth local cross section of π_i ,

 $\sigma_{i,a}: aU_i \rightarrow G \ (a \in G) \quad a \quad smooth \quad local \quad cross \quad section \quad of \quad \pi_i \quad defined \quad by$ $\sigma_{i,a}(x) = a \cdot \sigma_i(a^{-1}x).$

Put $M_i = G \times_{K_i} D(V_i)$ and $M_i(r) = G \times_{K_i} D_r(V_i)$, where $D_r(V_i)$ is a closed r-disc in V_i (0 < $r \le 1$).

$$\begin{split} p_i \colon M_i \to G/K_i, \ p_{i,r} \colon M_i(r) \to G/K_i & \text{the bundle projections,} \\ \phi_{i,a} \colon p_i^{-1}(aU_i) \to U_i \times D(V_i) \ (a \in G) & a \ chart \ of \ p_i \ over \ aU_i \ defined \ by \\ \phi_{i,a}([g, v]) = (a^{-1}\pi_i(g), \ ((\sigma_{i,a} \circ \pi_i)(g))^{-1}g \cdot v), \end{split}$$

 $\pi_2: G \rightarrow G/H$ the natural projection,

 U_2 an open disc neighborhood of 1H in G/H,

 $\sigma_2: U_2 \rightarrow G$ a smooth local cross section of π_2 .

Proof of Proposition 3.1. Put $h = \Psi(f)$. We shall first prove that h is smooth on $\pi^{-1}(0)$. Since f(0)=0, there exists a real number ε such that $0 < \varepsilon \le 1/2$ and $f(\varepsilon^2) \le 1/4$. Then $h(\pi^{-1}([0, \varepsilon^2])) \subset \pi^{-1}([0, 1/4])$, and $h(M_0(\varepsilon)) \subset M_0(1/2)$. For $[g, re_0] \in G \times_{K_0} D_{\varepsilon}(V_0 - 0)$ $(0 < r \le \varepsilon)$, $h([g, re_0]) = (\alpha^{-1} \circ (1, f) \circ \alpha)$ $([g, re_0]) = (\alpha^{-1} \circ (1, f))$ $(gH, r^2) = \alpha^{-1}(gH, f(r^2)) = [g, \sqrt{f(r^2)}e_0]$. Then, for $[g, v] \in G \times_{K_0} D_{\varepsilon}(V_0 - 0)$, $h([g, v]) = [g, \sqrt{f(\|v\|^2)})/\|v\| v] = [g, \Psi_1(f)(v)]$. Since h([g, 0]) = [g, 0], $h([g, v]) = [g, \Psi_1(f)(v)]$ for any $[g, v] \in M_0(\varepsilon)$. Then the composition

$$\begin{split} \tilde{h} \colon U_0 \times D_{\varepsilon}(V_0) \xrightarrow{(\phi_{0,a})^{-1}} p_{0,\varepsilon}^{-1}(aU_0) \\ \xrightarrow{h} p_{0,1/2}^{-1}(aU_0) \\ \xrightarrow{\phi_{0,a}} U_0 \times D_{1/2}(V_0) \end{split}$$

is given by $\tilde{h}(x, v) = (x, \Psi_1(f)(v))$ for $a \in G$. Since $\Psi_1(f)$ is a smooth map by Lemma 3.2, h is smooth on $\pi^{-1}(0)$. Similarly we can prove that h is smooth on $\pi^{-1}(1)$. Since h is smooth on $\pi^{-1}((0, 1))$ by the definition, h is a smooth map. Since $h^{-1} = \Psi(f^{-1})$, h^{-1} is also a smooth map. Thus h is a G-diffeomorphism of M, and this completes the proof of Proposition 3.1.

In order to prove Lemma 3.2, we need the following assertion.

Assertion 3.4. Let Φ : Diff^{∞} $[0, 1]_0 \rightarrow C^{\infty}([0, 1], R)$ be a map given by

$$\Phi(f)(x) = \begin{cases} \sqrt{f(x)/x} & \text{for } x \neq 0, \\ \sqrt{f'(0)} & \text{for } x = 0. \end{cases}$$

Then Φ is well defined and continuous.

Proof. For $f \in \text{Diff}^{\infty}[0, 1]_0$, we have the Taylor expansion

$$f(x) = f'(0)x + x^2 \int_0^1 (1-t)f''(tx)dt \quad \text{for} \quad 0 \le x \le 1.$$

Put $F(x) = f'(0) + x \int_0^1 (1-t)f''(tx)dt$ for $0 \le x \le 1$. Then $\Phi(f) = \sqrt{F}$. Note that F(x) > 0 for $0 \le x \le 1$. It is easy to see that Φ is continuous.

Proof of Lemma 3.2. Let $N: D^n \to [0, 1]$ be a map given by $N(v) = ||v||^2$. Let $i: D^n \hookrightarrow R^n$ be the inclusion and let $\mu: R \times R^n \to R^n$ be the scalar multiplication. Since $\Psi_1(f)(v) = \Phi(f)(||v||^2)v$, $\Psi_1(f)$ is a smooth map by Assertion 3.4. Since $\Psi_1(f^{-1}) = \Psi_1(f)^{-1}$, $\Psi_1(f)^{-1}$ is also a smooth map. Thus $\Psi_1(f)$ is a diffeomorphism of D^n . Note that Ψ_1 is the composition $\text{Diff}^{\infty}[0, 1]_0 \xrightarrow{\Phi} C^{\infty}([0, 1], R) \xrightarrow{N^*} C^{\infty}(D^n, R) \xrightarrow{i_{\#}} C^{\infty}(D^n, R \times R^n) \xrightarrow{\mu_*} C^{\infty}(D^n, R^n)$. Combining Assertion 3.4 and Lemma 2.2, Ψ_1 is continuous. This completes the proof of Lemma 3.2.

Proposition 3.5. Ψ : Diff^{∞} [0, 1]₀ \rightarrow Diff^{∞}_G(M) is continuous.

Proof. Let $B_i \subset U_i$ be a closed disc neighborhood of $1K_i$ in G/K_i for i=0, 1. Let $B_2 \subset U_2$ be a closed disc neighborhood of 1H in G/H. We can choose {int $(p_{0,\varepsilon}^{-1}(aB_0))$, int $(p_{1,\varepsilon}^{-1}(aB_1))$, int $(\alpha^{-1}(aB_2 \times [\varepsilon/2, 1-\varepsilon/2]))$; $a \in G$ } as an open covering of M for $0 < \varepsilon < 1/2$. Put $W = \{f \in \text{Diff}^{\infty}[0, 1]_0; f([0, \varepsilon^2]) \subset [0, 1/4), f([1-\varepsilon^2, 1]) \subset (3/4, 1]\}$. Then W is an open neighborhood of the identity in $\text{Diff}^{\infty}[0, 1]_0$. Since Ψ is a homomorphism as an abstract group, it is enough to show that Ψ is continuous on W. Let C denote one of the sets $p_{0,\varepsilon}^{-1}(aB_0), p_{1,\varepsilon}^{-1}(aB_1)$ or $\alpha^{-1}(aB_2 \times [\varepsilon/2, 1-\varepsilon/2])$ for $a \in G$. If we can prove that the composition

$$\Psi_C \colon W \xrightarrow{\Psi} \operatorname{Diff}_G^{\infty}(M)_0 \xrightarrow{i^*} C^{\infty}(C, M)$$

is continuous for each C, then Ψ is continuous on W by Lemma 2.3, where $i: C \hookrightarrow M$ is an inclusion map.

First consider in the case $C = p_{0,\varepsilon}^{-1}(aB_0)$. $\Psi(f)(C)$ is contained in $p_{0,1/2}^{-1}(aU_0)$ for each $f \in W$. Note that $\Psi(f)([g, v]) = [g, \Psi_1(f)(v)]$ for $[g, v] \in C$ and $(\phi_{0,a} \circ \Psi(f) \circ \phi_{0,a}^{-1})(x, v) = (x, \Psi_1(f)(v))$ for $(x, v) \in B_0 \times D_{\varepsilon}(V_0)$. Thus Ψ_C is given by the composition

$$W \xrightarrow{\Psi_1} C^{\infty}(D_{\varepsilon}(V_0), D(V_0))$$

$$\xrightarrow{j_1} C^{\infty}(B_0 \times D_{\varepsilon}(V_0), U_0 \times D(V_0))$$

$$\xrightarrow{\phi_{0,a^*}} C^{\infty}(C, U_0 \times D(V_0))$$

$$\xrightarrow{(k \circ \phi_{0,a})^*} C^{\infty}(C, M),$$

where $j: B_0 \hookrightarrow U_0$ and $k: p_0^{-1}(aU_0) \hookrightarrow M$ are inclusions. Combining Lemma 3.2 and Lemma 2.2, Ψ_c is continuous.

Now consider the case $C = \alpha^{-1}(B_0 \times [\epsilon/2, 1-\epsilon/2])$. Ψ_C is given by the composition

$$\begin{split} W & \xrightarrow{\iota^*} C^{\infty}([\varepsilon/2, 1-\varepsilon/2], (0, 1)) \\ & \xrightarrow{j_1} C^{\infty}(B_0 \times [\varepsilon/2, 1-\varepsilon/2], G/H \times (0, 1)) \\ & \xrightarrow{\alpha^*} C^{\infty}(C, G/H \times (0, 1)) \\ & \xrightarrow{(k \circ \alpha^{-1})_*} C^{\infty}(C, M), \end{split}$$

where $\iota: [\varepsilon/2, 1-\varepsilon/2] \hookrightarrow [0, 1], j: B_0 \hookrightarrow G/H$ and $k: \pi^{-1}((0, 1)) \hookrightarrow M$ are inclusion maps. By Lemma 2.2, Ψ_C is continuous.

