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S-Duality in 7-Cohomology Theories

By

Mitutaka MURAYAMA*

Introduction

The concept of S-duality was introduced in Spanier [12] and generalized
to the equivariant case by Wirthmiiller [16]. 7-cohomology theories [3] are
G-cohomology theories for G=Z/2Z with their own sign convention. In the
present work we translate S-duality into a form suitable for t-cohomology with
respect to the sign convention, and discuss the duality between t-cohomology
and homology.

Notation and terminology in [3] are used freely.

Section 1 is a preparatory section. The sign convention is described there.
In Section 2 we observe the existence of the duality isomorphisms and S-
duals. The main results of this section are Theorems 2.2 and 2.7. In Section 3
we see mainly the relations of slant products (which induces duality) with
suspensions ¢*:*, o, , and o(*, *). In Section 4, using the results in Section 3,
we discuss some properties of S-duality of stable t-maps.

In Section 5 we discuss the duality between t-cohomology and homology,
and the representation of 7-homology theories. The main results in this section
are Theorems 5.2, 5.5 and Corollary 5.3. In Section 6 we see Atiyah-Poincaré
type duality in t-cohomology.

The author would like to express his gratitude to Professor S. Araki for
his kindly advice.

§1. z-Cohomology Theories

The main reference of this section is Araki-Murayama [3].

We work mainly on the category Z4; of 1-spaces (=spaces with invo-
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lutions) with base points. By t-spaces, t-maps and 1-homotopies we mean
T-spaces with base points, equivariant maps preserving base points and
equivariant homotopies relative to the base points respectively, for simplicity.
Involutions are denoted by 7 in most place. By [ , ]* we denote the set of
t-homotopy classes.

Let ¥: Zpt— Jop, be the forgetful functor to forget involutions and
¢: Tept— Jop, be the fixed-point functor to restrict to fixed points. So ¢X
is the set of fixed points of a t-space X and ¢f: ¢X—¢Y is the restriction of a
t-map f: X—Y to the fixed-point sets. The forgetful functor y induces the
morphism ¥,: [X, Y]*-[X, Y] and the fixed-point functor ¢ induces the
morphism ¢4: [X, Y]'=[oX, ¢Y].

Let R? 2 be the euclidian space with the involution such that (x,,..., X,
Xptireees Xpag) =(=Xpsuees —=Xpy Xpiy1seens Xp4p)- Let BP2 and SP24 be the unit
ball and unit sphere in RP-9. Let Xr-9=PBr-2/Sr.4, Xp:4 is identified with the
one-point compactification of Rr-9. We identify 270 A Xp-a=2r+p:q Fp.a A 3055
=XP-2%s by the standard t-homeomorphisms.

Let X and Y be t-spaces. We endow the set [27:9X, Y]* with track ad-
dition along a fixed coordinate, where 27:7X =279 A X and the involution on
27X is induced by the diagonal action on X?:4x X. Then [2P-1X, Y] is a
group for g=1 and abelian for g=2. Let J be the involution on XZ'-°. After
the identification X1:0A Xr~1.9=37.14 we have an involutive t-map JA1: 279
—2XP-4. Thus we have an induced involution

p=(JAD*: [ZraX, Y] > [ZP9X, YT*
for p=21. Clearly Y,p=—1 and ¢.p=1. Putting
A=Z[p]/(1-p?),
[274X, Y] is a A-module for p=1and g=2. A is identified with the Burnside
ring A(Z/2Z) of Z|2Z [3], Section 2, and A=[2r-4, ¥r-4]* for p=1and q=1,
[3], Theorem 12.5.

A t-complex is a G-complex for G=Z/[2Z, generated by 7, [3, 6]. Let #¢
and £ be the full subcategories of Z4% in which the objects are t-spaces
having t-homotopy types of 1-complexes and finite t-complexes, respectively.
Let €#°% and €%, be the full subcategories of #°7 and &7 with t-complexes
and finite t-complexes as objects, respectively. The base points of z-complexes
are vertices as usual.
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A reduced t-cohomology theory on the category #°% or on &7 is a system
h#**={hr-a: (p, )€ Zx Z=RO(Z[2Z)}

of A-module-valued contravariant functors h?-4 satisfying the following four
axioms Al)-A4).

Al) Each h?-4 is a t-homotopy functor satisfying Wedge axiom and
Mayer-Vietoris axiom on €#°F or ¥ ¥ ;.

A2) Two kinds of suspension isomorphisms

6:0‘1,0: I’;P,q(X)gi‘;p'*l,q(Zl,()X)
and
o=0%1: fPa(X)x hpat1(Z0-1X)

are defined as natural isomorphisms of A-module-valued functors.

A3) The following diagram

/ fip-a+1(30.1X) 2, fpt1.a+1(31,050,1x)
lp(rm*

X Ep+1,q(z‘1,0X) _a, Ep+1,q+1(20,121,0X)

is commutative for any X, where T: 20:1¥1,031,030.1 5 the 7-map switching

heea(Xx)

factors.
A4) Let J be the involution of X!-, then
(J A )*=p times: hP-4(Z1-0X) - fP-9(Z1:0X).

Axioms A3) and A4) relate the ring A to sign conventions. Iterated sus-
pension isomorphisms o%: fiP:9(X)=hpts:att(Zs:tX) are defined as the com-
posite g%t =g%¢* after the canonical identification X1OA .-+ AZLOAZOIA LA

20.1=3s:t We also use the notation 675 ~*=(¢%-*)! for inverses of suspensions.

The associated unreduced t-cohomology theory h**={hr:2; (p, q)€e
ZxZ) is defined as usual by h?-4(X, A)=hr-9(X/A) and h?-9(X)=hP-9(X,),
where X, =X U {pt}.

Reduced z-homology theories are defined in the obvious way and denoted
by 17*,*. Suspensions in reduced t-homology theories are denoted by o ,.

Let E={E,, ¢,: 2}''E,»E,.,} be a t-spectrum (E,e#°%), (p, q)eZx Z,
and n>max(—p, —q). For Xe#': and Ye#': the A-homomorphism £&,:
[Zrtenta X E AY] —s[ZrtptlntatiX E . A Y] is defined as the composite
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31,1
[Zrtrmta), E AY]® 22, [XUizntpnta), FLIE AY]?
LE_"A_I)_*) [21’12"“”"”1’, En+1 A Y]t
LIPS, [Zntptlntati)y B AY]

([3], (7.3)). Here, and henceforth, the t-homeomorphisms X?-2xrs (=ZP-030:4.
ZssOZO")g(ZP»OZS’OZO’qZOs'=) xrts.att which are induced by the switching maps
20.a3r,0 ;znozo,q are generally denoted by T, for simplicity, [3], Section 7. Put

[X, EAY],, (=[X, EAY]™P:m9)=lim {[2""P-"*9X, E,A YT, £,}

for each (p,q)eZxZ. Then {[—,EAY]?9;(p,q)eZxZ) is a reduced
t-cohomology theory on 7 for a fixed Ye#'; together with the suspension
isomorphisms o', [3], (7.6) and Theorem 7.7, and {[X, EA —1,,. (p, 9)
e€ZxZ} is a reduced t-homology theory on #7 for a fixed X € ¥ ¢ together
with the suspension isomorphisms o, , [3], (13.3), Propositions 13.4 and 13.5.
[—, EAX0C0]pa=[— E7P:1 is also denoted by E‘P=‘l(—) or h?4(—; E), and

[2°:0, EA -], , is denoted by E'p’q(—) or h,(—; E).

