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Duality of Mixed Hodge Structures
of Algebraic Varieties1'

By

Akira FUJIKI*

Introduction

Let X be a compact complex manifold of pure dimension n and Y an ana-

lytic subset of X. Let U = X— Y. Then associated to the pair (X9 Y) we have

the following pair of exact sequences of rational cohomology groups

-> H*(U,Q) -> H*(X9Q) -> H*(Y9Q) -> Hl
c
+1(U,Q) ->

<- H2n-l(U9 (?) *- H2"-*^ (?) 4- H^-^X, (?) 4- H2n-l-i(U9 Q) <-

which are dual to each other via Poincare pairings (cf. (1.5)). On the other

hand, when Z is an algebraic variety (as we assume in the following), Deligne

defined in [3] [4] the natural mixed (Q-)Hodge structure on each term of the

above sequences, in such a way that the morphisms are those of mixed Hodge

structures. The purpose of this article is then to show that the duality men-

tioned above is also compatible with the mixed Hodge structures under a suitable

definition. A result in a sense analogous to ours has been obtained by Herrera

and Lieberman in [13] in which they showed that the above duality is com-

patible with 'infinitesimal Hodge filtrations' of X along Y. Duality of mixed

Hodge structure itself was also mentioned in the introduction of [4] as according

to N. Katz. However, since there seems no published articles on this subject,

it would not be of little use to give a detailed exposition like the present one.

In Section 1 a precise statement of the theorem will be given and its proof

is reduced to the case where we have to show that the pairing i^y: H*(Y9 Q)x

Hyn~l(X, (?)->(? gives a duality of mixed Hodge structures under the assump-

tion that Yis a divisor with only normal crossings in X. In this case we have
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the mixed Hodge structure on Hl(Y, Q) fresp. H$n~l(X9 Q)) as described in

[10] or [20] (resp. coming directly from that on H2"~'(t7, Q) as described in

[3]). The problem is that apparently these two descriptions do not fit well in

the framework of duality. Our proof then consists in constructing commutative

diagrams (A) and (B) (cf. (1.9)) of certain complexes' sheaves which are 'dual' to

each other, where simple and multiple residues of Herrera-Lieberman [12] and

Herrera [11] respectively play an important role in defining morphisms. This

will be carried out in Sections 2 and 3 together with the proof of the theorem.

(See (1.9) for an outline.) In Section 4 we treat another problem on naturality

of mixed Hodge structure, i.e., its compatibility with the spectral sequence of Fary

associated to a descending sequence of analytic subsets of X (Proposition 4.6).

Note that the Hodge theory is applicable without further change to a wider

class of complex spaces, i.e., those in the category ^ as defined in (1.2), so that

our results are also valid for these spaces. In [7] we used the results of the

present note in an application to fixed point sets of C* actions on compact

Kahler manifolds, which was the original motivation for this investigation.

Notations. Let jtf be an abelian category, K' a complex in ^ and P =

{Pn(K')} (resp. {Pn(K')}) an increasing (resp. decreasing) filtration on K'.

Then for any integer m, K'[m~\ is the complex with K'[/n]" = K'"+", and P[m]

is the filtration on K' with P[_m']n(K') = Pn_m(K') (resp. P[ni]tt(K')=Pn+m(K')).

For a topological space X we denote by jtf(X) the abelian category of sheaves

of C vector spaces on X, and by 2sf(X) its derived category.

§ 1. Mixed Hodge Structure and Duality

(1.1) Let #0 be the category in which objects are compact reduced complex

spaces and arrows are morphisms of complex spaces. We define a subcategory

# of ^0 as follows; let X eOb^0 . Then X is in tf if and only if there is a

surjective morphism /: Y-+X with Y a compact Kahler manifold. In [5,

Lemma 4.6] and [6, Proposition 1.6] we have shown the following: Suppose

that XE&. Then: 1) Every subspace of X is in #. 2) Let g: X-*Y be a

surjective meromorphic map of compact complex spaces. Then 7e &. 3) Let

g: Y-*X be a projective morphism. Then Y e t f . 4) Suppose that X is non-

singular. Then the Hodge de Rham spectral sequence

(1) E$-q = H«(X, Q$)=>HP+i(X, C)
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degenerates at F?-*7, where Qp
x is the sheaf of germs of holomorphic p-forms on

X. In particular we have the natural isomorphism

#'=#'(*,£)£ e HP>*
p+q = i

where H*''* = FPHi n F*-lHl, F (resp. F) being the induced filtration from (1)

on Hl(X, €) (resp. complex conjugate of F).

(1.2) Let X be a complex space. A compaetification X* of X is a compact

complex space containing X as a dense Zariski open subset. Two compactifica-

tions Xf, / = !, 2, of X are called equivalent if the identity, id: X-+X, extends

to a bimeromorphic map id*: Xf-*X%. We call a complex space with an

equivalence class of compactifications a meromorphic complex space, or simply

a meromorphic space. Let ^f (resp. 7) be a meromorphic space with an equiva-

lence class &x (resp. ©y) of compactifications. Then a morphism /: X-+Y is

called meromorphic, if/extends to a meromorphic map/*: X*-»y* for any

X* e (£x and 7* e (£y. Let ^ be the category of meromorphic spaces and

meromorphic morphisms. We define the subcategory $> of ,// as follows; a

meromorphic space X with an equivalence class (£A> of compactifications is in %

if and only if there is a compaetification X* e &x with A'* e #.

(1.3) The concept of mixed Hodge structure was introduced by Deligne in [3].

(1.3.1) Definition. 1) Let n be an integer. Then a Q-Hodge structure of

weight n is a pair (H, F) consisting of a finite dimensional Q-vector space H and

a decreasing filtration F = {pPHc} of HC = H®QC such that FPHC (]F"-P+1HC

= {0} for all p, where F is the filtration conjugate to F. 2) A mixed Q-Hodge

structure is a triple (/-/, W, F) consisting of a Q-vector space Jf as above, an

increasing filtration W= [ WnH] on H and a decreasing filtration F of Hc with

the following property; for any neZ let H" = Gr^H = WnH/Wn_ {H and F(;I)

the filtration induced on H£ = H"®QC by F. Then the pair (Hn, F(M)) is a

Q-Hodge structure of weight n in the sense of 1). In this case we also say that

(H, W, F) is a mixed Q-Hodge structure on H, or H has the mixed Q-Hodge

structure (H, W, F).

(1.3.2) Example, a) If (H, W, F) is a mixed Q-Hodge structure, then for any

integer r, (H, W[ — 2r], F[r]) is again a mixed Q-Hodge structure which we

shall denote simply by //[r]. b) Let X e t f . Then by (1.1) 4) for every / the

pair (Hl(X, Q), F) has the natural Q-Hodge structure of weight /.
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Let (Hj, W, F), / = 1, 2, be mixed Q-Hodge structures. Then a linear

mapping /: Hl-*H2 is called a morphism of mixed Q-Hodge structures if /

(resp. fc=f®qQ'' Hlc-^H2c) is compatible with the filtration W (resp. F).
With morphisms thus defined mixed Q-Hodge structures form an abelian

category (MH) [3,2.3.5]. In particular the kernel, image etc. of a morphism/

in (MH) have the natural induced mixed Q-Hodge structures. For a mixed

Q-Hodge structure (H, W, F) we call a subspace E^H briefly a mixed Q-Hodge

substructure of H if (E9 W\E, F\E) is one.

(1.4) In [3] and [4] Deligne has defined for any algebraic variety X a natural

mixed Q-Hodge structure on its rational cohomology group H'(X, Q), which is

functorial in X. By the property of the category # listed in (1.1) together with

[14] his construction extends without further change to the category §" (cf.

[4, 6.2]). Namely we have the following:

(1.4.1) Proposition. For any meromorphic space XE& there is a natural

mixed Q-Hodge structure on its rational cohomology group H'(X, Q) which

is functorial in X. Moreover if Z is a Zariski locally closed subset of X

(i.e., its closure is analytic in X), then there is a natural mixed Q-Hodge

structure on the relative cohomology group H'(X, Z, Q) which is functorial

with respect to the pair (X, Z).

For the latter statement see [4, 8.3.3], where it was also shown that the

exact sequence of relative cohomology

-»/f(*, Z, <?)->H'CY, <?)->#'(Z, (?)-»

becomes one in (MH) if each term is given a mixed Q-Hodge structure as in the

above proposition ([4, 8.3.9]). Note that if Z is open, then H'(X, Z, Q) is

naturally isomorphic to the local cohomology group H'Y(X, Q), Y=X — Z9 and

the above sequence is isomorphic to the corresponding exact sequence of local

cohomology. In particular this defines a natural mixed Q-Hodge structure on

the local cohomology group H'Y(X9 Q). On the other hand, for any U e ^ we

may define the natural mixed Q-Hodge structure on H°C(U, Q) (the cohomology

with compact supports) in the following manner. Take any compactification

XE& of U and let Y=X— U. Then we have the natural isomorphism H'C(U,

Q)^H'(X, 7, Q). Then we define the structure to be that induced from

H'(X, 7, Q) by this isomorphism. By functoriality of the mixed Hodge structure

this definition is independent of the choice of X (cf. the proof of [3, 3.2.11]).



