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S-Duality in r-Cohomology Theories

By

Mitutaka MURAYAMA*

Introduction

The concept of S-duality was introduced in Spanier [12] and generalized

to the equivariant case by Wirthmiiller [16]. r-cohomology theories [3] are

G-cohomology theories for G = Z/2Z with their own sign convention. In the

present work we translate S-duality into a form suitable for t-cohomology with

respect to the sign convention, and discuss the duality between t-cohomology

and homology.

Notation and terminology in [3] are used freely.

Section 1 is a preparatory section. The sign convention is described there.

In Section 2 we observe the existence of the duality isomorphisms and S-

duals. The main results of this section are Theorems 2.2 and 2.7. In Section 3

we see mainly the relations of slant products (which induces duality) with

suspensions a*5*, a* * and cr(*, *). In Section 4, using the results in Section 35

we discuss some properties of S-duality of stable t-maps.

Jn Section 5 we discuss the duality between T-cohomology and homology,

and the representation of t-homology theories. The main results in this section

are Theorems 5.2, 5.5 and Corollary 5.3. Jn Section 6 we see Atiyah-Poincare

type duality in t-cohomology.

The author would like to express his gratitude to Professor S. Araki for

his kindly advice.

S1. r-Cohoraology Theories

The main reference of this section is Araki-Murayama [3].

We work mainly on the category 3&/*l of i-spaces ( = spaces with invo-
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lutions) with base points. By -[-spaces, i-maps and t-homotopies we mean

i-spaces with base points, equivariant maps preserving base points and

equivariant homotopies relative to the base points respectively, for simplicity.

Involutions are denoted by T in most place. By [ , ]T we denote the set of

T-homotopy classes.

Let ij/: &"o/i?0-* 5^0 be the forgetful functor to forget involutions and

(/>: &~*/?0-+ 3~*/*0 be the fixed-point functor to restrict to fixed points. So (j)X

is the set of fixed points of a r-space X and 0/: 4>X-+(/)Yis the restriction of a

T-map /: X->Y to the fixed-point sets. The forgetful functor \l/ induces the

morphism \jj*: {X, Y]T-»[Z, Y] and the fixed-point functor 0 induces the

morphism fa: [X, Y]*-»[<^, <£Y].

Let Rp>q be the euclidian space with the involution such that T(xl3..., xp,

xp+1,...,xp+q) = (-xl9...9 -xp, xp+i,...9xp+q). Let BP-Q and S*>* be the unit
ball and unit sphere in RP*«. Let IP^ = BP^ISP^. I*** is identified with the

one-point compactification of «*•«. We identify Zr>° A ZP'* = Zr+p>«9 !*•« A Z°>s

= ZP<Z+S by the standard T-homeomorphisms.

Let X and Ybe T-spaces. We endow the set [Zp*qX9 Y]r with track ad-

dition along a fixed coordinate, where Zp'qX = Zp'q A X and the involution on

2* '-qX is induced by the diagonal action on 2?'«xX. Then \Z™X, Y]T is a

group for q^l and abelian for q*z2. Let J be the involution on I1-0. After

the identification I"1'0 AIP-I^ = IP^ we have an involutive T-map JA!: ZP>«

-*Zp>q. Thus we have an induced involution

for p ̂  1 . Clearly i//*p = — 1 and c/)*p = 1 . Putting

[Zp>iX, Y]T is a /L-module for /?^ 1 and ^^2. /I is identified with the Burnside

ring A(Z/2Z) of Z/2Z [3], Section 2, and 4 = [!*•*, I^'«]T for p^l and ^^1,

[3], Theorem 12.5.

A r-complex is a G-complex for G=Z/2Z, generated by T, [3, 6]. Let ^J

and ^l be the full subcategories of 3fyl in which the objects are T-spaces

having t-homotopy types of t-complexes and finite t-complexes, respectively.

Let ^i^\ and ^^r
0 be the full subcategories of <W\ and &l with t-complexes

and finite i-complexes as objects, respectively. The base points of t-complexes

are vertices as usual
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A reduced r-cohomology theory on the category i^l or on &\ is a system

/J*,* = {^,«: (p9 q)EZ*Z=RO(ZI2Z)}

of /L-module-valued contravariant functors hp>* satisfying the following four

axioms A1)-A4).

Al) Each hp'q is a T-hornotopy functor satisfying Wedge axiom and

Mayer-Vietoris axiom on %i^l or %3?l.

A2) Two kinds of suspension isomorphisms

and

are defined as natural isomorphisms of yl-module-valued functors.

A3) The following diagram

is commutative for any X, where T: £°'1!'1'0-*£1'0I'0'1 is the T-map switching

factors.

A4) Let J be the involution of I"1'0, then

(JA l)* = p times: fc-^P-oX) -> Rp^(Z^°X).

Axioms A3) and A4) relate the ring A to sign conventions. Iterated sus-

pension isomorphisms a8'1 : hp'q(X)^hp+s'tl+t(Zs'tX) are defined as the com-

posite as't = asoat after the canonical identification Z1'0 A ••• AZ1 '°Al'0 '1 A ••• A

£0»i =£s>t . We also use the notation o-~s'~f = (as'f)~1 for inverses of suspensions.

The associated unreduced T-cohomology theory A*»* = {ftp»«; (p, g)e

ZxZ} is defined as usual by h^(X9 A) = Kp^(X/A) and ^^(Z) = ̂ '«(Z+),

where X + = X

Reduced T-homology theories are defined in the obvious way and denoted

by /?#,#. Suspensions in reduced T-homology theories are denoted by crSjf.

