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Duality of Mixed Hodge Structures
of Algebraic Varieties”

By

Akira Furkr*

Introduction

Let X be a compact complex manifold of pure dimension » and Y an ana-
Iytic subset of X. Let U=X-—Y. Then associated to the pair (X, Y) we have
the following pair of exact sequences of rational cohomology groups

- H{({U,Q - HXQ - H(Y,Q - H}MUQ -
— H> (U, Q) « Hi(X, Q) « H} (X, Q) « H "L(U, @) «

which are dual to each other via Poincaré pairings (cf. (1.5)). On the other
hand, when X is an algebraic variety (as we assume in the following), Deligne
defined in [3] [4] the natural mixed (-)Hodge structure on each term of the
above sequences, in such a way that the morphisms are those of mixed Hodge
structures. The purpose of this article is then to show that the duality men-
tioned above is also compatible with the mixed Hodge structures under a suitable
definition. A result in a sense analogous to ours has been obtained by Herrera
and Lieberman in [13] in which they showed that the above duality is com-
patible with ‘infinitesimal Hodge filtrations’ of X along Y. Duality of mixed
Hodge structure itself was also mentioned in the introduction of [4] as according
to N. Katz. However, since there seems no published articles on this subject,
it would not be of little use to give a detailed exposition like the present one.

In Section | a precise statement of the theorem will be given and its proof
is reduced to the case where we have to show that the pairing ¥y: H{(Y, Q) X
H¥ (X, Q)— Q gives a duality of mixed Hodge structures under the assump-
tion that Y is a divisor with only normal crossings in X. In this case we have
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the mixed Hodge structure on H(Y, @) (resp. H¥* ¥ X, Q)) as described in
[10] or [20] (resp. coming directly from that on H?"~¥U, ) as described in
[3]). The problem is that apparently these two descriptions do not fit well in
the framework of duality. Our proof then consists in constructing commutative
diagrams (A) and (B) (cf. (1.9)) of certain complexes’ sheaves which are ‘dual’ to
each other, where simple and multiple residues of Herrera-Lieberman [12] and
Herrera [11] respectively play an important role in defining morphisms. This
will be carried out in Sections 2 and 3 together with the proof of the theorem.
(See (1.9) for an outline.) In Section 4 we treat another problem on naturality
of mixed Hodge structure, i.e., its compatibility with the spectral sequence of Fary
associated to a descending sequence of analytic subsets of X (Proposition 4.6).

Note that the Hodge theory is applicable without further change to a wider
class of complex spaces, i.e., those in the category % as defined in (1.2), so that
our results are also valid for these spaces. In [7] we used the results of the
present note in an application to fixed point sets of C* actions on compact

Kéhler manifolds, which was the original motivation for this investigation.

Notations. Let o be an abelian category, K a complex in o/ and P=
{P(K")} (resp. {P*(K")}) an increasing (resp. decreasing) filtration on K.
Then for any integer m, K'[m] is the complex with K'[m]"=K"*" aund P[ni]
is the filtration on K' with P[m],(K')=P,_,(K") (resp. P[m]"(K')= P*"(K")).
For a topological space X we denote by o7(X) the abelian category of sheaves
of € vector spaces on X, and by 2.«(X) its derived category.

§1. Mixed Hodge Structure and Duality

(1.1) Let €, be the category in which objects are compact reduced complex
spaces and arrows are morphisms of complex spaces. We define a subcategory
% of %, as follows; let X €eOb%,. Then X is in ¥ if and only if there is a
surjective morphism f: Y—>X with Y a compact Ké#hler manifold. In [5,
Lemma 4.6] and [6, Proposition 1.6] we have shown the following: Suppose
that Xe%. Then: 1) Every subspace of X is in ¥. 2) Let g: X—>Y be a
surjective meromorphic map of compact complex spaces. Then Ye¥. 3) Let
g: Y->X be a projective morphism. Then Ye . 4) Suppose that X is non-
singular. Then the Hodge de Rham spectral sequence

(&) Ep=H1(X, Qf)=Hr" (X, C)
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degenerates at E-9, where Q% is the sheaf of germs of holomorphic p-forms on
X. In particular we have the natural isomorphism
Hi=H(X,C)~ @ H"«
pra=i
where HP¢=FrHin Fe-'Hi F (resp. F) being the induced filtration from (1)
on Hi(X, €) (resp. complex conjugate of F).

(1.2) Let X be a complex space. A compactification X* of X is a compact
complex space containing X as a dense Zariski open subset. Two compactifica-
tions X¥, i=1, 2, of X are called equivalent if the identity, id: X — X, extends
to a bimeromorphic map id*: X§¥—>X%. We call a complex space with an
equivalence class of compactifications a meromorphic complex space, or simply
a meromorphic space. Let X (resp. Y) be a meromorphic space with an equiva-
lence class €y (resp. €y) of compactifications. Then a morphism f: XY is
called meromorphic, if f extends to a meromorphic map f*: X*—Y* for any
X*e€y and Y*e€,. Lct .# be the category of mcromorphic spaces and
meromorphic morphisms. We define the subcategory € of .# as follows; a
meromorphic space X with an equivalence class €, of compactifications is in %
if and only if there is a compactification X* € €, with X* e .

(1.3) The concept of mixed Hodge structure was introduced by Deligne in [3].

(1.3.1) Definition. 1) Let n be an integer. Then a (J-Hodge structure of
weight n is a pair (H, F) consisting of a finite dimensional {)-vector space H and
a decreasing filtration F={FPH;} of Ho=H®¢,C such that FPH, n F"~?*1H
={0} for all p, where F is the filtration conjugate to F. 2) A mixed (-Hodge
structure is a triple (H, W, F) consisting of a {J)-vector space H as above, an
increasing filtration W= {W, H} on H and a decreasing filtration F of H. with
the following property; for any neZ let H'=GryH=W,H/W,_H and F,
the filtration induced on HE=H"®4C by F. Then the pair (H", F,) is a
Q-Hodge structure of weight n in the sense of 1). In this case we also say that
(H, W, F) is a mixed ()-Hodge structure on H, or H has the mixed ()-Hodge
structure (H, W, F).

(1.3.2) Example. a) If (H, W, F) is a mixed J-Hodge structure, then {or any
integer r, (H, W[ —2r], F[r]) is again a mixed (J-Hodge structure which we
shall denotc simply by H[r]. b) Let Xe%. Then by (1.1) 4) for every i the
pair (H{(X, ), F) has the natural ¢-Hodge structure of weight i.
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Let (H, W, F), i=1, 2, be mixed @-Hodge structures. Then a linear
mapping f: H;—H, is called a morphism of mixed @-Hodge structures if f
(resp. fe=f®oQ: Hic—H,¢) is compatible with the filtration W (resp. F).
With morphisms thus defined mixed @-Hodge structures form an abelian
category (MH) [3,2.3.5]. In particular the kernel, image etc. of a morphism f
in (MH) have the natural induced mixed Q-Hodge structures. For a mixed
Q-Hodge structure (H, W, F) we call a subspace E < H briefly a mixed (J-Hodge
substructure of H if (E, W|g, F|g) is one.

(1.4) 1In [3] and [4] Deligne has defined for any algebraic variety X a natural
mixed @-Hodge structure on its rational cohomology group H'(X, 2), which is
functorial in X. By the property of the category ¢ listed in (1.1) together with
[14] his construction extends without further change to the category # (cf.
[4, 6.2]). Namely we have the following:

(1.4.1) Proposition. For any meromorphic space X € € there is a natural
mixed Q-Hodge structure on its rational cohomology group H' (X, Q) which
is functorial in X. Moreover if Z is a Zariski locally closed subset of X
(i.e., its closure is analytic in X), then there is a natural mixed Q-Hodge
structure on the relative cohomology group H' (X, Z, Q) which is functorial

with respect to the pair (X, Z).

For the latter statement see [4, 8.3.3], where it was also shown that the

exact sequence of relative cohomology
—HY(X, Z, Q)-»H'(X, Q)~H'(Z, @)~

becomes one in (MH) if each term is given a mixed -Hodge structure as in the
above proposition ([4, 8.3.9]). Note that if Z is open, then H'(X, Z, Q) is
naturally isomorphic to the local cohomology group Hy(X, ), Y=X—Z, and
the above sequence is isomorphic to the corresponding exact sequence of local
cohomology. In particular this defines a natural mixed -Hodge structure on
the local cohomology group Hy(X, @). On the other hand, for any Ue & we
may define the natural mixed @-Hodge structure on H.(U, @) (the cohomology
with compact supports) in the following manner. Take any compactification
Xe® of Uand let Y=X—U. Then we have the natural isomorphism H_(U,
Q)=H(X, Y, Q). Then we define the structure to be that induced from
H'(X, Y, Q) by this isomorphism. By functoriality of the mixed Hodge structure
this definition is independent of the choice of X (cf. the proof of [3, 3.2.11]).
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(1.5) Let X be a compact complex manifold of pure dimension n and Y an
analytic subset of X. Let U=X—Y. Then as in the introduction we have the
following pair of exact sequences

) { - Hi(U, Q) =5 Hi(X, Q) -2 HY(Y, Q) 2
« H2i(U, Q) & H2mi(x, Q) LU Hivi(x, Q) S

Suppose that X e ¥. Then by (1.4) each term of the above sequences has the
natural mixed (}-Hodge structure and the sequences are those in (MH). Indeed,
we have the following precise information on the behavior of the filtration W
under morphisms [4, 8.2.4];

(3) [ VVIH:'(Us Q)=H2(Us Q)o W/i—le:(U’ Q)=Im Vi-1»
Wop—i—1H*7H(U, @)={0}, W,,_;H*"{(U, @)=Ima;,

where Im denotes the image. (From the proof below we infer readily that we
need (3) only in the case where Y is a divisor with only normal crossings in X.
Indeed, in this case (3) follows easily from the description in (3.10).)