MIXED HODGE STRUCTURES OF ALGEBRAIC VARIETIES 639

(L5) Let X be a compact complex manifold of pure dimension n and 7 an
analytic subset of X. Let U = X—Y. Then as in the introduction we have the

following pair of exact sequences

H*C(U,

Suppose that X e #. Then by (1.4) each term of the above sequences has the

natural mixed (l-Hodge structure and the sequences are those in (MIT). Indeed,

we have the following precise information on the behavior of the filtration W

under morphisms [4, 8.2.4];

( WtH*c(U, Q) = H*C(U, (?), Wt
(3)

I Wr
2.-/-iH2"-|(U,(?) = {0}, FT2B

where Im denotes the image. (From the proof below we infer readily that we

need (3) only in the case where 7 is a divisor with only normal crossings in X.

Indeed, in this case (3) follows easily from the description in (3.10).)

On the other hand, we have the natural perfect bilinear pairings

which are compatible with the morphisms in the above sequences (cf. [12, 1.6,

1.7]). Here \l/v (resp. if/x) is the usual Poincare pairing which is defined as the

composition of the cup product H'C(U, (?) x H2n~'(U, Q)-*H2n(U, Q) (resp.

H'(X, Q)xH2n~'(X, Q)->H2n(X, Q)) and the canonical linear map vc: H*»(U,

(?)-*(? (resp. v: H2n(X, Q)-*Q) defined by the Poincare duality. Similarly \I/Y

is the composition of Hl(Y, Q)xH2
Y

n~i(X, Q)-+H\n(X9 Q)-*H2n(X, Q) -^ Q9

where the first arrow is the modified cup product (cf. [12, 1.3]) and the second

is the natural hornomorphism. We denote by the same letters \I/V9 \j/X9 \I/Y the

pairings between the corresponding cohomology groups with coefficients in C.

(1.6) Now we ask if the pairings in (1.5) are compatible with the mixed Hodge

structures in some sense or other. For this purpose we give the following:

(1.6.1) Definition. 1) Let (Hi9 F) be <?-Hodge structures of weight ni9 i=l9 2,

and \l/: H^ xH2^Q a perfect ^-bilinear pairing. Assume that n1 + n2 = 2n is

even. Then \j/ is said to be strictly compatible with the (WHodge structures if
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\I/(FPHIC, FqH2c) = Q whenever p + q>n and the induced pairings \l/p: Grp
FHlc

x Grjrp//2c-»£ are perfect for all p. 2) Let (Hi9 W, F), i = 1, 2, be mixed <?-
Hodge structures and \j/ be as above. Let n be an integer. Then \j/ is called

strictly compatible with level n with the mixed Q-HodgQ structures if \I/(WSH19

WtH2) = Q whenever s + t< In and if the induced pairings \l/s: Grs
wH l x Grfy~sH2

-+Q are perfect and strictly compatible in the sense of 1) with the $-Hodge

structures of weights s and In — s on respective spaces. In this case we also say

that \l/ gives a duality of mixed Q-Hodge structures of level n.

(1.6.2) Remark. Let (Hh W, F) and \l/ be as in 2) of the above definition.

Then the following remarks follow easily from the above definition, a) For a

mixed (J-Hodge structure H = (H, W, F) we define its dual #' = (//', W, F)

e(MH) as follows: //' is the dual vector space of / / , W'i = (W_i,i)
L and F'?

= (F*~P)-L, where 1 denotes the orthogonal complement (cf. [3, 1.1.7]). Then

\l/ gives a duality of (Ht, W, F) of level n if and only if the natural isomorphism

H1^H'2 of vector spaces induced by i// gives that of mixed Hodge structures

#i[n]=H2 in the notation of (1.3.1) a), b) Let E be any mixed <?-Hodge
substructure of H1 and Ef the orthogonal complement of E in H2 with respect

to i//. Then E' is a mixed Q-Hodge substructure of H2 and the induced pairing

\I/E: ExH2/E'-*Q gives a duality of mixed @-Hodge structures of level n if i//

does, where H2/E' has the induced mixed Q-Hodge structure.

(1.7) Now our theorem is stated as follows.

(1.7.1) Theorem, In the notation and assumption of (1.5) the pairings \l/v,

\l/x, I//Y give dualities of mixed Q-Hodge structures of level n, defined naturally

on each term of (2) by (1.4).

Remark, Theorem is true even if X is a rational homology manifold, as

one sees easily by using a resolution of X and reducing to the smooth case (cf.

the proof of [4, 8.2.4 iv] and (1.8.3) below).

We shall first give an immediate corollary of the theorem. Let X (resp. Y)

be a complex manifold of pure dimension m (resp. n) and/: X->Ya morphism.

Let Dc
x: H'C(X, Q)^H2m~'(X9 <?)' (resp. D<Y: H'C(Y9 Q)*H2"-(Y, <?)') be the

Poincare isomorphism, where ' denotes the dual space. Then we have the Gysin

map with compact supports

f%: H°C(X, (?) - H'-Z'(Y9 (?), r = m - n

defined by/J = D£(/*y/)£. If/is proper, we get also the usual Gysin map
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defined by a similar formula. Then from Remark (1.6.2) a) and the above theo-

rem we have the following:

(1.7.2) Corollary. Suppose that X, YG& and f: X-+Y is a morphism in %? .

Then in the notation of Example (1.3.2) a)/; induces an isomorphism of mixed

Q-Hodge structures

Iffis proper, then the same is true for

(1.8) We make some preliminary reductions of the proof of the theorem.

(1.8.1) For \l/x the result is well-known. For completeness we shall give a

proof. As in Example (1.3.2) b) Hk(X, Q) has a natural Hodge structure

(Hk(X, Q), F) of weight k. Let £x (resp. '&x) be the complex of sheaves of

germs of complex valued C^-forms (resp. currents) on X. Let (*x'
q (resp.

'&x'q) be the sheaf of germs of C°° -forms (resp. currents) of type (p, q) on X.

Then we have the following commutative diagram

H*(X9 C) x H2n~l(X, C) -*** C

1*1 i e'2n-i II

where the vertical arrows are de Rham isomorphisms (cf. [19] for e'2n-i) and \l/'x
is induced by the natural pairing F(X, ^'x)y.r(X, '&%*'')->€. Hence con-

sidering the filtration F0 induced from F via ei (resp. e'2n-i) on H'r(X, &'x)

(resp. H2n~ir(X, f@'x}), it suffices to prove the corresponding assertion for \l/'x.

First we note that F$Hkr(X, $r'x} = Im(Hkr(X, ® 3$rs
x'-

s)-*HkF(X, jfm
x)),

s^p
where jr"x = #x> or '^x- Hence it is clear that i^(Fgfffr(X, £'x), F^H2"'1 -

F(X, '^j)) = 0 if p + q>n. Then we have to show that the induced pairing,

\l/'x
p: Grp

FoH
ir(X,<?x)xGTn

F-pH2"-ir(X,f&x)-*C, is perfect. In fact, ex-

pressing (I) in terms of the complex F(X, Jf"x), J^'X = S'°X or '&x, we see that the

degeneracy of (1) is equivalent to the first of the following isomorphisms

where the second is the standard Dolbeault isomorphism. Further by these
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isomorphisms ij/'f corresponds to the perfect pairing Hi~p(X, Q%) x Hn~i+p(X9

Q%~P)-+C giving the Serre duality and hence itself is perfect.

(1.8.2) We prove the theorem for \l/v assuming that the theorem is true for ij/Y.

Consider the following pair of short exact sequences (cf. (2))

!-* H*(U,Q) -»Ima f-»0

0 4- Im y't _ ! <- H2»-'(17, Q) <- Im aj <- 0

where Im denotes the image. By the compatibility of the pairings with the

sequences (2) it follows that \l/u induces perfect pairings il/'u:lmyi-lxlmy'i^1

-+Q and i/^: Imo^xImaJ-^. Moreover (2) are exact sequences in (MH\

and by (1.8.1) and the assumption \j/x and \I/Y give duality of mixed Hodge
structures of level n. Hence from Remark (1.6.2), b) we deduce that \l/'v and
\l/u also give a duality of level n of the induced mixed Hodge structures on the
corresponding terms. On the other hand, from (3) we get that Imyi-1 =

Wt^Hi(U9Q) and ImyJ.^H2"-'^, ®/^2n.,H
2»-'(l7, (?) (resp. Ima,s

Hc(U, QWi-iH^U, Q) and Ima'i=W2n.iH
2n-i(U, Q)). By the definition of

duality in (1.6), from these we conclude that \j/v itself gives a duality of mixed

(>-Hodge structures of level n.

