Some Calculations in the Unstable Adams-Novikov Spectral Sequence¹⁾

By

Martin Bendersky*

§1. Introduction

The unstable Adams-Novikov spectral sequence for a space X is a sequence of groups $\{E_r(X)\}$, r=2, 3,..., which converge to the homotopy groups of X, and whose E_2 -term depends on the complex cobordism groups of X. We investigate this spectral sequence when X is the infinite special unitary group SU, or one of the finite groups SU(n), or when X is an odd sphere S^{2n+1} .

The reader is referred to [2] for the construction and properties of the unstable Adams-Novikov spectral sequence. For some purposes, it is convenient to localize at a prime p, in which case the complex cobordism homology theory, based on the spectrum MU, is replaced by Brown-Peterson homology, based on the spectrum BP. We then have a useful spectral sequence with many of the properties of the stable Adams-Novikov spectral sequence. Namely, the filtrations are less than or equal to the filtrations in the unstable Adams spectral sequence based on mod-p homology. When X is a space for which $H_*(X; BP)$ is free over the coefficient ring $\pi_*(BP)$ and cofree as a coalgebra, then the E_2 -term is isomorphic to an Ext group in an abelian category (see § 2; also [2, § 7]). Furthermore, this Ext group may be computed as the homology of an unstable cobar complex which we describe explicitly in Section 2. In particular, these considerations apply to the cases X = SU, X = SU(n), or $X = S^{2n+1}$.

We first consider the situation where X is a p-local H-space with torsion-free homotopy and torsion-free homology. The results of Wilson [10] and the

Communicated by N. Shimada, November 21, 1978.

^{*} Department of Mathematics, University of Washington, Seattle, Washington, 98195, U.S.A.

Present address: Department of Mathematics, Rider College, Lawrenceville, N. J. 08648 U.S.A.

¹⁾ Research in part supported by NSF Grant MCS 76-0823.

general properties of the spectral sequence imply that the spectral sequence collapses, with E_2^0 .* $(X) \approx \pi_*(X)$. In this case, the homotopy groups of X (and even the homotopy type of X) are determined by the module of primitives $PH_*(X; BP)$ as an unstable Γ -comodule (see § 3). In particular, this is true for X = SU. We also give an explicit description of the generators of E_2^0 .*(SU).

In Section 4, we consider the case X=SU(n). We compute E_2^1 .*(SU(n)), which gives information about the pullback of the groups $\pi_{2k}(SU(k))$ to $\pi_{2k}(SU(n))$ for n < k. We also compute the kernel of the map E_2^2 .* $(SU(n)) \rightarrow E_2^2$.*(SU(n+1)). In the case of an odd prime p, the non-zero elements in this kernel survive to E_{∞}^2 .*(SU(n)) to give elements in homotopy related to the unstable image of the J-homomorphism. There is a similar but more complicated result for p=2.

In Section 5, we give a vanishing line for $E_2^{s,t}(S^{2n+1})$, and also for $E_2^{s,t}(SU(n))$. We then show that in a range of dimensions, $\pi_*(S^{2n+1})$ and $\pi_*(SU(n))$ may be computed as Ext groups in the category of unstable Γ -comodules. These calculations agree with, and extend those of Zabrodsky [11], and Mimura, Nishida and Toda [7].

Throughout the paper, space means simply connected Hausdorff topological space with basepoint, and map means continuous function preserving basepoint. The homotopy relation for spaces and maps is \simeq . The smash product is denoted by \wedge . In an algebraic situation, homomorphism means that the algebraic structure is preserved, and \approx means a homomorphism which is an isomorphism onto. The ring of integers is denoted by Z, and the rational numbers by Q. For a prime number p, the ring of integers localized at p is $Z_{(p)}$. Except for 4.10(3) all spaces are assumed to be p-localized. For an integer n, the ring of integers modulo n is Z_n .

Acknowledgement

The author wishes to acknowledge the contribution of E. B. Curtis to the final form of this paper.

§ 2. The Unstable Adams-Novikov Spectral Sequence

In this section, we summarize the main results of [2], which gives the construction and main properties of the unstable Adams-Novikov spectral

sequence. When a prime p is fixed, BP refers to the Brown-Peterson spectrum associated with p. For a space X, the (reduced) homology groups of X with coefficients in BP are denoted by $H_*(X;BP)$. The coefficient ring $\pi_*(BP)$ is called A, and the ring of co-operations $\pi_*(BP \land BP)$ is called Γ (Γ is the BP-analogue of the dual of the Steenrod algebra).

The spectrum BP defines a functor $BP(\cdot)$ from spaces to spaces by

$$BP(X) = \lim_{n \to \infty} \Omega^n (BP_n \wedge X)$$
.

The unit in BP is a map $i: S \rightarrow BP$ of the sphere spectrum S to BP, which gives a map

$$\eta = \eta(X) : X \to BP(X)$$
.

This gives rise to functors $D^s(\cdot)$ and a tower of fibrations

$$(2.1) \cdots \rightarrow D^{s}(X) \xrightarrow{\delta^{s}} D^{s-1}(X) \rightarrow \cdots \rightarrow D^{1}(X) \xrightarrow{\delta^{1}} D^{0}(X) = X$$

as follows. Inductively on s,

$$\delta^{\mathbf{s}} : D^{\mathbf{s}}(X) \to D^{\mathbf{s}-1}(X)$$

is the fibration over $D^{s-1}(X)$ induced from the path-space fibration over $D^{s-1}(BP(X))$ by the map $D^{s-1}(\eta)$. The homotopy exact couple of this tower is called the unstable Adams spectral sequence for X with respect to BP and its terms are denoted $\{E_r^{s,t}(X;BP)\}$. When the ring spectrum BP is assumed, we call this the spectral sequence for X, and write $\{E_r^{s,t}(X)\}$. From [2, §7], we have the following.

Theorem 2.2. For each simply-connected CW-space X, the spectral sequence $\{E_r^{s,t}(X;BP)\}$ converges to the homotopy groups of X localized at p. If $H_*(X;BP)$ is free as an A-module, and cofree as a coalgebra, then

$$E_2^{s,t}(X;BP) \approx \operatorname{Ext}_{\mathscr{U}}^{s}(A\lceil t\rceil, PH_*(X;BP)).$$

Here $\mathscr U$ is the category of unstable Γ -comodules (which will be described below). A[t] stands for the free A-module on one generator of degree t; $PH_*(X;BP)$ stands for the submodule of primitives in $H_*(X;BP)$. Furthermore, these Ext groups may be calculated as the homology of an unstable cobar complex C^* , ${PH_*(X;BP)}$, which will be described explicitly below.

We next recall some facts about BP from [1] and [6]. First

$$H_*(BP; \mathbb{Z}_{(p)}) \approx \mathbb{Z}_{(p)}[m_1, m_2,...]$$

$$H_*(BP \land BP; \mathbf{Z}_{(p)}) \approx H_*(BP) [t_1, t_2,...]$$

where degree $(m_i) = 2(p^i - 1) = \text{degree } (t_i)$. The elements t_i are chosen so that

(2.3)
$$\eta_R(m_k) = \sum_{i=0}^k m_i t_{k-i}^{p^i}$$

where η_R is the right unit map. The elements m_0 and t_0 are to be interpreted as 1. Then the Hazewinkel elements v_i are defined recursively by the formula:

(2.4)
$$v_i = pm_i - \sum_{i=1}^{i-1} m_j v_{i-j}^{pJ}.$$

It is shown in [5] that the v_i are in the image of the Hurewicz homomorphism $\pi_*(BP) \to H_*(BP; \mathbb{Z}_{(p)})$, which is a monomorphism, so the v_i may be considered to be in $\pi_*(BP)$ also. Then

$$A = \pi_* (BP) \approx \mathbb{Z}_{(p)}[v_1, v_2, \dots]$$

$$\Gamma = \pi_* (BP \wedge BP) \approx A[t_1, t_2, \dots].$$

The structure maps for (A, Γ) consists of a product $\phi \colon \Gamma \otimes_A \Gamma \to \Gamma$, left and right unit maps η_L , $\eta_R \colon A \to \Gamma$, a counit map $\varepsilon \colon \Gamma \to A$, and a diagonal map $\psi \colon \Gamma \to \Gamma \otimes_A \Gamma$. The product ϕ and the left unit map η_L are built into the description of Γ as a polynomial algebra over A. The right unit map η_R is given above (2.3) for the m_i , and thereby, using (2.4), for the v_i also. The diagonal map ψ satisfies the formula

(2.5)
$$\sum_{i+j=n} m_i \psi(t_j)^{p^i} = \sum_{i+j+k=n} m_i t_j^{p^i} \otimes t_k^{p^{i+j}}.$$

The notation $M \otimes_A N$ requires that M be a right A-module, and that N be a left A-module. Γ is a right A-module by η_R , and a left A-module by η_L . The notation η_L is usually suppressed, and η_R is sometimes called η .