On the other hand, we have the natural perfect bilinear pairings

Yy: H(U, Q) x H*""H(U, )~ Q
Yx: HY(X, Q)x H* (X, @)~ Q
l//Y: Hi(Ys Q)XH%nvi(X’ Q)"’Q

which are compatible with the morphisms in the above sequences (cf. [12, 1.6,
1.7]). Here Yy (resp. ¥ry) is the usual Poincaré pairing which is defined as the
composition of the cup product H (U, @) x H>*~ (U, ¢)— H2"(U, Q) (resp.
H'(X, Q) x H** (X, )~ H*"(X, J)) and the canonical linear map v,: H2*(U,
Q)—-Q (resp. v: H>"(X, @)— @) defined by the Poincaré duality. Similarly ¥y
is the composition of H¥(Y, @) x H3* (X, Q)-H¥(X, Q) —H**(X, Q) = Q,
where the first arrow is the modified cup product (cf. [12, 1.3]) and the second
is the natural homomorphism. We denote by the same letters Yy, ¥y, Yy the
pairings between the corresponding cohomology groups with coefficients in C.

(1.6) Now we ask if the pairings in (1.5) are compatible with the mixed Hodge
structures in some sense or other. For this purpose we give the following:

(1.6.1) Definition. 1) Let (H;, F) be ()-Hodge structures of weight n;, i=1, 2,
and y: H; x H,—»Q a perfect (-bilinear pairing. Assume that n;+n,=2n is
even. Then ¢ is said to be strictly compatible with the @-Hodge structures if
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W(FPH,¢, F1H,;)=0 whenever p+qg>n and the induced pairings y¥?: GrzH,¢
x GryPH,—C are perfect for all p. 2) Let (H,, W, F), i=1, 2, be mixed Q-
Hodge structures and  be as above. Let n be an integer. Then ¥ is called
strictly compatible with level n with the mixed (-Hodge structures if y(W,H,,
W,H,)=0 whenever s+ <2n and if the induced pairings ¥*: Gr§yH ; x Gr}}~sH,
—{) are perfect and strictly compatible in the sense of 1) with the @-Hodge
structures of weights s and 2n—s on respective spaces. In this case we also say
that  gives a duality of mixed Q-Hodge structures of level n.

(1.6.2) Remark. Let (H;, W, F) and ¢ be as in 2) of the above definition.
Then the following remarks follow easily from the above definition. a) For a
mixed Q-Hodge structure H=(H, W, F) we define its dual H'=(H', W', F')
€ (MH) as follows: H’ is the dual vector space of H, Wi;=(W_,_,)* and F'»
=(F1-P)L, where L denotes the orthogonal complement (cf. [3, 1.1.7]). Then
Y gives a duality of (H;, W, F) of level n if and only if the natural isomorphism
H,=>~H; of vector spaces induced by ¢ gives that of mixed Hodge structures
H,[n]=H) in the notation of (1.3.1)a). b) Let E be any mixed {J-Hodge
substructure of H,; and E’ the orthogonal complement of E in H, with respect
toy. Then E’ is a mixed {)-Hodge substructure of H, and the induced pairing
Vi: Ex H,/E'—>Q gives a duality of mixed -Hodge structures of level n if ¢
does, where H,/E' has the induced mixed (-Hodge structure.

(1.7) Now our theorem is stated as follows.

(1.7.1) Theorem. In the notation and assumption of (1.5) the pairings Yy,
Ux, Yy give dualities of mixed Q-Hodge structures of level n, defined naturally
on each term of (2) by (1.4).

Remark. Theorem is true even if X is a rational homology manifold, as
one sees easily by using a resolution of X and reducing to the smooth case (cf.
the proof of [4, 8.2.4 iv] and (1.8.3) below).

We shall first give an immediate corollary of the theorem. Let X (resp. Y)
be a complex manifold of pure dimension m (resp. n) and f: X—Y a morphism.
Let Dg: H(X, Q)= H*" (X, Q) (resp. D§: H.(Y, Q)= H?>— (Y, )') be the
Poincaré isomorphism, where ’ denotes the dual space. Then we have the Gysin
map with compact supports

Je H(X, Q- H7>(Y,Q), r=m-—n
defined by fs&=D$(f*)'Dg. If fis proper, we get also the usual Gysin map
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f*: H(Xa Q)_)H-—Zr(y’ Q)

defined by a similar formula. Then from Remark (1.6.2) a) and the above theo-
rem we have the following:

(1.7.2) Corollary. Suppose that X, Ye% and f: X—Y is a morphism in Z.
Then in the notation of Example (1.3.2) a) f& induces an isomorphism of mixed
Q-Hodge structures

H(X, Q=H (X, Q)[—r].

If f is proper, then the same is true for f;

H'(X, @)=H (Y, Q)[—r].
(1.8) We make some preliminary reductions of the proof of the theorem.

(1.8.1) For ¢y the result is well-known. For completeness we shall give a
proof. As in Example (1.3.2) b) H*(X, §) has a natural Hodge structure
(HYX, Q), F) of weight k. Let &% (resp. ‘@Y%) be the complex of sheaves of
germs of complex valued C®-forms (resp. currents) on X. Let &%7 (resp.
'9% 1) be the sheaf of germs of C®-forms (resp. currents) of type (p, q) on X.
Then we have the following commutative diagram

Hi(X,C) x H™(X,C) ‘%, ¢
le; L ez, i I

HIT(X, &) x H"[(X, ' 2) "%, €

where the vertical arrows are de Rham isomorphisms (cf. [19] for e5,_;) and ¥/
is induced by the natural pairing I'(X, &%) x ['(X, '2%"~")—>C. Hence con-
sidering the filtration F, induced {rom F via e; (resp. e5,_;) on HI[(X, &%)
(resp. H?"I['(X, '2Y)), it suffices to prove the corresponding assertion for y.
First we note that FJH*I'(X, oy)=1Im (H*I'(X, G—) A T)->HD (X, X)),
where A" y=¢&%, or ‘@y. Hence it is clear that wX(F”H I'(X, &), F¢H?* .
I'(X, '2%)=0 if p+g>n. Then we have to show that the induced pairing,
y¥: Gri HT(X, %) x GrPH?> ' ['(X, '92%)—>C, is perfect. In fact, ex-
pressing (1) in terms of the complex I'(X, A'y), # y=&% or ‘2%, we see that the
degeneracy of (1) is equivalent to the first of the following isomorphisms

Gr3 H*T (X, A y) 2 H*Gry T(X, A y) = H5(X, Q%)

where the second is the standard Dolbeault isomorphism. Further by these
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isomorphisms ¥ corresponds to the perfect pairing H*?(X, Q%) x H*~i*P(X,
Qr-P)—C giving the Serre duality and hence itself is perfect.

(1.8.2) We prove the theorem for y,; assuming that the theorem is true for yy.
Consider the following pair of short exact sequences (cf. (2))

0-Imy;, ;> H}(U,Q) »Imog;—>0
0—Imy;_;, « H*"¥U,Q)Ima;«0

where Im denotes the image. By the compatibility of the pairings with the
sequences (2) it follows that ¥, induces perfect pairings Yy: Imy;_, x Im y;_,
—Q and Yj: Imo; xIma;—>Q. Moreover (2) are exact sequences in (MH),
and by (1.8.1) and the assumption y and Yy give duality of mixed Hodge
structures of level n. Hence from Remark (1.6.2), b) we deduce that y; and

% also give a duality of level n of the induced mixed Hodge structures on the
corresponding terms. On the other hand, from (3) we get that Imy;,_,=
W,- HY(U, Q) and Imy;_,=H>""¥U, Q)/W,,-H*"(U, Q) (resp. Imae;=
Hi(U, Q)/W;_ H\(U, Q) and Imoj=W,,_;H?>""}(U, )). By the definition of
duality in (1.6), from these we conclude that Y, itself gives a duality of mixed
@-Hodge structures of level n.

(1.8.3) We reduce the proof for ¥y to the case where Y is a divisor with normal
crossings in X. For this purpose take by Hironaka [14] a proper bimero-
morphic morphism f: X—X such that X is nonsingular, Y=f-1(Y) is a divisor
with normal crossings in X and that f gives an isomorphism of X — Yand X — Y.
Suppose that the pairing y¢: Hi(Y, Q) x H3* ¥ X, Q)—Q is a duality of mixed
Q-Hodge structures of level n. We consider the induced homomorphism

f* H(Y, @)~ HY(Y, Q) (resp. H{" (X, @)~ Hy (X, Q)),

which turns out to be injective. Indeed the relation Yy(f*a, f*b)=yy(a, b),
aeHY(Y, Q), be H3* (X, ), which follows immediately from the definition,
gives us the left inverse f,.: H{(Y, Q)—Hi(Y, Q) (resp. H¥~ (X, Q)— H¥ (X,
Q)) of f* by a formula similar to f§ in (1.7). Now identify H¥(Y, Q) as a sub-
space of Hi(Y, Q) by means of f*. Let H be the orthogonal complement of
Hi(Y, Q) in H~i(X, Q) with respect to 3. Then by Remark (1.6.2), b) ¥y
induces a duality of mixed @-Hodge structures of level n of H(Y, @) and
H%~i(X, Q)/H. On the other hand, we have the natural isomorphism
H¥ (X, Q)= H¥ (X, Q)/H in (MH) induced by f* (cf. [3, 1.2.10ii)]). It
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follows then that Yy also induces a duality of mixed J-Hodge structures of level
n. Note that in the above proof we may further assume that every irreducible
component of ¥ is nonsingular.