Let E={En, sn:Z
l^En->En+L] be a ^spectrum (En e 1T& (p, q) e Z x Z,

and n>max( — p, — ̂ ). For Xei^l and Ye^J the /l-homomorphism en:
, £rt+1 A 7]r is defined as the composite
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, En A Fp -^> [Zl'*Zn+r>n

A Fp

1 A Fp

([3], (7.3)). Here, and henceforth, the t-homeomorphisms IP**!*** ( = I*'0I0>« •

2;s,02;off)w(2;*'0rs'0r0'«Z0''=) p>+s,g+f which are induced by the switching maps

ro.92>.o«l>.°lo.9 are generally denoted by T, for simplicity, [3], Section 7. Put

[X, ^A y]M (=[*, EA Y]-*--') = lm {[Z»+p.*+*X, EnA Fp, Sa}n
for each (p, q)eZxZ. Then {[-, EA Fp'«; (p, g)eZxZ] is a reduced

T-cohomology theory on JF"* f°r a fixed FGT^O together with the suspension

isomorphisms as>r, [3], (7.6) and Theorem 7.7, and {[X, E/\ — ]pjq; (p, g)

eZxZ} is a reduced T-homology theory on i^l for a fixed Xetf^l together

with the suspension isomorphisms c7rjS, [3], (13.3), Propositions 13.4 and 13.5.

[-, E A r°'°]^« = [-,#]*•« is also denoted by &•«(-) or A^«(-;E), and

[^°.o, EA -]M is denoted by BM(-) or /?p>,(- ; E).

Each T-cohomology theory /?*»* is associated with two (non-equivariant)

cohomology theories: the one is the forgetful cohomology theory i/f/i* defined

by \l/hn(-) = h°>n(Sl>Qx-)(^hP>n-P(Sl>0x-)), and the other is the fixed-

point cohomology theory $h* defined by 0/i"( — ) = !im hp'n( — ). And the forget-
p

ful morphism if/: {hp'q}-+{\l/hp+q} and the fixed-point morphism 0: {/ip'g}->

{0/x«} are defined. These are a kind of natural transformations of cohomology

theories. (Cf., [3], §§2-3.)

Let E be a r-spectrum. Applying the forgetful and fixed-point functors to

each term and map of E, we obtain spectra \//E and &E called the forgetful

and fixed-point spectrum respectively. The cohomology theories /x*( ; i//E)

and h*( ; $E) represented by \f/E and cj)E coincide with the forgetful coho-

mology theory i//h*( ; E) and the fixed-point cohomology theory (j)h*( ; E)

of h***( ; E), respectively. The forgetful functor induces the homomorphisms

^*: \Zn"p9n~qX9 Enf^lZ2n-p'^X9 (il/E)2n] which form the map of the direct
systems. Taking the direct limits, we get a homomorphism

This homomorphism coincides with the forgetful morphism \// for E*>*9 [3],

(7.10). Also the fixed-point functor induces the homomorphism $*: Ep'q(X)
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which coincides with the fixed-point morphism $ for I?*'*, [3],

(7.12).

An example of T-spectrum is the T-spectrum of stable T-homotopy

SR = {Zn>", ett=T: ^lItt^Kln+l>tt+1} .

In this case ifrSR and 4>SR are both the sphere spectra.

Proposition 1.1. Let Xe&l and YeiTT
0. Then, for each (p, q)eZxZ,

for large n.

This follows from [3], Proposition 13.12.

The cofibration sequence SV°->BV°->>^KO->>^0'1SV0 induces exact sequences

...^/^(^>ojr)^/>>^£i'0AjlO^^

where the second row is called the forgetful exact sequence of h***, [3], (5.1).

Proposition 1.2. Let $: h*>*-> %*+?>*+& be a natural transformation of

reduced i-cohomology theories of degree (r, s). If

$: hP>«(X)-»kP+r>«+s(X)

is isomorphicfor a fixed X and each (p, q)eZxZ, then

$: fr»«(Si.'° A X) -» kP+l-^+s(S^° A X)

and

are isomorphicfor any (p, q)eZxZ.

Proof. Compare the forgetful exact sequences of K*>*(X) and fc*

Then 5-lemma implies the result.

Similarly we obtain the following

Proposition 1.2'. Let W: h*t*-+k%+r}*+s be a natural transformation of

reduced t-homology theories of degree (r, s). //

V:hpiq(X)-»kp+r>q+s(X)

is isomorphicfor a fixed X and each (p, q)eZxZ, then
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9 : hpiq(S^ A X) -» Kp+r.q+,(S*+-° A X)

is isomorphic for any (p, q)eZxZ.

Propositions 1.2 and 1.2' show that, if natural transformations $: K*>*

->/c*+r'*+s and 9: K+,*-+fi*+rt*+s are isomorphic on Z°'°, then $: X*»*(SV°)
^JE*+r.*+«(S|,o) an(i f : ^fS|t(Si.0)s£*+ri*+s(Si»0). Then comparison theorem

for T-(co-)homology theories has the following form. (Cf., [6], Chap. IV, 5

and [9], Comparison Theorem 2.14.)

Theorem 1.3. Let fe*»* and fc*»* be reduced t-cohomology theories on

^l or on ^l, and $: /i*s *->fc*+r« *+s 6e a natural transformation of reduced

r-cohomohgy theories of degree (r, 5). //

then

$:

for any X e VWl or any X e

Theorem 1.3'8 Let h*^ and k%t% be reduced t-homology theories on *W\

or on ^l, and 9: ft#,*-*/c*+r,*+s be a natural transformation of reduced i-

homology theories of degree (r, s). //

for any X e ^Wl or any X e V&l.

Next we state some isomorphisms of T-homotopy groups.

Proposition 1.4. Let X be a t-space such that i) X is m-connected and

ii) (j)X is n-connected. Let (K9 L) be a pair ofi-complexes such that dim (K — L)

^m + 1 and dim((j)K — (j)L)^n + l. Then any i-mapf: L-^X can be extended

equivariantly on K.

The proof is similar to [3], Proposition 11.1.

Let F(X, 7) be the base-point preserving function space from X to Y.

Then F(X3 7) is a T-space with t-action (T/) (x) = T/(TX), x eX.

Proposition 1,5. Let X be a locally compact r-complex and Y a t-space
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Let r^: (j)F(X, Y)-*F(<I>X, </>7) be the map obtained by restriction to QX.

Assume that Yis m-connected. Then

, 7)) -* 7U

is isomorphic ifj^M and epimorphic z/j^M + 1, where

f m-dim(X-<l)X) if X^cfrX
M = \

( oo if X = $X.