There is a formal group law associated with BP as follows. Let CP^{∞} stand for infinite dimensional complex projective space, and let

be the map which classifies the tensor product of the canonical line bundles. Then (in unreduced homology),

$$H^*(\mathbb{C}P^{\infty}; BP) \approx A [X]$$

$$H^*(\mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}; BP) \approx A [X_1, X_2],$$

which are respectively the formal power series rings in one and two variables over A. The formal group law F is defined by the formal power series:

$$F(X_1, X_2) = \mu^*(X) = \sum a_{i,i} X_1^i X_2^j$$

where the coefficients $a_{i,j}$ belong to $A_{2i+2j-2}$. As in [1], let log be the formal power series (over $A \otimes Q$):

$$\log(X) = \sum_{i \geq 0} m_i X^{p^i}.$$

Let exp be the formal power series inverse to log, which satisfies $\log(\exp X) = X$. Then

$$F(X_1, X_2) = \exp(\log X_1 + \log X_2)$$
.

The formal group law F is associative and commutative. Elements z_i from Γ may be substituted for the undeterminates, and we write $\sum^F z_i$ for $F(z_1, F(z_2, ...))$. Then formula (2.5) becomes

(2.7)
$$\sum_{i}^{F} \psi(t_{j}) = \sum_{i,k}^{F} t_{j} \otimes t_{k}^{pj}.$$

There is a canonical anti-automorphism $c: \Gamma \to \Gamma$, which satisfies $c\eta_L = \eta_R$ and $c\eta_R = \eta_L$. This gives a formal group law F^* conjugate to F, defined by the formula:

$$(2.8) \qquad \sum^{F^*} z_i = c(\sum^F c(z_i)).$$

Notation 2.9. Let $c(t_i) = h_i$.

The elements h_i satisfy the following formulas, which are obtained by applying c to (2.3), (2.5), and (2.12):

(2.10)
$$m_n = \sum_{i=0}^n (h_{n-i})^{p^i} \eta(m_i)$$

(2.11)
$$\sum_{i+j=n} \psi(h_j)^{p^i} \eta(m_i) = \sum_{i+j+k=n} h_k^{p^{i+j}} \otimes h_j^{p^i} \eta(m_i)$$

(2.12)
$$\sum_{F^*} \psi(h_j) = \sum_{F^*} h_k^{pj} \otimes h_j.$$

We also have $\Gamma \approx A[h_1, h_2,...]$.

For each finite sequence of non-negative integers, $I = (i_1, i_2, ..., i_n)$, let

$$h^{I} = h_1^{i_1} h_2^{i_2} \cdots h_n^{i_n}$$
.

The length of I is the integer $l(I) = i_1 + \cdots + i_n$.

Definition 2.13. For each non-negatively graded, free left A-module M, let U(M) be the sub-A-module of $\Gamma \otimes_A M$ spanned by all elements of the form $h^I \otimes_A m$ where 2l(I) < degree (m).

For an arbitrary non-negatively graded left A-module let

$$F_1 \xrightarrow{f} F_0 \to M \to 0$$

be exact with F_0 and F_1 free. Then define

$$U(M) = \operatorname{coker} (U(f): U(F_1) \to U(F_0)).$$

It is easily verified that U(M) is independent of F_1 , F_0 and f.

Remark 2.14. In [2, (7.4)], the functor $U(\cdot)$ is defined in terms of another functor $G(\cdot)$ (specifically, U(M) is the submodule of primitives in G(M)). The discussion of [2, (8.7)] shows that the two definitions of U(M) agree.

There is a Γ -comodule structure on $\Gamma \otimes_A M$ by the map

$$\psi \otimes 1 : \Gamma \otimes_A M \rightarrow \Gamma \otimes_A \Gamma \otimes_A M$$
.

An easy induction using (2.12) shows that $\psi \otimes 1$ takes U(M) to $U^2(M)$, and hence induces a map

$$\delta^U: U(M) \rightarrow U^2(M)$$
.

There is also a counit map ε^U : $U(M) \to M$ induced by the counit map in Γ . In the notation of [2, § 5], $(U, \delta^U, \varepsilon^U)$ is a cotriple on the category $\mathscr A$ of nonnegatively graded left A-modules.

A module M in $\mathscr A$ with a U-structure will be called an unstable Γ -comodule (see [2, (7.4)]). This means that there is a map $\psi: M \to U(M)$ such that the following diagrams commute:

$$(2.15) \qquad M \xrightarrow{\psi} U(M) \qquad M \xrightarrow{\psi} U(M)$$

$$\downarrow \downarrow \qquad \qquad \downarrow \varepsilon^{U}$$

$$U(M) \xrightarrow{U(\psi)} U^{2}(M) \qquad \qquad M$$

The category of unstable Γ -comodules will be called \mathscr{U} (\mathscr{U} is called $\mathscr{A}(U)$ in [2]). By construction \mathscr{U} is an abelian category. To simplify notation, we shall write

$$\operatorname{Ext}_{\mathscr{U}}^{s,t}(M)$$
 for $\operatorname{Ext}_{\mathscr{U}}^{s}(A[t], M)$

for M in \mathcal{U} . These Ext groups may be calculated as the homology groups of an unstable cobar complex $C^{*,*}(M)$. Specifically, for each pair (s, t) of nonnegative integers,

$$C^{s,t}(M) = U^{s}(M)_{t}$$
.

As is customary, we write $[\gamma_1 | \cdots | \gamma_s]m$ for the element $\gamma_1 \otimes \cdots \otimes \gamma_s \otimes m$ in $U^s(M)$. The complementary degree t of such an element is the integer

$$t = \deg(\gamma_1) + \cdots + \deg(\gamma_s) + \deg(m)$$
.

The differential

$$d^s: C^{s,t}(M) \rightarrow C^{s+1,t}(M)$$

is given by

$$\begin{split} d^{s}[\gamma_{1} \mid \cdots \mid \gamma_{s}] m &= [1 \mid \gamma_{1} \mid \cdots \mid \gamma_{s}] m \\ &+ \sum (-1)^{j} [\gamma_{1} \mid \cdots \mid \gamma'_{j} \mid \gamma''_{j} \mid \cdots \mid \gamma_{s}] m \\ &+ \sum (-1)^{s+1} [\gamma_{1} \mid \cdots \mid \gamma_{s} \mid \gamma'] m'' \end{split}$$

where $\psi(\gamma_j) = \sum \gamma_j' \otimes \gamma_j''$ and $\psi(m) = \sum \gamma' \otimes m''$. Then, from [2, (9.3)], we have

$$\operatorname{Ext}_{\mathscr{U}}^{s,t}(M) \approx H^{s,t}(C^{*,*}(M)).$$

Remark 2.16. As in the stable case, there is a smaller "normalized" cobar complex $\tilde{C}^{*,*}(M)$. This is obtained from the functor

$$\widetilde{U}(M) = \ker \{ \varepsilon^U \colon U(M) \to M \}$$

by

$$\tilde{C}^{s,*}(M) = \tilde{U}^{s}(M)$$
.

The inclusion $\tilde{C}(M) \rightarrow C(M)$ is a chain equivalence. This gives the following "easy" vanishing line.

Proposition 2.17. If M is a k-connected unstable Γ -comodule, then $\operatorname{Ext}_{\mathscr{X}}^{s,t}(M) = 0$, for $t \leq 2(p-1)s + k$.

The proof is immediate because $\tilde{C}^{s,t}(M) = 0$ for $t \leq 2(p-1)s + k$.

This vanishing line will be improved in Section 5.

§3. The Spectral Sequence for SU

When the space X is SU (=the infinite special unitary group), the unstable Adams-Novikov spectral sequence simplifies considerably, as shown below; compare with the unstable spectral sequence for SU based on mod p homology in [4, p. 191]. In fact, we have the following general result.

Theorem 3.1. Let X be an H-space with torsion-free homology and torsion-free homotopy. Then the unstable Adams-Novikov spectral sequence for X collapses. That is,

$$E_2^{s,t}(X) \approx \begin{cases} \pi_t(X), & \text{for } s = 0, \\ 0, & \text{for } s > 0. \end{cases}$$

Before giving the proof of Theorem 3.1, we recall the results of Wilson [10] which are the main ingredients of the proof.

Wilson's Spaces Y_k (3.2). There are indecomposable H-spaces Y_k (k=1, 2, ...), which have the following properties.

- (i) Y_k is (k-1)-connected, and $\pi_k(Y_k) = \mathbf{Z}_{(p)}$.
- (ii) For $k \neq 2(p^n + p^{n-1} + \dots + 1)$, $\Omega Y_{k+1} \simeq Y_k$. For $k = 2(p^n + p^{n-1} + \dots + 1)$, $\Omega Y_{k+1} \simeq Y_k \times Y_{pk}$.
- (iii) If $f: Y_k \to Y_k$ is a continuous map which induces an isomorphism $f_*: \pi_k(Y_k) \approx \pi_k(Y_k)$, then f is a homotopy equivalence.
- (iv) If X is a H-space with torsion-free homology and torsion-free homotopy, then X is a product of the Y_k 's:

$$X \simeq \prod_{\alpha} Y_{k_{\alpha}}$$

(but not necessarily as H-spaces).