(1.9) By (1.8) what is left to show is that ¥y gives a duality of mixed -Hodge
structures of level n when Y is a divisor with normal crossings in X and with
smooth irreducible components. This will be shown in the next two sections.
Indeed, the purpose of these sections is to establish the following pair of com-
mutative diagrams (A) and (B) of complexes in «7(X), or in 2(X) if one likes
(which is in fact indispensable for RI y(Cy) in (B)), with supports in Y

Qxiy - 3y
exl/ \;)fl}' iy \Krl'
(A) CY Jxiy f;ny L > f.Y
ex)y ] Sxiy , 1%;
d’XIY £ gY
yQ&(*Y)[—l] e 0Y>[~1]
H Ho
. Res
(B)  RLy(Cy) pes| Ay br i \omn
X /y” j,A(Y>
'Dy= - "'oY

in which the morphisms are all quasi-isomorphic. (Definitions of each term and
morphism will be given below.) Taking hypercohomology, these give rise to
the following commutative diagrams A), (ﬁ) of C vector spaces

H!(Y, Qxiy) > H'(Y, Q)
(A  H(Y,0) HT(Y, o xy) ——————K—;H‘F(Y, A'y)
H'T(Y, &xy) "H'T(Y, €y)

H2i(Y, Qx(+Y)[—1]) «———H>~ (Y, Qx<Y Y[ —1])
Ao

H*IL(Y, #x{Y))

(B) Hp-i(x, €) ;MF(Y, Hy=) e——|
g, 'Dy-) l

H>* (Y, '2x{Y))

in which the morphisms are all isomorphic. Further we shall see that there are
natural perfect C-bilinear pairings between the corresponding terms of (A) and
(B) that are compatible with the diagrams and coincide with ¥y on Hi(Y, C)
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x H3~{(X, C). On the other hand, Deligne’s mixed Hodge structure on
HYY, Q) (resp. H3"¥(X, Q)) comes from the natural bifiltered structure on
HI(Y, A°y) (resp. H2"~'I'(Y, Qx<Y> [—1])) by way of the above isomorphism.
We show that there is a natural bifiltered structure on H2"~iI'(Y, o4 <Y)) such
that A, is a bifiltered isomorphism and the perfect pairing between H'I'(Y, 2°y)
and H?"i[(Y, # x{Y)) mentioned above is strictly compatible with the bi-
filtered structures on both terms (cf. (3.9) and (3.11)). This would establish our
assertion.

As is clear from the above explanation, for our purpose only parts of the
above diagrams are actually necessary. We develop them here hoping that it
helps to clarify the whole situation. In Section 2, mainly the left halves of the
above diagrams will be constructed following Herrera-Lieberman [12] and
Herrera [11], and then in Section 3 the right halves will be added and proof
of the above assertions will be provided.

Index of notations: Qyy Exy ex|y exjy jxjy 2.1), A Xy Lxpy Expy (2.6), Jy
Sy Jjy B.2), Ky Uy &y ri rs 1o (3.3), Qx(xY) Res (2.3), 'Dy= (2.0), Ay ny-
(2.7), H (2.8), Q<Y ig (3.1), '@x<Y)> A (YD nxY) iz i (3.5), Ho Resy (3.6),
Uy py (2.4). Further for the pairings: ¢, ¢, (2.5), ¢5 (2.10), ¢1 ¢3 ¢35 (3.8).

(1.10) We make the following remark for later reference. Let o/ be an abelian
category. Let K;, i=1, 2, be finite complexes with finite filtrations F;={F?K;}
in &. Let u: Ki—K; be a morphism compatible with F;. Suppose that the
associated graded morphism Griu: GriK;—GriK; is quasi-isomorphic, i.e., in-
duces isomorphism in cohomology for every p. Then u itself is quasi-isomor-
phic. In particular if a morphism of double complexes u: K;"—K;" induces
for each t a quasi-isomorphism u,: Ki*— K3, then u gives a quasi-isomorphism
of the associated simple complexes K;. (Take F{K;= @ K;™*t) As a special
case if u: K;— K} is a morphism of a simple complex K lpmto a double complex
K5 with u(Kj)< K50 and which induces for each s a resolution u;: K§{—K5~
of K%, then u induces a quasi-isomorphism K;—K;, where K; is the simple
complex associated with K5'. Also, holds the assertion obtained by inter-
changing K; and K;'.

§2. Construction of the Diagrams

(2.0) a) Throughout Sections 2 and 3 we fix a compact complex manifold X
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of pure dimension n, and a divisor Y on X with only normal crossings and
whose irreducible components Y;, 1 £i<r, are nonsingular. Further we use the
following notations: U=X—Y. I=(i,,..., i,) an ordered g-tuple with 1 <i, <---
<i,Er. Foranysuchl, |I|=q, Ij=(i1....,fj,...,iq), 1£j<q, fj implying the
absense of ij, ;=Y n---nY,, L Yi-Y,, a;: V=X, b;: Y,»Y, a: Y>X the
natural inclusions. Y(q)=|I]I_=Iq Y,, 69 = |IL|1—'q5§: Y= Yy-1, and ag=[1a;:
Y- X.

b) As in Section | for a complex manifold Z we denote by Q7 (resp. &z, '2,.)
the complex of sheaves of germs of holomorphic forms (resp. complex valued C*
forms, currents) on Z. 0, is the structure sheaf of Z. If Z is of pure dimen-
sion m, we always put '@;='9,,,_-. to make the differential of degree +1.
Let A be any closed subset of Z. Then Q3 , (resp. &7 ,) will denote the
sheaf-theoretic restriction of Q) (resp. &%) to A extended by zero to X, and
"9, the subcomplex of ‘2 of germs of currents with supports contained in
A. Suppose that Z is compact. Then the natural pairing ¢,: I'(Z, £3) x I'(Z,
'9%~)—C induces a natural C-bilinear pairing ¢,: I'(4, &7, xI'(Z, '23%)
—C. Since ¢, is compatible with the differentials of the complexes involved
as well as ¢, it induces a pairing

¢ HII(A, &) x Hi[(X, ' D}y=) - C.
|

c) Let Z (resp. Z') be complex manifolds of pure dimension m (resp. n). Let
fiZ—>Z' be an embedding, Z=f(Z) and g=n—m. Then direct image of
currents gives us the natural inclusion of complexes f,'2,[ —2g]—'%2 3~ which
we shall denote by f, where f,'9,[ —24] is the (sheaf-theoretic) direct image of
"D —24].

(2.1) We denote by Cy the constant sheaf on X with fiber the complex line C.
For any locally closed subset T of X, C; denotes the constant sheaf on T with
fiber C extended by zero to X. Let ey: Cyx—Qy (ex: Cx—&%) the natural
augmentation and jy: Qy—&y the natural inclusion. We have jye,=e.
Further by Poincaré lemma both ey, and ey give resolutions of €. Hence,
restricting to Y, ey, ey and jy induce the following commutative diagram of
complexes with quasi-isomorphic arrows
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where Cy is considered as a complex with C9=Cy, and =0 elsewhere. This
gives rise to the commutative diagram (1) of (hyper) cohomology

yH‘(Y, Qxiy)
Hi(Y, C) l

Jxiy

%H"r(x, Eiiy)

in which the morphisms are all isomorphic.

M

(2.2) Let "2% be the complex of sheaves of germs of ‘algebraic currents’, i.e.,
"Dy is defined by the presheaf of complex V—Hom (I'(V, &%), C) for V
< X open, where ¢ denotes the compact support. Then "ZY% is a flabby resolu-
tion of Cy (cf. [16, 2.2]) and we have the natural inclusion ‘93 —"2%. Let
Py: 'Dy-—"Dy- be the induced morphism of the subcomplexes of germs with
supports in Y, or passing to the derived category 2.#(X) of «/(X) we may
consider py a map '@y-—RIy(Cyx) in 94(X) since "D is flabby, where Ry
is the derived functor of I'y which takes the local sections with supports in
Y. Now by a theorem of Poly [16], py is isomorphic in 2«(X). Thus it
gives a canonical isomorphism jy: H?2" iI[(X, '@y-)=H}*" (X, C), and from
the definition of py it follows readily that the pairing ¢y: H'I'(Y, &x)y) X
H?*""i[(X, 'Dy=-)—C and Yy (1.5) are compatible with &5y and py.

(2.3) Let Q4(*xY) be the complex of sheaves of germs of meromorphic forms
on X whose polar loci are contained in Y. Then we put Qx(xY)=Q%(*Y)/Q2x.
We have the following exact sequence of complexes

0- Q> Qx(*Y) » 0x(*Y) - 0.
In [12] Herrera and Lieberman defined a natural complexes’ homomorphism
(called residue)
Res: Qx(*Y)[—1] > "Dy~
and for each i a homomorphism (called principal value)
PV: Qi(xY) > '9.