Proof. As X is locally compact, we have

n^F(X9 Y))£[I°"'*, Y]*

(cf.5 [6], Chap. III). Let z: $X-*X be the inclusion. Consider

(1 A 0* : \Z°>jX, 7]T -> [r°"/(0X), 7]T .

Then, applying Proposition 1.4 to the pair(r°'-7'X, Z°>j(<l)X)) for surjectivity and

to the pair (Z°^Jirx J, Z0^'Zx{Os 1} U Z°'J(<l>X)xI) for injectivity, we get the

proof.

§2. S-Duailty in the Stable r-Homotopy Theory

The (p, q)-th stable t-homotopy group, (p9 q)eZxZ, is denoted by

[x, 7}p>, (=[x, SUA y]M=Hm [z»+p.»+«z, i«'"7]T).
n

{Z5 7}p>q is also denoted by {X, Y}-*--«. By Proposition 1.1

for Z e ̂ ^T
0, Ye^l and large w.

Let <€ &\ be the full subcategory of tf^l with objects X such that Jf and

<j)X are path-connected. For Z, X' e ̂ ^\ a T-map

is called a ((r, s)-)duality t-map (or R-duality t-map, R = (r.) s)) if w:

->I"r+s and 0w: <}>X ^ <t>X' -*ES are duality maps in the sense of Spanier [12],

page 360, and then X' is called an (r, s)-dual by means of u. For X, X'e^&l,

X' is called an (equivarianf) S-dual of X if some (iterated) suspension of X' is

an (r, s)-dual of some (iterated) suspension of X for some (r, s). If u : X A JC '

-+P"'* be an (r, s)-duality T-map, then the T-map u : X' A X->P"'S denned by

u(x', x) = u(x, x'), xe-X", xf eX', is also an (r, s)-duality T-map, [12], Lemma
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(5.4). For a t-map u: X/\X'-*Zr's and pairs P = (p, q), P' = (pf, q') of non-
negative integers we define

UP>P,:

to be the composite

If u is an (r, s)-duality r-map, then up^ is a (P + P' + ̂ -duality r-map.

Here, and henceforth, T", denote switching maps in general.

For a T-map w : J^T A X'-+Zr*s and P = (JP, g) eZx Z we define

as follows: if/: I»+p.»+«y->r».»X represents an element {/} e {7, X}pt9, then

is represented by the composite

where N = (n, ri) and 0 = (0, 0). Then F£ is a well-defined yl-homomorphism

and coincides with the slant product {u}/9 see Section 3. {r£}p6Zxz is a natural

transformation of T-cohomology theories with respect to Y.

Theorem 2.1. Letu:X/\ X'^Zr>s be an (r, s)-duality t-map. Then

is a A-isomorphism for any Ye&^l and any P = (p, q)eZxZ.

Proof. Consider the map un: [Zn+p'n+*Y9 Zn-nX']x-^l_In+P'n+^Y A X' ,

Zn>nZ*>sT in the definition of T£, with \mun = Fp
u. Define /ln: Zn>nX-*F(X\

2».»Z'.*) by A.n(x)(xf) = uNi0(x, x')9 xeZn**X9 x'eX'. Then the following dia-

gram is commutative :

where \in is the isomorphism induced by a T-homeomorphism

F(Zn+P>n+«YAXf, Zn>nZr>*)xF(Zn+P>n+«Y, F(Xf, 2n-nZr>*y)

taking / into / defined by f(y) (xr) =f(y, x'). Therefore un is isomorphic if and

only if hn% is isomorphic.

We show that !„* is isomorphic for large n. Define vn: Zn((/)X)-+F((l)X',
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Zn+s} by vn(x)(x') = (l)uN}0(x9 x'). Let r+: (f>F(X'9 Z*W)-+F(<I>X'9 Z*+') be

the map obtained by restriction to </>X'. Then the following diagram is com-

mutative :

By Proposition 1.5 r^ is isomorphic if j^(2n + r + s — 1— dim A"')- Recall that

(t>uN>0 is a duality map. By [12], (2.8) and the proof of Theorem (5.5), vn# is

isomorphic for j < 2(n + s — dim 0X') when H is large enough so that In(cl)X)

and F(^)X',In+s) are 1-connected. Thus <£AB# is isomorphic for j<2n —

2 dim A' — 1. Recall that ^MJV.O is a duality map. Then ^An^.: 7t/r2lIX)-*

Kj(F(Xf, I2n+r+s)) is isomorphic for j<2(2n + r + s-dim A') and large n.

Then, by [3], Proposition 11.2 /LnHs is isomorphic for n > 2 • dim X ' + dim Y+p

Thus /LMJS. is isomorphic for large n. q.e. d.

The duality isomorphism r£: {7, X}p>q-»{YA X1, £r>s}p,q, P = (p, q\ in-

duces the homomorphisms

and

which correspond to FJ|̂  and T\u respectively, where { , }„ denotes the (non-

equivadant) stable homotopy group. By the definition of a duality T-map and

[12], Lemma (5.8), we see that ^(rj) = rj+* and 0(Fj) = r|w are isomorphisms.

Adding the converse to the above results, we obtain the following

Theorem 2.2, Let X, X' e <€&\ and u : X A Xf-*Zr>s be a -u-map. Then

the following are equivalent:

(1) u is a duality i-map,

(2) rf: {I°>°, X}M*{X', Z'*}M for every P = (p, q)eZxZ,

(3) r^:{Y9X}p^{Y^Xt
9^}pigfo

(4) TJM: {^, ^}Bs{ '̂, Z^}n and

Z-B or every

(5) r;B: {7, tX}H*{Y*il,X'9 Z'+s}n and

r$u:{Y,(l>X}n^{YA(i>X',Zs}nforany YeV&0 and every n
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where ^^0 denotes the category of finite pointed CW-complexes.

Proof. The implications (2)o(3) and (4)<^>(5) follow from comparison

theorems (Theorem 1.3). The implications (1)=>(2) and (1)=>(3) are the result

of Theorem 2.1.

Proof of (2)=>(4). Since {Tp
u}PeZXZ is a natural transformation of T-

cohomology theories, Proposition 1.2 implies that FJM is isomorphic for each

neZ. As the spectra il/SRAij/X and \l/SR/\Ir+s are connective and X' is

finite, we see that 0: {I°>0, X}M£{Z°, <j>X}q and 0: {*', !*••},,,£ {0X', Is} q

for large p by [3], Proposition 5.4. Then (2) implies that F^M is isomorphic

for each q eZ because of 0(FJ) = r|M.