Each t-cohomology theory h** is associated with two (non-equivariant)
cohomology theories: the one is the forgetful cohomology theory Yh* defined
by yh"(—)=ho%"(S1:0x —) (=hp-""P(S1:0x —)), and the other is the fixed-
point cohomology theory ¢h* defined by ¢ph*(—)=lim h?>"(—). And the forget-
ful morphism : {h?:9} > {yhP*4} and the ﬁxed-ppoint morphism ¢: {h?-9}—
{ph4} are defined. These are a kind of natural transformations of cohomology
theories. (Cf., [3], §§2-3.)

Let E be a t-spectrum. Applying the forgetful and fixed-point functors to
each term and map of E, we obtain spectra YE and ¢E called the forgetful
and fixed-point spectrum respectively. The cohomology theories h*( ; YE)
and h*( ; ¢F) represented by YE and @E coincide with the forgetful coho-
mology theory ¥h*( ; E) and the fixed-point cohomology theory ¢h*( ; E)
of h*-*( ; E), respectively. The forgetful functor induces the homomorphisms
Yy [27PrmaX, E 7> [22P-aX, (YE),,] which form the map of the direct
systems. Taking the direct limits, we get a homomorphism

Yt EPa(X) - yEPH9(X).

This homomorphism coincides with the forgetful morphism  for E**, [31,
(7.10). Also the fixed-point functor induces the homomorphism ¢,: EP"l(X)
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—@E(¢X) which coincides with the fixed-point morphism ¢ for E**, [3],
(7.12).
An example of 7-spectrum is the t-spectrum of stable t-homotopy
SR={Zmr ¢,=T: 21’14‘?""'§Z"+""+1} .
In this case SR and ¢SR are both the sphere spectra.
Proposition 1.1. Let Xe #; and Ye#",. Then, for each (p, Q)€ Zx Z,
[X, SRAY]; z[2PrtaX, 2mnY ]
for large n.
This follows from [3], Proposition 13.12.

The cofibration sequence S}:°— B1.0— 3.0 30,181,0 induces exact sequences

o> P4 (Z10X) o P9 (BLO A X) o hP9(SLO A X) — AP 1(Z1:0X) ..

(o q (| (

ceoshrta(X) 2, hra(X) Y, yhrta(X) o, hprlati(X)—-.

s—1,0

where the second row is called the forgetful exact sequence of h**, [3], (5.1).

Proposition 1.2. Let &: h**f*tr*+s be g natural transformation of

reduced t-cohomology theories of degree (r, s). If
&: hra(X) - kptrats(X)
is isomorphic for a fixed X and each (p, q) € Z x Z, then
@: hp:a(S10 A X) — kptrats(S1.0 A X)
and
Y Yhrra(X) - pkrerrats(X)
are isomorphic for any (p, Q)€ Zx Z.

Proof. Compare the forgetful exact sequences of A*-*(X) and k*-*(X).
Then 5-lemma implies the result.

Similarly we obtain the following

Proposition 1.2'. Let ¥: I;*’*alz*ﬂ,*ﬂ be a natural transformation of
reduced 1-homology theories of degree (r, s). If

![7: Ep,q(X) - Ep+r,q+s(X)

is isomorphic for a fixed X and each (p, q)e Zx Z, then
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';‘,: Ep,q(s-}-’o A X) - Ep+r,q+s(sl’o A X)
is isomorphic for any (p, q)e Zx Z.

Propositions 1.2 and 1.2’ show that, if natural transformations &: f**
—k**tr*+s and ¥: hy 4~k ., ., are isomorphic on X%°, then &: fi*:*(S1.)
e frrr*ts(S10) and P: iy o(S10) 2Ky sy +5(SP0). Then comparison theorem
for 1-(co-)homology theories has the following form. (Cf., [6], Chap. IV, 5
and [9], Comparison Theorem 2.14.)

Theorem 1.3. Let i** and k** be reduced t-cohomology theories on
W'T or on F, and $: h¥*k*+r*+s be a natural transformation of reduced

T-cohomology theories of degree (r, s). If
& ﬁ*,*(zO,O)gIz*+r,*+3(20,0),
then
& ];*,*(X)g];*ﬂ,*ﬂ(X)
forany Xe€#': or any X e € F.

Theorem 1.3'. Let fi*,* and 12*,* be reduced 1-homology theories on #'%
or on #%, and P: hy y—ky i, 4+, be a natural transformation of reduced t-

homology theories of degree (r, s). If

B oy y (B0 2 15 (200,
then

VSN, §1=7 SN .¢)
forany Xe €Wt or any X e € Fs.

Next we state some isomorphisms of t-homotopy groups.

Proposition 1.4. Let X be a t-space such that i) X is m-connected and
ii) ¢ X is n-connected. Let (K, L) be a pair of t-complexes such that dim (K — L)
=m+1 and dim (¢K—-@pL)<n+1. Then any t-mapf: L—X can be extended
equivariantly on K.

The proof is similar to [3], Proposition 11.1.

Let F(X, Y) be the base-point preserving function space from X to Y.
Then F(X, Y) is a 1-space with t-action (tf)(x)=1f(tx), x€ X.

Proposition 1.5. Let X be a locally compact T-complex and Y a t-space
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Let ry: 9F(X, Y)>F(¢pX, ¢Y) be the map obtained by restriction to ¢pX.
Assume that Y is m-connected. Then

rot TGF(X, ) - nfF($X, $))
is isomorphic if j<M and epimorphic if jSM+1, where
m—dim (X — ¢X) if X+¢X
M=[ 0 if X=¢X.
Proof. As X is locally compact, we have
n(pF(X, Y)=[2%/X, Y]
(cf., [6], Chap. III). Leti: $X—X be the inclusion. Consider
(A Ad)*: 297X, YTF - [2%(¢X), YT°.

Then, applying Proposition 1.4 to the pair (X°7X, X0 J(¢ X)) for surjectivity and
to the pair (Z%/X x I, 2%/ X x {0, 1} U Z%J(¢X) x I) for injectivity, we get the
proof.