(v) Let BP_k be the k-th space in the Ω -spectrum for BP. Then there are maps i and j

$$Y_k \xrightarrow{i} BP_k \xrightarrow{j} Y_k$$

where $j \circ i$ is a homotopy equivalence. Moreover we may consider $BP_k = Y_k \times Z$ where Z is a space at least k-connected.

Proof of Theorem 3.1. For each of the spaces Y_k , consider the following homotopy-commutative diagram:

$$Y_{k} \xrightarrow{\eta'} BP(Y_{k}) \xrightarrow{\mu'} Y_{k}$$

$$\downarrow \downarrow \qquad \qquad \downarrow BP(i) \qquad \uparrow j$$

$$BP_{k} \xrightarrow{\eta} BP(BP_{k}) \xrightarrow{\mu} BP_{k}$$

where $\eta' = \eta(Y_k)$, $\eta = \eta(BP_k)$; the map μ is induced by the product in BP, and $\mu' = j \circ \mu \circ BP(i)$. The properties of BP as a ring spectrum imply that $\mu \circ \eta$ is a homotopy equivalence. Hence $\mu' \circ \eta'$ induces $\pi_k(Y_k) \approx \pi_k(Y_k)$, and so by (3.2, (iii)) must be a homotopy equivalence. By the construction (2.1) or [2, (2.4)] this implies that the spectral sequence for Y_k collapses. It follows that for any product of the Y_k 's, the spectral sequence collapses. By (3.2, (iv)), X is such a space, so the spectral sequence collapses for X. Q.E.D.

Remark 3.3. Using the facts that SU is an H-space with torsion-free homology and torsion-free homotopy, we see that the spectral sequence collapses for SU. For an alternative approach, see Remark 3.8.

We proceed to analyze the image of the BP_{*}-Hurewicz homomorphism

$$\operatorname{im} \{\pi_*(SU) \to H_*(SU; BP)\} \approx E_2^{0,*}(SU)$$

 $\approx \operatorname{Ext} \%^*(PH_*(SU; BP)).$

Here $PH_*(SU; BP)$ stands for the submodule of primitives in $H_*(SU; BP)$ considered as an unstable Γ -comodule. For later use, we give a description of $PH_*(SU; BP)$. Recall from [8] that there is a map

$$f: S^1 \wedge \mathbb{C}P^{\infty} \to SU$$
.

As in [1], let β_k , for k=1, 2,... be the natural generator of $H_{2k}(\mathbb{C}P^\infty; BP)$. Let $f_*(\ell_1 \wedge \beta_k) = x_{2k+1}$, which is a primitive element in $H_{2k+1}(SU; BP)$. $H_*(SU; BP)$ is cofree as a coalgebra, and $PH_*(SU; BP)$ is the free A-module generated by $\{x_{2k+1}\}, k=1, 2,...$

To describe the unstable Γ -coaction on $PH_*(SU; BP)$ we proceed as follows. As in [1], by abuse of notation, let β_k also stand for the generator of $H_{2k}(\mathbb{C}P^{\infty}; MU)$, and let b_k^{MU} be the generator of $H_{2k}(MU; MU)$. Then from [1, (11.4)] the formula for the coaction in $H_*(\mathbb{C}P^{\infty}; MU)$ is

$$\psi(\beta_k) = \sum_{j} \left(\sum_{s} b_s^{MU} \right)_{k-j}^{j} \otimes \beta_j$$

where $(\sum_s b_s^{MU})_{k-j}^j$ stands for the terms of degree 2k-2j in $(\sum_s b_s^{MU})^j$. The Quillen idempotent induces a map from $H_*(MU; MU)$ to $H_*(BP; BP)$ which sends $\sum_s b_s^{MU}$ to $\sum_s^{F^*} h_s$, as shown in [2, (8.3)]. Thus the formula for the coaction in $H_*(CP^\infty; BP)$ is

$$\psi(\beta_k) = \sum_j \left(\sum_s F^* h_s \right)_{k-j}^j \otimes \beta_j.$$

Then by naturality of f_* , the formula for the coaction in $H_*(SU; BP)$ is

(3.4)
$$\psi(x_{2k+1}) = \sum_{j} \left(\sum_{s}^{F^*} h_s \right)_{k-j}^{j} \otimes x_{2j+1}.$$

It would be awkward to calculate the groups $\operatorname{Ext}_{\mathscr{U}}^{0,*}(PH_*(SU;BP))$ directly. Instead, we do the following. Define an A-linear map

$$\phi: PH_*(SU; BP) \rightarrow PH_{*+2}(SU; BP)$$

$$\phi(x_{2i+1}) = \sum_{k=1}^{i+1} ka_{i-k+1}x_{2k+1}$$

where $a_s = a_{s,1}$ (the $a_{i,j}$ are the *BP*-formal group law coefficients). The a_s may be computed recursively by $a_0 = 1$, and the formula (see [1, (10.1)]):

$$\sum_{n\geq 0} p^n m_n = (\sum_{s\geq 0} a_s)^{-1} .$$

Let ϕ^k stand for the k-th iterate of the map ϕ . The following is motivated by Toda's proof of the Bott Periodicity Theorem [8].

Proposition 3.5. For each non-negative integer k, $\phi^k(x_3)$ generates $E_2^{0,2k+3}(SU)$.

Proof. The Hopf construction applied to the map $\mu: \mathbb{C}P^{\infty} \times \mathbb{C}P^{\infty}$ gives a map:

$$H(\mu): S^1 \wedge \mathbb{C}P^{\infty} \wedge \mathbb{C}P^{\infty} \to S^1 \wedge \mathbb{C}P^{\infty}.$$

The restriction of $H(\mu)$ to $S^1 \wedge S^2 \wedge CP^{\infty}$ will be called ζ . ζ induces a map in homology:

$$\zeta_*: H_*(\mathbb{C}P^{\infty}; BP) \rightarrow H_{*+2}(\mathbb{C}P^{\infty}; BP).$$

By dualizing the formal group law for BP, we see that

$$\zeta_*(\beta_i) = \sum_{k=1}^{i+1} k a_{i-k+1} \beta_i.$$

Consider the composite map (which will be called ζ_{k+1}):

$$S^{2k+3} \xrightarrow{\text{incl.}} S^{2k+1} \wedge \mathbb{C}P^{\infty} \xrightarrow{S^{2k+1}(\zeta)} S^{2k-1} \wedge \mathbb{C}P^{\infty} \xrightarrow{S^{2k-4}(\zeta)} \cdots \xrightarrow{S^{2}(\zeta)} S^{3} \wedge \mathbb{C}P^{\infty} \xrightarrow{\zeta} S^{1} \wedge \mathbb{C}P^{\infty} \xrightarrow{f} SU.$$

The map ζ_{k+1} induces a map of the unstable Adams-Novikov spectral sequences

$$(\zeta_{k+1})_*: E_2^{0,2k+3}(S^{2k+3}) \to E_2^{0,2k+3}(SU)$$

with $(\zeta_{k+1})_*(\iota_{2k+3}) = \phi^k(x_3)$. This shows that $\phi^k(x_3)$ is a cycle. By examining the coefficient of x_{2m+1} , where m is the integer k-1 reduced modulo p-1, we see that $\phi^k(x_3)$ is not divisible by p. Therefore, $\phi^k(x_3)$ is a generator of $E_2^{0,2k+3}(SU)$.

Q.E.D.

Remarks 3.6. (i) The above proof also shows that the composite map ζ_{k+1} is a generator of $\pi_{2k+1}(SU)$. This reproves a theorem of Toda [8].

(ii) Some examples of the generators of $E_2^{0,*}(SU)$ for the prime p=2 are the following

$$\phi(x_3) = 2x_5 - v_1 x_3$$

$$\phi^2(x_3) = 6x_7 - 6v_1 x_5 + 3v_1^2 x_3$$

$$\phi^3(x_3) = 24x_9 - 36v_1 x_7 + 30v_1^2 x_5 - (12v_2 + 9v_1^2)x_3.$$

Theorem 3.7. Let Y be an H-space with torsion-free homology and torsion-free komotopy. Suppose that X is a space such that $H_*(X; BP)$ is cofree as a coalgebra over A, and that

$$PH_*(X; BP) \approx PH_*(Y; BP)$$

as unstable Γ -comodules. Then $X \simeq Y$.

Proof. By (3.1), the unstable Adams-Novikov spectral sequence for Y collapses. Both X and Y satisfy the assumptions of (2.2), so $E_2^{*,*}(X) \approx E_2^{*,*}(Y)$. Thus the spectral sequence collapses for X too, and $\pi_*(X)$ is free over $\mathbb{Z}_{(p)}$. Also, $H_*(X; \mathbb{Z}_{(p)})$ is free over $\mathbb{Z}_{(p)}$ because of the isomorphisms:

$$\begin{split} H_*(BP;\, \mathbf{Z}_{(p)}) \otimes_{\mathbf{Z}_{(p)}} H_*(X;\, \mathbf{Z}_{(p)}) &\approx \pi_*(BP \wedge K(\mathbf{Z}_{(p)}) \wedge X) \\ &\approx H_*(BP;\, \mathbf{Z}_{(p)}) \otimes_A H_*(X;\, BP) \,. \end{split}$$

Therefore, by [1, (5.23)], X is an H-space with torsion-free homotopy and torsion-free homology. By (3.2, (iv)), X and Y are each a product of the Y_k 's. As $\pi_*(X) \approx \pi_*(Y)$, the factors which occur for X are the same as those which occur for Y.