Proof of (4)=>(1). By [12], Lemma (4.7) and Theorem (5.7) we see that

\l/u and cj)u are duality maps. This shows that u is a duality T-map. q. e. d.

Remark 2.3. The above theorems show that Wirthmiiller's definition of

a duality [16] is equivalent to our definition under Propositions 1.1 and 1.2,

i.e., let {u}e{XAX'9 Z°>°}r>s be an (r, s)-duality in the sense of [16] for X,

X' e ^^l, then there exists a duality T-map u showing that X and X' are S-

duals of each other, and the converse follows from Theorem 2.1.

Next we show the existence of equivariant S-duality.

Proposition 2.4. Let X and X' be t-sub complexes of Zr>s+i such that X,

X'e&^l, X fl X' = 0 and the inclusion X'-+Zr>s+1-X (which may not preserve

the base points) is a v-homotopy equivalence. Then there exists an (r, s)-

duality t-map

showing that X' is an (r, s)-dual of X.

Proof. The proof is almost the same as [11], p. 180. As X and X' are

closed in Zr>s+1 and X n X' = 0, Zs+l-(j)X-<j)X' =£0. We choose a point
aeIs+1-<l)X-(l)Xf. Then Zr>s+i-{a}&Rr>s+i and we have an embedding of

X and X' as disjoint T-subsets of jRr's+1. We define a T-map (which doesn't

preserve the base points)

by v(x, x') = (x-x'y\\x-x'\\, where \\ \\ denotes the standard T-in variant norm

in J2r's+1. Suppose we obtained a pointed T-map u: X /\X'-*Zr's such that

v is T-homotopic to the composite X x X'p^>X A X' — H-> P"'5, then by [11], page
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181, \l/u and $u are duality map, and u is a duality T-map. To show the ex-

istence of the T-map u we use the following

Lemma 2.5. Let X be a i-complex and Y a pointed -c-space. If any map

of X to Y and any map of $X to (j)Y are null-homotopic, then any t-map is

i-homotopic to the constant map.

The proof is the same as [3], Proposition 11.1.

By [11], page 181, any map of X v X' to Ir+s and any map of $X v <j)X' to

Is are null-homotopic. Then any T-map of X v X' to Ir>s is T-homotopic to the

constant map. In particular, by T-homotopy extension property of T-complex

pair (X xX',Xv X') v is T-homotopic to a T-map which sends X vX' to the base

point of Zr's. Thus we obtained the required (r, s)-duality T-map u: X AX'-»

Ir's. q.e.d.

Proposition 2.6. Let XE%&\. Then there exists an (r, s)-dual X' e

\ of X for some (r, s).

Proof. For a finite T-complex X there is a finite simplicial T-complex K

having the T-homotopy type of X [2], Section 3. K can be embedded equiva-

riantly to a simplicial T-complex Zr»s+1 for some (r, s). Take the T-subcomplex

X' aZr>s+l complementary to K as an (r, s)-dual of X in a similar way to [10].

(We can assume X' e ^^\ by replacing Zr>s+1 with Zr>s+2, if necessary. Then

X' is replaced by IX'.) Then, by Proposition 2.4 there is a duality T-map K A X'

-+Zr>s, and replacing K to X by the T-homotopy equivalence we complete the

proof. q. e. d.

Theorem 2.7. For any finite pointed t-complex X there exists an equi-

variant S-dual of X.

Proof. For any Xetf^l, IX belongs to <€&\. Then the theorem fol-

lows the above proposition. q. e. d.

The following theorem is an equivariant version of Atiyah [4], Proposition

(3.2), and the proof is the same as [4].

Theorem 2.S. Let M be a compact smooth i-manifold, and i: (M, 3M)

-+(Br>s, Sr>s) an embedding such that i(M) is transversal to Sr's and Bs — (j)(i(MJ)

7^0. Let v be the normal bundle of i. Then the Thorn complex T(v) of v is

an equivariant S-dual of M/dM. (IfdM=0, M/0 denotes Mu {pt} as usual.)
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Remark 2.9. Any compact smooth r-manifold can be embedded equi-

variantly to Br>s transversal to Sr>s for some (r, s), cf., [7], (10.3) and [14],

Corollary 1.10.

Remark 2.10. If M/SMe^^l, then there is an (r, s)-duality T-map

M/3MA T(v)-+Zr*s by Proposition 2.4.

Proposition 2.11. S^0 is an equivariant S-dual of itself.

Proof. S1'0 is a 0-dim compact smooth i-manifold. Then the above

theorem implies the result.

§ 3. Suspensions and Duality

In this section we discuss relations among duality and suspensions a***,

c7^j5j. and cr(*, *) (defined below).

First we describe slant products / in T-cohomology, [3], (13.15).

From now on we often use the notation ZR, R = (r, s), to denote Zf*5, for

simplicity.

Let E={Ep,s$}, F={Fq, e£} and G = {Gr,e?} be t-spectra, and /i =

{^q: Ep/\Fq-»Gp+q} be a r-pairing, [3], Section 8. A slant product

/ : IX AX', EAZ-]">*®IY, FA*]PJ€-» [7 AX', CAZ]p.r§4.8

(instead of Er>s(X ^X')®Fpiq(X)-*Gr-P>s-*(X')) is defined as follows: Let

u:Zm-r>m-sXAX'-*EmAZ and/: Zn+p>n+*Y-*Fn*X represent elements {u} e

[X /\X',E* Z]r's and {/} 6 [7, F A Z]p>€, respectively. Define jO^, /) :
| iAZ to be the composite iM-R+N+Py A ^

tj;Ar+fyAy IA/M^M-J?^ A ̂  A y I A T - >ZM"RX ^X' ^Fn

1 A r " > Em/\Fn/\Z ^ ' " A l >G m + M AZ, M-R = (m-r, m-s),

,/) = (-p)"/i;>,/). Then {ii}/{/}e|TAX',

GAZ] p _ r > ^_ s is defined by {/^(w, /)}. Thus T^ coincides with the slant pro-

duct {11} / : {7, X}P«-+{YAX', ZR}p>q, u: XAX'-+ZR, P = (p, q).