(1.8.3) We reduce the proof for \j/Y to the case where Y is a divisor with normal

crossings in X. For this purpose take by Hironaka [14] a proper bimero-
morphic morphism/: X-+X such that X is nonsingular, 7=/~1(7) is a divisor

with normal crossings in X and that / gives an isomorphism of X — Y and X — Y.

Suppose that the pairing fa: Hl(Y, Q)xH%"-i(X, Q)-*Q is a duality of mixed
@-Hodge structures of level n. We consider the induced homomorphism

/* : H\Y9 (?) -> H'(Y9 Q) (resp. H?-*(X, Q) - H*f-\X, <?)) ,

which turns out to be injective. Indeed the relation il'¥(f*a9f*b) = il/Y(a9 b),

aeH^Y, Q), beH$n~l(X9 Q)9 which follows immediately from the definition,

gives us the left inverse /*: H\¥9 Q)-+H*(Y9 Q) (resp. Hf«-f(^, Q)^H\n-\X9

Q)) of/* by a formula similar to /£ in (1.7). Now identify H*(Y9 Q) as a sub-
space of Hl(Y, Q) by means of/*. Let H be the orthogonal complement of

H^Y, Q) in #f »-'(!, Q) with respect to fa. Then by Remark (1.6.2), b) fa

induces a duality of mixed (>-Hodge structures of level n of Hl(Y9 Q) and

H%n~l(X, Q)/H. On the other hand, we have the natural isomorphism

X, <?)^Hf «-'(!, Q)/H in (MH) induced by /* (cf. [3, 1.2.10 ii)]). It
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follows then that \j/Y also induces a duality of mixed {l-Hodge structures of level

n. Note that in the above proof we may further assume that every irreducible

component of Yis nonsingular.

(1.9) By (1.8) what is left to show is that \I/Y gives a duality of mixed ^-Hodge

structures of level n when 7 is a divisor with normal crossings in X and with

smooth irreducible components. This will be shown in the next two sections.

Indeed, the purpose of these sections is to establish the following pair of com-

mutative diagrams (A) and (B) of complexes in j*(X)9 or in &j*(X) if one likes

(which is in fact indispensable for #ry(Cx) in (B))> with supports in Y

(A)

r>* IB
**X\Y

X*1^ , .. Jr

x<Y>

in which the morphisms are all quasi-isomorphic. (Definitions of each term and

morphism will be given below.) Taking hypercohomology, these give rise to

the following commutative diagrams (A), (B) of C vector spaces

, fir)

(A) H'(Y,C) HT(Y,^XIY) - 1— -*.ffT(y,

HT(Y, /i,,) - >HV(Y, f'Y)

in which the morphisms are all isomorphic. Further we shall see that there are

natural perfect C-bilinear pairings between the corresponding terms of (A) and

(B) that are compatible with the diagrams and coincide with \j/Y on Hl(Y, C)
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xH^^X, C). On the other hand, Deligne's mixed Hodge structure on

Hl(Y, Q) (resp. Hfr'^X, Q)) comes from the natural bifiltered structure on

Hlr(Y, Jfy) (resp. Jff2»-T(y, Qx(Yy [-1])) by way of the above isomorphism.

We show that there is a natural bifiltered structure on H2n~lr(Y, J f ' x ( Y y ) such

that H0 is a bifiltered isomorphism and the perfect pairing between //T(Y, Jf y)

and H2n~iF(Y, Jf"x(Yy) mentioned above is strictly compatible with the bi-

filtered structures on both terms (cf. (3.9) and (3.11)). This would establish our

assertion.

As is clear from the above explanation, for our purpose only parts of the

above diagrams are actually necessary. We develop them here hoping that it

helps to clarify the whole situation. In Section 2, mainly the left halves of the

above diagrams will be constructed following Herrera-Lieberman [12] and

Herrera [11], and then in Section 3 the right halves will be added and proof

of the above assertions will be provided.

Index of notations: Q'X]Y ffx\Y ex]Y e f
x l Y j x l Y (2.1), jTxlY C*|r £x,y (2.6), QY

£Y jY (3.2), JTY Cy £y rK rs rQ (3.3), Q'X(*Y) Res (2.3), '@°Y~ (2.0), Jf y~ rjY~

(2.7), H (2.8), 2X<7> IQ (3.1), '9'x<Yy Jfx<F> ^<Y> i9 i* (3.5), H0 Res0(3.6),

juy pY (2.4). Further for the pairings: 0t <j>2 (2.5), <p3 (2.10), fa fa fa (3.8).

(1.10) We make the following remark for later reference. Let j& be an abelian

category. Let K\, i = 1, 2, be finite complexes with finite filiations Ft = {F^K't}

in j^. Let u: K\-*K'2 be a morphism compatible with Ft. Suppose that the

associated graded morphism Grp
Fu: G?p

FK\-*GrppK'2 is quasi-isomorphic, i.e., in-

duces isomorphism in cohomology for every p. Then u itself is quasi-isomor-

phic. In particular if a morphism of double complexes u: K\'-*K°2 induces

for each t a quasi-isomorphism ut: K'^-^K'^, then u gives a quasi-isomorphism

of the associated simple complexes K\. (Take F^K\ = © K'i~
t>*.) As a special

case if u: K\-*K'2' is a morphism of a simple complex K\ into a double complex

K'2 with u(K\)^K'2
Q and which induces for each s a resolution us: ]£f-»Kf'°

of Kl, then u induces a quasi-isomorphism K\-*K'2, where K2 is the simple

complex associated with K'2. Also, holds the assertion obtained by inter-

changing K[ and K°2 .

§ 2. Construction of the Diagrams

(2.0) a) Throughout Sections 2 and 3 we fix a compact complex manifold X
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of pure dimension n, and a divisor Y on X with only normal crossings and

whose irreducible components 7^, 1 :g / ̂  r, are nonsingular. Further we use the

following notations: U — X—Y. / = (z' l5..., iq) an ordered g-tuplewith l^z^-o--

<iq^r. For any such/, \I\ = q, /; = (/!,..., //,. .., iq\ l^j^q, ij implying the

absense of /,., 77 = Yh n - n Yig, dj: 7j->7/;, a,: Yj-*X, bt: Y^Y, a: Y-+X the

natural inclusions. 7( }= ]J *}> <5(9) = IJ <*}: 7U)->7U_1) and a(g) = LI«/:
!/!=</ |/|=9

7(g)-»X.

b) As in Section 1 for a complex manifold Z we denote by Q'z (resp. «fz, r&Zt.)

the complex of sheaves of germs of holomorphic forms (resp. complex valued C00

forms, currents) on Z. &z is the structure sheaf of Z. If Z is of pure dimen-

sion 777, we always put '^z~'^z,2m-- lo make the differential of degree -h i .
Let A be any closed subset of Z. Then Q'Z\A (resp. &'Z\A) will denote the

sheaf-theoretic restriction of Q'z (resp. ef 7) to A extended by zero to X, and

'^^oo the subcomplex of '&'z of germs of currents with supports contained in

A. Suppose that Z is compact. Then the natural pairing 0Z: T(Z5 <fz)xF(Z,
/^!"-')-»C induces a natural C-bilinear pairing 0^: r(A, #'Z\A) x F(Z, '^in~--)

->C. Since $A is compatible with the differentials of the complexes involved

as well as <pz it induces a pairing

4>A: Hlr(A, ffzu)xH2"-T(X, '®Y~)^C.

c) Let Z (resp. Z') be complex manifolds of pure dimension m (resp. n). Let

/: Z-»Z' be an embedding, Z=/(Z) and q = n — m. Then direct image of

currents gives us the natural inclusion of complexes /V^z[~2g] -V.^00 which

we shall denote by/, where f#'&z[. — 2q'] is the (sheaf-theoretic) direct image of

(2.1) We denote by Cx the constant sheaf on X with fiber the complex line C.

For any locally closed subset T of X, CT denotes the constant sheaf on T with

fiber C extended by zero to X. Let ex: CX-+Q'X (e'x: Cx^^'x) the natural

augmentation and jx: Q'x-+$'x the natural inclusion. We have jxex = ex.

Further by Poincare lemma both ex and ex give resolutions of Cx. Hence,

restricting to 7, ex, ex and jx induce the following commutative diagram of

complexes with quasi-isomorphic arrows
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where CY is considered as a complex with C$=CY and =0 elsewhere. This

gives rise to the commutative diagram (1) of (hyper) cohomology

(1)

in which the morphisms are all isomorphic.