We can prove that Ψ_C is continuous in the case $C = p_{1,\epsilon}^{-1}(aB_1)$ similarly as in the case $C = p_{0,\epsilon}^{-1}(aB_0)$, and this completes the proof of Proposition 3.5.

By Proposition 3.5, $P: \text{Diff}_{G}^{\infty}(M)_{0} \rightarrow \text{Diff}^{\infty}[0, 1]_{0}$ is a globally trivial fibration. Then we have

Corollary 3.6. Diff $_{G}^{\infty}(M)_{0}$ is homeomorphic to Diff $_{G}^{\infty}[0, 1]_{0} \times \text{Ker } P$.

§4. On the Group Ker P

In this section we shall define a group homomorphism L: Ker $P \rightarrow Q$, where Q is a subgroup of $C^{\infty}([0, 1], N(H)/H)$, and we shall prove that L is a group monomorphism between topological groups (see Lemma 4.5 and Proposition 4.6).

Let h be an element of Ker P. Let \hat{h} be the composition

$$G/H \times (0, 1) \xrightarrow{\alpha^{-1}} \pi^{-1}((0, 1)) \xrightarrow{h} \pi^{-1}((0, 1)) \xrightarrow{\alpha} G/H \times (0, 1).$$

Then \hat{h} is a level preserving G-diffeomorphism. Let $a: (0, 1) \rightarrow N(H)/H$ be a smooth map satisfying h(gH, r) = (ga(r), r) for $(gH, r) \in G/H \times (0, 1)$.

Proposition 4.1. With the above notations, there exists a smooth map $\bar{a}: [0, 1] \rightarrow N(H)/H$ such that

- (1) $\bar{a} = a \text{ on } (0, 1),$
- (2) $\bar{a}(i) \in (N(H) \cap N(K_i))/H$ for i = 0, 1.

To prove Proposition 4.1, we need the following lemmas.

Lemma 4.2. Let G be a compact Lie group. Let K and N be closed subgroups of G. Let $\pi: G \rightarrow G/K$ be the natural projection. Then there exists a smooth local section σ of π , which is defined on an open neighborhood U of 1K, such that $\sigma(1K)=1$ and $\sigma(x) \in N$ for $x \in \pi(N) \cap U$.

Proof. Let $\pi_1: N \to N/(N \cap K)$ be a natural projection. Let $i: N \hookrightarrow G$ be the inclusion and let $I: N/(N \cap K) \to G/K$ be a map satisfying $\pi \circ i = I \circ \pi_1$. Since $I(N/(N \cap K)) = \pi(N)$ is an orbit of the natural action $N \times G/K \to G/K$, I is an imbedding. Let U be a disc neighborhood around $\pi(1)$ in G/K and let U_1 be a disc neighborhood around $\pi_1(1)$ in $N/(N \cap K)$. Since I is an imbedding, we can assume $I(U_1) = U \cap I(N/(N \cap K)) = U \cap \pi(N)$. Let $\sigma_1: U_1 \to N$ be a smooth local section of π_1 satisfying $\sigma_1(\pi(1)) = 1$. Then $\sigma_1 \circ I^{-1}$ is a smooth section defined on $I(U_1)$. We can extend $\sigma_1 \circ I^{-1}$ to a smooth local section defined on U. Then $\sigma(\pi(1)) = 1$ and $\sigma(U \cap \pi(N)) \subset N$. This completes the proof of Lemma 4.2.

Lemma 4.3. Let G be a compact connected Lie group. Let V be a representation of G such that G acts transitively and effectively on a unit sphere S(V) of V. Let H be the isotropy subgroup of a point of S(V). Then we have the following list:

G	$SO(n)$ $(n \ge 3)$	$SU(n)$ $(n\geq 2)$	$U(n)$ $(n\geq 1)$	$Sp(n)$ $(n\geq 1)$	$Sp(n) \times_{Z_2} S^3$ $(n \ge 1)$
H	SO(n-1)	SU(n-1)	<i>U</i> (<i>n</i> -1)	Sp(n-1)	H ₁
N(H)/H	Z_2	<i>U</i> (1)	<i>U</i> (1)	<i>Sp</i> (1)	Z_2

$Sp(n) \times_{\mathbb{Z}_2} S^1 (n \ge 1)$	G_2	Spin(7)	Spin(9)
H_2	SU(3)	G_2	Spin(7)
S^1	Z_2		Z_2

where $H_1 = \{ [(q, A), q^{-1}] \in Sp(n) \times_{Z_2} S^3; (q, A) \in Sp(1) \times Sp(n-1) \subset Sp(n) \}$ and $H_2 = \{ [(z, A), z^{-1}] \in Sp(n) \times_{Z_2} S^1; (z, A) \in S^1 \times Sp(n-1) \subset Sp(n) \}.$

Proof. It is known that G and H are the above Lie groups (c.f. W. C. Hsiang and W. Y. Hsiang [7, §1]). We can determine the Lie group N(H)/H by an immediate calculation except for $G = G_2$, Spin (7), Spin (9). For the cases $G = G_2$, Spin (7), Spin (9), we can determine N(H)/H by using I. Yokota's definitions of these Lie groups in [9, Chapter 5].

Lemma 4.4. (1) Let $F: [-1, 1] \rightarrow R$ be a smooth function such that F(0)=0. Put f(x)=F(x)/x for $x \neq 0$ and f(x)=F'(0) for x=0. Then $f: [-1, 1] \rightarrow R$ is a well defined smooth function.

(2) Put $C_0^{\infty}([-1, 1], R) = \{F \in C^{\infty}([-1, 1], R); F(0) = 0\}$, endowed with C^{∞} topology. Let $\Phi: C_0^{\infty}([-1, 1], R) \to C^{\infty}([-1, 1], R)$ be a map given by $\Phi(F)(x) = f(x)$. Then Φ is continuous.

Proof. For $F \in C_0^{\infty}([-1, 1], R)$, we have $\Phi(F)(x) = f(x) = F'(0) + x \int_0^1 (1-t)F''(tx)dt$. Then the *n*-th derivative $f^{(n)}(x) = x \int_0^1 (1-t)t^n F^{(n+2)}(tx)dt + n \int_0^1 (1-t)t^{n-1}F^{(n+1)}(tx)dt$. Thus there exists a positive number A such that $\|\Phi(F)\|_n \le A \|F\|_{n+2}$, and Lemma 4.4 follows.

Proof of Proposition 4.1. Let $\varepsilon (0 < \varepsilon \le 1/2)$ be a real number. Let W_i and U_i be open neighborhoods of $1K_i$, satisfying $\overline{W_i} \subset U_i$, for i=0, 1. Put $O = \{h \in \text{Ker } P; h(p_{i,\varepsilon}^{-1}(\overline{W_i})) \subset p_{i,\varepsilon}^{-1}(U_i) \text{ for } i=0, 1\}$. Then O is an open neighborhood of the identity in Ker P. By Corollary 3.6, Ker P is connected, and O generates the topological group Ker P. Thus we can assume $h \in O$.

Let \tilde{h} be the composition

$$W_0 \times D_{\varepsilon}(V_0) \xrightarrow{(\phi_{0,1})^{-1}} p_{0,\varepsilon}^{-1}(W_0) \xrightarrow{h} p_{0,\varepsilon}^{-1}(U_0) \xrightarrow{\phi_{0,1}} U_0 \times D_{\varepsilon}(V_0).$$

Let $\rho_1: U_0 \times D_{\varepsilon}(V_0) \to U_0$ and $\rho_2: U_0 \times D_{\varepsilon}(V_0) \to D_{\varepsilon}(V_0)$ be projections on the first factor and the second factor, respectively. Let $i: [-\varepsilon, \varepsilon] \to W_0 \times D_{\varepsilon}(V_0)$ be an imbedding given by $i(r) = (1K_0, re_0)$. Then the compositions $\tilde{h}_1 = \rho_1 \circ \tilde{h} \circ i$: $[-\varepsilon, \varepsilon] \to U_0$ and $\tilde{h}_2 = \rho_2 \circ \tilde{h} \circ i$: $[-\varepsilon, \varepsilon] \to D_{\varepsilon}(V_0)$ are smooth maps. Let $\bar{\pi}_0: G/H \to G/K_0$ be the natural projection. Note that

$$\begin{aligned} (\alpha \circ h \circ \phi_{0,1}^{-1})(1K_0, re_0) &= (\alpha \circ h)([1, re_0]) \\ &= (\hat{h} \circ \alpha)([1, re_0]) \\ &= \hat{h}(1H, r^2) \\ &= (a(r^2), r^2) \quad \text{for} \quad |r| \le \varepsilon, r \ne 0. \end{aligned}$$

Then

$$\tilde{h}(1K_0, re_0) = (\phi_{0,1} \circ \alpha^{-1})(a(r^2), r^2) = (\bar{\pi}_0(a(r^2)), (\sigma_0 \circ \bar{\pi}_0)(a(r^2))^{-1} \cdot a(r^2) \cdot re_0),$$

and

$$\tilde{h}_{1}(r) = \bar{\pi}_{0}(a(r^{2})),$$

$$\tilde{h}_{2}(r) = (\sigma_{0} \circ \bar{\pi}_{0})(a(r^{2}))^{-1} \cdot a(r^{2}) \cdot re_{0},$$

for $|r| \leq \varepsilon$, $r \neq 0$.