§2. S-Duality in the Stable z-Homotopy Theory

The (p, q)-th stable t-homotopy group, (p, q) € Z X Z, is denoted by
{X, Y},,(=[X, SRA Y]p,q=l_ing [Zrtesnta X FmnY 7).
{X, Y}, , is also denoted by {X, Y}7#-74. By Proposition 1.1
(X, Y}, = [ZrpntaX, ZnnY]s

for Xe ¥F:, Ye# " and large n.
Let ¥ % be the full subcategory of €% with objects X such that X and
¢X are path-connected. For X, X' e ¥ %% a t-map

u: X/\X’ __)Z'flssl...zl’k’sk’ r=r1+...+rk, S=51+"'+5k

is called a ((r, s)-)duality t-map (or R-duality t-map, R=(r, s)) if u: X A X’
—2rts and ¢u: X A pX'—>25 are duality maps in the sense of Spanier [12],
page 360, and then X’ is called an (r, s)-dual by means of u. For X, X'e?¢ %,
X' is called an (equivariant) S-dual of X if some (iterated) suspension of X’ is
an (r, s)-dual of some (iterated) suspension of X for some (r,s). If u: XA X’
—2Xrs be an (r, s)-duality t-map, then the 7-map #: X' A X—Z"s defined by
a(x’, x)=u(x, x'), xe X, x'e X', is also an (r, s)-duality t-map, [12], Lemma



676 MITUTAKA MURAYAMA

(5.4). For a t-map u: XA X'-2"s and pairs P=(p, q), P'=(p’, q¢') of non-
negative integers we define
Upp: ZPAX ANZPHO X' — ZP.aFP’, 4 TS

to be the composite

1AT' AL
ZPaX AZPH X o ZPayra' X A X' LALAu, Fp.aypt.a’ yres,
T

If u is an (r, s)-duality T-map, then up p is a (P+ P’ + R)-duality -map.
Here, and henceforth, T', denote switching maps in general.
For a -map u: X A X'—»2rs and P=(p, q) € Z x Z we define
It {Y, X},,—»{YAX, 25},
as follows: if f: Zn*p.ntay—3n.nX represents an element {f} e {Y, X}, , then
TI'?{f} is represented by the composite

Intp,ntq Y A X7 a1 InnY A X' 4.0 Z‘n,nZ‘r,s’

where N=(n, n) and 0=(0, 0). Then I'? is a well-defined A-homomorphism
and coincides with the slant product {u}/, see Section 3. {I'f}p., .~ is a natural
transformation of 7-cohomology theories with respect to Y.

Theorem 2.1. Let u: X A X'> 2" be an (r, s)-duality t-map. Then
TP AY, X} > {YAX', 205},
is a A-isomorphism for any Ye € F: and any P=(p, q)e Zx Z.

Proof. Consider the map wu,: [Z#tr.ntey, ZmnX ]t [Intpntay A X',
Zrngrse in the definition of I'?, with lim u,=IF. Define A,: Z»"X—F(X',
znnyes) by A (x) (x")=uy o(x, x'), X eE”’"nX, x"e€ X'. Then the following dia-
gram is commutative:

[Z‘n+p,n+qY, Z‘n,nX]t _un, [Z‘n+p,n+qYA X', Zn,nz‘r,s]t

[Zn+p,n+qY’ F(Xl, Z‘n,nz‘r,s)]t ,
where u, is the isomorphism induced by a t-homeomorphism
F(2n+p,n+qYA X" Z‘n,nzr,s)’?F(Zn+p,n+qY’ F(X” En,an,s))

taking f into f defined by f(y)(x")=f(y, x'). Therefore u, is isomorphic if and
only if 4,4 is isomorphic.
We show that 4,, is isomorphic for large n. Define v,: 2Y(¢X)—>F(¢p X',
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Zrts) by v (x)(x)=duy o(x, x’). Let r,: ¢F(X', Zmn2rs)—»F(dX', Z™*s) be
the map obtained by restriction to ¢X’. Then the following diagram is com-
mutative:

n1(2"(¢X)) BZYLEN n-j((bF(X” Z"’"Z"S))

m;(F(o X', Z"+9))

By Proposition 1.5 ry is isomorphic if j<(2n+r+s—1—dim X'). Recall that
Puy o is a duality map. By [12], (2.8) and the proof of Theorem (5.5), v, is
isomorphic for j<2(n+s—dim ¢X") when n is large enough so that Z*(¢X)
and F(¢X’, Z+s) are l-connected. Thus ¢/, is isomorphic for j<2n-—
2dim X'—1. Recall that Yuyo, is a duality map. Then Yi,.: n(2?"X)—
n(F(X', X2"*r*s)) is isomorphic for j<2(2n+r+s—dim X') and large n.
Then, by [3], Proposition 11.2 4,, is isomorphic for n>2-dim X' +dim Y+p
+g+2. Thus 4,4 is isomorphic for large n. g.e.d.

The duality isomorphism If:({Y, X}, —»{YA X', 2}, ., P=(p, q), in-
duces the homomorphisms
lp([‘f:) {'J/Y, le}p-i-q_* {le/\ WX'a Z‘r+s}p+q

and

o(I'D): {9Y, dX},—> {dY A 9X', 25},

which correspond to I'Z%2 and I'}, respectively, where { , }, denotes the (non-

equivariant) stable homotopy group. By the definition of a duality 7-map and

[12], Lemma (5.8), we see that y(I'F)=T"%%? and ¢(I'f)=TI7%, are isomorphisms.
Adding the converse to the above results, we obtain the following

Theorem 2.2, Let X, X'€e ¥ F% and u: X A X'>2" be a 1-map. Then
the following are equivalent:

(1) wu is a duality t-map,

(2 rf:{zo° X}, ,={X’, 25}, , for every P=(p, 9)e ZX Z,

3) IE{Y, X3}, ,={YAX' 2}, forany Ye ¥ F: and P=(p,q)e Z x Z,

4 Iy, {2°% yX},={yX’, Zr*s}, and

hut {29 60X}, ={dX', 25},  forevery neZ,
(5) [Yu: {Y, YX},={Y AYX’, %), and
s, {Y, X}, =2{Y A X', 25}, for any Ye ¥ F, and every neZ,
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where €, denotes the category of finite pointed CW-complexes.

Proof. The implications (2)<(3) and (4)<>(5) follow from comparison
theorems (Theorem 1.3). The implications (1)=>(2) and (1)=(3) are the result
of Theorem 2.1.