Q.E.D.

Remark 3.8. It is possible by a lengthy calculation to determine the coaction in the space $Y = Y_3 \times Y_5 \times \cdots \times Y_{2p-1}$, and then to show that

$$PH_*(SU; BP) \approx PH_*(Y; BP)$$

as unstable Γ -comodules. Thus (3.7) implies that

$$SU \simeq Y_3 \times Y_5 \times \cdots \times Y_{2n-1}$$
.

Making use of (3.2, (iv)), we have that $\Omega^2 Y_3 \simeq S^1 \times Y_{2p-1}$, and that for $2 \le j$ $\le p-1$, $\Omega^2 Y_{2j+1} \simeq Y_{2j-1}$. Thus

$$\Omega^2(SU) \simeq S^1 \times Y_{2p-1} \times Y_3 \times \cdots \times Y_{2p-3}$$

$$\simeq S^1 \times SU$$

which is the (complex) Bott periodicity theorem.

§4. Calculations of $E_2^{1,*}(SU(n))$

Let SU(n) be the spectral unitary group in n variables. $H_*(SU(n); BP)$ is

free as an A-module, and cofree as a coalgebra. The submodule of primitives $PH_*(SU(n); BP)$ will be called M(n). By (2.2), we have

$$E_2^{s,t}(SU(n)) \simeq \operatorname{Ext}_{\mathscr{C}}^{s,t}(M(n)).$$

As an A-module, M(n) is freely generated by the elements $x_3, x_5, ..., x_{2n-1}$ defined in Section 3. The unstable Γ -comodule structure $\psi \colon M(n) \to UM(n)$ is given by formula (3.4). The groups $\operatorname{Ext}_{\mathscr{U}}^{s,t}(M(n))$ are the homology of the unstable cobar complex. By sparseness, we have

$$E_2^{s,t}(SU(n))=0$$
, for t even.

Consider the fibration

$$SU(n) \rightarrow SU(n+1) \rightarrow S^{2n+1}$$
.

Passing to BP_* -homology, and then taking primitives, we obtain a short exact sequence of unstable Γ -comodules:

$$0 \rightarrow M(n) \rightarrow M(n+1) \rightarrow A[2n+1] \rightarrow 0$$
.

This induces a long exact sequence of Ext groups, which, after identifying them as E_2 -terms, becomes

$$(4.1) \qquad \cdots \to E_2^{s,t}(SU(n)) \to E_2^{s,t}(SU(n+1)) \to E_2^{s,t}(S^{2n+1}) \xrightarrow{\delta} \cdots$$

where δ has bidegree (1, 0). The indexing (s, t) is such that t-s is the homotopy dimension, whereas in [2], as in the stable case (e.g. [6]), t-s is stem dimension.

Proposition 4.2.

- (i) $E_2^{s,t}(SU(n)) \approx E_2^{s,t}(SU(n+1))$, for t < 2n+2s.
- (ii) $E_2^{0,t}(SU(n)) \approx 0$, for $t \ge 2n$, $E_2^{0,2i+1}(SU(n)) \approx \mathbf{Z}_{(p)}$, for $1 \le i < n$.
- (iii) $E_2^{1,2n+1}(SU(n)) \approx \mathbf{Z}_{(p)}/(n!)\mathbf{Z}_{(p)}$.
- (iv) For n < k, the inclusion $SU(n) \rightarrow SU(k)$ induces a monomorphism

$$E_2^{1,2k+1}(SU(n)) \rightarrow E_2^{1,2k+1}(SU(k))$$
.

Proof. Statements (i) and (ii) follow immediately from the long exact sequences (4.1), the easy vanishing line (2.17) for $E_2^{s,t}(S^{2n+1})$, and the calculation of $E_2^{0,*}(SU)$. Part (iii) follows from (3.5) and (4.1). Part (iv) follows from (4.1) and the fact that $E_2^{0,t}(S^{2n+1})=0$, for $t \neq 2n+1$. Q.E.D.

The calculation of the rest of the 1-line for SU(n) is the calculation of which elements of $E_2^{1,2k+1}(SU(k))$ pull back to $E_2^{1,2k+1}(SU(n))$, for n < k. The

difficulty in working directly with the cobar complex $C^{*,*}(M(n))$ is the formal sum which occurs in the expression for the differential. That is,

$$d(x_{2k+1}) = 1 \otimes x_{2k+1} - \psi(x_{2k+1})$$
$$= -\sum_{j=1}^{k-1} (\sum_{s}^{F^*} h_s)_{k-j}^{j} \otimes x_{2j+1}.$$

To overcome this difficulty, we introduce a map $\bar{e}: \Gamma \to Q$ as follows. From Section 2, we see that $\Gamma \otimes_{\mathbb{Z}} Q$ is a polynomial algebra over Q generated by the m_k and the $\eta_R(m_k)$, $k=1, 2, \ldots$

Definition 4.3. Let $\bar{e}: \Gamma \otimes_{\mathbf{z}} Q \to Q$ be the homomorphism defined on the generators by

$$\bar{e}(m_k) = 1/p^k$$

 $\bar{e}(\eta_R(m_k)) = 0$

for $k=1, 2, \ldots$ Also, let $\bar{e}: \Gamma \rightarrow Q$ denote the restriction of this map to Γ .

Lemma 4.4. For the Hazewinkel elements v_i in Γ , we have $\bar{e}(v_1)=1$, $\bar{e}(v_i)=0$ for i>1.

Proof. $v_1 = pm_1$, so $\bar{e}(v_1) = 1$. For i > 1, the v_i are defined by formula (2.4), and it follows by induction on i that $\bar{e}(v_i) = 0$ for i > 1. Q. E. D.

In the unstable cobar complex $C^{*,*}(S^{2n+1})$, we have $C^{0,*}(S^{2n+1}) \approx A$. For a in A, $d(a) = \eta_R(a) - a$, so

$$\bar{e}(d(a)) = -\bar{e}(a)$$
.

Therefore, $\bar{e}(d(A)) \subset \mathbb{Z}_{(p)}$. Passing to the homology of the unstable cobar complex, we obtain a well-defined map

$$e: E_2^1, *(S^{2n+1}) \to \mathbb{Q}/\mathbb{Z}_{(p)}$$

which is (up to sign) an unstable analogue of the complex Adams e-invariant localized at p. The description of $E_2^1 \cdot *(S^{2n+1})$ in [2, § 9] shows that e is a monomorphism. Thus the order of any element α in $E_2^1 \cdot *(S^{2n+1})$ is the same as the order of $e(\alpha)$ in $\mathbb{Q}/\mathbb{Z}_{(p)}$.

Definition 4.5. For each pair (k, j) of positive integers, we define a rational number $b_{k,j}$ as follows. For each $j \ge 1$, let

$$\left(Y + \frac{Y^p}{p} + \frac{Y^{p^2}}{p^2} + \cdots\right)^j = \sum_{k \ge j} b_{k,j} Y^k$$

in the formal power series ring Q[Y].

The properties of \bar{e} which will be used in the proof of (4.7) are the following. Recall from (2.9) that $h_k = c(t_k)$, where c is the canonical anti-automorphism.

Lemma 4.6. (i) $\bar{e}(h_k) = 1/p^k$,

(ii)
$$\bar{e}(\sum_{k=1}^{F^*} h_k)_{k=1}^j = b_{k,j}$$
.

Proof. Apply the canonical anti-automorphism c to (2.3) to obtain

$$m_k = \eta_R(m_k) + h_1^{p^{k-1}} \eta_R(m_{k-1}) + \cdots + h_k$$
.

As \bar{e} is 0 on the image of η_R , part (i) follows. For part (ii), we have

$$\begin{split} \bar{e}(\sum^{F^*} h_s)_{k-j}^j &= \bar{e}(\sum h_s)_{k-j}^j = \left(1 + \frac{Y^{p-1}}{p} + \frac{Y^{p^2-1}}{p^2} + \cdots\right)_{k-j}^j \\ &= \left(Y + \frac{Y^p}{p} + \frac{Y^{p^2}}{p^2} + \cdots\right)_k^j \\ &= b_{k,j}. \end{split}$$
 Q. E. D.