(PV composed with the natural projection '@y—'2%/'Py- is a complexes’
homomorphism and this latter was actually called PV in [12].) These have the
following local description. Let B be any polycylinder in X in which Y is
defined by an equation ¢ =0 with @ eI'(B, ¢p). First, to define PV let w
eI'(B, Qx(*Y)). Then PV (w)eI'(B, '2y%) is given by
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PV(w)[oc]:limS[ wna, el (B, €
@lzo

6-0
(the point being that the right hand side exists) where the integration is taken
over the semianalytic set |@|=J in B with the natural orientation coming from
the complex structure. Next, for any @ e I'(B, Qx(xY)) take a representative
wel(B, Qx(xY)). Then Res(®)e (B, '2y%) is given by

Res (@) [f]=lim S oA B, Bel (B, &3~17)
-0 J]o|=0

with the integration taken over the semianalytic set |p|=45 with the opposite
orientation to the one induced by the domain |p|=0. Also we denote by V
the natural inclution Qy—'2%.

(2.4) 1In [12] it was further shown that the maps induced by Res on hyper-
cohomology groups fit into an interesting commutative triangle which we shall
now recall. (For the more details see [12].) Let &% be the complex of sheaves
of semianalytic cochains on X. Let I: Qy—%% be the homomorphism defined
by ‘integration’. Since &% is a flabby resolution of Cy, I induces a morphism
in 24(X), R[y(I): RCy(Q%)—>RIH(Cy), or since Y is of codimension 1 and
hence RIy(Q3)=Qx(*Y)[—1] by a theorem of Grothendieck, a morphism
Uy: Ox(*Y)[—1]->RIL((Cx). Then we have the following diagram in 2.e7(X)

. _Ox1)[-1]

@ RIy(Cx) / lkes
N

which is in fact commutative by [12, Th. 5.1] (noting that s#£*Qx(xY), = H*(x,
Ox(xY))=lim H*(V, Qx(*Y)) so that (2) follows by passing to the limit). Since
Uy 18 isomf)er‘;)hic by a theorem of Grothendieck (cf. [12, Corollary 2.47) and py
is isomorphic by Poly (2.2), Res is (quasi)-isomorphic. Hence passing to the
hypercohomology we get the following commutative diagram

2 H~i(X, Qx(+7)[ - 1])
3 Hp=i(X, €) l

Res

grir i

in which the morphisms are all isomorphic.

(2.5) We define a pairing between the triangles (1) and (3). First, we define
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¢ Hi(X, Qxy) x H" (X, Qx(+Y)[-1]) = C

as follows. Let u: Qyy®,,0% " (+*Y)[—1]1- 0% (*Y)[—1] be the Ox-linear
mapping induced by the exterior product. This gives rise to a natural bilinear
pairing ¢}: Hi(X, Qyy) x H?*"~{(X, Qx(+Y) [— 1D H*"(X, Ox(+Y)[—1]) (cf.
[12, 1.1-1.4]). Define a C-linear mapping T: H**(X, Qx(xY)[—-1])>C by
T=vyfly, where fiy: H*(X, Qx(+*Y)[—1])—»H%"(X, C) is as in (2.4) and v:
H#(X, €C)—C is given by the Poincaré duality. Then define ¢, =T¢p;. Next
let ¢,: HI(X, &xy) x H"'I'(X, '2y=)—C be the pairing ¢y defined in
(2.0)b). Then the compatibility of ¢, and ¢, with jyy and Res was shown in
the proof of [12, 5.7(c)]. Since Yy and ¢, are compatible with gy and &,y by
(2.2), by the commutativity we have obtained the following: There is a natural
perfect C-bilinear pairing between the triangles (1) and (3).

(2.6) Definc a double complex x|y in #(X) as follows:

f?r’fy=m@+lé”i|y,, 5,620
=t

= 0, otherwise

where the differential d’: X 'y|y—> A %}y>" is induced from the complexes €y,
and d”: ¥ y—>A 3fy " is defined by

d”———til (_1)t+J @554-
Jj=1 I

or*: é’k|yl—>é’3(,”j being the restriction mappings induced by é4. Let A'yy
be the associated simple complex. Then define {yy: &% y— )y by the com-
position of the restriction é”}qyﬁi(;él Exiy,=A ¥y and the natural inclusion
A Ry—=Hy. Then define (yy: Qyyy—=>H %y by {xjy=Cxvixyy- Thus we
obtain the following commutative triangle of complexes

Qxy -
J'XIYJ / K'XIY
g:ﬂy Exiy

On the other hand, by a Mayer-Vietoris argument one gets readily that the

sequence

&s " "
0—*é’§(|y—-—>xly -%/‘;’FY A e A ARy — 0

is exact for every s=0, which in turn implies that {yy is a quasi-isomorphism
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(cf. (1.10)). Since jyy is also quasi-isomorphic (2.1), so is {x|y, and passing to
hypercohomology we have the following commutative diagram

Hi(ys Q;{IY)

%’
(4) fx]yl /VHIF(Y’ f‘le)
HI(Y, &)~
in which the morphisms are all isomorphic.

(2.7) Define the double complex # y« in #(X) as follows.

Y= @ 'D%=, 520,150

=0, otherwise

where the differential d': £ y-—2"y%)»" is induced from the complex '@y,
and d”: A Y-y is defined by

—t+1 .
d'="5 (~1" @ Ol
j=0 I

0ty 'Dy»—'Dy+ being the natural inclusion 1nduced by 5. Let Ay~ be
the associated s1mple complex. Let u: #'y2= @ ’.@,m—» 9y~ be defined by
u(oty,..., a,)= Z o;. Composed with the natural projection A 'ye=@ Hy=
- @® Xy 9 this glves a morphism of complexes

Ny=: A y» = 'Dye.
This is quasi-isomorphic since the following sequence
00— oyt a4, g2 I gy 0
i.e., the sequence

o

I
,@syr ——)Y ’.9“}» —_— 0

@D~

0—0s ’Qizw _—
(1,0005r)

i=1

is exact for every s (cf. (1.10) and [16, 3.2] or the proof of Lemma (3.7.1) below).

(2.8) The construction of PV and Res in (2.3) has been generalized by Herrera
[11] (cf. also [17, § 5]) to higher codimension. In our case it gives for every I
the complexes’ homomorphism

hy: Qx(+Y)[—¢] —

This is defined by the following local formula; let B be any polydisc in X such
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that each Y, is defined on B by an equation ¢;=0 with @;eI'(B, 0x). Let
J=(j1s..ss Jo—qg) be the (r—gq)-tuple such that {i,..., 15 ji,...s fr—gt ={1,.c, 7}
and put ¢;=¢;---@; _,. Then for any @ e I'(B, Qx %(*Y))

hi(@)=PV,, Res 01, (w)eI'(B, ’.@'Ye;)

3.3 Pig

ie., for any BeI' (B, €%7)

hz(&f)[ﬂ]=1img oAB, B@)={lps>0,|p,|=0, 1=su=q}
3-0JB(s)

where wel'(B, Qy %=Y)) is any representative of @, and the integration is
taken over the semianalytic set B(d) with a suitable orientation.
Using h; we define a complexes’ homomorphism

H: Qx(+Y)[-1] > A 'y=
as follows; H=@ h,, h,: Qx(xY)[—1]-x3%% h= @ I[t], hlt]:
t

[I]==1+1

Q}((*Y)[—-l]—»’.@;,o;[—t], where h;[t] is the translation to the left by ¢ of h,
defined above.

(2.9) Lemma. The following diagram (5) is commutative

Q(+1)[-11_,
(®)] Res‘[ \‘_}f‘y»
19;” Ny

Moreover the morphisms are all quasi-isomorphic in this triangle.

Proof. Let x be any point of X. Take a polydisc B in X which contains
x and in which every irreducible component Y; of Y is defined by a single equa-
tion ¢;=0. Let ¢p=¢,---¢,. Let wel'(B, Q¥*Y)) and aeI' (B, &% 77 1) be
any elements. Then by the above definitions what we have to show amounts
to the following equality

6) limS w/\a=zlimg ®AL.
50 Jlo|=5 =160 ) pi]=5

We shall show (6). Put 6=wAa. By our assumption, taking B small enough
we can take coordinates (zy,..., z,) of B in such a way that z;=¢, for I<i<s
for some s<r and ¢;=1 for s+1<i<r. For any subset J of €={L,..., s} let
Q5= H @; and I,(0)= hmg 9 First we write 0=0"+0" with 8’ (resp. ")

0-0J|os|=

of bldegree (n, n—1) (resp. (n 1, n)). Then the proof of [12, Proposition
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6.5 (9)] shows that I,(")=0 for any J. Thus to prove (6) we may assume that
0=0'. Then write

(7 0= ; 0,, 0,=k,/zdz, A dz(i) A dZ(i),

where 0;=0, dz(i)Adz(i)= H dz;ndz;, and k; are C* semi-meromorphic

forms on B whose polar loc1 are contained in U _Y;. Then as in the proof of

[12, Proposition 6.5 (8), (10)] we get that for any J

®)  L(0)=Y lim2ny=1/(o—1)! S a* (DY )dz(i)dz(i)
ied 5-0 BnYin{|ei|=d)

where D%=0%/0z% and the integrals in the sum are actually finite by [12]. From

this, taking J=G, {1},..., {s} (6) follows immediately. Finally the last asser-

tion follows from the commutativity, (2.4) and (2.7).