Here we can assume that $\sigma_0(1K_0)=1$ and $\sigma_0(\pi_0(N(H)) \cap U_0) \subset N(H)$ by Lemma 4.2. Let $b: [-\varepsilon, \varepsilon] \rightarrow G$ be a smooth map given by $b(r) = \sigma_0(\tilde{h}_1(r))$. Then $b(r) = \sigma_0(\bar{\pi}_0(a(r^2))) \in \sigma_0(\pi_0(N(H)) \cap U_0)$, and $b(r) \in N(H)$ for $r \neq 0$. Since b is a smooth map, $b(r) \in N(H)$ for r=0. For $[1, 0] \in \pi^{-1}(0)$, we have $h([1, 0]) = (h \circ \phi_{0,1}^{-1})(1K_0, 0) = (h \circ \phi_{0,1}^{-1})(i(0)) = \phi_{0,1}^{-1}(\tilde{h}_1(0), 0) = [b(0), 0]$. Note that p_0 is a *G*-diffeomorphism on the zero section of p_0 and $h(\pi^{-1}(0)) = \pi^{-1}(0)$. Then the composition $p_0 \circ h \circ p_0^{-1} : G/K_0 \to G/K_0$ is a *G*-diffeomorphism, and $(p_0 \circ h \circ p_0^{-1})$ $(1K_0) = (p_0 \circ h)([1, 0]) = p_0([b(0), 0]) = b(0)K_0$. Thus $b(0) \in N(K_0)$, and $b(0) \in N(H) \cap N(K_0)$.

Put $J = [-\varepsilon, 0) \cup (0, \varepsilon]$. Let $c: J \to N(H)/H$ be a smooth map given by $c(r) = b(r)^{-1} \cdot a(r^2)$. Since $\overline{\pi}_0(c(r)) = \overline{\pi}_0(\sigma_0(\overline{\pi}_0(a(r^2)))^{-1} \cdot a(r^2)) = 1K_0$, then $c(r) \in K_0/H$. Thus $c(r) \in N(H, K_0)/H$ for $r \in J$. Since Ker P is connected, the maps a, b and c are homotopic to the constant maps. Note that the identity component $(N(H, K_0)/H)^0$ of $N(H, K_0)/H$ is contained in $(N(H, K_0) \cap K_0^0) \cdot H/H$, and there exists an isomorphism $(N(H, K_0) \cap K_0^0) \cdot H/H \simeq (N(H, K_0) \cap K_0^0)/(H \cap K_0^0)$ as a Lie group, where K_0^0 is the identity component of K_0 . Then there exists a smooth map $\hat{c}: J \stackrel{c}{\longrightarrow} (N(H, K_0)/H)^0 \hookrightarrow (N(H, K_0) \cap K_0^0) \cdot H/H \simeq (N(H, K_0) \cap K_0^0)/(H \cap K_0^0) \hookrightarrow N(H \cap K_0^0, K_0^0)/(H \cap K_0^0)$. Now we shall prove that \hat{c} can be extended to a smooth map on $[-\varepsilon, \varepsilon]$, and so is c.

Note that K_0 acts transitively on the unit sphere $S(V_0)$ of V_0 . If dim $S(V_0) = 0$, then $K_0/H = Z_2$ and $N(H, K_0)/H = Z_2$. In this case \hat{c} is a trivial map, and it is clear that \hat{c} can be extended to a smooth map on $[-\varepsilon, \varepsilon]$. Now we assume dim $S(V_0) > 0$. Since $S(V_0)$ is connected, K_0^0 acts transitively on $S(V_0)$ and $K_0^0/(K_0^0 \cap H)$ is diffeomorphic to $S(V_0)$. Put $D = \bigcap_{g \in K_0^0} g(K_0^0 \cap H)g^{-1}$ which is

the kernel of the action $K_0^0 \times S(V_0) \to S(V_0)$. Put $\overline{K}_0 = K_0^0/D$ and $\overline{H} = (H \cap K_0^0)/D$. D. Then \overline{K}_0 acts transitively and effectively on $S(V_0)$ and $\overline{K}_0/\overline{H}$ is diffeomorphic to $S(V_0)$. Put $\overline{N}_0 = N(\overline{H}, \overline{K}_0)/\overline{H}$ which is isomorphic to $N(H \cap K_0^0, K_0^0)/(H \cap K_0^0)$ as a Lie group. The pair $(\overline{K}_0, \overline{N}_0)$ is one of pairs (G, N(H)/H) in the list of Lemma 4.3. Now we shall prove that \hat{c} can be extended to a smooth map on $[-\varepsilon, \varepsilon]$. If $\overline{N}_0 = Z_2$, this is clear since \hat{c} is a trivial map.

Consider the case $\overline{K}_0 = SU(n)$ $(n \ge 1)$ and $\overline{N}_0 = U(1)$. In this case V_0 is an *n*-dimensional complex vector space and $\overline{N}_0 = U(1)$ acts on V_0 as a scalar multiplication. We can regard C^n as a 2*n*-dimensional real vector space R^{2n} and \overline{N}_0 as SO(2). Then there exist smooth functions $c_i: J \rightarrow R$, i=1, 2, such that

$$\hat{c}(r) = \begin{bmatrix} c_1(r) & -c_2(r) \\ c_2(r) & c_1(r) \end{bmatrix} \in SO(2) \quad \text{for } r \in J.$$

Note that $\tilde{h}_2: [-\varepsilon, \varepsilon] \rightarrow D_{\varepsilon}(V_0)$ is a smooth map and $\tilde{h}_2(r) = c(r) \cdot re_0 = \hat{c}(r) \cdot re_0$ for $r \neq 0$. In this case $e_0 = (1, 0, ..., 0) \in S^{2n-1}$ and $\tilde{h}_2(r) = (c_1(r)r, c_2(r)r, 0, ..., 0)$ for $r \in J$. Put $c_i(0) = \lim_{r \to 0} c_i(r)$ for i = 1, 2. From Lemma 4.4, $c_i: [-\varepsilon, \varepsilon] \rightarrow R$, i = 1, 2, are smooth functions and \hat{c} can be extended to a smooth map on $[-\varepsilon, \varepsilon]$.

Now consider the case $\overline{K}_0 = Sp(n)$ $(n \ge 1)$ and $\overline{N} = Sp(1)$. In this case V_0 is an *n*-dimensional quaternionic vector space H^n and $\overline{N}_0 = Sp(1)$ acts on V_0 as a scalar multiplication. We can regard H^n as R^{4n} and Sp(1) as a subgroup of SO(4) naturally. By the similar way as in the case $K_0 = SU(n)$, there exist smooth functions $c_i: J \rightarrow R$, i = 1, 2, 3, 4, such that $h_2(r) = (c_1(r)r, c_2(r)r, c_3(r)r, c_4(r)r, 0, ..., 0)$ for $r \in J$, and we can extend \hat{c} to a smooth map on $[-\varepsilon, \varepsilon]$.

The proofs of the other cases are similar to those of the above cases. Thus we can extend c to a smooth map on $[-\varepsilon, \varepsilon]$. Since $c(r) \in N(H, K_0)/H$ for $r \neq 0$, we see $c(0) \in N(H, K_0)/H$. Put $\bar{a}(0) = b(0) \cdot c(0)$. Since $b(0) \in N(H) \cap$ $N(K_0)$ and $c(0) \in N(H, K_0)/H$, we have $\bar{a}(0) \in (N(H) \cap N(K_0))/H$. Let $\hat{a}:$ $[-1/2, 1/2] \rightarrow N(H)/H$ be a map given by $\hat{a}(r) = \bar{a}(r^2)$. Since $\hat{a}(r) = b(r) \cdot c(r)$ for $-\varepsilon \leq r \leq \varepsilon$, \hat{a} is a smooth map. Since \hat{a} is an even map and $\bar{a}(r) = \hat{a}(\sqrt{r})$ for $0 \leq r \leq 1/4$, \bar{a} is a smooth map on [0, 1/4] by Lemma 2.4. Thus we can extend the map a to a smooth map \bar{a} on [0, 1) satisfying $\bar{a}(0) \in (N(H) \cap N(K_0))/H$. Similarly we can extend a to a smooth map \bar{a} on [0, 1] satisfying $\bar{a}(1) \in (N(H) \cap$ $N(K_1))/H$. This completes the proof of Proposition 4.1.

Let Q denote the set of smooth maps $f: [0, 1] \rightarrow N(H)/H$ satisfying $f(i) \in (N(H) \cap N(K_i))/H$ for i=0, 1, endowed with C^{∞} topology. Using Proposition

4.1, we define a map L: Ker $P \rightarrow Q$ by $L(h) = \bar{a}^{-1}$.

Lemma 4.5. L: Ker $P \rightarrow Q$ is a group monomorphism.

Proof. Let
$$h_i \in \text{Ker } P$$
 for $i = 1, 2$. For $0 < r < 1$ and $g \in G$, we have
 $(g \cdot L(h_2 \circ h_1)(r)^{-1}, r) = (\alpha \circ h_2 \circ h_1 \circ \alpha^{-1})(gH, r)$
 $= ((\alpha \circ h_2 \circ \alpha^{-1}) \circ (\alpha \circ h_1 \circ \alpha^{-1}))(gH, r)$
 $= (\alpha \circ h_2 \circ \alpha^{-1})(g \cdot L(h_1)(r)^{-1}, r)$
 $= (g \cdot L(h_1)(r)^{-1} \cdot L(h_2)(r)^{-1}, r).$

Thus $L(h_2 \circ h_1) = L(h_2) \cdot L(h_1)$ on (0, 1). Since $L(h_1)$, $L(h_2)$ and $L(h_1 \circ h_2)$ are smooth maps on [0, 1], $L(h_2 \circ h_1) = L(h_2) \cdot L(h_1)$ on [0, 1]. Thus L is a group homomorphism. Suppose L(h) = 1 for $h \in \text{Ker } P$. Then $(h \circ \alpha^{-1})(gH, r)$ $= \alpha^{-1}(gH, r)$ for $g \in G$ and 0 < r < 1, and h = 1 on $\pi^{-1}((0, 1))$. Thus h = 1 on M, and L is a monomorphism.