(2.2) Let "@'x be the complex of sheaves of germs of 'algebraic currents', i.e.,

"&x is defined by the presheaf of complex F-»Homc(rc(F, <f2F')> C) for K

gZ open, where c denotes the compact support. Then "&°x is a flabby resolu-

tion of Cx (cf. [16, 2.2]) and we have the natural inclusion '&x-*"&x. Let

pY: '^yco-V'^yoo be the induced morphism of the subcomplexes of germs with

supports in 7, or passing to the derived category &j&(X) of J&(X) we may

consider pY a map '^y~-*JRrr(Cx) in &s0(X) since "^ is flabby, where RFY

is the derived functor of FY which takes the local sections with supports in

Y. Now by a theorem of Poly [16], pY is isomorphic in @&?(X). Thus it

gives a canonical isomorphism pY: H2n~iF(X9 '^'•y^)^H\n"i(X9 C), and from

the definition of pY it follows readily that the pairing <£y: HiF(Y, £'X\Y) x

H2n~lr(X, r@'Y<*)-*C and ^rr (1.5) are compatible with ex\Y and pY.

(2.3) Let O^(*7) be the complex of sheaves of germs of meromorphic forms

on X whose polar loci are contained in 7. Then we put Q'x(* Y) = Q'x(* Y)/QX.

We have the following exact sequence of complexes

In [12] Herrera and Lieberman defined a natural complexes' homomorphism

(called residue)

and for each i a homomorphism (called principal value)

(PV composed with the natural projection ' &x-*' &x\' &\«> is a complexes'

homomorphism and this latter was actually called PV in [12].) These have the

following local description. Let B be any polycylinder in X in which Y is

defined by an equation <p = 0 with (pEr(B,&B). First, to define PV let co

e F(B, Qfo F)). Then PV (co) e F(B, '&'x) is given by
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PV(o))[a] = lim C O A O C ,

(the point being that the right hand side exists) where the integration is taken

over the semianalytic set M^<5 in B with the natural orientation coming from

the complex structure. Next, for any c5er(B, 2i(*F)) take a representative

co e F(B, 0x(*Y)). Then Res (co) e F(B, '&J2) is given by

Res(d})[/?]=limf o > A j 3 , perc(B, ffifr-*-')
<5-»0 J\9\ = 5

with the integration taken over the semianalytic set |<p|=<5 with the opposite

orientation to the one induced by the domain |<p|j^<5. Also we denote by V

the natural inclution Qx-+'@x.

(2.4) In [12] it was further shown that the maps induced by Res on hyper-

cohomology groups fit into an interesting commutative triangle which we shall

now recall. (For the more details see [12].) Let Sf'x be the complex of sheaves

of semianalytic cochains on X. Let /: O'x^^'x be the homomorphism defined

by 'integration'. Since £fx is a flabby resolution of Cx, I induces a morphism

in @s#(X\ £ry(J): RrY(Qx)-^Rr_Y(Cx\ or since Y is of codimension 1 and

hence JR£y(Qi) = 6i(*y)[--l] by a theorem of Grothendieck, a morphism

My : QxC*^) [— l]-*^£r(^i')- Then we have the following diagram in

which is in fact commutative by [12, Th. 5.1] (noting that jPkQ'x(*Y)x^Hk(x,

Qi(* Y)) = ta Hk(V, Qi(*Y)) so that (2) follows by passing to the limit). Since
xeK

jUy is isomorphic by a theorem of Grothendieck (cf. [12, Corollary 2.4]) and pY

is isomorphic by Poly (2.2), Res is (quasi)-isomorphic. Hence passing to the

hypercohomology we get the following commutative diagram

(3)

in which the morphisms are all isomorphic.

(2.5) We define a pairing between the triangles (1) and (3). First, we define
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as follows. Let u: ^iy®^x2l"~'(*^)C-l]->2xl(*^)[-l] be the ^-linear
mapping induced by the exterior product. This gives rise to a natural bilinear

pairing fa: W(X9 O*,y)x IP" -<'(*, 2x(*r)[- l])->H2"ty, 0X(*F)[-1]) (cf.
[12,1.1-1.4]). Define a C-linear mapping T:H2n(X, (?i(*Y)[-l])->C by

T=v0/Zy, where /ty: Jf2w(X, Qi(*Y)[-l])-*Hyn(X, C) is as in (2.4) and v:

HY
n(X, C)-»C is given by the Poincare duality. Then define (j)^ = T(f)'1. Next

let c/)2: Hlr(X, ^'xlY)xH2"-ir(X, '^y^-^C be the pairing 0y defined in

(2.0) b). Then the compatibility of $x and 02 with /x(y and Res was shown in

the proof of [12, 5.7(c)]. Since \I/Y and 02
 are compatible with pY and ex\Y by

(2.2), by the commutativity we have obtained the following: There is a natural

perfect C-bilinear pairing between the triangles (1) and (3).

(2.6) Define a double complex J^'X]Y in ^(X) as follows:

= 0 , otherwise

where the differential d'\ •#"x\Y~*tf"x\Y'' is induced from the complexes

and d"\ ^x\j-^^i\^1 is defined by

x\Yi being the restriction mappings induced by dj. Let

be the associated simple complex. Then define ^X\Y'- ^'X\Y~^^'X\Y by the com-
r

position of the restriction ^ijy-> © ^'X\YI = ^'X\Y and the natural inclusion

^X\Y~*^X\Y- Then define £X\Y- QX\Y-+X"X\Y bY £X\Y = £X\YJX\Y> Thus we

obtain the following commutative triangle of complexes

X I Y

On the other hand, by a Mayer-Vietoris argument one gets readily that the

sequence

f\ ^ /PS X\Y ^rs,0 d" .. d" <tfrs,r r\
U > & X\Y » •" X\Y » > ^ X\Y ^u

is exact for every s^O, which in turn implies that {X|Y is a quasi-isomorphism
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(cf. (1.10)). Since jx\Y is also quasi-isomorphic (2.1), so is £X|y, anc* passing to

hypercohomology we have the following commutative diagram

H'Cr.Qi,*)^^,,*
(4) 7x,J ^^^Z &r(Y9 JT'XIY)

Hir(Y, <?XIY)^^Y

in which the morphisms are all isomorphic.

(2.7) Define the double complex jTy~ in jtf(X) as follows.

Jfy~ = © ' &S
Y°° , S^.0,t^0

\n=-t+i T

— 0, otherwise

where the differential d1': jfY~-*jfY
+~'' is induced from the complex '^y~5

and d": jr°y~-»Jf yi*1 is defined by

j=o

d]*: f@Y™-+'@°Y~ being the natural inclusion induced by d]. Let Jfy~ be
} I"

the associated simple complex. Let u: JTy'£ = © '&Y°°-*'SiY~ be defined by
r i=l l

w(a l5..., ar)= £ o^. Composed with the natural projection jf"Y~ = ® jf"Y~
i=i

-> © «^y~ this gives a morphism of complexes

^/yoo: j f y ~-> 'D y ~ .

This is quasi-isomorphic since the following sequence

O njrs,— r+1 d" d" i6^s,0 VY°° > Cfts A
> J% y °° ^ ' * *% Y ^ °^ Y °° > ^

i.e., the sequence

0 > '^sy-M , > '" > © '@\~ ^ '@SY~ > 0
u'""r) i=l

is exact for every s (cf. (1.10) and [16, 3.2] or the proof of Lemma (3.7.1) below).

(2.8) The construction of PV and Res in (2.3) has been generalized by Herrera

[11] (cf. also [17, §5]) to higher codimension. In our case it gives for every I

the complexes' homomorphism

This is defined by the following local formula; let B be any polydisc in X such
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that each Y£ is defined on B by an equation cpt = Q with (pier(B, 0^. Let

J = (Ji,...Jr-q) be the (r-g)-tuple such that {il5..., iq, jl5..., jp_J = {l,..., r}

and put <Pj = 9j1-
m-9jr-q> Then for any coeF(B, 2Fe(*^))

PV Res . . . ( a > )

i.e., for any

= lim

where a>eF(B, O^(*Y)) is any representative of o>, and the integration is

taken over the semianalytic set B(6) with a suitable orientation.

Using hj we define a complexes' homomorphism

as follows; H=@ht, ht: Q'X(*Y) [-!]-> JTyT/«', Ar= 0 7ijW, A/W:
r |I|=-r+l

6j(*^)[-l]->/^F~[-^]? where A/M is the translation to the left by t of A/

defined above.

(2.9) Lemma, The following diagram (5) is commutative

(5)

Moreover the morphisms are all quasi-isomorphic in this triangle.

Proof. Let x be any point of X. Take a polydisc B in Z which contains

x and in which every irreducible component Yt of 7 is defined by a single equa-

tion (pi = Q. Let <p = <pi~-(pr. Let cx=r(B9 Q|(*Y)) and aerc(#, (f^-1) be
any elements. Then by the above definitions what we have to show amounts

to the following equality

(6) lim \ co A a = ]£ lim \ co A a .