Remark. In the above proof, if a;=---=a,=1 in (7), (8) gives for each
i€ & the following:
9) 1(6)=2ny =T lim S a*kdz(i) A dz(i) .
6-0 JBnYin{le:|2d}

As a corollary we get the following commutative diagram of hypercoho-
mology groups with isomorphic arrows

H (X, 0x(+Y)[-1D~_,
(10) ) \

Res

HTX, Ay=)
H'T(X,'2y-) T
(2.10) We define a C-bilinear pairing
b1 HIT(Y, o i) x HT(Y, o 'ye) > €
as follows; let K%y=I(Y, X% y)= @ 1"(Y,, E%yy,) and Kws—t=I(Y,
T
A= @ TI(Y, ’9%»;). Then by (2 0) b) there is a natural C-bilinear
I=—1+1

pairing ¢ 5: K3y x K% s"*->C. Following the definition one checks immedi-
ately that @s(d'o, f)=ds(@ d'B), aeKgih', e K §=, $3(d'a, f)=s(x,
d'B), xe Kfy', e K¥=5* so ¢ induces a natural bilinear pairing between
the cohomology groups of the associated simple complexes Ky y=I(Y, £k y)

and Ky-=I'(Y, X y=), which is by definition ¢;. Moreover from the defini-
tions of {yy, #y- and the direct image of currents it follows that

¢2(a ny=(B)=¢3(Cxiv(0), B), weH'I(Y, &xy), Be H* (Y, A 'y=).
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Combining this with (2.5) we have proved the following: There is a natural
perfect pairings between the triangles (4) and (10).

§3. Construction of the Diagrams (continued) and Proof of Theorem

(3.0) We denote by (z4,..., z,),, 0<s=<r, local coordinates z,..., z, of X with
domain V such that ¥V'nY={z,---z,=0}. We call such coordinates briefly
normal s-coordinates (around x if x is the center of these coordinates).

(3.1) The logarithmic de Rham complex Q4x<(Y)> of X along Y is a subcomplex
of Qy(xY), defined locally as follows [3, 3.1.2]; let xe X be any point and
(z4,---» =,)s be normal s-coordinates around x. Then

0 Q;(<Y>x={1 3 dz; [z; A ANdzy |z, Aoy

. . 1ine
Sig<-<ikSs

—k ]
Oyi € Ly %, kK=5T.

Clearly Q3 Qx<Y)> and put Qx<Y>=Q:KY>/Q2%. Let ig: Q:(Y>->Qx(xY)
be the natural inclusion. Then we have the induced inclusion iy: Q¥<Y)
—Qx(xY) and the following commutative diagram of complexes

0— Qy — QY) — Ox<Y) — 0
(2) “ J’in lig
00— Qy — Qy(+Y) — Ox(+Y) — 0.

Since ig is quasi-isomorphic ([3, 3.1.11]), so is ij.

(3.2) Define the complex Xyx by 2y = Hom, (2% YD, Q%). Regarding
the natural injection o, (Q% Y, Q%)= m(Qy ", Q%)= Q% as an
inclusion, we consider X,y a subcomplex of Qy. Various characterizations of
2y x are given in the following:

(3.2.1) Lemma. Let V be any open subset of X. Then for weI'(V, Q%) the
following conditions are equivalent.
0) wel(V, Zy).
1) a¥w=0 for every 1<i<r.
2) Let xeV be any point and (zy,..., =,)s normal s-coordinates around x.
Then we may write

w,= 2 > zyeezpdzy A Adz Ao

15kSsig<-<ik
ik+1<<is

ieedicsin + 100005 2

7 Pl — f 1 pP—s+k
{ipeennigd={L.0, S}y iy isins s € QESTE.
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3) In the notation of 2), w,ez,---z,Q%x<{Y).

In fact, implications 1)« 2)<»3) are clear and that 1)—2) is easily seen by
induction on r. Finally the equivalence of 0) and 2) follows from (1) by
elementary calculations which we leave to the reader. In view of this lemma
we define a subcomplex &2y x of &% by the following; for any open V< X as
above wel'(V, &) belongs to I'(V, £Xy,x) if and only if afw=0 for all i.
Then as for Xy, we have that for any point x € X and any normal s-coordinates

(z4..., Z,)s around x, w € €2y x . if and only if w, is written in the form

— ez, 7. Z-dz.
wx z . . z . le Zlkzlk+1"'zlld"’ll+1
1SkSISmSs i1<"<ip,i1+1<"<im
ig+1<<ipim+1<<is

A Adzy ANdZ; AN AdZ A B

im [FES VXS PN IO S § R N0 YRS PO L P

for some fi; e&y st

LETINE 7S FANIEIUNE SIS F NPT g 3 SRS P8

(3.2.2) Lemma. Xy, and Xy, are resolutions of Cy with respect to the
natural augmentations ey: Cy—2Zy x (resp. ey: Cy =82y %)

Proof. Let xe X be any point and (zi,..., z,); be normal s-coordinates
around x. Letxed&% ,, p=1, beclosed. We may assume that « is defined on
the unit polydisc B={|z;/<1]. Notations: I=(i...,I,), 1=i;<---<i,<n,
J=(1seerdp)y 1E2j1<--<jpSn, dzy=dz; A Adz;, dz;=dz; A ANdZ;,.

1
Then write a= Y a;;dz, AdZ,, a+b=p. Let ci,]=g rP~a 5(rz, ¥Z)dr and
I1,J 0

() B= % (X (~D*lapzgdz, ae AdE A A dz A d2

a+b=p

b ~
+ X (=D aEdzy ndz o AdZp A AdE).
=1

Then the Poincaré lemma says that a=df (cf. [9, A6]). Furthermore by (3)
and the characterization of Xy x (resp. &2y x) in 2) of Lemma (3.2.1) (resp.
just before the lemma) one gets immediately that if aeXy,y . (resp. &2y x ),
then felZy ;. (resp. £Zy,x,) too. Finally if aeX9x . (resp. £29,x ) and
da=0, then « is a constant and =0 when xeY. Q.E.D.

Now we put Q;=04/2y)s, §y=61/62y,x. (£ coincides with the com-
plex of germs of C* forms on Y in the sense of Bloom-Herrera [1] as follows
easily from the definition.) Let ey: C,—$; be the natural augmentation. Let
Jyx: Zyx—>EZy xand jy: Qx—&Y be the natural, and jy: 3, — &Y be the induced
inclusions (cf. Lemma 3.2.1). Then we have the following commutative diagram
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0—)CU _’CX ——_)CY ’_‘)0
lev lex ley
0— Zyx — Qy — 0y — 0

Ji}'/x J(J'x ’jY
v

00— 82Zy,x — Ex — €y — 0.
By the above lemma all the morphisms in this diagram are quasi-isomorphic.
(3.3) We define a double complex #";" on X as follows;

st -
Hy'= l”g‘)ﬂ_lal*gir,—a(:ﬂ)*‘g?(tm: s, 120,

=0, otherwise

where the differential d’: "y —¢'y"1>" is induced from the complexes £y, and
d": ¢ —>A 1 is given by the formula

t+1 .
d'= Y (=1)'*/ @ ap40]" .
=1 T

Let "y be the associated simple complex. Then the restriction maps &yy,
—&y, induces the morphism of double complexes £ yjy—#"y and hence that
of the associated simple complexes r,: A yy—=#y. Define &y: &y—>H'y as
the composition of the restriction map &£y—#"y° and the natural inclusion
A y0—> Ay, and then put {y,=C&yjy. Let rq: Q}”Y—+ﬁ} and r,: &y y—&Ey be
the natural restriction maps. Then we get easily the commutativity: r,jyy=
Jxre, and 1, Exy=CEyr, etc.

(3.4) From (2.1) (2.6) and (3.3) we obtain the commutative diagram (A). We
shall see that the morphisms are all quasi-isomorphic in (A). First note that
this is already true for the left half of the diagram ((2.1) and (2.6)). So by the
commutativity it is enough to show that r; and r, are quasi-isomorphic since
so is jy as has been shown in (3.2). For r, this follows from the following

commutative diagram

Cy

yff}m

where ey and ey give resolutions of Cy (cf. (2.1) and (3.2)). On the other hand,
for r,. we have for each t a similar commutative diagram
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e et
Exy; =X Xy

/ |I|(;Bt+1

Y+ ro

€e . - .t
a(l‘+1)*gY“+1) - '){'Y

with e, (resp. &) giving a resolution of Cy,,, . Hence r, is quasi-isomorphic
(cf. (1.10)). (Remark: It can also be directly verified that &, is quasi-
isomorphic. Cf.[10, §4].) Finally passing to the hypercohomology we obtain
the diagram (A).