Proposition 4.6. L is a continuous map.

Proof. We shall use the notations in the proof of Proposition 4.1. Since L is a group homomorphism, it is sufficient to show that $L: O \rightarrow Q$ is continuous. Let I denote a closed interval $[0, \varepsilon^2], [\varepsilon^2/2, 1-\varepsilon^2/2]$ or $[1-\varepsilon^2, 1]$. By Lemma 2.3, it is sufficient to prove that $L_I: O \xrightarrow{L} Q \xrightarrow{j*} C^{\infty}(I, N(H)/H)$ is continuous, where $j: I \rightarrow [0, 1]$ is an inclusion map.

First we shall consider the case $I = [0, \varepsilon^2]$. Let L_1 be the composition

$$O \xrightarrow{(k \circ \phi_{0,1}^{-1} \circ i)^*} C^{\infty}([-\varepsilon, \varepsilon], p_{0,\varepsilon}^{-1}(U_0))$$
$$\xrightarrow{(\sigma_0 \circ \rho_1 \circ \phi_{0,1})_*} C^{\infty}([-\varepsilon, \varepsilon], G),$$

where $k: p_{0,\varepsilon}^{-1}(\overline{W}_0) \hookrightarrow M$ is an inclusion map. Then L_1 is continuous by Lemma 2.2. Note that $L_1(h) = b$.

Let $L_2: O \to C^{\infty}([-\varepsilon, \varepsilon], (N(H, K_0)/H)^0)$ be a map given by $L_2(h) = c$. We shall prove that L_2 is continuous. This is trivial in the case $N(H, K_0)/H = Z_2$. Consider the case $\overline{K}_0 = SU(n)$ $(n \ge 2)$. In this case $V_0 = C^n = R^{2n}$ and $\overline{N}_0 = U(1) = SO(2)$. Put $C_0^{\infty}([-\varepsilon, \varepsilon], V_0) = \{F \in C^{\infty}([-\varepsilon, \varepsilon], V_0); F(0) = 0\}$, endowed with C^{∞} topology. Let $\Phi: C_0^{\infty}([-\varepsilon, \varepsilon], V_0) \to C^{\infty}([-\varepsilon, \varepsilon], R^2)$ be a map defined by $\Phi(F) = (\Phi(F^1), \Phi(F^2))$, where $F = (F^1, ..., F^{2n})$ and $\Phi(F^i)$ is a map defined in Lemma 4.4. Then Φ is continuous by Lemma 4.4. Let $m: R^2 \to M_2(R)$ denote a smooth map defined by

$$m(x, y) = \begin{bmatrix} x & -y \\ y & x \end{bmatrix},$$

where $M_2(R)$ denote the set of all 2×2 matrices over R. Let L'_2 denote the composition

$$O \xrightarrow{(k \circ \phi_{0,1}^{-1} \circ i)^*} C^{\infty}([-\varepsilon, \varepsilon], p_{0,1}^{-1}(U_0))$$
$$\xrightarrow{(\rho_2 \circ \phi_{0,1})_*} C^{\infty}([-\varepsilon, \varepsilon], D_{\varepsilon}(V_0)).$$

From Lemma 2.2, L'_2 is continuous. Note that $L'_2(h) = \tilde{h}_2$ and $L'_2(O)$ is contained in $C_0^{\infty}([-\varepsilon, \varepsilon], V_0)$. Let \hat{L}_2 denote the composition

$$O \xrightarrow{L_{2}} C_{0}^{\infty}([-\varepsilon, \varepsilon], V_{0})$$
$$\xrightarrow{\Phi} C^{\infty}([-\varepsilon, \varepsilon], R^{2})$$
$$\xrightarrow{m_{*}} C^{\infty}([-\varepsilon, \varepsilon], M_{2}(R))$$

Then $\hat{L}_2(h) = \hat{c}$ and \hat{L}_2 is continuous. This implies that L_2 is continuous by using Lemma 2.2. Similarly we can see that L_2 is continuous in the other cases.

Let $\mu: G \times G/H \to G/H$ be a map defined by the left translation and let $\iota: (N(H, K_0)/H)^0 \hookrightarrow G/H$ be an inclusion map. Then the composition

$$\begin{split} \hat{L} \colon O \xrightarrow{(L_1, \iota_* \circ L_2)} C^{\infty}([-\varepsilon, \varepsilon], G) \times C^{\infty}([-\varepsilon, \varepsilon], G/H) \\ \xrightarrow{\kappa} C^{\infty}([-\varepsilon, \varepsilon], G \times G/H) \\ \xrightarrow{\mu_*} C^{\infty}([-\varepsilon, \varepsilon], G/H) \end{split}$$

is continuous by Lemma 2.2, where κ is defined by $\kappa(f_1, f_2)(r) = (f_1(r), f_2(r))$. Note that $\hat{L}(h) = b \cdot c = \hat{a}$ and $\hat{L}(O)$ is contained in $C_e^{\infty}([-\varepsilon, \varepsilon], N(H)/H)$. Here $C_e^{\infty}([-\varepsilon, \varepsilon], N(H)/H)$ denotes the set of all smooth even maps $f: [-\varepsilon, \varepsilon] \rightarrow N(H)/H$, endowed with C^{∞} topology. Let $T: C_e^{\infty}([-\varepsilon, \varepsilon], N(H)/H) \rightarrow C^{\infty}([0, \varepsilon^2], N(H)/H)$ be a map defined by $T(f)(r) = f(\sqrt{r})$. By the same argument as in the proof in Lemma 2.4, we can prove that T is continuous. Thus $L_I = T \circ L$ is continuous.

Now consider the case $I = [\varepsilon^2/2, 1 - \varepsilon^2/2]$. L_I is given by the composition

$$O \xrightarrow{k^*} C^{\infty}(\pi^{-1}(I), \pi^{-1}(I))$$
$$\xrightarrow{(\alpha^{-1}\circ_{\iota})^*} C^{\infty}(I, \pi^{-1}(I))$$
$$\xrightarrow{(q_2\circ\alpha)_*} C^{\infty}(I, G/H),$$

where $k: \pi^{-1}(I) \hookrightarrow M$ is an inclusion, $\iota: I \to G/H \times I$ is a map given by $\iota(r) = (1H, r)$ and $q_2: G/H \times I \to G/H$ is the projection on the first factor. Thus L_I is continuous. We can see that L_I is continuous in the case $I = [1 - \varepsilon^2, 1]$ similarly as in the case $I = [0, \varepsilon^2]$, and this completes the proof of Proposition 4.6.

§5. Subgroups of the Topological Groups Q and Ker P

In this section we shall consider subgroups Q_1 and S of the topological groups Q and Ker P, respectively, such that $L(S)=Q_1$, and we shall prove that the inclusions $Q_1 \hookrightarrow Q_0$ and $S \hookrightarrow \text{Ker } P$ are homotopy equivalences, where Q_0 is the identity component of Q.

Put $Q_1 = \{a \in Q_0; a(r) = a(0) \text{ for } 0 \le r \le 1/4 \text{ and } a(r) = a(1) \text{ for } 3/4 \le r \le 1\}$. Then Q_1 is a topological subgroup of Q_0 . Let $i: Q_1 \hookrightarrow Q_0$ be an inclusion.

Lemma 5.1. i: $Q_1 \hookrightarrow Q_0$ is a homotopy equivalence.

Proof. Let $\sigma: [0, 1] \rightarrow [0, 1]$ be a smooth map such that

$$\sigma(r) = 0 \quad \text{for} \quad 0 \le r \le 1/4, \\ \sigma(r) = 1 \quad \text{for} \quad 3/4 \le r \le 1.$$

Let $\mu_t: [0, 1] \to [0, 1]$ $(0 \le t \le 1)$ be a smooth homotopy given by $\mu_t(r) = t\sigma(r) + (1-t)r$. Since $(a \circ \mu_t)(i) \in (N(H) \cap N(K_i))/H$ for $i=0, 1, a \circ \mu_t$ is an element of Q. Define $q: Q_0 \times [0, 1] \to Q$ by $q(a, t) = a \circ \mu_t$. Let $\mu: [0, 1] \to C^{\infty}([0, 1], [0, 1])$ be a map given by $\mu(t) = \mu_t$. Then it is easy to see that μ is continuous. Note that q is given by the composition

$$Q_0 \times [0, 1] \xrightarrow{(1,\mu)} Q_0 \times C^{\infty}([0, 1], [0, 1])$$
$$\xrightarrow{\text{comp}} C^{\infty}([0, 1], N(H)/H),$$

where comp is given by comp $(a, f) = a \circ f$. By Lemma 2.2 (6), q is continuous. Then $q(Q_0 \times [0, 1])$ is contained in Q_0 . Let $q_t: Q_0 \to Q_0$ be a map given by $q_t(a) = q(a, t)$. Since $\mu_1 = \sigma$, $q_1(Q_0)$ is contained in Q_1 . Thus q is a homotopy between $q_0 = 1_{Q_0}$ and $q_1 = i \circ q_1$. Note that $q_t(Q_1)$ is contained in Q_1 for any t. Then $q: Q_1 \times [0, 1] \to Q_1$ is a homotopy between 1_{Q_1} and $q_1 \circ i$. Therefore Lemma 5.1 follows.

Put $S = L^{-1}(Q_1) \subset \text{Ker } P$. Let $\iota: S \hookrightarrow \text{Ker } P$ be an inclusion.

Lemma 5.2. $\iota: S \hookrightarrow \operatorname{Ker} P$ is a homotopy equivalence.