Slant products satisfy the compatibility with suspensions : For x e [X A X',

(3.1)

(3.2)
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(3.3) (

(3.4) x/^.^^^'^/^eE^^YA^GAZ],.^^-,.^

where a*>b\ [X*X'9 E AZ]^->[Z Ala-bX'9 E AZ] p_ f l^_& is defined to be the

composite: [X

E A Z]p_a>g_6. (These can be shown similarly to [3], § 8.)

We use the notation Fr(x) to denote the slant product

Then, for a T-map u: X^X'-*2R, r* = Tp({u}) (E=F = G =

Let A— (a, b) be a pair of non-negative integers. The suspension isomor-

phisms

of stable r-homotopy groups are defined as follows: If/: ZN+PX-+ZN Y repre-

sents an element {/} e {X, Y}ptq, N = (n, ri), P = (p, q)9 then a(A){f} is repre-

sented by ZAf defined as the composite

From now on we use the notations GA and GA to denote aa>b and a0ib respec-

tively, for simplicity.

We compare a(A): {X, Y}piq-*{ZAX9 ZAY}p}q with OA°(JA.

As to the definitions of cr*>* and a#j# in T-(co-)homology represented by

t-spectra we refer to [3], (7.5), (7.6) and (13.3).

Proposition 3.1. Let A = (a, b) and C = (c, d) be pairs of non-negative

integers and x e {X, Y}p^q. Then

a(A)x = a(A , P) • GA°aAx ,

aco(r(A) = T'*°a(A)°(Tc and T'*°a

where P = (p9 q\ a(A9 p) = (-p)6«pC+»)(p+«) and T':

Proof. Let /: ZN+PX->ZNY represent x. Compare IAf with ff

(=n-stage of GA°GA). Computing permutations of suspension parameters and

difference of conventional signs, we see that [ZAf] = a(A, P) • [GA°Gn
Af} e [ZN+PX9

ZNY~]T, where "[/]" denotes the r-homotopy class of/. Then we obtain a(A)x

= oc(A, P)-<JA°GAX. Similarly we obtain the other results, q.e.d.
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Remark 3.2. Let A, C, T and a( , ) be as above. Then

T*O°C°°A = a(X> O • (7^°<7C and T'*°aA°ac = a(,4, C) •

(Recall the sign conventions A3) and A4).)

Henceforth a(A) denotes the composite

{ZA Y, Z}M-Zi4L> {MA 75 ZAZ}p>q ^^^ {XAZA

& IAX. Then a(A) = a(A, P) - ffA°aA, and {uAt0} = a(A) {u}, {u0tA}

Proposition 3.3. Let xe{XAX'9 Z}r>s and A = (a, b) be a pair of non-

negative integers. Then commutativity holds in each diagram

{F, X}p>q -£3sl> {FA X', Z}p.fiq_s

{Y9

where P = (p, q).

Proof. By Proposition 3.1, (3.1)~(3.4) and Remark 3.2, we see that

}.(aA°aA*lvA°aA ) = *(A, P-K) • (aAx/aA ) =

, and a(A

).x(A, P)

cr(^/ = Fp(a:(^»J £ = (r, s). (Remark that a(^3 P - jR) = a(^, P) - a(A P).)

q.e.d.

Next we discuss relations among iterated suspensions and slant products.

As is easily seen, for A = (a, ft), A' = (a1, b'), C = (c, d) and C/ = (c/, d') com-

mutativity holds in each diagram
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2C'+A'X'9 Zc+AZc'+A'Z}p.q
\) ( r A l A T A l ) * ° ( T A T A l ) *

(3.6) (X*X'9 zYa(C^(A^(c'^(A'\ {ICIAX^IC'IA

<T(C)°ff(C')°<7(,4)°oF(4') ^__^^ / a04,C') - ( l

FW X' 9

Tf : IAIC' &ZC'ZA. Then, by naturality of F we obtain

Proposition 3.4. Let A = (a, b\ A' = (af, b'\ C = (c, d) and C' = (c', d') be

pairs of non-negative integers, xe{X*X'9 Z}r>s and P = (p, q)eZxZ. Then

commutativity holds in the diagram

{Y,

|

{F5

rp(<T(C)°cr(C')°<r(A)<>ff(A'W / a(A,C')o(l AT' A 1)*

Remark 3.5. Let E be a r-spectrum. Define a(A)\ [X, EA Y]M->

[r^Z, EA^Y]M, 4 = (fl, &), a^O, b^O, as follows: If /: ZM+pX-*Em*Y

represents {/} e[X, EA y]M, M = (m, m), P = (p, ^), then a(^){/} Is repre-

sented by the composite: £M+pr^»r^IM+p^ -1^ ZAEm* Y^EmAZAY. This

is a generalization of the suspension isomorphism cr(A) of stable T-homotopy

groups, and Propositions 3.1, 3.3, and 3.4 hold when we replace { , 1*^ =

Next we discuss composition of stable T-maps. Let xe{X, Y}piq, ye{Y,

Z}r>s. We define y°xe{X, Z}p+r>q+s as follows: Let /: ZM+PX->ZMY, g:

IN+RY-+INZ represent x, y respectively, M = (m, m), P = (p, ^f), N = (n, n), R =
(r, s). Define ^(/, gf) by the composite: ZM+P+N+RX -IL> ZN+R£M+PX j_^
yN+R£M Y T2 > YM+N+R y T3

 > £M £N+R y 1 A^ jMjJV^ pfc^ JTl,! ... j]*1'1 ̂ Z g

ZM+NZ, where T1=p(m+^^n+s>TA 1, T2 = pm^ l+s-)TA 1, T3 = p("+^"rA 1, f =

(T A 1)---(T A 1), /c = /c(m) = m(m — 1)/2, 8 = e m + n _ 1 - - -e n . Then j; °x is represented

by Pfe{(/5 ^)- Note that the diagram

(X(N+R,M)T'M "^^^ T3
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is T-homotopy commutative for large m, n, we see that y°x = y/x. By (3.1)-(3.4)
and Proposition 3.3, we also see the following compatibility with suspensions:

For x e [X, Y}ftq9 y e { 7, Z} r>s and A = (a, b), a ̂  0, b ̂  0,

((7^ J')°X = (T^Ox) , ((

(3.7)
) = a(A) (yoX) .