(3.5) Let '9y be the subcomplex of '@y [2] which annihilates #2373~ and
'9y the sheaf-theoretic restriction of '@} to Y. Then '9} is nothing but the
complex of sheaves of germs of currents on Y in the sense of Bloom-Herrera
[1]. As in (2.0)c) a (resp. b;) induces the natural injection a: a,'2;[—2]—
"Dy (resp. b;: biw'2y,—~'2y). Now define a complex '@x(Y) (resp. a double
complex &y’ (Y)) in &/(X) as follows;

'Dx(Y>="2y[-2]
(resp.
4 agKY>= @ aI ‘DY TI=a %' DV 22, 520, 120,

|I|=_' t+1) ?
=0, otherwise

where the differential d': oy (YD) —>'5"1-"(Y) is induced from that of '@y,
and d": A Y>> H 1Y) is defined by

—t+1 A N
= 2 (=D @ a5(0))
j=1 I

5§: Dy, Dy *2 being the injection induced by 6% (cf. (2.1))).
Define ;1Y<Y> A x{Y>>'2%(Y) as the composition of the natural pro-
jection A y(Y)—>HP°CY) and the map 2 by: 3 02(YY »'2 (YD, where

(Z, b)(w)= Z, (b;w). Leti,:'2y{Y)—'Dy= be the inclusion given by 4 and
define i,: & Y>>y by iy =‘I|_@+1a, ® a1/ 27,2121~ @ D
From these definitions we have easily that fy=i, =i gnx( Y>.

(3.6) We show that the maps Res: Qy(*Y)[—1]1—+'2y~ and H: Qx(*Y)[—1]
— A y-, Wwhen restricted to Qx<{Y) [—1], factors through '23<Y) and # x<Y)
respectively. First, we take any I=(i,,..., i;), ISq=<r. Let D;= U (Y;nY).

This is a divisor with normal crossings in Y;. We then define a complexes
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homomorphism
res;: Qx<Y>—ap, 02y {D>[—1q]

as follows; let x € X be any point and (z4,..., z,); be normal s-coordinates around
x. For any @e Qx<{Y), take a representative w € Qx(Y), and write

w=dz;[z; A ANdz; [z; ANop+ i w;,
i=1
CDIGQk_q<U Yj>x= (DIEQ}(<U YJ>X
JEI Jj#i
Then by definition
(5) res; (0)=afw,; € Qy,ADp), .

In fact, as in the arguments used in the classical definition of residue by Leray
[15] one checks easily that res; (@) is independent of the various choices made
above, depending only on @, and that res; is a complexes’ homomorphism.
When g =1, from (5), Section 2 (6), Section 2 (7) and Section 2 (9) we obtain the
following;

(1)2n/ —1)Res= gl (8;- a;(PV)) - res;),

where 4; is as in (2.0) ¢), res;=res,;; and PV;: Qy (D) —'2 =<' Dy, is a prin-
cipal value on Y;. Since a;=ab,, this is equivalent to saying that the following
diagram is commutative

r

D resi };:lsi-pvi)

r ax(
Ox<Y>[-1] §1ai*9},<D.->[—2] — a2y [-2]1='2x(Y)

1
a
(1/2:=D)R -
1/2nv—=1)Res ,@-}m.

On the other hand, iterating the arguments used to deduce Section 2, (9) we

obtain a similar formula for /,
(1/277:\/:_1)th= aI PVI l'eSI,
i.e., the following diagram is commutative

QY[ —q]1—=25 a1, Qy (D[ 291 20, ' 95 [ - 24]

o,
1/(2nJ:T)4h1 , v
Dys

where PV, is the principal value on Y;. Now we define Resy: Qx<Y>[—1]
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—'PyY> and Hy: QxKY> [—1]-%x(Y) as follows;
Resy=2m/— La( ig b,PV,)-res;
and

(©) Ho=@hy, hy= @ h§: QCV>[~1]=-a 5" CY)

t |1]|=—
with h9: Qx<Y>[—1]—>a'2y,[t—2] defined by h)=Qn/=1)"*a(PV))-
res;. Then we have the commutativity Res-iz=i,-Resy, and i, -Ho=H -i,.
This proves our assertion.

(3.7) Combining (2.4), (2.9), (3.5) and (3.6) we obtain the commutative diagram
(B). Further we have to show the following:

(3.7.1) Lemma. The morphisms in (B) are all quasi-isomorphic.

Proof. The assertion is already true for the left half of the diagram by
(2.4) and (2.9), and ip[ —1] is quasi-isomorphic by (3.1). Thus, by the com-
mutativity it is enough to show that i, ny{Y> and H, are quasi-isomorphic.
For i, it suffices to show that the complexes ¢ 3''(Y) and o'y are quasi-
isomorphic by i, for every ¢ (cf. (1.10)). Let g=—t+1. Then since for each
I the complex '@y, is a resolution of Cy, [18, § 19], the cohomology group
H (A 'Y )) concentrates in degree 2q, where it is isomorphic to (—B Cy,.
On the other hand, by (2.2) s#°('2ys) is isomorphic to the sheaves .%’,,»;(CX)
and hence »# (4 y{) also concentrates in degree 2q where it is isomorphic to

H(Cx) = 6-) Cy,- Thus it suffices to show that for each I, 4:
lz,l*— "Gy .@Y.»I 1nduces an injection MZq(a,) on cohomology in degree 2g.
In fact one sees readily that s#24(4,)(1)#0, 4,(1) being the current defined by
the analytic variety Y;. We shall give a proof for H, in (3.9). So it remains
to show that ny{Y) is quasi-isomorphic.

We have to show that the following sequence is exact for every s (cf. (1.10)
and (4))

0 - a4y’ 2%, [—2r] ey aay' 2% ,,[—2] 12X, 23[-2] -0,

where d; are induced by 6(9. Since the sheaves involved are fine and the
morphisms are linear over C* functions, it is enough to show that for any open
subset V< X the sequence

(M 0TV, apys' D%, [ —2r]) = > TV, a4)s’ D% ,,[-2])
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TV, a,/2%[-2]) -0

is exact. This sequence is, up to signs of differential, the topological transpose
of the Frechet complex

0« TI'(V, agu€7:) - I(V, a1y 6%257) « I(V; ay63"5) < 0

r)
which is exact by (3.4) (following from the quasi-isomorphy of &éy). Thus (7)
itself is exact (cf. [19, Lemma 17]). Q.E.D.

Hence passing to hypercohomology we obtain (B) with all the arrows

isomorphic.

(3.8) We define C-bilinear pairings
¢1: H(Y, Qy) x H*7(Y, QK Y> [~ 1]~ C
¢2: HI(Y, &y) x H*" I (Y, '2x{Y>) > C
¢3: HI(Y, A'y) x H*II(Y, A’ 3x{Y)) > C

by formulae similar to ¢,, ¢, (2.5) and ¢ (2.10) respectively: ¢; is the composite
Hi(Y, Oy) x H2 (Y, Qx<Y) [—11)=H>"~1(Y, Qi Y))-»H?*"(X, Qx)—~Cand ¢,
(resp. ¢4) is induced by the natural pairing ¢5: I'(Y, £y) x I'(Y,' 2%~ KY)) (=
I'(Y,' 23"2))—>C (resp. ¢}: Ky' x K3=-1(Y>—C, where Ky'=I(Y, 4’4" =
I(Yes1y 65 (0ryy) a0d KPP~ KY)=T(Y, X 7~5"KY))=T (Yy11y, '9F 5272
The detail is left to the reader. Furthermore from the definitions of r,, i, (resp.
¥, i,) and the definition of direct image of currents it follows immediately that
@(er, ipB)=d3(r s, B) (resp. Pa(a, ixB)=3(r40, B)), a€ H'I(Y, &)y) (resp.
HIT(Y, A xy)), Be H*""'I['(Y, '2%{Y)) (resp. H>"~{[ (¥, # x{Y})). Also, com-
paring the maps of which ¢, and ¢; are composites we get that ¢,(a, igf)
=¢i(ron, B), xe H(Y, Qy), Be H*" (Y, Qx<Y)[—1]). Summarizing (2.5),
(2.10) and the above we have the following:

Proposition. There are natural perfect pairings between the correspond-

ing terms of (/1) and (ﬁ), compatible with the diagrams in an obvious sense.

(3.9) We define an increasing (resp. decreasing) filtration W (resp. F) on the
complexes Qx<Y), Ox<Y)>[—1] and o#"x{Y) as follows; let x € X be any point
and (zy,..., z,), be normal s-coordinates around x. Then
VVkQ.;(< Y>x= {Z dzil/zh A A dzig/zit A ai;,..i,!
1Sk, 1=5iy < <i,Ss, o, ;, €Q5 L}

FrQKY>=QxY) if .2p and =0 if .<p.
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Let W’ (resp. F') be the filtration on Qx<{Y) induced from W (resp. F) on
Q%x<{Y> by the natural quotient map Qx{(Y>—Qx(Y). Define W' (resp. F’)
on Qx{Y)[—11 by Wi(Qx<Y>[-1D)=Wi(Qx (YD) (resp. F'P(Qx{Y>[—1])
=F'P(Qy'KY>). Then we define Wand F on Qx<{Y)[—1] by

W=w'T-1]

F=F'.

®)

Since W'[ —1],= W}, by definition, W,Qx<Y > [—1] consists of elements which
are linear combination of forms of type

dZ,"/Z,'1 Ao A dz,-t/zit /\&i[.,.l‘r 3 ték'{'l, léll ‘<"' <it§5,
%y, €0 TKYD.
For any m>0 let ‘9§ 2 be the sheaf of germs of currents of type (p, q)

on Y. Then define

Wit x{¥>= @ A 75KY)
©)

FPA3Y)= @ FrAx{Y) nAy<Y)

stt=-

—_ ' gym, —m+2t—2
=0 .0 G DY

(3.9.1) Lemma. H,: Qx{Y)>[—1]-H"xKY) induces a bifiltered quasi-
isomorphism Hyy: (Qx<Y>[—1], W, F)=(H# Y ), W, F).