Proof. Put $a = L(h^{-1})$ for $h \in \text{Ker } P$. Let $h_t: M \to M$ $(0 \le t \le 1)$ be a map as follows: h_t is given on $\pi^{-1}((0, 1))$ by the composition $\pi^{-1}((0, 1)) \xrightarrow{\alpha} G/H \times (0, 1) \xrightarrow{\hat{h}_t} G/H \times (0, 1) \xrightarrow{\alpha^{-1}} \pi^{-1}((0, 1))$, where \hat{h}_t is defined by $\hat{h}_t(gH, r) = (g \cdot q_t(a)(r), r)$. $h_t(gK_i) = ga(i) \cdot K_i$ (i = 0, 1) for $g \in G$. Here we need the following

Assertion 5.3. h_t is a smooth map for any t.

Proof. By the definition, h_t is smooth on $\pi^{-1}((0, 1))$. We shall prove that h_t is smooth on $\pi^{-1}(0)$. Let a_0 be an element of G such that $a_0H=a(0)$ and $a_0 \in N(H) \cap N(K_0)$. For $[g, 0] \in p_{0,1/2}^{-1}(1K_0)$, $(p_{0,1/2} \circ h)([g, 0]) = \pi_0(ga_0) = \pi_0(a_0) \in a_0 U_0$. Then there exists a neighborhood W_0 of $1K_0$ in G/K_0 such that $(p_{0,1/2} \circ h)(p_{0,1/2}^{-1}(\overline{W}_0))$ is contained in $a_0 U_0$. For $[g, re_0] \in p_{0,1/2}^{-1}(\overline{W}_0)$ and $0 \le t \le 1$,

$$(p_{0,1/2} \circ h_t)([g, re_0]) = \overline{\pi}_0(gq_t(a)(r^2))$$

= $\overline{\pi}_0(ga((1-t)r^2))$
= $(p_{0,1/2} \circ h)([g, \sqrt{1-t}re_0])$

which is contained in $(p_{0,1/2} \circ h)(p_{0,1/2}^{-1}(\overline{W}_0)) \subset a_0 U_0$. Then $h_t(p_{0,1/2}^{-1}(g\overline{W}_0))$ is contained in $p_{0,1/2}^{-1}(ga_0 U_0)$ for $g \in G$ and $0 \le t \le 1$.

Let $\tilde{h}: W_0 \times D_{1/2}(V_0) \to U_0 \times D_{1/2}(V_0)$ be a map given by $\tilde{h} = \phi_{0,ga_0} \circ h \circ \phi_{0,g}^{-1}$ for $g \in G$. Let $\rho_1: U_0 \times D_{1/2}(V_0) \to U_0$ and $\rho_2: U_0 \times D_{1/2}(V_0) \to D_{1/2}(V_0)$ be the projections on the first factor and the second factor respectively. Put $g' = ga_0$ and put $\tilde{h}^i = \rho_i \circ \tilde{h}$ for i = 0, 1. Then \tilde{h}^i is a smooth map and

$$\tilde{h}^{1}(x, rke_{0}) = g'^{-1}g\sigma_{0}(x)k \cdot \bar{\pi}_{0}(a(r^{2})),$$

$$\tilde{h}^{2}(x, rke_{0}) = \sigma_{0,g'}(g\sigma_{0}(x)k \cdot \bar{\pi}_{0}(a(r^{2}))^{-1}g\sigma_{0}(x)ka(r^{2}) \cdot re_{0}$$

for $x \in W_0$ and $k \in K_0$, where $\overline{\pi}_0: G/H \to G/K_0$ is the natural projection. Put $\tilde{h}_i^i = \rho_i \circ \phi_{0,g'} \circ h_i \circ \phi_{0,g}^{-1}$ for i = 0, 1. Then

$$\begin{split} \tilde{h}_{t}^{1}(x, \, rke_{0}) &= g'^{-1}g\sigma_{0}(x)k \cdot \bar{\pi}_{0}(a(\mu_{t}(r^{2}))) \,, \\ \tilde{h}_{t}^{2}(x, \, rke_{0}) &= \sigma_{0,g'}(g\sigma_{0}(x)k \cdot \bar{\pi}_{0}(a(\mu_{t}(r^{2})))^{-1}g\sigma_{0}(x)ka(\mu_{t}(r^{2})) \cdot re_{0}(x)ka(\mu_{t}(r^{2})) \cdot re_$$

for $x \in W_0$ and $k \in K_0$.

Since $\sigma(r^2) = 0$ for $r \le 1/2$, $\mu(r^2, t) = (1-t)r^2$ for $0 \le r \le 1/2$. Then $\tilde{h}_t^1(x, v) = \tilde{h}^1(x, \sqrt{1-t}v)$ for $0 \le t \le 1$ and $\tilde{h}_t^2(x, v) = 1/\sqrt{1-t} \tilde{h}^2(x, \sqrt{1-t}v)$ for $0 \le t < 1$. Thus \tilde{h}_t^1 ($0 \le t \le 1$) and \tilde{h}_t^2 ($0 \le t < 1$) are smooth maps.

By the Taylor formula (c.f. J. Dieudonné [5, Chapter VIII, (8, 14, 3)]), we have

$$\tilde{h}^2(x, v) = \tilde{h}^2(x, 0) + \left(\int_0^1 (D\tilde{h}^2)(x, \zeta v) d\zeta\right) v,$$

where $D\tilde{h}^2$ is the derivative of \tilde{h}^2 . Since $\tilde{h}^2(x, 0) = 0$,

$$\tilde{h}_t^2(x, v) = \left(\int_0^1 (D\tilde{h}^2)(x, \sqrt{1-t}\zeta v) d\zeta \right) v \quad \text{for} \quad 0 \le t < 1.$$

Then $\tilde{h}_1^2(x, v) = \lim_{t \to 1} \tilde{h}_t^2(x, v) = (D\tilde{h}^2)(x, 0)v$, and \tilde{h}_1^2 is a smooth map. Therefore h_t is smooth on $\pi^{-1}(0)$ for any $0 \le t \le 1$. Similarly we can prove that h_t is smooth on $\pi^{-1}(1)$, and Assertion 5.3 follows.

Proof of Lemma 5.2 continued. Let \bar{q} : Ker $P \times [0, 1] \rightarrow$ Ker P be a map defined by $\bar{q}(h, t) = h_i$. By Assertion 5.3, h_t and h_t^{-1} are smooth maps, and \bar{q} is a well defined map. Next we shall prove that \bar{q} is continuous. Let W_i be a neighborhood of $1K_i$ in G/K_i satisfying $\overline{W}_i \subset U_i$ for i=0, 1. Put $O = \{h \in \text{Ker } P;$ $h(p_{i,1/2}^{-1}(\overline{W}_i)) \subset p_{i,1/2}^{-1}(U_i)$ for $i=0, 1\}$. Then O is an open neighborhood of 1_M in Ker P. For $h \in O, g \in G$ and $0 \le t \le 1, h_t(p_{i,1/2}^{-1}(g\overline{W}_i))$ is contained in $p_{i,1/2}^{-1}(gU_i)$ (i=0, 1). Let W_2 be an open neighborhood of 1H in G/H satisfying $\overline{W}_2 \subset U_2$. Let C be one of the sets $\{p_{i,1/2}^{-1}(g\overline{W}_i)$ ($i=0, 1, g \in G$), $\alpha^{-1}(g\overline{W}_2 \times [1/5, 4/5])$ ($g \in G$). By Lemma 2.3, it is sufficient to show that the composition $\bar{q}_C: O \times [0, 1] \xrightarrow{\bar{q}}$ Ker $P \xrightarrow{j_{\infty}^*} C^{\infty}(C, M)$ is continuous for any C, where $j_C: C \hookrightarrow M$ is an inclusion map.

First consider the case $C = p_{0,1/2}^{-1}(g\overline{W}_0)$. Let $v_1: C^{\infty}(\overline{W}_0 \times D_{1/2}(V_0), U_0) \times [0, 1] \rightarrow C^{\infty}(\overline{W}_0 \times D_{1/2}(V_0), U_0)$ be a map given by $v_1(f, t)(x, v) = f(x, \sqrt{1-t}v)$. Let $v_2: C^{\infty}(\overline{W}_0 \times D_{1/2}(V_0), D_{1/2}(V_0)) \times [0, 1] \rightarrow C^{\infty}(\overline{W}_0 \times D_{1/2}(V_0), D_{1/2}(V_0))$ be a map given by $v_2(f, t)(x, v) = \left(\int_0^1 (Df)(x, \sqrt{1-t}\zeta v)d\zeta\right)(v)$. It is easy to see that v_1 and v_2 are continuous. Note that \overline{q}_C is the composition

$$\begin{split} O \times [0, 1] & \xrightarrow{(j_{C}^{-}, 1)} C^{\infty}(C, p_{0,1/2}^{-1}(gU_{0})) \times [0, 1] \\ & \xrightarrow{((\phi_{0}, g)_{*} \circ (\phi_{0,g})^{*}, 1)} C^{\infty}(\overline{W}_{0} \times D_{1/2}(V_{0}), U_{0} \times D_{1/2}(V_{0})) \times [0, 1] \\ & \xrightarrow{((\rho_{1})_{*}, (\rho_{2})_{*}, 1)} C^{\infty}(\overline{W}_{0} \times D_{1/2}(V_{0}), U_{0}) \\ & \times C^{\infty}(\overline{W}_{0} \times D_{1/2}(V_{0}), D_{1/2}(V_{0})) \times [0, 1] \\ & \xrightarrow{\nu} C^{\infty}(\overline{W}_{0} \times D_{1/2}(V_{0}), U_{0}) \times C^{\infty}(\overline{W}_{0} \times D_{1/2}(V_{0}), D_{1/2}(V_{0})) \\ & \xrightarrow{\kappa} C^{\infty}(\overline{W}_{0} \times D_{1/2}(V_{0}), U_{0} \times D_{1/2}(V_{0})) \\ & \xrightarrow{(\phi_{0,g}^{-1}, g)^{*}} C^{\infty}(C, p_{0,1/2}^{-1}(gU_{0})) \hookrightarrow C^{\infty}(C, M). \end{split}$$

Here v is given by $v(f_1, f_2, t) = (v_1(f_1, t), v_2(f_2, t))$ and κ is the map defined in Lemma 2.2 (5). Then \bar{q}_c is continuous by Lemma 2.2.