The matrix $B = [b_{k,j}]$ is lower triangular, with diagonal entries $b_{k,k} = 1$. Hence there is a well-defined inverse matrix $C = [c_{k,j}]$ which is also lower triangular. For each $2 \le n \le k$, let $\omega_k(n)$ be the integer defined by

$$\omega_k(n) = \max_{n \le j \le k} \{ \text{order } c_{k,j} \text{ in } \mathbf{Q}/\mathbf{Z}_{(p)} \}.$$

Theorem 4.7. For each $2 \le n \le k$,

$$E_2^{1,2k+1}(SU(n)) \approx \omega_k(n) \mathbf{Z}_{(p)}/k! \mathbf{Z}_{(p)}$$

Proof. From Section 2 (see also [2]), we know that $E_2^{*,*}(SU(n))$ may be calculated as the homology of the unstable cobar complex $C^{*,*}(M(n))$. Let g_k be the element $-d(x_{2k+1})$ in $C^{1,2k+1}(M(k+1))$; that is

$$\begin{split} g_k &= \psi(x_{2k+1}) - 1 \otimes x_{2k+1} \\ &= \sum_{j=1}^{k-1} \left(\sum_{j=1}^{F^*} h_s \right)_{k-j}^j \otimes x_{2j+1} \\ &= \sum_{j=1}^{k-1} \gamma_{k,j} \otimes x_{2j+1} \end{split}$$

where $\gamma_{k,j} = (\sum_{k=1}^{F^*} h_s)_{k-j}^j$. The long exact sequence (4.1) shows that the homology class of g_k generates $E_2^{1/2k+1}$ (SU(k)).

Next, let integers $\tau_k(n)$ for $1 \le n < k$ and rational numbers $a_{k,j}(n)$ for $1 \le n \le k$, all $1 \le j$, be defined as follows. First, let $a_{k,j}(k) = \bar{e}(\gamma_{k,j})$. Then recursively for $1 \le n < k$, let

$$\tau_k(n) = \text{order of } a_{k,n}(n+1) \text{ in } Q/Z_{(p)}$$

$$a_{k,j}(n) = \tau_k(n) (a_{k,j}(n+1) - a_{k,n}(n+1)a_{n,j}(n)).$$

We shall show by downward induction on n that for $1 \le n \le k$, there are elements $g_k(n)$ in UM(n) of the form

$$g_k(n) = \sum_{j=1}^{n-1} \gamma_{k,j}(n) \otimes x_{2j+1}$$

where the $\gamma_{k,j}(n)$ are in Γ with $\bar{e}(\gamma_{k,j}(n)) = a_{k,j}(n)$, and such that the homology class of $g_k(n)$ in $E_2^{1,2k+1}(SU(n))$ represents the generator. This is true for n=k, because $g_k(k) = g_k$. Then assume inductively for n < k that there is an element $g_k(n+1)$ as asserted. Consider the map

$$E_2^{1,2k+1}(SU(n+1)) \xrightarrow{\rho_*} E_2^{1,2k+1}(S^{2n+1}).$$

Then $\rho_*(g_k(n+1)) = \gamma \otimes x_{2n+1}$, where γ is in Γ , with $\bar{e}(\gamma) = a_{k,n}(n+1)$. Then $\tau_k(n) = \text{order of } \gamma \otimes x_{2n+1}$ in $E_2^{1,2k+1}(S^{2n+1})$, so there is an element $a_k(n+1)$ in A, with

$$d(a_k(n+1)) = \tau_k(n) \cdot \gamma \otimes x_{2n+1}.$$

Then the element

$$g_k(n) = \tau_k(n)g_k(n+1) - d(a_k(n+1)x_{2n+1})$$

= $\sum_{j=1}^{n-1} \gamma_{k,j}(n) \otimes x_{2j+1}$

generates $E_2^{1.2k+1}(SU(n))$, and satisfies

$$\bar{e}(\gamma_{k,i}(n)) = a_{k,i}(n)$$
.

Next we define rational numbers $b_{k,j}(n)$ for all pairs of integers (k, j) with $k \ge n$ as follows. First, $b_{k,j}(k) = b_{k,j}$ as defined in (4.5). Then recursively for n < k, let

$$b_{k,j}(n) = b_{k,j}(n+1) - b_{k,n}(n+1)b_{n,j}$$
.

Observe that the result of row-reducing the k-th row of the matrix $B = [b_{k,j}]$ by using rows k-1, k-2,..., n+1 takes the k-th row

$$\langle b_{k,1}, b_{k,2}, ..., b_{k,k-1}, 1, 0, ... \rangle$$

to the row

$$\langle b_{k,1}(n+1),...,b_{k,n}(n+1),0,...,0,1,0,... \rangle$$
.

Hence, in the matrix C (=the inverse of B), we have $c_{k,n} = -b_{k,n}(n+1)$. In particular, these two rational numbers have the same order in $\mathbb{Q}/\mathbb{Z}_{(p)}$. We

assert that

$$a_{k,i}(n) = \omega_k(n) \cdot b_{k,i}(n)$$

which we shall show by downward induction on n. The statement is true for n=k, as $a_{k,j}(k)=b_{k,j}(k)$, and $\omega_k(k)=1$. Assume inductively that

$$a_{k,j}(n+1) = \omega_k(n+1)b_{k,j}(n+1)$$
.

Then

$$\begin{split} a_{k,j}(n) &= \tau_k(n) \left(a_{k,j}(n+1) - a_{k,n}(n+1) a_{n,j} \right) \\ &= \tau_k(n) \omega_k(n+1) \left(b_{k,j}(n+1) - b_{k,n}(n+1) b_{n,j} \right) \\ &= \tau_k(n) \omega_k(n+1) b_{k,j}(n) \\ &= \operatorname{order} \left(a_{k,n}(n+1) \right) \cdot \omega_k(n+1) \cdot b_{k,j}(n) \\ &= \operatorname{order} \left(\omega_k(n+1) b_{k,n}(n+1) \right) \cdot \omega_k(n+1) \cdot b_{k,j}(n) \\ &= \max \left\{ \omega_k(n+1), \operatorname{order} \left(b_{k,n}(n+1) \right) \right\} b_{k,j}(n) \\ &= \omega_k(n) b_{k,j}(n) \,. \end{split}$$

Finally, we consider the map

$$(i_{n,k})_*: E_2^{1,2k+1}(SU(n)) \to E_2^{1,2k+1}(SU(k))$$

induced by the inclusion $i_{n,k}$: $SU(n) \rightarrow SU(k)$. By (4.2, (iv)), $(i_{n,k})_*$ is a monomorphism, and by the above,

$$(i_{n,k})_*g_k(n) = \omega_k(n) \cdot g_k$$
.

Thus
$$E_2^{1,2k+1}(SU(n)) \approx \omega_k(n) \mathbf{Z}_{(p)}/k! \mathbf{Z}_{(p)}$$
 as asserted. Q. E. D.

From these calculations, we can determine the kernel of the homomorphism

$$E_2^{2,*}(SU(n)) \rightarrow E_2^{2,*}(SU(n+1))$$
.

Recall from [2], that $E_2^{1,2k+1}(S^{2n+1})$ is shown to be a cyclic group of order $\sigma_k(n)$ where $\sigma_k(n)$ is as follows. If $k-n \not\equiv 0 \mod 2p-2$, $\sigma_k(n)=1$. Otherwise, write $k-n=(2p-2)\cdot p^m\cdot q$, where q is prime to p. Then for an odd prime p,

$$\sigma_k(n) = \min \{p^n, p^{m+1}\}$$

and for p=2,

$$\sigma_k(n) = \begin{cases} 2, & \text{if } k-n \text{ is odd,} \\ 2, & \text{if } k=3, n=1, \\ 4, & \text{if } k-n=2, n \ge 2, \\ \min\{2^n, 2^{m+2}\}, & \text{otherwise.} \end{cases}$$

Corollary 4.8. For k < n, the kernel of

$$E_2^{2,2k+1}(SU(n)) \rightarrow E_2^{2,2k+1}(SU(n+1))$$

is a cyclic group of order $\sigma_k(n)/\tau_k(n)$, where $\sigma_k(n)$ is as above, and $\tau_k(n)$ is the integer defined in the course of the proof of Theorem 4.7.

Proof. From the long exact sequence (4.1), we must determine the cokernel of

$$E_2^{1,2k+1}(SU(n+1)) \to E_2^{1,2k+1}(S^{2n+1}).$$

We have calculated that for k < n, the order of the image is $\tau_k(n)$. Therefore the cokernel has order $\sigma_k(n)/\tau_k(n)$ as asserted. Q.E.D.

Remark 4.9. The results of Bousfield [3] concerning products in the unstable homotopy spectral sequence with coefficients in a ring may be generalized to a ring spectrum (in place of the ring). The statements of [3, (8.2)] apply to our situation. In particular, the differentials are seen to act as derivations with respect to the action of $E_r^{*,*}(S^{2n+1})$ on $E_r^{*,*}(SU(n))$. The coboundary map

$$\delta: E_2^{s,t}(S^{2n+1}) \to E_2^{s+1,t}(SU(n))$$

has the form $\delta(\alpha) = \pm \alpha \otimes d'(x_{2n+1})$, for α in $E_2^{s,t}(S^{2n+1})$. Thus δ is map of spectral sequences. For an odd prime p, the elements of $E_2^{1,2k+1}(S^{2n+1})$ are all permanent cycles [2], and their coboundaries are permanent cycles in $E_2^{2,2k+1}(SU(n))$. When non-zero, these represent non-zero elements of $\pi_*(SU(n))$. A similar but more complicated statement holds for p=2, taking into account the differential d^3 on $E_2^{1,*}(S^{2n+1})$.