Proof of (2)=>(4). Since {I'’}p.,xz is a natural transformation of -
cohomology theories, Proposition 1.2 implies that I'j, is isomorphic for each
neZ. As the spectra YSRAYX and YySRAZr*s are connective and X' is
finite, we see that ¢: {2°:°, X}, ~{2° ¢X}, and ¢: {X', Zr5}, = {dX', 2},
for large p by [3], Proposition 5.4. Then (2) implies that I'}, is isomorphic
for each g € Z because of ¢(I')=TI3,.

Proof of (4)==(1). By [12], Lemma (4.7) and Theorem (5.7) we see that
Yu and ¢u are duality maps. This shows that u is a duality t-map. g.e.d.

Remark 2.3. The above theorems show that Wirthmiiller’s definition of
a duality [16] is equivalent to our definition under Propositions 1.1 and 1.2,
ie., let {u} e {XAX', X0.0}rs be an (r, s)-duality in the sense of [16] for X,
X' e € F:, then there exists a duality 7-map u showing that X and X’ are S-
duals of each other, and the converse follows from Theorem 2.1.

Next we show the existence of equivariant S-duality.

Proposition 2.4. Let X and X' be t-subcomplexes of 25! such that X,
X'e¥F%, XN X'=4g and the inclusion X'—Zrst1— X (which may not preserve
the base points) is a t-homotopy equivalence. Then there exists an (r, s)-
duality T-map

u: XAX - xns
showing that X' is an (r, s)-dual of X.

Proof. The proof is almost the same as [11], p. 180. As X and X’ are
closed in 2s*1 and XNX' =g, 25" —dpX— X' #d. We choose a point
aeXstl—¢pX—¢pX'. Then Xrs+! —{a}gR”s+1 and we have an embedding of
X and X' as disjoint t-subsets of R"s*!, We define a t-map (which doesn’t
preserve the base points)

v XXX > 2rs
by v(x, x")=(x—x")/|x—x'|], where || | denotes the standard 7-invariant norm

in Rms*!, Suppose we obtained a pointed t-map u: X A X'—2"s such that
v is T-homotopic to the composite X x X'?—»X A X' %, s, then by [11], page
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181, Yu and ¢u are duality map, and u is a duality -map. To show the ex-
istence of the 7-map u we use the following

Lemma 2.5. Let X be a t-complex and Y a pointed t-space. If any map
of X to Y and any map of ¢X to ¢Y are null-homotopic, then any t-map is
t-homotopic to the constant map.

The proof is the same as [3], Proposition 11.1.

By [11], page 181, any map of X v X’ to 2"*s and any map of ¢X v ¢ X’ to
25 are null-homotopic. Then any t-map of X v X’ to 2" is t-homotopic to the
constant map. In particular, by z-homotopy extension property of 7-complex
pair (X x X', X v X') vis t-homotopic to a t-map which sends X v X' to the base
point of 2*-s. Thus we obtained the required (r, s)-duality 7-map u: X A X'—
2rs, q.e.d.

Proposition 2.6. Let Xe€¥F%. Then there exists an (r, s)-dual X'e
€ F of X for some (r, s).

Proof. For a finite 7-complex X there is a finite simplicial z-complex K
having the t-homotopy type of X [2], Section 3. K can be embedded equiva-
riantly to a simplicial t-complex Z*-s*! for some (r, s). Take the t-subcomplex
X' < Zrst1 complementary to K as an (r, s)-dual of X in a similar way to [10].
(We can assume X' € ¥ % by replacing 2r-st1 with X-s+2, if necessary. Then
X'isreplaced by ZX'.) Then, by Proposition 2.4 there is a duality t-map KA X’
-2, and replacing K to X by the t-homotopy equivalence we complete the
proof. q.e.d.

Theorem 2.7. For any finite pointed t-complex X there exists an equi-
variant S-dual of X.

Proof. For any X e %%, 2X belongs to ¥%%. Then the theorem fol-
lows the above proposition. g.e.d.

The following theorem is an equivariant version of Atiyah [4], Proposition
(3.2), and the proof is the same as [4].

Theorem 2.8. Let M be a compact smooth t-manifold, and i: (M, 0M)
—(Brs, S™%) an embedding such that i(M) is transversal to S™ and B — ¢(i(M))
#@. Let v be the normal bundle of i. Then the Thom complex T(v) of v is
an equivariant S-dual of M|OM. (If OM =g, M|g denotes M U {pt} as usual.)
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Remark 2.9. Any compact smooth 7-manifold can be embedded equi-
variantly to B"s transversal to S*s for some (r, s), cf., [7], (10.3) and [14],
Corollary 1.10.

Remark 2.10. If M/OM e ¥ %%, then there is an (r, s)-duality 1-map
M|[OM A T(v)— 2" by Proposition 2.4.

Proposition 2.11. S1:0 is an equivariant S-dual of itself.

Proof. S':0 is a 0-dim compact smooth t-manifold. Then the above
theorem implies the result.

§3. Suspensions and Duality

In this section we discuss relations among duality and suspensions ¢* *,
Oy,5 and o(x, *) (defined below).

First we describe slant products | in t-cohomology, [3], (13.15).

From now on we often use the notation 2%, R=(r, s), to denote X%, for
simplicity.

Let E={E, e£}, F={F, ¢} and G={G,, e} be t-spectra, and p=
{tpq: E,AF =G,y .} be a 1-pairing, [3], Section 8. A slant product

[ [XAX,EAZTQ[Y, FAX],,»[YAX',GAZ],_, .

(instead of Ers(X A X)®F, (X)—»6Grr-1(X")) is defined as follows: Let
u: Xmrm=sX A X'>E,AZ and f: ZrtPntaY F A X represent elements {u}e
[XAX,EAZ]s and {f}e[Y, FAX],, respectively. Define u,,(u,f):
ymortntp,m=stita Y A X'»G,.,AZ to be the composite IM-RIN+PYy A X’
pim=s)(n¥P)TAL SM—RYN+PY A X/ Aafa1, 1ASA1 IM- RF AXAX AT  yM- RX/\X'/\F
—ur  E ANZAF, AT, E AF AZ Y mnr, G AZ M—R=(m—r, m—s),
N+P=(n+p,n+q). Put g, ))=(~p)"styu, f). Then {u}/{f}e[Y A X,
GAZ],_, ,—is defined by {u,.(u, f)}. Thus I'} coincides with the slant pro-
duct {u}/: {Y, X}, ,~»{YAX', ZR}, ,, u: XA X'-2R, P=(p, q).
Slant products satisfy the compatibility with suspensions: For xe[X A X',
EAZ]» and ye[Y, FAX],,

B0 (@ Px)(0,y)=x[ye[YAX', GAZ],_\ s
(3.2)  (@Px)[y=a(A, P)-G%*(x[y)€[Y AZ"PX', GAZ], r—gq-5-p>
(4, P)=(—p)baplert)rta) . A=(a, b), P=(p, q),
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(33) (aa,bx)/y=o-a,b(x/y) € [YA X,a G A Z‘a’bZ]p—r+a.q—-s+b 3
(3.4) x|t y) = 4:b(x/y) € [Z9PY A X', GAZ]y- 1 ggmsmps
where 6%°: [XAX', EAZ], ,—»[XAZX', EAZ],_,4-p is defined to be the

composite: [XA X, EAZ], 225 [ 29X AX  ENZ], gq-s TS [X A Z00X,
EAZ], ,,-p (These can be shown similarly to [3], §8.)