We shall show (6). Put 9 = a>/\oc. By our assumption, taking B small enough

we can take coordinates (zls...? zn) of B in such a way that zi = <pi for l^igs

for some s^r and ̂  = 1 for 5+lgf^r . For any subset J of £ = {!,. ..3 s} let

9j=YI <Pt and Jj(0)=Iim ( 0. First we write 6 = ef + 8" with 6' (resp. 0")
ieJ <5-»oJ|<pj | = <5

of bidegree (n, n — i) (resp. (n — 1, n)). Then the proof of [12, Proposition
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6.5 (9)] shows that Ij(0") = 0 for any J. Thus to prove (6) we may assume that

9 = 6'. Then write

(7) 9= t 6?f, 0^/zf'dz, A dz(i) Adz(i),
i=l

where a£^0, dz(z') /\dz(i)= Yl dzj A dz^, and fcf are C°° semi-meromorphic
j ^ i

forms on J5 whose polar loci are contained in \J Y-. Then as in the proof of
j*i '

[12, Proposition 6.5 (8), (10)] we get that for any J

(8) 7,(0) = Z Urn 2nJ=ll(*l -!
is/ <5-»o

where jD^ = da/dzf and the integrals in the sum are actually finite by [12]. From

this, taking J = 6, {!},..., {s} (6) follows immediately. Finally the last asser-

tion follows from the commutativity, (2.4) and (2.7).

Remark. In the above proof, if a1 = --=a s=l in (7), (8) gives for each

/ 6 S the following :

(9) J^fl) = 27rV"=Tlim ( afktdz(i) A dz(f) .

As a corollary we get the following commutative diagram of hypercoho-

inology groups with isomorphic arrows

(2.10) We define a C-bilinear pairing

as follows; let K5,fy = r(y9 jr5fy)= 0 r(yf, ^i,yi) and ^r^-^
l / l = « + i

'^H- Tnen bY (2-°) b) there is a natural C-bilinear
/=-?+!

pairing 03: XJfy xK|^~s'~r->C. Following the definition one checks immedi-

ately that (?3(d/a,jS) = 03(a,rfm aeXfjy-', jSeKj"--^, $3(d"*9 fl = $3(x9

d"f$), aeXx'fy 1^ ^eK^s'~t so <^3 induces a natural bilinear pairing between

the cohomology groups of the associated simple complexes K'xlY = r(Y, ^'X\Y)

and Ky«, = r(75 ^"yoo), which is by definition 03. Moreover from the defini-

tions of ^X|y, ;fyo= and the direct image of currents it follows that
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Combining this with (2.5) we have proved the following: There is a natural

perfect pairings between the triangles (4) and (10).

§ 3. Construction of the Diagrams (continued) and Proof of Theorem

(3.0) We denote by (zl5..., zn)s, O^s^r, local coordinates z l5..., zn of X with

domain V such that Ffl Y={z1--zs = Q}. We call such coordinates briefly

normal s-coordinates (around x if x is the center of these coordinates).

(3.1) The logarithmic de Rham complex Q'x(Yy of X along Y is a subcomplex

of Q'X(*Y), defined locally as follows [3, 3.1.2]; let xeX be any point and

(zj, . . . , z,,)s be normal s-coordinates around x. Then

(1)

Clearly QigflXr) and put 0i<y> = «Xr>/a>- Let ia:
be the natural inclusion. Then we have the induced inclusion iQ:

-+Qx(*Y) and the following commutative diagram of complexes

0 - > Q'x - > Qx<Yy - > Qi<7> - > 0

(2) J*« J.-Q

0 — > Qx — > 0X(*F) — > ei(*7) — > 0 .

Since /0 is quasi-isomorphic ([3, 3.1.11]), so is iQ.

(3.2) Define the complex Z'Y/X by I"y/A- = jfin»ffx(Q'x~'(Yy, Q'x). Regarding

the natural injection jfe*»Cx(Q%-'(Yy, Qx)-+Jfc»*(Q<x-'9 Q'x) ̂  Qx as an

inclusion, we consider ly/x a subcomplex of Q'x. Various characterizations of

Z'Y/X are given in the following:

(3.2.1) Lemma. Let V be any open subset of X. Then for coe/XF, Q'x) the

following conditions are equivalent.

o) mer(v,rYIX).
1) afa) = 0 for every i^i^r.

2) Let xeV be any point and (z l9..., r,,)s normal s-coordinates around x.

Then we may write

o>,= Z E. ^r-^^^A.-Adz^Aa^.^^...,,,
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3) In the notation of 2), a)xe z1"-zsQ'x^Yy .

In fact, implications l)<-2)«-»3) are clear and that l)-»2) is easily seen by

induction on r. Finally the equivalence of 0) and 2) follows from (1) by

elementary calculations which we leave to the reader. In view of this lemma

we define a subcomplex £ZY/X of £'x by the following; for any open V^X as

above coer(K, £'x) belongs to F(V, ^^Y/x) if and only if afa> = Q for all /.

Then as for ZY/X we have that for any point x e X and any normal s-coordinates

(z ,,..., zn)s around x, CD e ^^'Y/x,x if an^ onty if ^x is written in the form

<*>*= I , 2 • • • i - - -

A ..- A rfzfm A rfz/mJ , A ..- A </Z;5 A

cr*rvi£» A?some P i . . . f / . . . f , - . . . , - , - . . .

(3.2.2) Lemma. %'Y/X and <*%'Y/X are resolutions of Cv with respect to the

natural augmentations ev: CV-*Z'YIX (resp. e'v: Cv-*£Zjlx).

Proof. Let xsX be any point and (rl5..., zn)s be normal s»coordinates

around x. Let ae^^ j jc, p^ 1, be closed. We may assume that a is defined on

the unit polydisc U = {|zf |<l]. Notations: / = (i l5..., fa), 1 ^ij < - - - < / f l ^ « ,

ri
Then write a = £ cijjdz^ A JzJ? a + 6 = p. Let a/j = \ rp~1alj(rz, rz)dr and

j,j Jo

(3) /*= E (t^-l^-'fi/j^rfz.^..^^.^..^^^^
a+fc=p

6 _ _ ± _
+ E ( -\}l~laIjZjldzl A rfz^ /^ ••• A dzjt A ... A dzy i).

Then the Poincare lemma says that a = dj8 (cf. [9, A6]). Furthermore by (3)

and the characterization of I'Y/X (resp. &2\jx) in 2) of Lemma (3.2.1) (resp.

just before the lemma) one gets immediately that if ae£y/x,jc (resp.

then P€ZY/X.X (resP- ^y/x,x) to°- Finally if ael1?^^ (resp. &ZY/X,X)
da = 0, then a is a constant and =0 when x e 7. Q. E. D.

Now we put QY = Q'X/Z'V/X, £Y==£X/&"'YIX- (^Y coincides with the com-

plex of germs of C°° forms on Y in the sense of Bloom-Herrera [J] as follows

easily from the definition.) Let eY: CY->Q'Y be the natural augmentation. Let

JY/X'- £'Y/X-*<?ZY/X and Jx: ^x~^^x be the natural, and jY: Q'Y-^^'Y be the induced
inclusions (cf. Lemma 3.2.1). Then we have the following commutative diagram
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0 > Cv > Cx —

\eY

(j - ^ YIX - ^ X - ^ &BV

/x u'x \JY
4- +

O jpV" _ &* _ e>* _ A* & LI Y/X ® /f ® y •

By the above lemma all the morphisms in this diagram are quasi-isomorphic.

(3.3) We define a double complex Jf*y' on X as follows;

^syf= 0 fl/**'r, = 0(r+i)**r ( t + 1 )> 5, t^O,l / l = t + i

= 0 , otherwise

where the differential d'\ JTy'-^^y"1'" is induced from the complexes ^yj and

d": Jf7-»Jf>*+1 is given by the formula

Let jTr be the associated simple complex. Then the restriction maps <f A-|yr

-*$'YI induces the morphism of double complexes <tf"x\Y~*^Y an^ hence that

of the associated simple complexes r#\ ^'X\Y~^^"Y' Define {y: <fy-^JTy as
the composition of the restriction map <f y-»Jf y° and the natural inclusion

jrr
0->Jf*y, and then put Cy = ^yjy- Let rQ: O^|y->Oy and rg\ #'X\Y-*&Y be

the natural restriction maps. Then we get easily the commutativity : rfjx\Y =

jYrQ, and rjr^,y = (Jyr/ etc.