Examples 4.10. Some examples (of the upper left-hand corners) of the matrices of (4.5) are the following:

(1) For
$$p = 2$$
,

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{1}{4} & \frac{3}{2} & 1 & 0 & 0 \\ 0 & \frac{1}{2} & \frac{3}{4} & 2 & 1 & 0 \\ 0 & \frac{1}{4} & \frac{7}{8} & 3 & \frac{5}{2} & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\ \frac{1}{2} - 1 & 1 & 0 & 0 & 0 \\ -\frac{7}{8} & \frac{5}{4} - \frac{3}{2} & 1 & 0 & 0 \\ \frac{13}{8} - \frac{9}{4} - \frac{9}{4} - 2 & 1 & 0 \\ -\frac{15}{16} & \frac{5}{2} & \frac{1}{4} & \frac{5}{2} - \frac{5}{2} & 1 \end{pmatrix}.$$

(2) For p = 3,

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & 0 & 1 & 0 & 0 & 0 \\ 0 & \frac{2}{3} & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & \frac{1}{9} & 0 & \frac{4}{3} & 0 & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ -\frac{1}{3} & 0 & 1 & 0 & 0 & 0 \\ 0 & -\frac{2}{3} & 0 & 1 & 0 & 0 \\ 0 & \frac{1}{3} & 0 & -1 & 0 & 1 & 0 \\ 0 & \frac{7}{2} & 0 & -\frac{4}{3} & 0 & 1 \end{pmatrix}$$

(3) The methods of this section also apply to the unstable Adams-Novikov spectral sequence based on MU (instead of BP). In this case, the definition of \bar{e} becomes

$$\bar{e}(m_k) = 1/k + 1$$
$$\bar{e}(\eta(m_k)) = 0$$

where the $m_k = [CP^k]/k + 1$ in $\pi_{2k}(MU)$. The matrix B of (4.5) is defined by

$$\left(Y + \frac{Y^2}{2} + \frac{Y^3}{3} + \cdots\right)^j = \sum_{k \ge j} b_{k,j} Y^k.$$

The matrix C is the inverse of B, and then $\omega_n(k)$ is the least common multiple of the orders of $c_{k,j}$ in \mathbb{Q}/\mathbb{Z} as $n \leq j \leq k$. The analogue to Theorem 4.7 becomes:

$$E_2^{1,2k+1}(SU(n)) \approx \omega_k(n)\mathbb{Z}/k!\mathbb{Z}$$

For this, the integral case,

$$B = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ \frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\ \frac{1}{3} & 1 & 1 & 0 & 0 & 0 \\ \frac{1}{4} & \frac{11}{12} & \frac{3}{2} & 1 & 0 & 0 \\ \frac{1}{5} & \frac{5}{6} & \frac{7}{4} & 2 & 1 & 0 \\ \frac{1}{6} & \frac{137}{180} & \frac{15}{8} & \frac{17}{6} & \frac{5}{2} & 1 \end{pmatrix}$$

$$C = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\ -\frac{1}{2} & 1 & 0 & 0 & 0 & 0 \\ -\frac{1}{4} & \frac{7}{12} & -\frac{3}{2} & 1 & 0 & 0 \\ \frac{1}{120} & -\frac{1}{4} & \frac{5}{4} & -2 & 1 & 0 \\ -\frac{1}{720} & \frac{31}{360} & -\frac{3}{4} & \frac{13}{6} & -\frac{5}{2} & 1 \end{pmatrix}$$

§5. Some Calculations in $E_2^{*,*}(S^{2n+1})$

In this section, we describe a method of making resolutions of unstable Γ -comodules which are convenient for calculations. We use these resolutions to establish vanishing lines for unstable Ext groups. In particular, we give a vanishing line for E_2^* ,* (S^{2n+1}) . We also make some calculations of E_2^* ,* (S^{2n+1}) in low stems, which together with the calculations of E_2^* ,* (S^{2n+1}) of [2], give some of the unstable groups $\pi_*(S^{2n+1})$.

Throughout this section, a prime p is fixed, BP is the Brown-Peterson spectrum associated with p, $\pi_*(BP) = A$, and $\pi_*(BP \wedge BP) = \Gamma$. The category of connected A-modules is called \mathscr{A} . The category \mathscr{U} of unstable Γ -comodules is defined in Section 2 by the cotriple $(U, \varepsilon^U, \delta^U)$ on \mathscr{A} . Let $J: \mathscr{U} \to \mathscr{A}$ be the forgetful functor. Then for M in \mathscr{A} and N in \mathscr{U} , there are natural isomorphisms α and β :

(5.1)
$$\operatorname{Hom}_{\mathscr{U}}(N, U(M)) \stackrel{\alpha}{\underset{\beta}{\longleftarrow}} \operatorname{Hom}_{\mathscr{A}}(J(N), M).$$

If $f: N \to U(M)$ is a map in \mathscr{U} , then $\alpha(f) = \varepsilon^U \circ f: J(N) \to M$ is a map in \mathscr{A} . If $g: J(N) \to M$ is a map in \mathscr{A} , then $\beta(g) = U(g) \circ \psi: N \to U(M)$ is a map in \mathscr{U} . Specifically, if x is in N, with $\psi(x) = \sum_i \gamma_i \otimes x_i$, then

(5.2)
$$\beta(g)(x) = \sum_{i} \gamma_{i} \otimes g(x_{i}).$$

In particular, a map $f: N \to U(M)$ in $\mathscr U$ is determined by the map $g = \varepsilon^U \circ f$ by formula (5.2).

Recall that A[t] is the free A-module on one generator ι_t of degree t, with trivial Γ -coaction. Then for any A-module M,

$$\operatorname{Hom}_{\mathscr{U}}(A[t]) \approx \operatorname{Hom}_{\mathscr{U}}(J(A[t]), M) \approx M_t$$
.

Acyclic Resolutions (5.3). Suppose that M is in \mathcal{U} . Then an acyclic resolution of M by models is a sequence

$$0 {\rightarrow} M \xrightarrow{\theta_{-1}} U(M^0) \xrightarrow{\partial_0} U(M^1) \xrightarrow{\theta_1} U(M^2) {\rightarrow} \cdots$$

which is acyclic, and the maps ∂_{-1} , ∂_0 , ∂_1 ,... are in \mathcal{U} . From this, we obtain a complex

$$M^0 \xrightarrow{d^0} M^1 \xrightarrow{d^1} M^2 \rightarrow \cdots$$

where, for each $i \ge 0$, d is the map

$$d^{i}(x) = \varepsilon^{U} \circ \partial_{i}(1 \otimes x)$$
.

Then, by standard homological algebra in the abelian category \mathcal{U} , we have:

(5.4)
$$\operatorname{Ext}_{\mathscr{Y}}^{s,t}(M) \approx (\ker d^{s}/\operatorname{im} d^{s-1})_{t}.$$

Our next step is to find convenient resolutions for certain kinds of modules.

Definition 5.5. An A-module M is called quasi-free if $M \approx F/R$ where F is a free A-module with homogeneous basis $\{x_{\alpha}\}$, and R is a sub-A-module of F which is generated by homogeneous elements $\{r\}$, each of which is of the form

$$r = \sum_{\alpha} c_{\alpha} x_{\alpha}$$

where the c_{α} are in $\mathbf{Z}_{(p)}$.

The usefulness of quasi-free modules is the following.

Proposition 5.6. Let M be a quasi-free A-module. Let n be a fixed positive integer, and let N be the sub-A-module of M spanned by the elements of M_m for m < n. Then

$$M \approx N \oplus M/N$$

as A-modules.

Proof. Write $M \approx F/R$ as given in the definition (5.5). Then let

$$F_0 = \operatorname{span} \{x_\alpha \mid \operatorname{degree}(x_\alpha) < n\}$$

 $F_1 = \operatorname{span} \{x_\alpha \mid \operatorname{degree}(x_\alpha) \ge n\}$
 $R_0 = \operatorname{span} \{r \mid \operatorname{degree}(r) < n\}$
 $R_1 = \operatorname{span} \{r \mid \operatorname{degree}(r) \ge n\}$.

Then it is immediate that $F = F_0 \oplus F_1$, $R = R_0 \oplus R_1$, and $N \approx F_0/R_0$, $M/N \approx F_1/R_1$. Thus

$$M \approx F_0/R_0 \oplus F_1/R_1$$

 $\approx N \oplus M/N$. Q. E. D.

Proposition 5.7. Let M be an unstable Γ -comodule, which is quasi-free as an A-module, and suppose that connectivity (M) = k-1, with $k \ge 2p-1$. Then

$$\operatorname{Ext}_{\mathbb{Z}}^{2s,t}(M) = 0$$
, for $t < 2(p-1)ps + k$,
 $\operatorname{Ext}_{\mathbb{Z}}^{2s+1,t}(M) = 0$, for $t < 2(p-1)(ps+1) + k$.