We use the notation I'’(x) to denote the slant product
X[ [, FAX],,»[YAX,GAZ],_,,—s, XE[XAX',EANZ]"".
Then, for a t-map u: X A X' 2R, I'’=T?({u}) (E=F=G=SR).
Let A=(a, b) be a pair of non-negative integers. The suspension isomor-
phisms
o(A): {X, Y},,={Z4X, Z4Y},,
of stable T-homotopy groups are defined as follows: If f: ZN*PX—3INY repre-

sents an element {f}e{X, Y}, ,, N=(n, n), P=(p, q), then a(4){f} is repre-
sented by X4 f defined as the composite

ZN+PZAXT£\<; SAYN+PY 1AS, ZAZNYT;QA;I INYAY |

From now on we use the notations ¢4 and o, to denote ¢%-? and o, , respec-
tively, for simplicity.

We compare d(4): {X, Y}, ,—{24X, 24Y}, , with 640 ,.

As to the definitions of ¢** and o, , in 7-(co-)homology represented by
T-spectra we refer to [3], (7.5), (7.6) and (13.3).

Proposition 3.1. Let A=(a, b) and C=(c, d) be pairs of non-negative
integers and xe {X, Y},,. Then
o(A)x=0a(A, P)-o40 ,x,
6Co0(A)=T'*o6(A)oc¢ and Tioacoa(A)=0(A)ac
where P=(p, q), (A, P)=(—p)bapatt)e+d) gpnd T': ZCEAgZAZC.

Proof. Let f:2XN*PX—3ZNY represent x. Compare Z4f with oo™ f
(=n-stage of g400,). Computing permutations of suspension parameters and
difference of conventional signs, we see that [24f1=w(4, P)-[6doc” f1e [ZVTPX,
ZNY7]*, where ““[ f]” denotes the T-homotopy class of f. Then we obtain o(4)x
=a(A, P)-o4.0,x. Similarly we obtain the other results. g.e.d.
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Remark 3.2. Let A, C, T’ and a( , ) be as above. Then
0406 =0c004,
Tyo0c00 ,=0(A, C)-0,400, and T'*eg4ogC=ua(A, C)-0cCo04.
(Recall the sign conventions A3) and A4).)
Henceforth (A4) denotes the composite
(XY, Z},, -9, (ZAX A\ Y, 34Z}, , 0 (X A BAY, 342}, ,,

T: XAZ‘A?ZAX. Then &(A4) =o(A, P)-G40,, and {u,e} = o(4){u}, {up,4}
=6(A) {u} for u: X A X'—ZR,

Proposition 3.3. Let xe{X A X', Z}"s and A=(a, b) be a pair of non-

negative integers. Then commutativity holds in each diagram

{I’s X}p,q ‘m) {YAlX" Z}p—r,q—s
o(4) a(4)
{Z4Y, 34X}, , T, (SAYAX', ZAZY, s

T, 00 5 {YAX, Z}rs
TP (3(4)x) F(4)

\ S
{YAZAX', 247}y g5 »

where P=(p, q).

Proof. By Proposition 3.1, (3.1)~(3.4) and Remark 3.2, we see that
I'P(6(A)x)o0(A4) = a(A, R)-a(A, P)-(c400 x/0 4004 Y=a(4d, P—R) - (g 4x]64 )=
(A, P—R)o4o0 (x| )=0(A)oI'?(x), and G(A)eI'P(x)=0a(4, P—R)-G40,(x/ )=
(A4, P—R)-c4o(0 x| )=a(A4, P—R)-a(A, P) - (640 ,4x] )=a(4, R)(G40,x] )=
a(A)x] =I'?(G(4)x), R=(r, s). (Remark that a(4, P—R)=0(4, P)-a(4, R).)

q.e.d.

Next we discuss relations among iterated suspensions and slant products.
As is easily seen, for A=(a, b), A’=(a’, b’), C=(c, d) and C'=(c¢’, d’) com-
mutativity holds in each diagram
{X, Y}p,q a(C+a), {zc+ay, Z‘C+Ay}p’q
(3-5) T(C')M(A) ”2 (TAL)y*e(TA)x
{ZC24X, Z€24Y}, ..,
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(ECHAXAZCHA X', SCTATCHA 7}
(C+A)o5(C’+A4") . “2 (TALATA1)*o(TATA1)s
/ - ’ — ’ . ’ ’ ’
(3.6) {XAX',Z}, o Credra(Codd), (FCRAXAZC' T4 X', SCEAZC T4 ZY, .

\ H? a(A,C")-(1AT " Al)s
{ECTAXATC A X, ICICTATA 7}

~—
a(C)oG(C’)oa(A)°G(A")

T': 24%¢ §ZC'ZA. Then, by naturality of I' we obtain

Proposition 3.4. Let A=(a, b), A’=(a’, b’"), C=(c, d) and C'=(c', d’) be
pairs of non-negative integers, x€ {X A X', Z}"s and P=(p, q)€Zx Z. Then
commutativity holds in the diagram

{7, ZC+AX}p'q I'P(a(C+A)°G(C'+A")x) {YA TC A X ZC+AZC'+A'Z}

p=r.q=s
He (TAl)e H? (TA1)*(TAT A1)«
{Y, ZCZAX}p’q T'P(g(C)°a(A4)°G(C")°F(A")x) {YAZCZA X', ZCTAYC 34 Z}p—r,q—s
<
I'P(a(C)°a(C")°a(A)°T(A")x) “2 @(A4,C")o(1AT A1)«

TS (YARCOSAX, CECTATAZY

Remark 3.5. Let E be a rt-spectrum. Define o(4): [X, EAY], —
[24X, EAZAY],,, A=(a, b), a=0, b20, as follows: If f:XM*PXE AY
represents {f}e[X, EAY],, M=(m, m), P=(p, q), then o(A){f} is repre-
sented by the composite: EM”ZAX?EAZM“’X ArS, FAE A YtzEm A Z4Y. This
is a generalization of the suspension isomorphism ¢(A4) of stable t-homotopy
groups, and Propositions 3.1, 3.3, and 3.4 hold when we replace { , }, .=
[,SRA Juuby [, EA Ty