Next consider the case $C = \alpha^{-1}(g\overline{W}_2 \times [1/5, 4/5])$. Let $m: N(H)/H \times G/H \rightarrow G/H$ be a map defined by m(nH, gH) = (gn)H and $p_2: G/H \times [1/5, 4/5] \rightarrow [0, 1]$ be a map given by $p_2(gH, r) = r$. Let $\delta: Q_0 \rightarrow Q_0$ be a map given by $\delta(a) = a^{-1}$. Then the map \bar{q}_C is the composition

$$O \times [0, 1] \xrightarrow{(L,1)} Q_0 \times [0, 1] \xrightarrow{\delta \circ q} Q_0 \xrightarrow{p_2^*} C^{\infty}(G/H \times [1/5, 4/5], N(H)/H)$$

$$\xrightarrow{(1_{G'H \times [1/5, 4/5])_1}} C^{\infty}(G/H \times [1/5, 4/5], N(H)/H \times G/H \times [1/5, 4/5])$$

$$\xrightarrow{m_*} C^{\infty}(G/H \times [1/5, 4/5], G/H \times [1/5, 4/5])$$

$$\xrightarrow{(\alpha \circ j_C)^{*_0}(\alpha^{-1})_*} C^{\infty}(C, \alpha^{-1}(G/H \times [1/5, 4/5])) \hookrightarrow C^{\infty}(C, M),$$

which is continuous because L and q are continuous.

Similarly as in the case $C = p_{0,1/2}^{-1}(g\overline{W}_0)$, we can see that \overline{q}_C is continuous in the case $C = p_{1,1/2}^{-1}(g\overline{W}_1)$. Thus \overline{q} is continuous. Since $q_1(Q_0) \subset Q_1$, $\overline{q}_1(\text{Ker } P) \subset S$. Therefore \overline{q} is a homotopy between $\overline{q}_0 = 1_{\text{Ker } P}$ and $\overline{q}_1 = \iota \circ \overline{q}_1$. Since $q(Q_1 \times [0, 1]) \subset Q_1$, $\overline{q}(S \times [0, 1]) \subset S$. Then $\overline{q} : S \times [0, 1] \rightarrow S$ is a homotopy between 1_S and $\overline{q}_1 \circ \iota$. Thus ι is a homotopy equivalence, and this completes the proof of Lemma 5.2.

§6. Proof of Theorem

In this section, we shall see that $L: S \rightarrow Q_1$ is an isomorphism between topological groups, and we shall prove our Theorem.

Proposition 6.1. L: $S \rightarrow Q_1$ is an isomorphism between topological groups.

Before the proof of Proposition 6.1, we begin with some lemmas. For any topological subgroup K of G, K^0 denotes the identity component of K.

Lemma 6.2. For any $a \in N(K_0)^0 \cap N(H)$, there exist $a' \in N(H^0) \cap K_0^0$ and $n \in \text{Cent}(K_0^0)$ such that $a = n \cdot a'$, where $\text{Cent}(K_0^0)$ is the centralizer of K_0^0 in G.

Proof. Since $N(K_0)^0$ is a compact connected Lie group, there exist a torus group T and a simply connected semi-simple compact Lie group G' such that $\hat{N}_0 = T \times G'$ is a finite covering group of $N(K_0)^0$ (c.f. L. Pontrjagin [8, § 64]). Let $q_0: \hat{N}_0 \to N(K_0)^0$ be the covering projection. Put $\hat{K}_0 = q_0^{-1}(K_0^0)$. Since K_0^0 is a normal subgroup of $N(K_0)^0$, \hat{K}_0 is a normal subgroup of \hat{N}_0 . Then \hat{K}_0^0 is also a normal subgroup of \hat{N}_0 . Here we need the following

Assertion 6.3. There exists a closed normal subgroup K'_0 of \hat{N}_0 such that \hat{N}_0 is isomorphic to the product group $\hat{K}_0^0 \times K'_0$ as a Lie group.

Proof. There exist simply connected simple Lie groups G_i $(1 \le i \le r)$ such that $G' = G_1 \times \cdots \times G_r$. Since \hat{K}_0^0 is a compact connected Lie group, there exist

Homotopy Type

simply connected simple Lie groups K_j $(1 \le j \le s)$ and a torus group T' such that $\tilde{K}_0 = T' \times K_1 \times \cdots \times K_s$ is a finite covering of \hat{K}_0^0 . Let $p_0: \tilde{K}_0 \to \hat{K}_0^0$ be the covering projection. Let $\rho_i: \hat{N}_0 = T \times G_1 \times \cdots \times G_r \to G_i$ be a projection on the direct factor G_i $(1 \le i \le r)$. Since \hat{K}_0^0 is a normal subgroup of \hat{N}_0 , $\rho_i(\hat{K}_0^0) = G_i$ or $\{1\}$. If $\rho_i(\hat{K}_0^0) = G_i$, $\rho_i(p_0(K_j))$ is a normal subgroup of G_i . Thus $\rho_i(p_0(K_j)) = G_i$ or $\{1\}$, for $1 \le i \le r$, $1 \le j \le s$.

Put $\rho'_i = \rho_i \circ p_0$. If $\rho'_i(K_{j_1}) = \rho'_i(K_{j_2})$ $(j_1 \neq j_2)$, then $\rho'_i(g_1) \cdot \rho'_i(g_2) = \rho'_i(g_1 \cdot g_2) = \rho'_i(g_2 \cdot g_1) = \rho'_i(g_2) \cdot \rho'_i(g_1)$ for $g_1 \in K_{j_1}$, $g_2 \in K_{j_2}$. Then $\rho'_i(K_{j_1})$ is a commutative normal subgroup of G_i , and $\rho'_i(K_{j_1}) = \{1\}$. If $\rho'_i(K_j) = G_i$, then $\rho'_i(T')$ is a normal subgroup of G_i , hence $\rho'_i(T') = \{1\}$. Therefore, if $\rho'_i(K_j) = G_i$, then $\rho'_i(T') = \{1\}$ and $\rho'_i(K_n) = \{1\}$ for $n \neq j$.

Assume $\rho'_{i_1}(K_j) = G_{i_1}$ and $\rho'_{i_2}(K_j) = G_{i_2}$ for $i_1 \neq i_2$. Let $\rho' : \tilde{K}_0 \to G_{i_1} \times G_{i_2}$ be a map defined by $\rho'(k) = (\rho'_{i_1}(k), \rho'_{i_2}(k))$. Since \hat{K}_0^0 is a normal subgroup of \hat{N}_0 and $\rho'(\tilde{K}_0) = \rho'(K_j)$, $\rho'(K_j)$ is a normal subgroup of $G_{i_1} \times G_{i_2}$. Then, for $x, y \in K_j$, there exists $k \in K_j$ such that $(\rho'_{i_1}(x), 1)\rho'(y)(\rho'_{i_1}(x)^{-1}, 1) = \rho'(k)$. Then $\rho'_{i_1}(xyx^{-1}) = \rho'_{i_1}(x)\rho'_{i_1}(y)\rho'_{i_1}(x)^{-1} = \rho'_{i_1}(k)$ and $\rho'_{i_2}(y) = \rho'_{i_2}(k)$. Since K_j , $G_{i_n}(n=1, 2)$ are simply connected simple Lie groups, $\rho'_{i_n} : K_j \to G_{i_n}$ is an isomorphism between the Lie groups. Thus $xyx^{-1} = k = y$ for any $x, y \in K_j$, and K_j must be a commutative Lie group, which is a contradiction since K_j is a simple Lie group.

Thus we may assume that $\rho'_j(K_j) = G_j$ and $\rho'_i(K_j) = \{1\}$ $(i \neq j)$ for $1 \le j \le s$, $1 \le i \le r$. For i > s, $\rho_i(\hat{K}_0^0) = \rho'_i(\tilde{K}_0) = \rho'_i(T')$ which is a commutative normal subgroup of G_i , hence $\rho'_i(T') = \{1\}$. Then $p_0(T')$ is a subgroup of T, and there exists a torus subgroup S of T such that $T = p_0(T') \times S$. Put $K' = S \times G_{s+1} \times \cdots \times G_r$. Then $\hat{N}_0 = \hat{K}_0^0 \times K'_0$, and Assertion 6.3 follows.

Proof of Lemma 6.2 continued. By Assertion 6.3, there exists a closed normal subgroup K'_0 of \hat{N}_0 such that $\hat{N}_0 = \hat{K}_0^0 \times K'_0$. Since K_0^0 is a connected group, $q_0(\hat{K}_0^0) = K_0^0$. Then $N(K_0)^0 = q_0(\hat{N}_0) = q_0(\hat{K}_0^0) \cdot q_0(K'_0) = K_0^0 \cdot q_0(K'_0)$. Note that $q_0(K'_0)$ is contained in Cent (K_0^0) . Thus, for $a \in N(K_0)^0 \cap N(H)$, there exists $a' \in K_0^0$ and $n \in \text{Cent}(K_0^0)$ such that $a = a' \cdot n$. Since $N(H) \subset N(H^0)$ and $H^0 \subset K_0^0$, $H^0 = aH^0a^{-1} = a'nH^0n^{-1}a'^{-1} = a'H^0a'^{-1}$. Thus $a' \in N(H^0)$ and Lemma 6.2 follows.