(3.4) From (2.1) (2.6) and (3.3) we obtain the commutative diagram (A). We

shall see that the morphisms are all quasi-isomorphic in (A). First note that

this is already true for the left half of the diagram ((2.1) and (2.6)). So by the

commutativity it is enough to show that r& and r^ are quasi-isomorphic since

so is jy as has been shown in (3.2). For rQ this follows from the following

commutative diagram

X\Y

where ex\Y and eY give resolutions of CY (cf. (2.1) and (3.2)). On the other hand,

for r^ we have for each t a similar commutative diagram



MIXED HODGE STRUCTURES OF ALGEBRAIC VARIETIES 655

e

with et (resp. et) giving a resolution of Cy(t + 1). Hence ?> is quasi-isomorphic

(cf. (1.10)). (Remark: It can also be directly verified that £Y is quasi-

isomorphic. Cf. [10, §4].) Finally passing to the hypercohomology we obtain

the diagram (A).

(3.5) Let '^y be the subcomplex of '&x [2] which annihilates <fZf^2"' and

'@'Y the sheaf-theoretic restriction of '&\ to Y. Then '&\ is nothing but the

complex of sheaves of germs of currents on Y in the sense of Bloom-Herrera

[1]. As in (2.0) c) a (resp. bt) induces the natural injection &: a*<%\\_ — 2]-»

'^yoo (resp. hi". bi^^Y.-^'^y). Now define a complex '^i<^> (resp. a double

complex tf'x <F» in ja^(Z) as follows;

(resp.

(A\ tf"Sit/V\ G^ n ' 6>S+2t-2 nW Jtxx1/— w ai* ^YJ ~a

\I\=-t+l
= 0, otherwise

where the differential d': Jf'x' <Y>-^jf'^+1 ' '<Y> is induced from that of '@'YI

and d": JTif<Y>->jri'f+1<^> is defined by

j=i i J* J

6j'. 'tStyj.-*'®'^ being the injection induced by d* (cf. (2.1))).

Define r]x(Yy: JT^<Y>->'^X^) as ^ne composition of the natural pro-

jection jr'x(Yy-*Jfx°(Yy and the map Z Sf. Jf ^°<Y>->'^j<^>5 where
i

(S ^i)(c°)= E (fii®)- Let f^: '^X^^'^y00 be the inclusion given by a and
i=i »=i

define iV: JTX^-^^y- bY ?V = © fl/: © flj*'^yr[2r-2] -*© '^y-.
l/I=-?+i / /

From these definitions we have easily that ^y~/ j r

(3.6) We show that the maps Res: Qi(*Y)[-l]-»'^y- an<* ^- 6i

-^jTy0o, when restricted to QX^> [-1], factors through '^i<^> and

respectively. First, we take any / = (f l 9 . . . , Q, Ig^ fg r . Let D/= W (7j n Y/).
j^^

This is a divisor with normal crossings in Y/. We then define a complexes'
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homomorphism

as follows; let x eX be any point and (zl5..., z,,)s be normal s-coordinates around

x. For any aj e QX-O* ta^e a representative co e Q'x(Yyx and write

« 1=1
CDf e Qi"« < U 7;)*, o), e Q*< W Yj>, .

m j**

Then by definition

(5) res, (S) = a f ̂  e Or/<^/>* •

In fact, as in the arguments used in the classical definition of residue by Leray

[15] one checks easily that resr(co) is independent of the various choices made

above, depending only on co, and that res7 is a complexes' homomorphism.

When q = \, from (5), Section 2 (6), Section 2 (7) and Section 2 (9) we obtain the

following ;

(1/271 V"=T) Res = £ (fi, - flw(PVf) - res,) ,

where fif is as in (2.0) c), res^res^j and PVf: Qyi(Diy-+'&'D'?£L'&Yi is a prin-

cipal value on Yt. Since at = abi9 this is equivalent to saying that the following

diagram is commutative

*(.£ fii'P

(l/2W-l)Res

On the other hand, iterating the arguments used to deduce Section 2, (9) we

obtain a similar formula for hj

)^ =^ /PV J res, ,

i.e., the following diagram is commutative

where PV/ is the principal value on 7r. Now we define Res0:
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and ^o' Qi<^>[-i]-*^i<^> as follows;

and

with /??: ei<y>[-l]->ai*'0yr[>-2] defined by A? = (2TCN/"=T)-'a/1|l(PV/).
res7. Then we have the commutativity Res- ZQ = /^ -Res0, and ijr-H0=H'iQ.

This proves our assertion.

(3.7) Combining (2.4), (2.9), (3.5) and (3.6) we obtain the commutative diagram

(B). Further we have to show the following:

(3. 7. 1) Lemma. The morphisms in (B) are all quasi-isomorphic.

Proof. The assertion is already true for the left half of the diagram by

(2.4) and (2.9), and /Q[— I] is quasi-isomorphic by (3. 1). Thus, by the com-

mutativity it is enough to show that i^, J?x<^> and HQ are quasi-isomorphic.

For i^ it suffices to show that the complexes jT j > f <Y> and Jf*y'~ are quasi-

isomorphic by i-r for every t (cf. (1.10)). Let q = — 1+ 1. Then since for each

/ the complex '^yj is a resolution of CYl [18, §19], the cohomology group

e*f '(jf x ' f<Y» concentrates in degree 2q, where it is isomorphic to © Cy/.
U l = g

On the other hand, by (2.2) ̂ '('^y/) *s isomorphic to the sheaves Jf y-(Cx),

and hence Jtf"(jf'Y'L) also concentrates in degree 2q where it is isomorphic to

= © CY,- Thus i1 suffices to show that for each /, &,\
1/1=9 _a/*'^r 2g-> /^yo= induces an injection ^f 2q(fl/) on cohomology in degree 2q.

In fact one sees readily that ^f2g(a7)(l)7^0, a/l) being the current defined by

the analytic variety Y7. We shall give a proof for //0 in (3.9). So it remains

to show that Y\x(Yy is quasi-isomorphic.

We have to show that the following sequence is exact for every s (cf. (1.10)

and (4))

n — * n r<%s r ?ri _^L^ . di v n '&)s r ?i}'x<y>/7 '^«r 91 —%. nu "^ fl(r)* ̂ y{r )L — ̂ rJ - > - ^ ^(i>* ^y (1 )L~^J - > «* ^YL~ZJ ~* u>

where rff are induced by (5(i). Since the sheaves involved are fine and the

morphisms are linear over C00 functions, it is enough to show that for any open

subset Fg X the sequence

(7) 0 -* TC(F, fl(r)*'#*(r)[-2r]) -+•••-+ re(V, aw'&y^-Z])
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-»FC(F, a*'<^y[-2])-+0

is exact. This sequence is, up to signs of differential, the topological transpose

of the Frechet complex

o <- r(v9 fl(r)^--) <-...<- r(v, «(1)*^--') <- r(K, a*^--') <- o
which is exact by (3.4) (following from the quasi-isomorphy of £y). Thus (7)

itself is exact (cf. [19, Lemma 1]). Q. E. D.

Hence passing to hypercohomology we obtain (B) with all the arrows

isomorphic.

(3.8) We define C-bilinear pairings

03 : H*r(Y9 jTy)xjFf2 ' '

by formulae similar to 0ls 02 (2.5) and 03 (2.10) respectively: 0i is the composite

(resp. 03) is induced by the natural pairing <t>'2\ F(Y, ^y)xF(79
 /

$n— 2))-^C(resp. 03: Ks
y'r xX|"-s'-f<y>-^C:, where Xf?'

and K|«-^<y>=r(7, jr|«-'^<7»=r(7(r+1)? '̂ J-:;-2'-2)).
The detail is left to the reader. Furthermore from the definitions of rf9 19 (resp.

r^, ijf) and the definition of direct image of currents it follows immediately that

02(«, i*/0 = 02(r,«,/Q fresp. 03(M^) = 030V«,/?)), a6f/T(7, <fx|y) (resp.
ffT(r, JTi,y)), flEH2n-lr(Y9 '®x<Y» (resp. Jf2»-T(y, JTX<7»). Also, com-
paring the maps of which (j)i and 0i are composites we get that 0i(a, iQ/T)

= 0i(rfla, /O, aeff(F, fli|r), fleO^-^Y, Qx<Yy [-1]). Summarizing (2.5),

(2.10) and the above we have the following:

Proposition. There are natural perfect pairings between the correspond-

ing terms o/(A) and (B), compatible with the diagrams in an obvious sense.

(3.9) We define an increasing (resp. decreasing) filtration W (resp. F) on the

complexes QX^X 6X^> C~l] and JTX^> as follows; let xe.X be any point
and (zj,..., ZM)S be normal s-coordinates around x. Then

{Z /Z A •- A d z z A «,...,

and =0 if
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Let W (resp. F') be the filtration on Qx(Yy induced from W (resp. F) on

Q'x(Yy by the natural quotient map fiX^>-*Qx<D- Define W (resp. F')

on ei<r>[-l] by W'k(Q'x<JT> [-1])= W'k(Q'x-
l(Y)) (resp.