Proof. First, from (6), (5), (8) and (9) it follows easily that H, is com-
patible with the filtrations Wand F. Then we have to show that

Gr} Griy (Ho): Grg Griy (Qx<Y) [—11) = Grf Griy (#7x<Y>)

is quasi-isomorphic. First, from (5), (8) and (9) we get that res;, |[|=k+1,
induce an isomorphism

Grf Griy (@ resy): Grf Griy (Qx<Y) [~ 1D 2 aes 1a 275 -

Here the right hand side should be considered as a complex concentrated in
degree p+1. On the other hand, from (4) and (9) we derive

Grf Grly A xKY > = Grg A" Y ) 2 a1y DV L [—p—1].

Y(k+1)

Then from (5) and the definition (6) of H,, we get that with respect to the above
isomorphisms Gr§ Grj, (H,) corresponds to the natural augmentations V.y:
af ko QY ki s a1y 28 [—p—1], which is quasi-isomorphic by the

Dolbeault-Grothendieck lemma. Q.E.D.
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(3.10) Suppose now that X € % (cf. (1.1)). We shall give a description of the
mixed Q-Hodge structure on the spaces H'(Y, () and Hy(X, Q).

(3.10.1) Mixed Hodge structure on H(Y, Q) (cf. [10, §4] and [20, 3.5]). Let
6% be the sheaves of germs of C* forms of type (p, g) on Y. Then define
filtrations Wand F on "y as follows;

Wty= @ AyH?
12k

PPy = @pr'ynff"= G‘? (‘P A+1)xC ¥ ine -
N s.t =p

We denote by the same letters W and F the filtrations induced on Ky =1(Y, A y).
Now by (1&) we have the natural isomorphism H'(Y, C)=H'I'(Y, #'y). Let
W and F still be the filtrations induced on H'(Y, C) by this isomorphism.
Then W comes from a filtration on H'(Y, ) (still denoted by W), and the triple
(H(Y, @), W[il, F) is the desired mixed -Hodges structure on H(Y, ().

(3.10.2) Mixed Hodge structure on H3"~(X, #). Denote by the same letters
W and F the filtrations on H'(Y, Qx{(Y ) [—1]) induced from the corresponding
filtrations on Qx(Y) [—1] defined in (3.9). On the other hand, from (ﬁ) we
get the natural isomorphism Hy(X, C)~H (Y, Qx<Y)[—1]). Shift W and
F to Hy(X, C) by this isomorphism. Then we have the following; W comes
from a filtration on Hy(X, Q) (still denoted by W) and the triple (H¥" (X, Q),
W[2n—i], F) is the desired mixed -Hodge structure on H$"~i{(X, Q).

Proof is analogous to that of [3, 3.2.5], so we shall be brief. The above
isomorphism Hy(X, C)~H (Y, Qx<Y>[—1]) comes from the isomorphism
Ox<{Y)>[—1]=RIy(Cy) in the derived category 2.2(X). Recall first that the
canonical filtration © of a complex (K', d) is defined as follows [3, 1.4.6];
7(K)=0 for - >k, =Kerd for - =k and =K’ for - <k. Then the spectral
sequence (10) associated to (RLy(Cy), 7[—2]) and I'(X, ),

(10) ER4=H?>""4(X, #7""%(Cx) = HY (X, C)

is, up to the renumbering E}-?=E2Pf%~P*2  nothing but the local-global
spectral sequence of local cohomology E%:?7= H?’(X, s#%(Cyx))=H% (X, C)
(cf. [3, 1.4.8]). Under our assumption of normal crossings we have #%(Cy)
=#}(Cx)=0, and #L(Cx)=R"'jCy=a;-1)xCy,,.,, for i=2, where j:U
—X is the inclusion (cf. [3, 1.8.2]). Hence we get that in (10) Ef-?=0 for
p2land £—r, and =H?"*Y(Y_,,, C)for —r<p<1. On the other hand,
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taking t for the complex K'=Q%(Y>[—1] there is a natural filtered quasi-
isomorphism (Qx<(Y)[— 11, 1[-2D=(Qx<Y>[— 11, W), t[— 2], =14+, induced
by the identity of Qx{Y) (cf. (8) and [3, 3.1.8]). Thus we have

an (Ox<Y> [ 1], W)=(RLy(Cy), t[-2]),

where = denotes a filtered quasi-isomorphism. Hence (10) is also associated
to the left hand side of (11). This proves the first assertion since the filtration
on the abutment of (10) clearly comes from that on H} %X, #). Further by
(11) F on Qx<{Y)[—1] induces a filtration on E}:? of (10), and from (8) it
follows that this defines on it a (pure) Hodge structure of weight 2p+q. Thus
(RCH(Qx), (RCH(Qx), T[—2]), (Qx<Y>[—1], W, F)) is a cohomological mixed
@-Hodge complex ([4, 8.1.6]), so by [4, 8.1.9] (H?>""{X, @), W[2n—i], F) is
a mixed @-Hodge structure on H**~{( X, ().

Finally it remains to check that the above definition coincides with that of
Deligne in [4]. First of all as in the proof of [3, 3.2.5] (or as above) the bi-
filtered complex (Qx<Y >, W', F') in (3.9) defines a mixed )-Hodge structure on
Hi{(X, Q[1]) and this fits into the long exact sequence of mixed Hodge structures
(®C)

- H(X, Qx(Y)) » H'(X, Qx{Y)) > H™!(X, Q%) -

which is isomorphic to the bottom line of Section 1, (2)®C. On the other hand,
from (8) if we denote by the same letters W’ and F’ (resp. W and F) the filtration
on Hi*1(X,C)~ H{(X, C[1]) induced from (Qx<Y>, W', F’) (resp. (Qx<Y [ —1],
W, F)), then we have

(H'(X, C), W'[-2], F'[1D)=(H X, C), W, F)

(cf. (1.3.1 2)). Hence our mixed Hodge structure fits into the exact sequence
Section 1, (2) in (MH), as well as the one defined in (1.4). It follows that both
structure is identical.

(3.11) Proof of Theorem. We put Ky=I(Y, ¢ y)and K Y>=I(Y, o yx{Y)).
By Lemma (3.9.1) we get the bifiltered isomorphism
(H'(X, Qx<Y> [—1]), W, F)=(H (Kx{Y>), W, F).

Hence we may consider the mixed Hodge structure on Hy(X, ) coming from
the right hand side by virtue of (B) (cf. (3.10.2)). From (3.8) we have the fol-
lowing commutative diagram of perfect pairings
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Hi(Ky) x H (K (YY) &5
2 2 > C
H(Y, C)x HyY(X, C) vy

Thus in (1.9) it is enough to show the corresponding assertion for ¢3, (Hi(Ky),
WI[i], F) and (H?*"{(Kx<{Y)), W[2n—i], F). From the definition of ¢} it
follows immediately that

O3(W . H (Ky), WH? (Kx<Y>))=0 if k+1<0, and
Oy (FPW H KY), FIW_ H?*"{(K3x{Y>)=0 if p+gq>n.
In particular it induces a bilinear pairing
o3(p, k): Gri Grly H(Ky) x Gr 372 Gryf H2{(Kx(Y))—>C.
Since W,=WI[ilu+; and W_,=W[2n—i]_,,+2,-; We have only to show that

this is perfect (cf. Def. (1.6.1)). Now by Deligne [4, 7.2.8] each of these spaces
is naturally isomorphic to the E,, of the spectral sequence

(12) E$b=H4*? Grg, Grg K" = H**? Grz K’
associated with the filtered complex (Gri K', W), with t=p, n—p and K
=Ky, Kx{Y), ie.
E&i-k~Grf Grk, Hi(Ky), for (Gri Ky, W),
EZk2n=itk > Gryp GryF H>H(KKY)D), for (Gri? Kx<Y), W).
Thus, by the biregularity of (12) it suffices to show that the natural pairing
¢’3<p’ k> Ellc,i—k 1% E;k,Zn—i+k -C

inducing ¢3(p, k) at E,, is perfect. Indeed, we have the natural isomorphisms
E%i~K(Grg Ky) 2 H{(Gry Grf Ky) @ H' T (Y4 1y €701) = HI(Ygr 1y Q% nsy)s
g=i—p, and E7k2miHk(Gry P Kx<{Y)) = H>" {(Gry* Gry? Ky<Y)) =
H? T (Ygeq 1y "D PRk mmipmkm )y o Hrokm17e(Yg , Q% X7 277) and ¢3{p, k)
corresponds by these isomorphisms to the natural perfect pairing giving the
Serre duality on Y, . Q.E.D.

§4. Fary Spectral Sequence and Mixed Hodge Structure

(4.1) We start in an abstract setting. Let .« and &' be abelian categories and
T: o/ -/’ be a covariant left exact functor. Let K be an object of &« and F a
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finite decreasing filtration on K with FO(K)=K and F™*Y(K)=0 for some
m=0. Then one has the usual spectral sequence of the hypercohomology of
T applied to the filtered object (K, F):

(1) Ef:1=RPHIT(Grf K) = R T(K),

where Gr denotes the associated graded object. This is calculated as follows.
Take any T-acyclic filtered resolution (K°, F) of (K, F) in the sense that there
is an exact sequence 0—K—K°%—K!— such that it induces for every p an
exact sequence 0—-GriK—GrfK°—>GryK!'— and that GriK" are T-acyclic
for all p and n. Then by definition, (1) is up to isomorphisms the spectral
sequence of the filtered complex (M, F)=(TK', TF), where TFP(TK")
=T(FP(K")) (cf. [3, 1.4]).