For $a \in Q_1$, we define a map $h: M \rightarrow M$ as follows:

 $h(\alpha^{-1}(gH, r)) = \alpha^{-1}((ga(r)^{-1}, r))$ for $(gH, r) \in G/H \times (0, 1)$,

 $h([g, 0]) = [ga(i)^{-1}, 0]$ for $[g, 0] \in \pi^{-1}(i)$ (i=0, 1).

Lemma 6.4. h is a smooth map.

Proof. Choose $a_0 \in (N(H) \cap N(K_0))^0 \subset N(H)^0 \cap N(K_0)^0$ such that $a(0)^{-1} = a_0H$. There exists a neighborhood W_0 of $1K_0$ in G/K_0 such that $\pi_0^{-1}(W_0) \cdot a_0$ is contained in $a_0 \cdot \pi_0^{-1}(U_0)$. Since a(r) = a(0) for $0 \le r \le 1/4$, $h(p_{0,1/2}^{-1}(gW_0))$ is contained in $p_{0,1/2}^{-1}(ga_0U_0)$. Let $\tilde{h}_1: W_0 \times D_{1/2}(V_0) \to U_0$ be a map given by the composition $\rho_1 \circ \phi_{0,ga_0} \circ h \circ \phi_{0,ga_0}^{-1}$, and let $\tilde{h}_2: W_0 \times D_{1/2}(V_0) \to D_{1/2}(V_0)$ be a map given by the composition $\rho_2 \circ \phi_{0,ga_0} \circ h \circ \phi_{0,ga_0}^{-1}$. Note that

$$\begin{aligned} (h \circ \phi_{0,g}^{-1})((x, rke_0)) &= h([g\sigma_0(x)k, re_0]) \\ &= h(\alpha^{-1}((g\sigma_0(x)kH, r^2))) \\ &= \alpha^{-1}((g\sigma_0(x)ka_0H, r^2)) \\ &= [g\sigma_0(x)ka_0, re_0] \end{aligned}$$

for $x \in W_0$, $k \in K_0$, $0 < r \le 1/2$. Since $a_0 \in N(K_0)$, $ka_0K_0 = a_0K_0$. Then

$$\begin{split} \tilde{h}_1(x, v) &= a_0^{-1} \sigma_0(x) a_0 K_0 \quad \text{for} \quad (x, v) \in W_0 \times D_{1/2}(V_0), \quad \text{and} \\ \tilde{h}_2(x, rke_0) &= \sigma_{0,ga_0}(g\sigma_0(x) a_0 K_0)^{-1} g\sigma_0(x) k a_0 \cdot re_0 \end{split}$$

for $x \in W_0$, $k \in K_0$, $0 \le r \le 1/2$. Thus \tilde{h}_1 is a smooth map and \tilde{h}_2 is smooth on $W_0 \times (D_{1/2}(V_0) - 0)$. We shall prove that \tilde{h}_2 is smooth on $W_0 \times 0$, hence his smooth on $\pi^{-1}(0)$. This is trivial in the case dim $S(V_0) = 0$.

Let $\xi_{a_0,g}: W_0 \to G$ be a map given by $\xi_{a_0,g}(x) = \sigma_{0,ga_0}(g\sigma_0(x)a_0K_0)^{-1}g\sigma_0(x)$. Then $\xi_{a_0,g}$ is a smooth map. By Lemma 6.2, there exist $a'_0 \in N(H^0) \cap K_0^0$ and $n \in \text{Cent}(K_0^0)$ such that $a_0 = na'_0$. Then $\tilde{h}_2(x, rke_0) = \xi_{a_0,g}(x)kna'_0 \cdot rke_0$ $= \xi_{a_0,g}(x)nka'_0 \cdot re_0$ for $x \in W_0$, $k \in K_0^0$ and $0 \le r \le 1/2$. Note that $N(H^0) \cap K_0^0$ $= N(H^0, K_0^0)$.

Assertion 6.5. For $a \in N(H^0, K_0^0)$, let $\psi_a: D(V_0) \to D(V_0)$ be a map defined by $\psi_a(rke_0) = rkae_0$ for $0 \le r \le 1$, $k \in K$. Then ψ_a is a diffeomorphism. Moreover, let $\psi: N(H^0, K_0^0) \to \text{Diff}^{\infty}(D(V_0))$ be a map given by $\psi(a) = \psi_a$, then ψ is continuous.

Proof. If dim $S(V_0)=0$, then $K_0^0 \subset H$ and $\psi_a = 1_{D(V_0)}$. In this case, the proof is trivial. We assume dim $S(V_0)>0$. Since $S(V_0)=K_0/H$ is connected, K_0^0 acts transitively on $S(V_0)$. Let L be the ineffective kernel of the action $K_0^0 \times S(V_0) \rightarrow S(V_0)$. Put $\overline{K} = K_0^0/L$ and $\overline{H} = (H \cap K_0^0)/L$. Then \overline{K} acts transitively and effectively on $S(V_0)$ and \overline{H} is an isotropy subgroup of this action. By Lemma 4.3, \overline{K} , \overline{H} and $N(\overline{H}, \overline{K})/\overline{H}$ are G, H and N(H)/H in Lemma 4.3, respec-

tively. Hence \overline{H} is connected. Since the identity component of $H \cap K_0^0$ is H^0 , $\overline{H} = H^0 \cdot L/L$. For $a \in N(H^0, K_0^0)$, the left coset aL is an element of $N(\overline{H}, \overline{K})$. Then a defines an element $\tilde{a} \in N(\overline{H}, \overline{K})/\overline{H}$. Note that $\psi_a(rke_0) = rkae_0 = rk\tilde{a}e_0$ for $0 \le r \le 1$, $k \in K_0^0$.

Consider the case $\overline{K} = SU(n)$ $(n \ge 2)$, $\overline{H} = SU(n-1)$ and $N(\overline{H}, \overline{K})/\overline{H} = U(1)$. In this case, $V_0 = C^n$ and U(1) acts on V_0 as a scalar multiplication. Thus $\psi_a(rke_0) = \overline{a} \cdot rke_0$ for $rke_0 \in D(V_0)$. Hence ψ_a is a diffeomorphism. It is easy to see that ψ is continuous.

Next consider the case $\overline{K} = Sp(n)$ $(n \ge 1)$, $\overline{H} = Sp(n-1)$ and $N(\overline{H}, \overline{K})/\overline{H} = Sp(1)$. In this case, $V_0 = H^n$ and Sp(1) acts on V_0 as a scalar multiplication on the right. Then $\psi_a(v) = v \cdot \tilde{a}$ for $v \in D(V_0)$, hence ψ_a is a diffeomorphism and ψ is continuous. Similarly we can see that ψ_a is a diffeomorphism and ψ is continuous in the other cases, and Assertion 6.5 follows.

Proof of Lemma 6.4 continued. Since $\tilde{h}_2(x, v) = \xi_{a_0,g}(x)n \cdot \psi_{a_0}(v)$, by Assertion 6.5, \tilde{h}_2 is a smooth map. Thus \tilde{h}_1 and \tilde{h}_2 are smooth maps, hence h is smooth on $\pi^{-1}(0)$. Similarly we can see that h is smooth on $\pi^{-1}(1)$. By the definition, h is smooth on $\pi^{-1}((0, 1))$, and this completes the proof of Lemma 6.4.

Let $\hat{L}(a)$ be a smooth map $h: M \to M$ in Lemma 6.4, for $a \in Q_1$. Since $\hat{L}(a^{-1}) = \hat{L}(a)^{-1}$, h is a diffeomorphism of M. By the definition, h is an equivariant map. Thus we have a map $\hat{L}: Q_1 \to \text{Diff}_G^{\infty}(M)$. Note that \hat{L} is an abstract group homomorphism.

Lemma 6.6. $\hat{L}: Q_1 \rightarrow \text{Diff}_G^{\infty}(M)$ is continuous.

Proof. Let W_i be a neighborhood of $1K_i$ in G/K_i such that $\overline{W_i} \subset U_i$ (i=0, 1), and let W_2 be a neighborhood of 1H in G/H such that $\overline{W_2} \subset U_2$. Put $A_i = \{n \in N(K_i)^0; n^{-1}\overline{W_i}n \subset U_i\}$. Then A_i is an open neighborhood of the identity in $N(K_i)^0$. Let $q_i: \hat{N_i} \to N(K_i)^0$ be a finite covering such that $\hat{N_i}$ is a direct product $T_i \times G'_i$. Here T_i is a torus group and G'_i is a simply connected semi-simple compact Lie group. Put $\hat{K}_i = q_i^{-1}(K_i^0)$. By Assertion 6.3, there exists a closed normal subgroup K'_i of $\hat{N_i}$ such that $\hat{N}_i = \hat{K}_i^0 \times K'_i$. Let s_i be a smooth local cross section of q_i defined on an open neighborhood B_i of the identity in $N(K_i)^0$. Since $\pi_2: (N(H) \cap N(K_i))^0 \to ((N(H) \cap N(K_i))/H)^0$ is a fibration, there exists a smooth local cross section t_i of π_2 defined on an open neighborhood E_i of 1H such that $t_i(E_i) \subset A_i \cap B_i$.