For a T-spectrum E={En} we define t-pairings v = {vm>ll} : SHA E-+E

and i/ = {v;,J:I?ASK-^ by v^eof: Z— En-+Zl-*...Zl-*En-+Em+n and
v;,Mt=(-p)wnvw,wor: £mAP'.»^^P^^w->£m+M. Let x6{Z5Z}rjS. Then,

using if, we have a map x*: [7, EAJTj^-^y, E/\Z~]p+r^+s defined by ^^(3;)

= x/j for j>e[y, JEAX]pig. Let /: ZM+1?X^ZMZ represent x, M = (m, m), R

= (r, 5), then pfc - a-M*f+*aM+R : [K F A ̂ ]^-^[7, F A Z]p+IV?+s, /c = m(m - l)/2,

coincides with x*, i.e., for any representative / of x

(3.8) ^ = Pfe^-M0/*

We use lx also to denote the identity map of X. Note that IXE {X, X}0i0 is

represented by p f c l IMx> see [3], Sections, Example 1. Similarly let ye{Y, X}pttp

then, using v', we have a map y*: [Jf, EAZ]^s-^[7, ^AZ]p+r j€+s defined by

3;*(x) = x/3; for jce[JT, ^AZ]r>s, and y* = pka-M-pg*(rM for ^: rM+F7--^IMZ,

to>-y.
Let x e {*9 7} ,̂ z e {Z, ̂ }IS, Then x A lz e {X A Z, 7 A Z}M, 1Y A z e

{7AZ, 7 A P f ] r j S 5 x A IH,E{^A|^ 7A ^]P)€ and lx A ze{Z A Z, X A W}r>s,

where x A lz is represented by / A lz for a representative / of x, and ly A z is

represented by the composite: ZN+RY *Z*ZN+RZ*Y-^ ZNZ*YxZNY * Z

for a representative g : ZN+RZ-+ZNZ of z. Then, by definition, we see easily that

(3.9) ( l y Az)o( jcAl z ) = a(P,«).(xAV)o(l ; fA2)e{XAZ, yAW} p + r t € + s .

We also see the following

Proposition 3.6. Let xe{XAX', I^y**, je{7, X}p,q and ze{Z, 7]pV/.

Then z*\x,e{ZAX'9 Y AX'}pl.q, and

In particular, y s\lx,e{Y /\X'9 X *X'}piq and

r(x)y = x/y = (x/lXAX,)o(y A lx,) = xo(j; A lx ) .
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§ 4. S-Duals of Stable r-Maps

Let X, X'etf^l and R = (r, s)eZxZ. An element xe{X*X', Z°>°y>s

is called to be an R-duality when the maps

r*-*(x): {1°'°, *}*,* -> [X'9 Z
0'0]*.^,

r*>*(x): {r°.°, x'},,, -> {x, r°>°}*_ r,*_s

are isomorphisms, Wirthmiiller [16] (cf., Remark 2.3), where x denotes T'**

e{X' AX, £o,o}r,Sj r: X ' A X w X A X ' . We also call an element xe{XAX' ,

£«,&}!•,* to be a duality if T*'*(JC) and T*'*(3c) are isomorphisms. Then r*«*(x):

{7, X}^->{YAX', Ifl'b}*_r,*-s and r*-*(x): {7, X'}+t*->{Y AX,Z'-b}*-r*-,

are isomorphisms for any YG tf^l (Theorem J .3), and an .R-duality r-map gives

an ^-duality {u} e {X A X', I"f's}0,o (Theorem 2.1).
Let x 6 (X A X7, £f l»b}'->s and 3; 6 {Y A y, I« »*}''.»' be dualities. The duality

isomorphism

is defined to be the composite
T'*fy y} r p ( y ) v / y A y^ ra.&i ^ /

lAs JJp,g - ^ 1A A r 5 ^ Jp-r'.q-s' = I

(rp + R-R'(x))-j. f y v ' l Tf • y A Y ~ Y A V- > II , A )p + r_ r^ + s_ s ' , I . r A A ̂ A A I .

Clearly D(x, v)'^^, x), and D(d_ f l,_&x, t7_aj_&3;) = D(x, y) by (3.3).

Using the results in Section 3, we discuss compatibility of duality isomo-

rphisms D with suspensions.

Proposition 4.1. Let xe{X AX', Z°>°}r>s and ye {Y A 7', r0'0]^' be

dualities and A = (a, b) a pair of non-negative integers. Then comniutativity

holds in each diagram

\.X, JL sp,q - > [Y y X }p+r_r 's^+s_s '
I ^

ff(A) .^ D((r(A)x

V\ D(x,y)^ f yf yf\
9 I )pmq > II , A / p+r_r' ,q+5-s

\<r(A)

{L Y ,
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Proof. Clearly a(A)x = a(A)x. Let T": T A IAX w IAX A r, r: Y' A X

. Then T"*°a(A) = ff(A)°Tr*. By Proposition 3.3 D(<jG4)x,

0-04) = F(a(A)x)-1 o T"*or(<7G%)°<

ff(4)oT'*orGO = F(xTloT'*°FO;) = £(x, 3;). Similarly we obtain the other.
q.e.d.

Let x, j; and A = (a, b) be as above, and A' = (a', b'), C = (c, d\ C' = (c', dr)

be pairs of non-negative integers. By Proposition 4.1 we have

(4.1) D(a(A)a(A')x, a(A)a(A')y)oa(A) = a(A')oD(x, y).