Proof. By downward induction on the connectivity of M. If M is highly connected, (5.7) holds by the Miller-Zahler vanishing line for stable Γ -comodules ([6], [12]). Assume inductively that (5.7) holds for connectivity $\geq k$ and let M be an unstable Γ -comodule, quasi-free as an Λ -module, with connectivity (M) = k-1, and $k \geq 2p-1$. We construct an acyclic resolution of M by models as follows.

Let $S^{2p-2}M$ be the $(S^{2p-2}M)_{2p-2+n}=M_n$. For x in M, let $S^{2p-2}x$ denote the corresponding element in $S^{2p-2}M$. The unstable Γ -comodule structure on M is a map $\psi: M \to U(M)$. Recall from (2.13) that U(M) is spanned by

the elements $h^I \otimes x$ where x is in M, and 2l(I) < degree(x). Thus coker ψ is spanned by the same $h^I \otimes x$ but excluding the $1 \otimes x$. We define an A-linear map

$$f: \operatorname{coker} \psi \to S^{2p-2}M$$

by

$$f(h_1 \otimes x) = S^{2p-2}x$$

$$f(h^I \otimes x) = 0, \text{ for } h^I \neq h_1.$$

It is easy to see that f is well defined.

Let N be the sub-A-module of coker ψ spanned by the elements of degree strictly less than 2(p-1)p+k. Then by (5.6),

$$\operatorname{coker} \psi \approx N \oplus (\operatorname{coker} \psi/N)$$
.

Let $M^1 = S^{2p-2}M \oplus (\operatorname{coker} \psi/N)$, and let

$$(f \oplus \lambda)$$
: coker $\psi \rightarrow M^1$

be the map where f is as above and λ is the natural projection. Then $g = \beta(f \oplus \lambda)$ is a map

$$q: \operatorname{coker} \psi \to U(M^1)$$
.

We claim that (i): g is one-one; and (ii): g is subjective in degrees < 2(p-1)p + k. Note that M quasi-free (as an A-module) implies that U(M) and coker ψ are quasi-free also. Consider

$$\begin{array}{ccc}
\operatorname{coker} \psi & \xrightarrow{g} & U(M^1) & \xrightarrow{\varepsilon} & M^1 \\
& \approx \downarrow & & \downarrow \approx \\
N \oplus (\operatorname{coker} \psi/N) & & S^{2p-2}M \oplus (\operatorname{coker} \psi/N)
\end{array}$$

Suppose that x_1 is in N and x_2 is in (coker ψ/N) and that $g(x_1 \oplus x_2) = 0$. Then the projection of $\varepsilon g(x_1 \oplus x_2)$ on coker ψ/N is x_2 , so $x_2 = 0$. N is spanned by elements of the form $h^I \otimes x$ which have degree < 2(p-1)p+k. Thus N is spanned by elements $h_1^n \otimes x$, where 0 < n < p. Then

$$g(h_1^n \otimes x) = (nh_1^{n-1} \otimes S^{2p-2}x) + h_1^n \otimes \varepsilon g(1 \otimes x).$$

Statements (i) and (ii) now follow readily by induction on n.

We next construct an acyclic resolution of M by models

$$0 \rightarrow M \xrightarrow{\hat{c}_{-1}} U(M) \xrightarrow{\hat{c}_0} U(M^1) \xrightarrow{\hat{c}_1} U(M^2) \longrightarrow \cdots$$

as follows. The map $\partial_{-1} = \psi$, the coaction map for M. The map ∂_0 is the composite

$$U(M) \xrightarrow{\lambda} \operatorname{coker} \psi \xrightarrow{g} U(M^1)$$

where λ is the natural quotient map and g is defined above. Let $M^2 = \operatorname{coker} \partial_0$, and for i > 2, let $M^i = U^{i-2}(M^2)$. For $i \ge 1$, the ∂_i are the maps in the cobar resolution for M^2 . Then by (5.4),

$$\operatorname{Ext}_{\mathscr{Z}}^{s,t}(M) \approx (\ker d^{s}/\operatorname{im} d^{s-1})_{t}$$

of the sequence

$$M \xrightarrow{d^0} M^1 \xrightarrow{d^1} M^2 \xrightarrow{d^2} \cdots$$

By construction, $M_t^1 = 0$, for t < 2(p-1) + k and $M_t^2 = 0$, for t < 2(p-1) + k. Therefore

Ext
$$_{2'}^{1,t}(M) = 0$$
, for $t < 2(p-1) + k$,
Ext $_{2'}^{2,t}(M) = 0$, for $t < 2(p-1)p + k$.

For $s \ge 3$, we have isomorphisms

$$\operatorname{Ext}_{\mathscr{V}}^{s,t}(M) \approx \operatorname{Ext}_{\mathscr{V}}^{s-2,t}(M^2)$$
.

The statement of (5.7) follows by induction.

Q.E.D.

Corollary 5.8. For $n \ge p-1$,

$$E_2^{2s,t}(S^{2n+1}) = 0$$
, for $t < 2(p-1)ps + 2n + 1$,
 $E_2^{2s+1,t}(S^{2n+1}) = 0$, for $t < 2(p-1)(ps+1) + 2n + 1$.

Definition 5.9. For each pair of positive integers (m, k) with m < p, let $M_m(k)$ be the free A-module with generators

$$\{x_{2m+1+2(p-1)i}\}, 0 \le i < k.$$

The Γ -coaction on $M_m(k)$ is given by formula (3.4). (The coaction is defined because Γ is sparse, i.e. $\Gamma_t = 0$ if $t \not\equiv 0 \mod (2p-2)$.)

Corollary 5.10.

$$\operatorname{Ext}_{\mathscr{U}}^{2s+1,t}(M_m(k)) = 0, \quad \text{for} \quad t < (2p-2)(ps+k) + 2m+1,$$

$$\operatorname{Ext}_{\mathscr{U}}^{2s+2,t}(M_m(k)) = 0, \quad \text{for} \quad t < 2(p-1)(ps+k+1) + 2m+1.$$

Proof. The short exact sequence of unstable Γ -comodules

$$0 \rightarrow M_m(k) \rightarrow M_m(k+1) \rightarrow A\lceil 2m+1+2(p-1)k\rceil \rightarrow 0$$

induces a long exact sequence of Ext groups. Then (5.10) follows by induction, using (3.3) and (5.8).

Q.E.D.

Corollary 5.11. Let $n \le p-1$. Then for each $s \ge 0$,

$$E_2^{2s+1,t}(S^{2n+1}) = 0$$
, for $t < 2(p-1)(ps+1) + 2n + 1$,
 $E_2^{2s+2,t}(S^{2n+1}) = 0$, for $t < 2(p-1)(ps+2) + 2n + 1$.

Q. E. D.

Q.E.D.

Proof. This is the statement of (5.10) with k=1.

Remarks 5.12. (i) In [7], spaces $B_m(k)$ are constructed, with

$$PH_*(B_m(k); BP) \approx M_m(k)$$
.

(In [7], $B_m(k)$ is denoted $B_m^k(p)$.) As a consequence of [7, (3.5)], the unstable Adams-Novikov spectral sequence for SU(n) breaks up into a direct sum of (p-1) spectral sequences, with

$$E_2(SU(n)) \approx \bigoplus_{1 \le m < p} \operatorname{Ext}_{\mathscr{U}} (M_m(k(n, m)))$$

where
$$k(n, m) = \left[\frac{n-m-1}{p}\right] + 1$$
.

(ii) The vanishing line (5.11) cannot be improved on S^3 as $\beta_1^r \alpha_1^2 \neq 0$ in $E_2(S^3)$ for all r. (β_1 and α_1 denote the classes in E_2 which represent the corresponding homotopy elements.) This is not the best possible for higher spheres; see Theorem 5.16, below.

Corollary 5.13. For
$$t-s < 2(p-1)(p(p-1)+k)+2m-1$$
,

$$\operatorname{Ext}_{\mathscr{C}}^{s,t}(M_{\mathfrak{m}}(k)) = E_{\mathfrak{m}}^{s,t}(B_{\mathfrak{m}}(k))$$

and there are no extensions if t-s<2(p-1)(p(p-1)+k-1)+2m.

Example 5.14. If n < p-1, and q < 2p(p-1) + 2n + 1,

$$\pi_a(SU(n)) \approx E_2(SU(n))$$

and all non-zero elements occur in filtrations 0, 1 and 2. Compare with [12; (5.7.4)].

Remarks 5.15. The above applies to any space X such that $H_*(X; BP)$ is free as an A-module and cofree as a coalgebra, and such that $PH_*(X; BP)$ as an unstable Γ -comodule is isomorphic to a direct sum of $M_m(k)$'s. In particular, for p an odd prime, by [7; (4.1)], these methods apply to Spin(n) and to Sp(n).

We leave the details to the reader.