Next we discuss composition of stable t-maps. Let xe{X, Y}, , ye{Y,
Z}, .. We define yoxe{X,Z},,,, ., as follows: Let f: ZM*PX3MY, g:
IN+RYINZ represent x, y respectively, M =(m, m), P=(p, q), N=(n, n), R=
(r,s). Define &(f, g) by the composite: IM*TP+N+RY T, yN+RyM+PY 1],
SN+RyYyMYy T2 yM+N+R Y T3, JMyN+Ry 124 M yN7 PKT 51,1 YLIyN7 &
IMNZ  where Tl1=pmtD)n+ts)T Al T2 = pmn+)T AL, T3 = pntrmT AL T'=
(TAD(TAY), k=k(m)y=m(m—1)/2, §=¢,4,_,--¢,. Then yox is represented
by p*é(f, g). Note that the diagram

IN+RYyMy T2, YM+N+RYy

a(N+R,M)T’ A1 \ J{ T3

2M2N+R Y
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is T-homotopy commutative for large m, n, we see that yox=y/x. By (3.1)-(3.4)
and Proposition 3.3, we also see the following compatibility with suspensions:
For xe{X, Y}, , velY, Z},,and A=(a, b), a=0, b=0,

(G4)ox=04(yox), (a4y)o(04X)=yox,
yo(a4x)=04(yox), (0(A)y)o(a(A)x)=0(A)(yox).

For a t-spectrum E={E,} we define t-pairings ¥ ={v,,}: SRAE-E
and »'={v,,,}: EASR>E by v,,=é&T:3""E,»x1...3L1E »E, . and
Vo= (—=py"v, oT': E AX0n T, yunE S E .. Let xe{X,Z},,. Then,
using v, we have a map x.:[Y, EAX], —[Y, EAZ],,, . defined by x,(y)
=x/y for ye[Y, EAX],, Let f:IM*RX¥MZ represent x, M =(m, m), R
=(r,s), then p¥-o_pof ooy g [Y.EAX], ,~[Y,EANZ], i1 g4 K=m(m—1)/2,

coincides with x,, i.e., for any representative f of x

3.7

(3.8) Xg=pko_yofyo0yir, k=k(m)=m(m—1)/2.

We use 1y also to denote the identity map of X. Note that 1ye{X, X}, is
represented by p*1yay, see [3], Section 8, Example 1. Similarly let ye{Y, X}, ,,
then, using »’, we have a map y*: [X, EAZ], —~[Y, EAZ],,, . defined by
y¥(x)=x[y for xe[X, EAZ],, and y*=pko~M~Pg*gM for g: ZM*PYZMX,
{g}=».

Let xe{X,Y},, ze{Z, W}, Then xAlze{XAZ YAZ},, lyrnze
YANZ, YAW), o xA Ly e{XAW,YAW],, and IxyAze{XAZ X AW},
where x A 1, is represented by f A1, for a representative f of x, and 1,Az is
represented by the composite: ZNtRY A ZgZ’“RZ/\ Y 221, INZ A Y? INYAZ

for a representative g: Z¥N*RZ—XNZ of z. Then, by definition, we see easily that
(3.9) (IyAz)e(xAl)=a(P, R)-(xAly)o(IxAZ)E{XAZ, YAW} irgss-
We also see the following

Proposition 3.6. Let xe {X A X', 2%, ye{Y, X}, , and ze{Z, Y}, .
Then zAly €e{ZAX', YAX'}, , and

[(x) (yoz)=x/(voz)=(x/y)o(z Al x)=([ (x)y)(z A 1x).
In particular, yAly e {YAX', XAX"},, and

I(x)y=x/y=(x/1xsx) (¥ Alx)=xo(y A lx).
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§4. S-Duals of Stable z-Maps

Let X, X' e %%t and R=(r,s)eZxZ. An element xe{X A X', X0,0}rs
is called to be an R-duality when the maps

I*5(x): {290, Xy = {X', 2%% 5 nss
I*H(X): {290, X' }iw = {X, 2005 s

are isomorphisms, Wirthmiiller [16] (cf., Remark 2.3), where X denotes T'*x
e{X'AX, 200}rs T': X' AXXEXAX'. We also call an element x e {X A X',
Za:b1r.s to be a duality if I'**(x) and I'**(X) are isomorphisms. Then I'**(x):
{Y, X3 a2 Y A X, 2900, gsand T35 {Y, Xy a2 {Y A X, 2%P) 0 s
are isomorphisms for any Ye ¥ £ (Theorem 1.3), and an R-duality t-map gives
an R-duality {u} € {X A X', 25} o (Theorem 2.1).

Let xe {XA X', Zob}sand ye {Y A Y’, Z9b}"s" be dualities. The duality
isomorphism

D(x, y): {X, Y}, =Y, X'} piror sy

is defined to be the composite

T'*
{X’ Y}Psq —Lﬂi’ {X/\ Y’a Ea’b}p—r’,q—s’ = {Y’A X: Za'b}p—r’,q—s'

(LR RNSY, X Y par-rgrs-s> T 1Y AXEXAY'
Clearly D(x, )™ =D(y, X), and D(6_,, X, 04, -y) =D(x, y) by (3.3).

Using the results in Section 3, we discuss compatibility of duality isomo-
rphisms D with suspensions.

Proposition 4.1. Let xe{XA X', 200} agnd ye{YAY’ X0.0}"s" pe
dualities and A=(a, b) a pair of non-negative integers. Then commutativity

holds in each diagram

f 1 D(x,y) ’ 1
L‘Xa Y!p,q = {Y H X }p+r—r',q+s—s’

a(A) l / D(c(A)x,a(A)y)

{Z4X, 24Y}, ,

D(x,y) ’
{Xa Y}p.q > {Y s Xl}p+r—r',q+s—-s'
\ 1
D(5(A)x,5(A)y) la(A)

{ZA Y', 2A/YI}p+r--r' ,g+s—s
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Proof. Clearly o(A)x=a(4)x. Let T": Y'A EAXTzZAX/\ Y, T:YAX
TzX AY'. Then T"*o6(A)=d(A)T'*. By Proposition 3.3 D(c(A4)x, o(A)y)°
0(A)=T(G(A)x)~ o T"*I'(a(A)y)eo(A) =T (G(A)X) e T"*oa(A)el (y)=I(G(A)x)~"°
G(A)eT'*oI'(y)=I(X)"LoT'*I'(y)=D(x, y). Similarly we obtain the other.

qg.e.d.

Let x, y and A=(a, b) be as above, and A’=(a’, b’), C=(c, d), C'=(c’, d)
be pairs of non-negative integers. By Proposition 4.1 we have
(4.1) D(a(A)a(A")x, 6(A)a(A")y)e0(4)=0(A")-D(x, y).