= F'p(Q'x~1<Y>}- Then we define Wand F on Gi<7> [-1] by

(8)

Since Wfl — l']k=Wk+l by definition, WkQx(Yy [—1] consists of elements which

are linear combination of forms of type

For any m>0 let '^y'^, be the sheaf of germs of currents of type (p,

on y(m). Then define

(9)

,--m+2f-2_ f + 1 ^
s+f=-

(3.9.1) Lemma. H0: QX^) [-ll-^-^X^) wd«c« a bifiltered quasi-
isomorphism H^: (<2X<7> [-1], PF, F)^(j

Proof. First, from (6), (5), (8) and (9) it follows easily that H0 is com-

patible with the filtrations W and F. Then we have to show that

Grf Grfcr (H0) : GrJ Gr V (Qx< Y > [ - 1]) -> Gr? Grfe, ( JTX< Y »

is quasi-isomorphic. First, from (5), (8) and (9) we get that res/, |I| = /c+l,

induce an isomorphism

Gr£ Gr^(© res,): Gr? Gri(2x<7> [-IBsa^+^O^;* .

Here the right hand side should be considered as a complex concentrated in

degree p+i. On the other hand, from (4) and (9) we derive

Gr*GrkjrXnsGr*^*'-*W

Then from (5) and the definition (6) of H0, we get that with respect to the above

isomorphisms Gr£Gr^(#0) corresponds to the natural augmentations F(fc+1):

^yT^^^T^^^Cfe+^^^yT^iV'C-p-l], which is quasi-isomorphic by the
Dolbeault-Grothendieck lemma. Q. E. D.
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(3.10) Suppose now that Xetf (cf. (1.1)). We shall give a description of the

mixed Q-Hodge structure on the spaces H' (Y, Q) and H'Y(X, Q).

(3.10.1) Mixed Hodge structure on Hl(Y, Q) (cf. [10, § 4] and [20, 3.5]). Let

&$•* be the sheaves of germs of C°° forms of type (p, q) on Yf. Then define

nitrations Wand F on JTy as follows;

'= © © a
s,t s.t -^p

We denote by the same letters Wand F the filiations induced on K'Y = F(F, JTy).

Now by (A) we have the natural isomorphism H'(Y, C)^HT(Y, JTy). Let

W and F still be the filtrations induced on H'(Y, C) by this isomorphism.

Then W comes from a filtration on H' (7, Q) (still denoted by W)9 and the triple

(Hl(Y, Q), W[i], F) is the desired mixed <?-Hodges structure on H<(7, Q).

(3.10.2) Mixed Hodge structure on H^n~l(X, Q). Denote by the same letters

Wand F the filtrations on H'(Y9 Q'x(Yy [—1]) induced from the corresponding

filtrations on 2X^>C~1] defined in (3.9). On the other hand, from (B) we

get the natural isomorphism H'Y(X, C)^H'(Y, Q'x(Yy [-1]). Shift W and

F to H'y(X, C) by this isomorphism. Then we have the following; W comes

from a filtration on H'Y(X, Q) (still denoted by W) and the triple (H^n'\X9 Q),

W[2n-i], F) is the desired mixed <?-Hodge structure on H\n'~i(X9 Q).

Proof is analogous to that of [3, 3.2.5], so we shall be brief. The above

isomorphism H'Y(X, C)^H'(Y, Q'x(Yy [ — 1]) comes from the isomorphism

2X^> [-l] = #£y(Cjc) in tne derived category &j*(X). Recall first that the
canonical filtration i of a complex (K\ d) is defined as follows [3, 1.4.6];

Tfc(JK') = 0 for • >fc, =Kerd for • =fc and =K' for - <fe. Then the spectral

sequence (10) associated to (RrY(Cx)9 i[-2]) and F(Z, ),

(10) Ep
1-

q = H2p+\X, ^Yp+2(£x) => Hp
Y

+q(X, C)

is, up to the renumbering El>q=>E^q>~p+2, nothing but the local-global

spectral sequence of local cohomology Ep
2>

q = Hp(X, jP$(Cx))=>Hpq(X,C)

(cf. [3, 1.4.8]). Under our assumption of normal crossings we have ^Y(^X)

= X*Y(CX) = 0, and ^(Cx^R^j^C^a^^Cy^^ for i^2, where j:U

-+X is the inclusion (cf. [3, 1.8.2]). Hence we get that in (10) £{»* = 0 for

p^l and ^ -r, and =H2p+q(Y(.p+1^9 C) for -r<p<l. On the other hand,
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taking T for the complex &' = QX^)[~^] there is a natural filtered quasi-

isomorphism(ei<y>[-l], t[-2])^(gx<^>[-l]5 W), *[-2]fc = Tk+2, induced
by the identity of (?X^> (cf. (8) and [3, 3.1.8]). Thus we have

(11) (
where ^ denotes a filtered quasi-isomorphism. Hence (10) is also associated

to the left hand side of (11). This proves the first assertion since the filtration

on the abutment of (10) clearly comes from that on H$+q(X, Q). Further by

(11) F on 6x<T>[-l] induces a filtration on E^q of (10), and from (8) it
follows that this defines on it a (pure) Hodge structure of weight 2p + q. Thus

(*£y«?x)> (RLY(Qxl *[-2]), (Ci<r>[-l]> ^ *0) is * cohomological mixed
<?-Hodge complex ([4, 8.1.6]), so by [4, 8.1.9] (H2"-'(X, Q), W[2n-i], F) is

a mixed (l-Hodge structure on H2n~l(X9 Q).

Finally it remains to check that the above definition coincides with that of

Deligne in [4]. First of all as in the proof of [3, 3.2.5] (or as above) the bi-

filtered complex (QXyX W', F') in (3.9) defines a mixed <?-Hodge structure on

H {(X, <?[!]) and this fits into the long exact sequence of mixed Hodge structures

which is isomorphic to the bottom line of Section 1, (2)®C. On the other hand,

from (8) if we denote by the same letters W and F' (resp. Wand F) the filtration

on #'I+KX,C)£H'(X,C[1]) induced from (fiX^X ^^') (resp.
W, F)), then we have

(H'(X, €), W, F)

(cf. (1.3.1 a)). Hence our mixed Hodge structure fits into the exact sequence

Section 1, (2) in (MH), as well as the one defined in (1.4). It follows that both

structure is identical.

(3.11) Proof of Theorem. We put K'Y = r(Y, JTy)and K'x(Yy=r(Y9

By Lemma (3.9.1) we get the bifiltered isomorphism

, F).

Hence we may consider the mixed Hodge structure on H'^(X, Q) coming from

the right hand side by virtue of (B) (cf. (3.10.2)). From (3.8) we have the fol-

lowing commutative diagram of perfect pairings
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i\\ i\\
, Q x H?-*(X9 €)

Thus in (1.9) it is enough to show the corresponding assertion for 03, (H^K'y),

W[I],F) and (H2»-'(Ki<y», W[2n-i],F). From the definition of fa it

follows immediately that

) = Q if fc+/<0, and

'x<Y») = 0 if

In particular it induces a bilinear pairing

fa(p, fe): Grf GrSrJff'(Ky)xGrrpGr^fl2--'(X

Since Wm=WTi"]m+j an^ ^-m=^[2»-Q-m+2«-i> we nave only to snow tnat

this is perfect (cf. Def. (1.6.1)). Now by Deligne [4, 7.2.8] each of these spaces

is naturally isomorphic to the E^ of the spectral sequence

(12) Ea
1>

b = Ha+b Grfr Grf K° => H«+fe Gr£ K'

associated with the filtered complex (Gr*F K\ W), with t = p9 n — p and K'

, i.e.

for

for

Thus, by the biregularity of (12) it suffices to show that the natural pairing

inducing ^(p, K) at £00 is perfect. Indeed, we have the natural isomorphisms

lf«(Grfr Gr^ X^) sHT(y(fc+1)> <?p
Y>('k+J = H«(Y(k+l}, Of ( f c + 1 )) s

and E7fc>2»-*+fe(GrF1' Xi< 7» ^ H2"~*(Gr/ GrFp Xi<^ » =

y7fcrr
i''~w+P~fc"1) = ̂ "k"1"c(7(^i)^^^^^ and ^<P5 ̂ >

corresponds by these isomorphisms to the natural perfect pairing giving the

Serre duality on y(k+1). Q. E.D.