(4.2) Asin [3, 1.3] we define Z?>7 and B?-%, 1<r=< o0, for the above complex
(M", F) by the following:

Z'I‘?,q =Ker (d FP(MP+‘1)_)MP+41+1/FP+1'(MP+ q+ 1))
MP'HI/B'I.’,‘I =Coker (d Fp—r+1(MP+‘1—1)_)MP+‘1/FP+1(MP+‘I)) .

Let Z?-? (resp. B?-?) be the natural image of Z?:? (resp. B?:%) in MP+?/BP-9,
which are contained in E?-9=~Z?-9. Then we have the sequence of inclusions

Zpi2--2ZL 2B 2 2Bp ={0}
and the natural isomorphisms
@) Ef’qd——e-fo’q/Zf"‘nB,”"’;Zf"’/Eﬁ”", wzrzl.

We see readily that Z?-? and B?-4 can be described as follows (cf. [8, 1.4.7] for
r=2). For any triple (s, ¢, u) with 0<s<t<u=<m+1 consider the long exact
sequence

B 12855 RITE(K)/FH(K)) 12 RIT(F(K)/F(K))
Lsiseu, RIFIT(FYK)/F4(K)) ——>
coming from the short exact sequence
0 F{(K)/F*(K)—F5(K)/F*(K)— F¥(K)/F{(K)—-0.

Then in view of the isomorphisms R!T(F'(K)/F*(K))=H Gry* (M) with
Gri* (M )= F'M [F“M’ etc., we get that

(4) Z;‘:'q =Ker 5p+q;p,p+ 1,p+r and B;{,’q=Im 5p+q— 1;p—-r+1,p,p+1
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where we put FP(K)=K for —o0<p<0 and =0 for m+1<p=<co. With the
last convention we consider (3),,, also for general values of s, ¢, u with s<t<u.

(4.3) Put 68"=0,4gpp+1,p+r a0d 0P 1=0,4 00 1r1pp+1 SO that we have
0F:1.5'%7=0 and E?"xKerd?4Imd’?%. We then consider the following
commutative diagram of exact sequences

!
RPH-IT(K|Fo(K))

P
RN

— RPHT(FP*1(K)) % RPHT(FP(K))-2 RP+T(Gr2(K))

o [ =T, RerarLT(F(K))
RPHT(K)
!

>

where the horizontal and vertical lines are (3), ,4+1,» and (3)y,~ respectively,
and a, ., =0,,40,+1,0- From this together with (4) and (2) it follows that we
have the natural isomorphisms

(5)  Grg RFIT(K)=Im a,/Im «,, ; = RPTIT(FP(K))/(Im o+ Im 6)
~1Im B/Im 6’57~ Ker 6%%/Im 6'%;9=Z%/ By =~ E%1,

where we denote by the same letter F the filtration induced on the abutment
RrHaT(K). Similarly consider the following commutative diagram for 2<r<oo

_)Rp+q—1T(Fp—r+2/F'p)_gz_) Rpta-1 T(Fp—r+1/Fp)_£) Rp+a-1 T(Fp—r+1/Fp—~r+2)
\iof'-‘i la,f,q -—G)RP+QT(F’7—r+2/FP)—>
Rp+aT(Fr|Fp+1)

where F?=FP(K) and the top line is (3),—,+1,p-r+2,p SO that §=0L:9"". From
this it follows that ZEZJ*1,97r*2 =TFKer = Im B RP* 41 T(FP~r*1/F?)/Im a.
Hence 6'7-? induces a map 9'2+4: ZPZy=1:47r+2 - Ker 6F:4/Im §'P2{ = EF:{ such
that Im §'?-4=~Im 6'?-4/Im §'2:9. Thus we have the isomorphisms
(6) EP-1~Ker 67-7/Im 6’21

= {Ker (67| er 6229/ Im 6’724 }/(Im &'7+%/Tm 6'7-9

~Ker d?:9/Im dP-}-1r+1 dre-fH(Eﬁ’:‘{) ,
where in general dP%: EP-9>EPf-4-r+1 s the differential of the spectral
sequence (1).

(4.4) Now assume that .’ is the abelian category of (-vector spaces and linear
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mappings. Then we call (1) a spectral sequence in (MH) if the following con-
ditions are satisfied; 1) EP-9, 1<r=< o0, and R!T(K) are all finite dimensional
and have natural mixed @-Hodge structures, 2) the differentials d?:? of (1) are
compatible with these mixed -Hodge structures, 3) FPRIT(K) are mixed
Hodge substructures of R‘T(K) for all p and i, and finally 4) the natural iso-
morphisms H(E?-9)=EP:% and EL?=Gr? RP™IT(K) are those in (MH),
where the right hand side carries a natural mixed Hodge structure induced from
FPRPHAT(K). (Caution: Here and in the following F has nothing to do with
the Hodge filtration of a mixed Hodge structure.)
Now {rom (5) and (6) we derive easily the following:

(4.4.1) Lemma. Suppose that each R'T(FS(K)/F'(K)) is finite dimensional
and carry a mixed (J-Hodge structure such that (3),, are exact sequences in
(MH) for all s, t, u. Then we can define natural mixed (-Hodge structures
on E?? 1£r=< 00, and RIT(K) in such a way that (1) is a speciral sequence
in (MH) in the sense defined above.

Proof. First we define mixed {(J-Hodge structures on EF:? by means of
the isomorphisms EZ-?=~Ker 62:9/Im 6'2-%, where Ker o?-? and Im §'2:? have
natural mixed (J-Hodge structures since 62:? and 4'2:? are in (MH) by our
assumption. Next again by our assumption RI!T(K)=R!T(F°K/F™*1K) is
given a mixed -Hodge structure. Further since FPR'T(K)=1Ima; , o, it is
a mixed Hodge substructure of R'T(K). Finally from (5) and (6) the condi-
tions 2) and 4) follow easily. Q.E.D.

Note that the mixed Hodge structure on Ef-? is defined via the natural
isomorphism Ef-?=~RPTIT(Gr? K), as follows from the above proof.

(4.5) Let X be a compact complex space with X e® (1.1). Let A;=0<£ A4,
c---£4,.,=X be an increasing sequence of analytic subspaces of X. Let
Uy, =A,— A, s<t,and U;=U,,+;,=X—A,. Then we get that U,,=U,—U.,.
Let L be any sheaf of abelian groups on X. Then for any locally closed subset
U of X we denote by Ly the sheaf which is zero outside U and coincides with
Lly on U (cf. [8, 2.9.1]). With this notation let Q,,=Qy, , and @,=Qy,, @
being a constant sheaf (Jy on X. Then we have the decreasing filtration

F:Qo=0x20,220,20,+1=0

of Qx by the subsheaves ¢,. Thus in (4.1) if we let & =w(X), T=I'(X, )
and (K, F)=(Qy, F), then the spectral sequence (1) becomes the following
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(M Ep:=HZ (U, pe1, Q)= H*Y(X, Q).

In fact, since Uy, is closed in U, we have in general the isomorphisms F5(Q)/
F(Q)=Q;, (cf. [8, 2.9.3]) so that RP*IT(Fs(Q)/F'(Q))=H:*(U,,, ¢). Up to
the renumbering EF-1—Ex5%, (7) is nothing but the Fary spectral sequence
associated with the descending sequence {4,} [2, IV.12].

From (7) and (1.4) it follows that E}-? and the abutment H?*9(X, Q) of
this sequence have the natural mixed (-Hodge structures. Then using Lemma
(4.4.1) we shall show the following:

(4.6) Proposition. The spectral sequence (7) is one in (MH) such that on
E%:? and HPYY(X, Q) the mixed Q-Hodge structures coincide with those
defined above by (1.4). In particular if (7) degenerates, then we have the
isomorphisms in (MH)

Hg+q(Up,p+ 1 Q)E’GI‘%HP'HI(X, Q) .

Proof. Since RIT(F(Q)/F*(Q))=HL(U,,, @) as above, we can define the
natural mixed (-Hodge structure on R:T(Fs(Q)/F*((?)) by this isomorphism in
view of (1.4). Then it follows immediately that on EZ%-¢ and H(X, ) the
mixed -Hodge structures coincide with those given just before the lemma.
Hence by (4.4.1) it is enough to show that the exact sequence (3),, are com-
patible with the given mixed @-Hodge structure. Since U,,=4,—A,, by the
above isomorphism (3), corresponds to the exact sequence of relative coho-
mology associated to the triple (4,, 4, 4,)

~5 Hi(A,, 45, Q) L5 HY(4,, A, Q) 25 HY(A,, 4, Q) 2

where o; =0, ;=P €tc. Firstly by the functoriality of the mixed Hodge
structures (1.4), o; and f; are morphisms in (MH). Next, we decompose J; into
8,=0;h;, where h;: H¥(A,, A, @)—~H!(4,, Q) is the restriction map and §;:
HY(4,, Q)—~Hi(A,, 4,, Q) is the connection homomorphism in the exact se-
quence of relative cohomology associated with the pair (4,, 4,). Since h; and
d; are morphisms in (MH) by (1.4), ; also is. Hence the proposition is proved.

Remark. Presumably Lemma (4.4.1) could also be applicable to the
spectral sequence

EP%: Hy, ', (X, @)= H""(X, Q),

Up,p+1

which is the ‘Poincaré dual’ of (7).
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