Similarly to Proposition 4.1, by (3.5) and Proposition 3.4 we see that
(4.2) D(o(C, A)x, o(C, A)y)ea(C, A)=D(c(C+ A)x, o(C+ A)y)eo(C+ A)
=D(x, y)a
(4.3) D(a(C’, A)x, o(C', A)y)
=(T A 1)*o(T A 1)4oD(6(C"+ A')x, 6(C"+ A4)y)
=(T A 1)*o(T A 1)4o0(C"+ A')oD(x, y)
=0(C’, A')°D(x, y) ,
(4.4) D(o(C, C', A, A)x, o(C, C', A, A)y)o6(C)
=g(C")oD(a(4, A')x, (4, A)y)
and
4.5 D(o(C, C, A, A)x, o(C, C, A4, A")y)
=D(a(C, 4, C', A)x, o(C, 4, C', A)y),
where a(C, A), o(C’, A"), (4, A") and o(C, C', A, A") denote o(C)oa(A), G(C’)°
G(A"), 6(A)°a(A") and 6(C)oG(C")oo(A)oG(A") respectively. Thus we obtain
Proposition 4.2. Let xe{XAX’, 2%0}rs gnd ye{YAY', 20:0}ris" be

dualities, and A=(a, b), A'=(a’, b"), C=(c, d) and C'=(c, a’) be pairs of
non-negative integers. Then the following diagram is commutative:

{X, Y} — D(x,y) {Y’, X/}
:’y a(C+4) o(C'+4") NA’)
{EAX9 ZA Y} D(s(4,47) {ZA' Y', ZA’XI}

o(C) | {3C+dy, FC+Ay} DCHACTHAD), (FC+Ay 3C+a' x') | o(C)

~ N
{EC3AX, 5C34Y} SeET ATy | ECTAY,ICTAXY,
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where T=(TAD*(TADy, {, }
denotes D(a( )x, o( )y).
From (3.1)—(3.4) and the definition of D(x, y) we obtain

etc. are denoted by { , }, and D(a( ))

p,q

Proposition 4.3. Let xe{XA X', 20:0}rs gnd ye{YAY’, 20:0}s" pe
dualities, ze {X, Y}, , and A=(a, b) be a pair of non-negative integers. Then

D(x, y) satisfies the compatibility with suspensions ¢4 and o :

D(an’ y)°GAZ=“(A, P+R—R")-D(x, y)z€ {Y,’ X,}p+r—r’.q+s—s' P
D(x, 64y)o0,z=D(x, Y) €{Y’s X'} irorgts—s>

D(EAxa Y)Z=0'A°D(X, y)Z € {YI, ZAX,}p+r—r’+a,q+s—s’+b5

D(x’ 6Ay)Z=OC(A, P) ) GA°D(X: y)Z € {ZA Y’ﬂ X,}p+r—r’—a,q+s—s’—b7

where P=(p, q), R=(r, s), R'=(r',s") and a(4, C)=(—p)*iplate)b+d)  for
C=(c, d).

Next we see the relation of compositions of stable t-maps and their duals.

Proposition 4.4. Let xe{XAX', 200} ye{YAY', 200} qgnd ze
{ZAZ', 200" be dualities, and ue{X, Y},,, ve{Y, Z}, . Then voue
{Xs Z}p+p’,q+q’ and

D(x, z) (vou)=o(P, P'+R’'—R")-(D(x, y)u)«(D(y, z)v)
€ {Z,’ X’}p+p'+r—r",q+q’+s—s" H

where P=(p, q), P'=(p', q), R"=(", s"), R"=(r", s") and o(P, C)=(—p)2¢
plerae+d)  for C=(c, d).

Proof. Let T;: X A Y’rzY'/\X, T,: YA Z’?Z’ ANY,T3: XA Z’rzZ’/\ X,
Tyt YA Y’g Y'AY, and u'=D(x, y)u, v'=D(y, z)v. Then, by definition, y/u
=T¥(/u') and z/v=T%(y/v'). By Proposition 3.6, we see that I'(z)(vou)=
z/(vou)=(z/v)o(u A 1) =(T3(F[v")o(u A 17)=(TEy)(1y Av)o(u A 1z)=yo(1y A V')
o(unly), and TFeI'(X)(u'ov’)=T5(X/(u'v")=(TF(x/u))(lx A v)=(y/u)(1x A
v)=yo(u A ly)o(lxyAv’). Then, by (3.9), we complete the proof.

We reduce duality t-maps to stable t-maps in {X A X', 2%:0}**  For
X e ¢ there exists an S-dual X’ by Theorem 2.7. Then we can choose the
duality t-map having the form u: Y91 X A X'—>20:13rs, In fact, let u’: 201X
AX'—2rstt be a duality t-map obtained by Propositions 2.4 and 2.6, then
s=20 from the construction. We define u by prTou’: ZO1X A X' —>20.13rs,
This is the required one. For this u we define an (r, s)-duality <u) e {X A X',
30,018 by
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(4.6) up=0_,,_»0(0, 1) {u}.

For a 7-map u: X AX'—>ZR, R=(r, s), and upp: ZPXAZP'X'>XPXP' IR, we
see easily that {upp}=0(P)ea(P’){u}. Thus, for a duality t-map upp: Z*X
AZP' X' IPYP IR, we observe that {up py =0_oG(P) tea(P) {up p} =<u) is
an R-duality.

Theorem 4.5. Let X' and X" be S-duals of X € € F ¢ so that xe{X A X',
20:01rs gpd x'e {X AX", 200" are dualities. Then a stable t-homotopy
equivalence {f}e{X’, X"}, _ g5, [ Zntrormts’=sX'symnX" is canonically

determined by {f}=D(x', x)1x for large n.

Proof. Put v=D(x, x)1ye{X", X'},_,.s—s. Then, by Proposition 4.4
we see that v is the inverse of {f}. q.e.d.

§5. Duality between z-Cohomology and Homology

First we see the following t-cohomology version of [16], Proposition 1.2,
and the proof is the same as [16]. (Use Comparison Theorem 1.3".)