§ 4. Fary Spectral Sequence and Mixed Hodge Structure

(4.1) We start in an abstract setting. Let jtf and $#' be abelian categories and

T: jtf-*jtfr be a covariant left exact functor. Let K be an object of j/ and F a
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finite decreasing filtration on 1C with F°(K) = K and Fm+1(K) = 0 for some
m^O. Then one has the usual spectral sequence of the hypercohomology of
T applied to the filtered object (K, F):

(1) Efrq = Rp+9T(Gtf K) => Rp+qT(K) ,

where Gr denotes the associated graded object. This is calculated as follows.
Take any T-acyclic filtered resolution (1C", F) of (K, F) in the sense that there
is an exact sequence §-*K-*KQ-*K1-* such that it induces for every p an

exact sequence 0-»Gr£K-+Gr£K0-^Gr£K1-» and that Grp
FKn are T-aeyclic

for all p and n. Then by definition, (1) is up to isomorphisms the spectral

sequence of the filtered complex (M'9 F) = (TK', TF), where TFp(TK')

(4.2) As in [3, 1.3] we define Zp
r>

q and Bp>9, Igr^oo, for the above complex
(M", F) by the following:

Mp+q/Bp >q = Coker (d : Fp'l'+1(Mp+q-1)-*Mp+ q/Fp+1(Mp+q)) .

Let Zp'q (resp. Bp>q) be the natural image of Zp*q (resp. Bp*9) in Mp+qIB^q
9

which are contained in Ff>? = Zf'€. Then we have the sequence of inclusions

2p>q^> ... ID yp>4iD R^ZD ... -) RP,<I— rn\i = =^oo =^oo = =-Oi — luj

and the natural isomorphisms

(2) Ep'q=tZ
p'*IZp-qnBp-9*Zp-qIBp'*, oo^r^l .

We see readily that Zp>q and Bp*q can be described as follows (cf. [8, 1.4.7] for

r = 2). For any triple (s, t, u) with Q^s<t<u^m + l consider the long exact
sequence

(3)srM
 a i ; * t u > R* T(FS(K)/F"(K))

coming from the short exact sequence

Then in view of the isomorphisms RiT(Ft(K)IFu(K))^Hi(GTt
F'u(M')) with

Gr£" (M')^F*M'/FUM' etc., we get that

(4) Zf.« = Ker5p+ff iM+lip+r and
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where we put pp(K) = K for -oo^p<0 and =0 for 7n + l<jpgoo. With the

last convention we consider (3)sfM also for general values of s, t, u with s<t<u.

(4.3) Put 8*-9 = 8p+q;ptp+ltp+r and 8ff-q = 8p+q.p-r+ltptp+1 so that we have

S!'q.d'?-q = Q and E?'«£Ker<5?'«/Im<5'?'«. We then consider the following

commutative diagram of exact sequences

i

I

where the horizontal and vertical lines are (3)psp+lj00 and (3)0|,x respectively,

and ap+1 =ap + € .0 < J I + l f 0 0 . From this together with (4) and (2) it follows that we

have the natural isomorphisms

(5) Grf Rp+qT(K) = Im ap/Im zp+1^ Rp+qT(FP(K))l(lm a + Im 5)

where we denote by the same letter F the filtration induced on the abutment

Rp+q T(K). Similarly consider the following commutative diagram for 2 g r < oo

L,P.«

where FP = FP(K) and the top line is (3) p_ r + l j p_ r + 2 j p so that 5 = ̂ "!. From

this it follows that Zfr[+1 'y~r+2 = Ker 6 = lm^Rp+ q~l T(Fp~r+l/Fp)/lm a.

Hence 8'?-9 induces a map 5^«: Z?rr1>9"r+2^Ker5r^f/Im57_!f ^£r^J such

that Im 5fp>q^Im dfp>q/Im 5lpi\. Thus we have the isomorphisms

(6) E?'«

S {Ker

where in general dp>q: Ep'q-^Ep^'q~r+1 is the differential of the spectral

sequence (1).

(4.4) Now assume that j&' is the abelian category of ^-vector spaces and linear
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mappings. Then we call (1) a spectral sequence in (MH) if the following con-

ditions are satisfied; 1) Ep>q, lgr?goo, and R1T(K) are all finite dimensional

and have natural mixed Q-Hodge structures, 2) the differentials dp'q of (1) are

compatible with these mixed (?-Hodge structures, 3) FPR1T(K) are mixed

Hodge substructures of R'1T(K) for all p and z, and finally 4) the natural iso-

morphisms H(Ep>q)^Ep£ and £&«^ GTP Rp^qT(K) are those in (MH\

where the right hand side carries a natural mixed Hodge structure induced from

FpRp+qT(K). (Caution: Here and in the following F has nothing to do with

the Hodge filtration of a mixed Hodge structure.)

Now from (5) and (6) we derive easily the following :

(4.4.1) Lemma. Suppose that each RiT(Fs(K)/Ft(K)) is finite dimensional

and carry a mixed Q-Hodge structure such that (3)sm are exact sequences in

(MH) for all s, f, u. Then we can define natural mixed Q-Hodge structures

on Ep'q, l^r^oo, and R1T(K) in such a way that (1) zs a spectral sequence

in (MH) in the sense defined above.

Proof. First we define mixed (>-Hodge structures on Ep>q by means of

the isomorphisms jE?.«^Ker dp>q/lm 5fp>\ where Ker5?«« and Im 5fp >q have

natural mixed ^-Hodge structures since dp>q and 8'%*q are in (MH) by our

assumption. Next again by our assumption RiT(K) = RiT(F°K/Fm+1K) is

given a mixed (l-Hodge structure. Further since FpRiT(K)=Imai.0tpta09 it is

a mixed Hodge substructure of R1T(K). Finally from (5) and (6) the condi-

tions 2) and 4) follow easily. Q. E. D.

Note that the mixed Hodge structure on £f>q is defined via the natural

isomorphism Ep
L>q^Rp+qT(Grp K\ as follows from the above proof.

(4.5) Let X be a compact complex space with X e t f (1.1). Let A0 = 0^Al

^•"^Am+1=X be an increasing sequence of analytic subspaces of X. Let

UStt = At - As, s < t, and Us = l7Sf m +l = X-As. Then we get that USJt =Us-Ut.

Let L be any sheaf of abelian groups on X. Then for any locally closed subset

U of X we denote by L^ the sheaf which is zero outside 17 and coincides with

L\u on U (cf. [8, 2.9.1]). With this notation let QSit = QUstt and Qp = QUp, Q

being a constant sheaf Qx on X. Then we have the decreasing filtration

of Qx by the subsheaves Qp. Thus in (4.1) if we let jtf = jtf(X\ T=T(X, )

and (K, F) = (QX, F), then the spectral sequence (1) becomes the following
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(7) Ef.«:

In fact, since UStt is closed in l/s, we have in general the isomorphisms FS(Q)/

teQv (cf- [8, 2.9.3]) so that ^+«T(F'((?)/F'((?))sJffrfl(Uf.t> (?). Up to
the renumbering E**q-+E*i%, (7) is nothing but the Fary spectral sequence

associated with the descending sequence {At} [2, IV. 12].

From (7) and (1.4) it follows that £{•« and the abutment HP+q(X, Q) of

this sequence have the natural mixed $-Hodge structures. Then using Lemma

(4.4.1) we shall show the following:

(4.6) Proposition. The spectral sequence (7) is one in (MH) such that on

E%>q and Hp+q(X, Q) the mixed Q-Hodge structures coincide with those

defined above by (1.4). In particular if (7) degenerates, then we have the

isomorphisms in (MH)

HP
c
+q(Upip+i, Q)*GtlH*+*(X9 Q).

Proof. Since £*T(F'((?)/F'((?))^#i(l7gfr, Q) as above, we can define the

natural mixed (2-Hodge structure on RiT(Fs(Q)/Ft(Q)) by this isomorphism in

view of (1.4). Then it follows immediately that on £f •* and Hl(X9 Q) the

mixed Q-Hodge structures coincide with those given just before the lemma.

Hence by (4.4.1) it is enough to show that the exact sequence (3)stu are com-

patible with the given mixed Q-Hodge structure. Since UStt = At— AS9 by the

above isomorphism (3)sttt corresponds to the exact sequence of relative coho-

mology associated to the triple (AS9 At9 Au)

-£i* Hl(Au, As, (?) J!i* H<(4, As, Q) ̂ U H^(AU, At, Q) «i±i

where (Zi = oci;stu9 f$i = Pilstu etc. Firstly by the functoriality of the mixed Hodge

structures (1.4), at- and ft are morphisms in (MH). Next, we decompose dt into

S~Sihi9 where ht\ Hl(At, As, Q)-»Hl(At, Q) is the restriction map and 5/:

Hl(At, Q)-^Hi(Au9 At, Q) is the connection homomorphism in the exact se-

quence of relative cohomology associated with the pair (All9 At). Since ht and

St are morphisms in (MH) by (1.4), dt also is. Hence the proposition is proved.

Remark. Presumably Lemma (4.4.1) could also be applicable to the

spectral sequence

which is the 'Poincare dual5 of (7).
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