To illustrate the method (5.7) of resolving unstable Γ -comodules, we show the following (see [9; (7.1)]).

Theorem 5.16. Let a prime p be fixed. For q in the range $2n+1 < q < 2p^2 + 2n - 4$, the p-localized group $\pi_q(S^{2n+1})$ is zero except in the following cases:

(i) For 0 < k < p,

$$\pi_{(2p-2)k+2n}(S^{2n+1}) \approx \mathbb{Z}_p.$$

Also (the case when k = p),

$$\begin{split} \pi_{(2p-2)p+2n}(S^{2n+1}) &\approx \pmb{Z}_p\,, \qquad \text{for} \quad n=1\,, \\ &\approx \pmb{Z}_{p^2}\,, \qquad \text{for} \quad n>1\,. \end{split}$$

(ii) For n < k < p

$$\pi_{(2p-2)k+2n-1}(S^{2n+1}) \approx \mathbb{Z}_p$$
.

Also (the case when k = p),

$$\pi_{(2p-2)p+2n-1}(S^{2n+1}) \approx \mathbb{Z}_p, \quad \text{for} \quad n=1, \text{ or } n \geq p,$$

$$\approx \mathbb{Z}_{p^2}, \quad \text{for} \quad 1 < n < p.$$

Proof. We prove (5.16) for n < p. The proof for $n \ge p$ is similar. For the range $2n+1 < t-s < 2p^2+2n-4$, by (5.11), we have $E_2^{s,t}(S^{2n+1})=0$ for s>2. Hence in this range,

$$\pi_q(S^{2n+1}) \approx E_2^{1,q+1}(S^{2n+1}),$$
 for q even,
 $\approx E_2^{2,q+2}(S^{2n+1}),$ for q odd.

We shall calculate E_2^* ,* (S^{2n+1}) in this range by an acyclic resolution of A[2n+1] as follows. Let M^0 be the free A-module with one generator x of degree 2n+1. Let M^1 be the free A-module with one generator y of degree (2p-2)+2n+1. Let M^2 be the A-module generated by elements $z_1, z_2,..., z_{p-n}$, where degree $(z_i)=(2p-2)(n+i)+2n+1$, modulo the ideal of relations:

$$pz_1$$

 $(n+k)v_1z_k - p(n+k+1)z_{k+1}$.

We note that these relations imply that in M^2 ,

$$p^i z_i = 0$$
, for $1 \le i ,$

$$p^{p-n+1}z_{p-n}=0$$
.

Let M^3 be the sub-A-module of $\Gamma \otimes_A M^2$ generated by the elements $\{h_1^k \otimes z_i\}$, where $1 \leq i \leq p-n$ and k>0, and with relations induced from those in M^2 . Let

$$\partial_{-1}: A\lceil 2n+1 \rceil \rightarrow M^0$$

be the map with $\partial_{-1}(\iota_{2n+1}) = 1 \otimes x$. By [2, §8], in the range of dimensions under consideration, $U(M^0)$ has an A-basis consisting of the elements:

$$h_1^k \otimes x$$
, for $0 \le k \le n$,
 $h_1^k v_1 \otimes x$, for $n \le k < p-1$.

Let $\partial_0: U(M^0) \to U(M^1)$ be the A-linear map defined by

$$\begin{split} &\partial_0(h_1^k \otimes x) = kh_1^{k-1} \otimes y \;, \qquad \text{for} \quad 0 \leq k \leq n \;, \\ &\partial_0(h_1^k v_1 \otimes x) = kv_1h_1^{k-1} \otimes y - p(k+1)h_1^k \otimes y \;, \qquad \text{for} \quad n \leq k < p-1 \end{split}$$

Let $\partial_1: U(M^1) \rightarrow U(M^2)$ be the A-linear map defined by

$$\begin{split} &\partial_1(h_1^k \otimes y) = 0 \;, \qquad \text{for} \quad 0 \leq k < n \;, \\ &\partial_1(h_1^k \otimes y) = \sum_{i=0}^{k-n} \binom{k}{i} h_1^i \otimes z_{k-n-i+1} \;, \qquad \text{for} \quad n \leq k < p-1 \;. \end{split}$$

Finally, let $\partial_2: U(M^2) \rightarrow U(M^3)$ be the composite

$$U(M^2) \xrightarrow{\lambda} U(M^2)/\text{Im } \partial_1 \approx M^3 \xrightarrow{\psi} U(M^3)$$

where λ is the natural quotient map and ψ is the coaction map for M^3 .

It is readily verified that

$$0 {\rightarrow} A[2n+1] \xrightarrow{\hat{c}_{-1}} U(M^0) \xrightarrow{\hat{c}_0} U(M^1) \xrightarrow{\hat{c}_1} U(M^2) \xrightarrow{\hat{c}_2} U(M^3)$$

is an acyclic resolution of A[2n+1] in the range of dimensions under consideration. Thus, by (5.4), in the range $t-s<2p^2+2n-4$, $E_2^{s,t}(S^{2n+1})$ may be calculated as the homology of the complex

$$M^0 \xrightarrow{d^0} M^1 \xrightarrow{d^1} M^2 \xrightarrow{d^2} M^3$$
.

The maps d^i are given in (5.3), which in this case become:

$$d^{0}(v_{1}^{k}x) = pkv_{1}^{k-1}x$$

$$d^{1}(v_{1}^{k}y) = \begin{cases} 0, & \text{if } n > 1, \\ 0, & \text{if } n = 1, \ k$$

Furthermore, the kernel of d^2 is generated by the elements $\{v_1^m p^{k-1} z_k\}$ for $m \ge 0$, $k \ge 1$. The relations in M^3 imply that

$$v_1^k z_1 = p^k z_{k+1}$$
, for $k < p-n-1$,
 $v_1^{p-n-1} z_1 = p^{p-n} z_{p-n}$

(to within a factor of a unit in $\mathbb{Z}_{(p)}$). Thus in the range $t < 2p^2 + 2n - 3$, $E_2^{t} \cdot {}^t (S^{2n+1})$ is generated by the classes $\{v_1^k y\}$ (except when n=1, and k=p-1, in which case $pv_1^{p-1} y$ is the generator). These classes have the orders asserted in (5.14, (i)). Also, in the range $t < 2p^2 + 2n - 2$, $E_2^{2} \cdot {}^t (S^{2n+1})$ is generated by the classes $\{v_1^k z_1\}$ for $0 \le k , and by <math>v_1^{p-n-1} z_1/p$. These classes have the orders asserted in (5.16), (ii).

Remarks 5.17. In the range $q < 2p^2 - 5$, the double suspension homomorphism

$$\pi_{2n+1+q}(S^{2n+1}) \rightarrow \pi_{2n+3+q}(S^{2n+3})$$

is the multiplication by p except in the following cases, when the double suspension sends a generator to a generator.

(1)
$$q = (2p-2)k-1$$
 and $0 < k < p$, all n , $q = (2p-2)p-1$ and $n > 1$.

(2)
$$q = (2p-2)k-2$$
, and $n \ge p-1$.

References

- [1] Adams, J. F., Stable homotopy and generalized homology, University of Chicago Press, 1974.
- [2] Bendersky, M., Curtis E. B. and Miller, H. R., The unstable Adams spectral sequence for generalized homology, *Topology*, 17 (1978), 229–248.
- [3] Bousfield A. K. and Kan, D. M., Products and pairings in the homotopy spectral sequence, *Trans. Amer. Math. Soc.*, 177 (1963), 319–343.
- [4] Curtis, E. B., Simplicial homotopy theory, Advances in Math., 6 (1971), 107-209.
- [5] Hazewinkel, M., A universal formal group and complex cobordism, Bull. Amer. Math. Soc., 81 (1975), 930-933.
- [6] Miller, H. R., Some algebraic aspects of the Adams-Novikov spectral sequence, Thesis, Princeton University, 1974.
- [7] Mimura, M., Nishida G. and Toda, H., Mod-p decomposition of compact Lie groups, *Publ, RIMS, Kyoto Univ.*, 13 (1977), 627–680.
- [8] Toda, H., A topological proof of theorems of Bott, Borel and Hirzebruch, *Mem. Kyoto Univ.*, 32 (1958), 103-119.
- [9] _____, On iterated suspension I, J. Math. Kyoto Univ., 5 (1965), 87–142.
- [10] Wilson, W. S., The Ω-spectrum for Brown-Peterson cohomology, Part II, Amer.

- J. of Math., 97 (1975), 101-123.
- [11] Zabrodsky, A., *Hopf spaces*, North-Holland Math. Studies 22, North-Holland Publ. Co., Amsterdam, 1976.
- [12] Zahler, R. S., The Adams-Novikov spectral sequence for the spheres, Ann. of Math., 96 (1972), 480-504.

Note added in proof: In order to compute the matrix C in Section 4 it is convenient to use the following observation: For a polynomial $A(Y) = Y + a_2Y^2 + \cdots$ let [A(Y)] be the matrix with the entries in the j-th column given by the coefficients of $(A(Y))^j$. Then [B(Y)] [A(Y)] = [AB(Y)].