Similarly to Proposition 4.1, by (3.5) and Proposition 3.4 we see that

(4.2) D(<r(C, A)x, cr(C, A)y)off(C, A) = D(a(C + A)x, a(

= D(x,y),

(4.3) D(a(C, A')x, a(C', A')y)

= (r A l)*o(r A l)*oD(

= T A l * o T A l o c T

(4.4) D(ff(C9 C', A, A')x, 0(C, C', A, A'))

and

(4.5) D(a(C, C', A, A')x, cr(C, C'3 A9 A')y)

where a(C, A\ a(Cf, A'\ a(A, A') and a(C, C', A, A') denote a(C)°a(A), a(C')°

^(yl'), <j(A)°0(A') and ^CJo^C')0^^)0^^.') respectively. Thus we obtain

Proposition 4.2. Let xe{X*X', Z°.°}'.* and yE{YA Y', Z°>°y',s' be

dualities, and A = (a, b), A' = (a', b'), C = (c, d) and C' = (c',a') be pairs of

non-negative integers. Then the following diagram is commutative:

v\ D(x»y) f vf v\
1 j" > \_ JL y A* f

'Y', ZA'X'}

<r(C) (T(C')
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where T = (T A 1)*°(TA 1)*, { , }p>q etc. are denoted by { , }, and D(a( ))

denotes D(a( )x, a( )y).

From (3.1)-(3.4) and the definition of D(x, y) we obtain

Proposition 43. Let xe {X *X'9 Z°-°y-° and ye{Y s\ Y', Z°>°y>s' be

dualities, ZE {X, Y}ptq and A = (a, b) be a pair of non-negative integers. Then

D(x, y) satisfies the compatibility with suspensions OA and aA:

D(aAx, y)oaAz = a(A, P + R-R')-D(x, y)ze{Y', X'}p+r_r,,q+s_s, ,

D(x, aAy)oaAz = D(x, y)e{Y'9 X'}p+^q+s.s,,

D(aAx, y)z = aAoD(x, y)ze{Y', Z^'}p+r_P,+flffl+-_-,+6,

D(x, aAy)z = a(A, P)-c^oD(x, y)ze{W, Z'}p+r_ r ,_ f l j €+s_ s ,_55

where P = (p, q), R = (r, s)> R' = (rr, s') and u(A9 C) = (-p)bdp^a+c^b+d> for

C = (c, d).

Next we see the relation of compositions of stable T-maps and their duals.

Proposition 4 A Let XE {X^X', 2™}'.', ye {YA F, X°-°y'.'' andze

{ZAZ',Z°>°}r">s" be dualities, and u e [X, Y}ptq, v e { 7, Z}p,tq. . Then v°u<=

{X, Z}p+p,iq+q, and

D(x, z)(v°u) = a(P, P' + R'-R")-(D(x, y}u)o(D(y, z)v)

E {Zf, X'}p + p. + r-r.'fq + q' + s-s» ,

where P = (p, q), P' = (p'9 q'), R' = (r'9 s')9 R" = (r", s") and a(P, C) = (-

Proo/. Let r^ J f A y ' w y ' A J S r , T2: yAZ '^Z ' A 7, T3: ZAZ '^Z 'A^ ,

T4: y A y ' w y ' A y , and u' = D(x, y)u9 v' = D(y, z)v. Then, by definition, y/u

= Tf(x/uf) and z/v = T^(ylvf). By Proposition 3.6, we see that F(z)(i;°tO =

z/(i>°u) = (z/i7>(w A lzO = (rf(j?/i?/)Htt A lzO-(T|j;)o(ly A t;')o(M A lzO = Hly A O

o(« A lz,), and r3*oF(x)(W'oI;')=r3nx/(w'o^) = (rf(x/W0)o(lxAt;0-(^^^
t;') = JO(M A lr)o(ix A t;'). Then, by (3.9), we complete the proof.

We reduce duality T-maps to stable T-maps in {X hX', 2°'°}***. For

X e tf^l there exists an S-dual X' by Theorem 2.7. Then we can choose the

duality T-map having the form u: ^^X AX'-*Z°'1Zr>s. In fact, let «': I^X

A^'->Zr's+1 be a duality T-map obtained by Propositions 2.4 and 2.6, then

s^O from the construction. We define u by prT°uf: ZO^XAX'^Z0*1^8.

This is the required one. For this u we define an (r, s)-duality <w> e {X A X',
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(4.6) <tt> = a.ri.fo(j(0, l)-1^}-

For a t-map u: X*X'-*ZR, R = (r, s)9 and uPiP,\ IPX ^Zpr X'-*ZPZP'ZR, we

see easily that {uPiP,}=a(P)°(f(P'){u}. Thus, for a duality T-map uPtP'\ ZPX

*ZP'X'-+ZPZP'ZR, we observe that <wP>P,> = o-_1?oa(F)-iocr(P)-1{w1J)p,} = <w> is

an jR-duality.

Theorem 4.5. Let X' and X" be S-duals of X e %&l so that x e {X A X',

Z°'°}r's and x'e{X/\X", Z°>°}r>s' are dualities. Then a stable t-homotopy

equivalence {/} e {X'9 X " } r , - f i ] S , - 5 , f : Zn+r'-r>n+s'-sX'-^Zn>nX", is canonically

determined by {/}=D(X, x)lxfor large n.

Proof. Put v = D(x, xf)\xE{X", X'}r-.r,3S,s,. Then, by Proposition 4.4

we see that v is the inverse of {/}. q. e. d.

§5. Duality between r-Cohomology and Homology

First we see the following t-cohomology version of [16], Proposition 1.2,

and the proof is the same as [16]. (Use Comparison Theorem 1.3'.)

Proposition 5.1. Let xe { X / \ X f , Z°><>}r>s be an (r, s)-duality, and Ye

. Then

: {7, ZAX}piq-*{YAX'9 Z}p.Fiq_

is a A-isomorphism for each P = (p, q)eZxZ.

Let E= {£„; n e Z} be a r-spectrum. A decomposition

P = (p, q), M = (m, m), N = (n, n), implies

(5.1) lX,E]M = l
n N

(cf., [3], the proof of Proposition 13.5). Then we obtain the following

Theorem 5.2. Let xe{X*X', I0'0}'** be an (r, s)-duality, E={En',

neZ} a it-spectrum, Yetf^l and P = (p,q)eZxZ. Then there exists a

duality isomorphism

rp(x, E): [7, EAX]Ms[7AX', E]^^.,.