Proposition 5.1. Let xe{X A X', 290} be an (r, s)-duality, and Ye
CF, Ze€# . Then

TP() (% ZAX Yy = {Y AKX, 2}y
is a A-isomorphism for each P=(p, ) e Z x Z.
Let E={E,; neZ} be a 7-spectrum. A decomposition
[X, E]le% [EN+PX, E,,]’=li_'1nn h_nm [EM+N+PX SME ]7,
P=(p, @), M=(m, m), N=(n, n), implies
(5.1) [X, E]p,q':liTnl\ {ZV+PX, En}O,O
(cf., [3], the proof of Proposition 13.5). Then we obtain the following

Theorem 5.2. Let xe{XAX', 2%0}s be an (v, s)-duality, E={E,;
neZ} a t-spectrum, YeGF: and P=(p, q)eZxZ. Then there exists a
duality isomorphism

I'(x, E):[Y, EAX], ,=2[YAX',E],_,

g

Proof. By Proposition 5.1 we obtain the isomorphism

O',,SOFP(X): {2N+PY! En}O,O = {ZN+PX9 En A ER}O,O 3
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N=(n, n), R=(r, s). Then, taking the direct limit and by (5.1) we obtain the
isomorphism to be the composite
(Y, EAX],,2[YAX, EAZ®],, 27 [YAX, El,pyes. q.e.d.
As S1-0 is an S-dual of itself and there is a (0, 0)-duality, Proposition 2.11,
putting Y=2%9 we obtain

Corollary 5.3. Let xe {X A X', 20:0}"s be an (r, s)-duality and E a -
spectrum. Then

fP(x, E) ];p,q(X; E);Er——p,s-—q(X/; E)
In particular
I'*(x, E): hy, SV E)yxh=?"9(S10; E).

Let l?*'*={ﬁp,q, (p, Q)€ Z x Z} be a reduced t-homology theory on #°:.
For each X € ##¢, there is an S-dual X' of X and a duality x e {X A X', X0:0}rs
by Theorem 2.7 and (4.6). Put

(5.2) hea(X)=h (X"

r=ps—gq

for each (p, q)e Zx Z. By Theorem 4.5, i7:9(X) is uniquely determined up to
canonical isomorphisms. Let f: X—Y be a 7-map in ¢#;. Choose an S-
dual Y’ and a duality ye {Y A Y’, 2%:0}"s".  Then we see that D(x, y): {X, Y}, ,
=2{Y, X'} pir—rgrs—s- Putu=D(x, y){f}. Define

(5.3) f*: hra(Y) - hp-4(X)

by the following: Let f’: M+PTR-R'Y' yM X"’ represent u, M =(m, m), P=
(p, @), R=(r, s), R"'=(r", s’). Then f* is defined by p*o_jr°f%°04+pir_r">
k=k(m), cf. (3.8). This definition is independent of the choice of representatives
of u. Suspensions ¢%:? are defined by o(a, b)x and (5.2).

In order to show that hP-9(Z) 2, fir-9(Y) _L*, hp-4(X) is exact for a -
cofibration sequence X L Y2, Z, we use the following t-cohomology
version of [16], Proposition 4.1, and [12], Theorem (6.10).

Proposition 5.4. Let xe{XAX’', 200} agnd ye{YAY’ Z0:0}s pe
(r, s)-dualities. Let f: X—>Y and f': Y'»X' be t-maps such that {f'}=
D(x, y){f}. Then there exists an (r, s+1)-duality we {C;A Cj., 2%1}5 com-
patible with the t-cofibration sequence of f and f', i.e.,
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SR, «(X)L% SR, .(Y) 2, SR, .(C,) 2% SR, ,(EX) L5 SR, .(EY)

?(U)x/l E(U)y/l w l la(U)x/ lﬂ(U)y/

SR**(5x") 2% SR**(ZY") 22, SR**(C,) 4 SR**(X') L2, SR**(Y")
and the dual diagram for X, y, w commute, where U=(0, 1).

Let xe{XAX', 200} and ye{Y A Y’ 20-0}"%" be given dualities. Let
m=max (r, ', s, '), M=(m, m). Then ¢ Rx and MRy, R=(r,s), R'=
(', 5"), are both (m, m)-dualities. And choose a representative /' of D(¢M~Rx,
dM-R ) {f}. Then we can apply the above Proposition to a given f: XY,
and by (5.2), (5.3) we see that h?-9(Z) -2, hr-a(Y) L%, hr-9(X) is exact for
the cofibration sequence X L, Y2, Z. Thus we obtain

Proposition 5.5. By the above Definitions (5.2) and (5.3) h**={hr-,
(p, )€ Zx Z} is a reduced t-cohomology theory on € F:.

By [2], Theorem 3.4 for G=Z/2Z any reduced t-cohomology theory on
% F° is represented by an Q-t-spectrum E, i.e.,

e a(X)xhro(X; E), Xe¥F:, (p,qcZxZ.
Then, by (5.2) we obtain a sequence of natural isomorphisms:
h, (X)xhr-ps—a(X)xhrrs=a(X'; E)xh, (X; E).
Thus we obtain an equivariant version of G. W. Whitehead [15] as follows .

Theorem 5.6. A reduced t-homology theory on € F: is represented by a

suitable Q-t-spectrum.

Corollary 5.7. A reduced 1-homology theory on €#°% is represented by
a suitable Q-t-spectrum.

Proof. If an Q-t-spectrum E represents ﬁ*,* | ¢sTs then E represents
E*,* by Theorem 1.3'. Thus the corollary follows from the above theorem.
g.e.d.

§6. Atiyah-Poincaré Duality in z-(Co-) Homology

In this section we discuss Atiyah-Poincaré-type duality for real-complex
orientable t-cohomology theories [1].

A compact smooth 7-manifold is called a weakly real-complex manifold if
the normal bundle v of an equivariant embedding (M, 0M)—(B4:?, S%%) trans-
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versal to S4? is a real-complex vector bundle (=Real vector bundle in the sense
of Atiyah [5]) for some (a, b). Let h** be a real-complex orientable t-coho-
mology theory and M be a weakly real-complex manifold with r-dimensional
normal real-complex vector bundle v of an embedding (M, dM)—(B4:?, Seb),
r=1. Then there is the Thom isomorphism

@1 hFF(M) ixtr*tr(T(v)).
On the other hand, by Theorem 2.8 and Corollary 5.3 we obtain the duality
isomorphism
D: Fiyey - pi—r—f M[OM) 7. 057(T(3)),

where fi*:* is represented by a t-spectrum. If dim M=m+n and dim ¢M=n,
then a—r=m and b—r=n. Combining these isomorphisms we obtain the
following

Theorem 6.1. Let h** be a real-complex orientable t-cohomology
theory and M a weakly real-complex manifold such that dim M=m+n and
dim ¢M=n. Then there exists a duality isomorphism

Dy=D"Yo®: hP-4(M) =], _ , ., (M, OM)
for every (p, Q)eZx Z.

Typical example of real-complex orientable 7-cohomology theory is MR*:*,
[8]. Thus we obtain

Corollary 6.2. Let M be a weakly real-complex manifold such that
dim M=m+n and dim M =n. Then there exists a duality isomorphism

Dy: MRP-A(M)~MR,,_,,_ (M, M)

for every (p, Q)€ Z x Z.
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