Put $O = \{a \in Q_1; a(i)^{-1} \in E_i \ (i=0, 1)\}$. Then O is an open neighborhood of the identity. Since \hat{L} is a group homomorphism, it is enough to show that \hat{L} is continuous on O. Let C denote one of the sets $\{p_{i,1/2}^{-1}(g\overline{W}_i) \ (i=0, 1, g \in G), \alpha^{-1}(g\overline{W}_2 \times [1/5, 4/5]) \ (g \in G)\}$. By Lemma 2.3, if $\hat{L}_C: O \xrightarrow{L} \operatorname{Diff}_G^{\infty}(M)^0 \xrightarrow{j_C^*} C^{\infty}(C, M)$ is continuous for any C, then \hat{L} is continuous, where $j_C: C \hookrightarrow M$ is an inclusion map.

First consider the case $C = p_{0,1/2}^{-1}(g\overline{W}_i)$. Let $\beta_1: \hat{N}_0 = \hat{K}_0^0 \times K'_0 \to \hat{K}_0^0$ and $\beta_2: \hat{N}_0 \to K'_0$ be the projection on the first factor and the second factor respectively. Let L_1 be the composition

$$O \xrightarrow{r} E_0 \xrightarrow{t_0} A_0 \cap B_0 \xrightarrow{(\xi_g, q_0 \circ \beta_2 \circ s_0)} C^{\infty}(\overline{W}_0, G) \times \operatorname{Cent}(K_0^0) \xrightarrow{m} C^{\infty}(\overline{W}_0, G).$$

Here r, ξ and m are given by $r(a) = a(0)^{-1}$, $\xi_g(a_0)(x) = \xi_{a_0,g}(x)$ and $m(f, n)(x) = f(x) \cdot n$, respectively. Put $a_0 = (t_0 \circ r)(a)$ for $a \in O$. Then $\pi_0(\xi_{g,a_0}(x)) = \pi_0(a_0^{-1})$ for $x \in \overline{W}_0$ and $\pi_0((q_0 \circ \beta_2 \circ s_0)(a_0)) = \pi_0(a_0)$. Therefore $L_1(a) \in K_0$ for any $a \in O$, and $L_1(O) \subset C^{\infty}(\overline{W}_0, K_0)$. Let L_2 be the composition

$$O \xrightarrow{\mathbf{r}} E_0 \xrightarrow{t_0} A_0 \cap B_0 \xrightarrow{q_0 \circ \beta_1 \circ s_0} N(H^0, K_0^0) \xrightarrow{\psi} \text{Diff}^{\infty}(D_{1/2}(V_0)).$$

By Assertion 6.5, L_2 is continuous. Let L_3 be the composition

$$O \xrightarrow{(L_1,L_2)} C^{\infty}(\overline{W}_0, K_0) \times \text{Diff}^{\infty}(D_{1/2}(V_0))$$

$$\xrightarrow{(\rho_1^*, \rho_2^*)} C^{\infty}(\overline{W}_0 \times D_{1/2}(V_0), K_0) \times C^{\infty}(\overline{W}_0 \times D_{1/2}(V_0), D_{1/2}(V_0))$$

$$\xrightarrow{\kappa} C^{\infty}(\overline{W}_0 \times D_{1/2}(V_0), K_0 \times D_{1/2}(V_0))$$

$$\xrightarrow{\mu_*} C^{\infty}(\overline{W}_0 \times D_{1/2}(V_0), D_{1/2}(V_0)),$$

where μ is given by $\mu(k, v) = k \cdot v$, and κ is the map in Lemma 2.2. Then L_3 is continuous, and $L_3(a) = \tilde{h}_2$. Let $\gamma: A_0 \to C^{\infty}(\overline{W}_0, U_0)$ be a map defined by $\gamma(a_0)(x) = a_0^{-1}\sigma_0(x)a_0K_0$. γ is a restriction map to A_0 of a map $\overline{\gamma}: N(K_0)$ $\to C^{\infty}(G/K_0, G/K_0)$ given by $\overline{\gamma}(n)(gK_0) = n^{-1}gnK_0$. Since $\overline{\gamma}$ is a continuous map, γ is continuous. Let L_4 be the composition

$$O \xrightarrow{r} E_0 \xrightarrow{t_0} A_0 \xrightarrow{\gamma} C^{\infty}(\overline{W}_0, U_0) \xrightarrow{\rho_1^*} C^{\infty}(\overline{W}_0 \times D_{1/2}, U_0).$$

Then L_4 is continuous and $L_4(h) = \tilde{h}_1$. L_c is the composition

$$\begin{split} O & \xrightarrow{(L_4,L_3)} C^{\infty}(\overline{W}_0 \times D_{1/2}(V_0), U_0) \times C^{\infty}(\overline{W}_0 \times D_{1/2}(V_0), D_{1/2}(V_0)) \\ & \xrightarrow{\kappa} C^{\infty}(\overline{W}_0 \times D_{1/2}(V_0), U_0 \times D_{1/2}(V_0)) \\ & \xrightarrow{(\phi_{0,g})^*(\phi_{0,g})_*} C^{\infty}(C, p_{0,1/2}^{-1}(gU_0)) \hookrightarrow C^{\infty}(C, M). \end{split}$$

Thus L_c is continuous.

Now consider the case $C = \alpha^{-1}(g \overline{W}_2 \times [1/5, 4/5])$. Let $m: g \overline{W}_2 \times N(H)/H$

Номотору Туре

 $\rightarrow G/H$ be a map defined by m(gH, nH) = ghH, and let $\rho: G/H \times [1/5, 4/5] \rightarrow [1/5, 4/5]$ be the projection on the second factor. Then \hat{L}_c is given by the composition

$$O \xrightarrow{i^* \circ \delta_*} C^{\infty}([1/5, 4/5], N(H)/H)$$

$$\xrightarrow{(1_g \overline{W}_2)!} C^{\infty}(g \overline{W}_2 \times [1/5, 4/5], g \overline{W}_2 \times N(H)/H)$$

$$\xrightarrow{m_*} C^{\infty}(g \overline{W}_2 \times [1/5, 4/5], G/H)$$

$$\xrightarrow{\rho_{\ddagger}} C^{\infty}(g \overline{W}_2 \times [1/5, 4/5], G/H \times [1/5, 4/5])$$

$$\xrightarrow{\alpha^* \circ (\alpha^{-1})_*} C^{\infty}(C, \alpha^{-1}(G/H \times [1/5, 4/5])) \hookrightarrow C^{\infty}(C, M),$$

where $i: [1/5, 4/5] \hookrightarrow [0, 1]$ is the inclusion map and $\delta: N(H)/H \to N(H)/H$ is a map given by $\delta(a) = a^{-1}$. By Lemma 2.2, \hat{L}_C is continuous.

We can see that L_c is continuous in the case $C = p_{1,1/2}^{-1}(g\overline{W}_1)$ similarly as in the case $C = p_{0,1/2}^{-1}(g\overline{W}_0)$, and this completes the proof of Lemma 6.6.

Proof of Proposition 6.1. From Lemma 6.6, $\hat{L}(Q_1)$ is contained in Diff $_G^{\infty}(M)_0$. Then, by the definition, $\hat{L}(Q_1)$ is contained in S, and $\hat{L} = L^{-1}$. Combining Lemma 4.5, Proposition 4.6 and Lemma 6.6, $\hat{L}: S \to Q_1$ is an isomorphism between topological groups, and this completes the proof of Proposition 6.1.

Proof of Theorem. By Corollary 3.6, $\operatorname{Diff}_{G}^{\infty}(M)_{0}$ has the same homotopy type as Ker P. Combining Lemma 5.1, Lemma 5.2 and Proposition 6.1, Ker P has the same homotopy type as Q_{0} . Note that Q_{0} has the same homotopy type as the path space $\Omega(N(H)/H; (N(H) \cap N(K_{0}))/H, (N(H) \cap N(K_{1}))/H)_{0}$. This completes the proof of our Theorem.

§7. Concluding Remarks

From our Theorem, we have the following

Corollary 7.1. (1) If $K_0 = K_1 = G$, then $\text{Diff}_G^{\infty}(M)_0$ has the same homotopy type as $(N(H)/H)^0$.

(2) If N(H)/H is a finite group, then $\text{Diff}_{G}^{\infty}(M)_{0}$ is contractible.

Remark 7.2. In K. Abe and K. Fukui [1], we have proved that $\operatorname{Diff}_{G}^{\infty}(M)_{0}$ is perfect if M is a G-manifold with one orbit type and $\dim M/G \ge 1$. But, by using Proposition 3.1, we can see that $\operatorname{Diff}_{G}^{\infty}(M)_{0}$ is not perfect in the case M/G = [0, 1].

References

- [1] Abe, K. and Fukui, K., On commutators of equivariant diffeomorphisms, *Proc. Japan Acad.*, 54 (1978), 52–54.
- [2] Abraham, R., *Lectures of Smale on Differential topology*, Mimeographed Notes, Columbia Univ., 1962.
- [3] Bredon, G., Introduction to Compact Transformation Groups, Academic Press, New York-London, 1972.
- [4] Cerf, J., Topologie de certains espaces de plongements, Bull. Soc. Math. France, 89 (1961), 227-380.
- [5] Dieudonné, J., Foundations of Modern Analysis, Academic Press, New York-London, 1960.
- [6] Hirsch, M., *Differential Topology*, Springer-Verlag, New York-Heidelberg-Berlin, 1976.
- [7] Hsiang, W. C. and Hsiang, W. Y., Classification of differentiable actions on S^n , \mathbb{R}^n and D^n with S^k as the principal orbit, Ann. of Math., 82 (1965), 421–433.
- [8] Pontrjagin, L., Topological Groups, Princeton Univ. Press, Princeton, New York, 1946.
- [9] Yokota, I., Groups and Representations (in Japanese), Shokabo, 1973.