Proof. By Proposition 5.1 we obtain the isomorphism



.S-DUALITY IN r-COHOMOLOGY THEORIES 689

N = (n, ri), R = (r, s). Then, taking the direct limit and by (5.1) we obtain the

isomorphism to be the composite

[7, EA*]MS[YA*', EA!*]M " [YA X', E]p_ r i<_,. q.e.d.

As Si'° is an S-dual of itself and there is a (0, 0)-duality, Proposition 2.11,
putting Y=£°'0, we obtain

Corollary 5.3. Let xe {X s\Xr, Z°'°}r>* be an (r, s)-duality and E a i-

spectrum. Then

Fp(x, E): Kpiq(Xi E)sfr-*-"-«tr; E).

In particular

rp(x, E): fep.gCS1'0; E^/r^CS1*0; E).

Let h*,* = {hpiq, (p, q)eZxZ} be a reduced t-homology theory on i^l.
For each X e tf^l, there is an S-dual X' of X and a duality x e {X A Z; , I°>o}^

by Theorem 2.7 and (4.6). Put

(5.2) K*-*(X) = Kr-pi8-q(X')

for each (p, q)eZxZ. By Theorem 4.5, lip'q(X) is uniquely determined up to

canonical isomorphisms. Let /: X-> 7 be a T-map in ^J^. Choose an S-
dual r and a duality j; E {7 A r, I0'0}':*'. Then we see that D(x, y): {X, Y}p,q
^{r,^}p+r_r,^s_s, Putu=D(x,y){f}. Define

(5.3) /*: Kp>*(Y)-+fiP-*(X)

by the following: Let /': zM+p+R-R'Yf-^IMX' represent w, M = (m, m), P =

(p, 0), K = (r, s), tf'Kr', s'). Then /* is defined by pkff-M°f**<rM+p+R-R'>
k = k(m), cf. (3.8). This definition is independent of the choice of representatives

of u. Suspensions aa>b are defined by a(a, b)x and (5.2).

In order to show that fr^(Z) -^ fr'«(7) -^U fr-«(Jif) is exact for a T-
cofibration sequence y^-^->7-^->Z, we use the following i-cohomology

version of [16], Proposition 4.1, and [12], Theorem (6.10).

Proposition 5.4. Let xe{X AX', Z°>°}r>s and ye {Y A Y', Z0*0}^ be

(r, s)-dualities. Let f:X-*Y and f: Y'^X' be T-maps such that {f'} =

D(x9 y){f}. Then there exists an (r, s + l)-duality we{CfACr, I0'1}1"'3 com-

patible with the i-cofibration sequence o f f a n d f ' , i.e.,
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^^
<r(U)x/

SR*>*(I,X')^m*>*(ZYf)J^m*>*(Cr^

and the dual diagram for x, y, w commute, where t/ = (0, 1).

Let xe{Xs\X', zwy>* and ye {7 A r, Z0>°}r>s' be given dualities. Let

m=max(r, r', s, 5'), M = (m, m). Then aM-% and VM~R' y, R = (r, 5), £' =

(r', s'), are both (m, m)-dualities. And choose a representative/' of D(<JM~RX,

<fM~R'y){f}. Then we can apply the above Proposition to a given /: X-+Y,

and by (5.2), (5.3) we see that fr>»«(Z) ~^-> &>>«(Y) -£% />>«(Z) is exact for

the cofibration sequence X -^—* Y— ̂ -> Z. Thus we obtain

Proposition 5.5. By the above Definitions (5.2) and (5.3) /x*'* = {/zp'«,

(p, q)eZxZ} is a reduced r-cohomology theory on ^^\.

By [2], Theorem 3.4 for G=Z/2Z any reduced t-cohomology theory on

^ &1 is represented by an O-T-spectrum E, i.e.,

nP'Q(X)^hP>*(X',E), XeV^l, (p,q)eZxZ.

Then, by (5.2) we obtain a sequence of natural isomorphisms:

Kpiq(X^hr-p'^(X')^-P'^(Xf; E)^hpiq(X; E).

Thus we obtain an equivariant version of G. W. Whitehead [15] as follows .

Theorem 5.6. A reduced i-homology theory on ^J^J is represented by a

suitable Q-t-spectrum.

Corollary 5.7. A reduced i-homology theory on ^^F* is represented by

a suitable Q-t-spectrum.

Proof. If an O-T-spectrum E represents /z^^U^t, then E represents

/J#fJ|B by Theorem 1.3'. Thus the corollary follows from the above theorem.

q.e.d.

§ 6. Atiyah-Poincare Duality in r-(Co-) Homology

In this section we discuss Atiyah-Poincare-type duality for real-complex

orientable t-cohomology theories [1].

A compact smooth T-manifold is called a weakly real-complex manifold if

the normal bundle v of an equivariant embedding (M, dM)-*(Ba*b, Sa>b) trans-
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versal to Sa'b is a real-complex vector bundle ( = Real vector bundle in the sense

of Atiyah [5]) for some (a, b). Let /i*»* be a real-complex orientable T-coho-

mology theory and M be a weakly real-complex manifold with r-dirnensional

normal real-complex vector bundle v of an embedding (M, dM)-*(Ba'b., Sa>b),

r^.1. Then there is the Thorn isomorphism

<£> : h*> *(M) ^ K *+r' *+r(T(v)) .

On the other hand, by Theorem 2.8 and Corollary 5.3 we obtain the duality

isomorphism

where £*•* is represented by a T-spectrum. If dim M = m + 7? and dim4>M = n,

then a — r = m and b — r = n. Combining these isomorphisms we obtain the

following

Theorem 6.1. Let /?*'* be a real-complex orientable ?-cohomology

theory and M a weakly real-complex manifold such that dimM = m + n and

= n. Then there exists a duality isomorphism

/;m_p>n_4(M, dM)

for every (p, q)eZxZ.

Typical example of real-complex orientable T-cohomology theory is

[8]. Thus we obtain

Corollary 6.2. Let M be a weakly real-complex manifold such that

dimM = m + n and dimM = n. Then there exists a duality isomorphism

DM: MRv>«(M)^MRm_p,n_q(M, dM)

for every (p, q)eZxZ.
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