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Some Calculations In the Unstable Adams-Novikov
Spectral Sequence1*

By

Martin BENDERSKY*

§ 1. Introduction

The unstable Adams-Novikov spectral sequence for a space X is a sequence

of groups {Er(X)}9 r = 2, 3,..., which converge to the homotopy groups of X,

and whose £2"
term depends on the complex cobordism groups of X. We

investigate this spectral sequence when X is the infinite special unitary group

SU, or one of the finite groups SU(n), or when X is an odd sphere S2"+1.

The reader is referred to [2] for the construction and properties of the un-

stable Adams-Novikov spectral sequence. For some purposes, it is convenient

to localize at a prime p, in which case the complex cobordism homology theory,

based on the spectrum MU, is replaced by Brown-Peterson homology, based on

the spectrum BP. We then have a useful spectral sequence with many of the

properties of the stable Adams-Novikov spectral sequence. Namely, the

nitrations are less than or equal to the filtrations in the unstable Adams spectral

sequence based on mod-p homology. When X is a space for which H*(X; BP)

is free over the coefficient ring n*(BP) and cofree as a coalgebra, then the

E2-term is isomorphic to an Ext group in an abelian category (see §2; also

[2, § 7]). Furthermore, this Ext group may be computed as the homology of
an unstable cobar complex which we describe explicitly in Section 2. In par-

ticular, these considerations apply to the cases X = SU, X = SU(ri), or X = S2n+1.

We first consider the situation where X is a p-local H-space with torsion-free

homotopy and torsion-free homology. The results of Wilson [10] and the
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general properties of the spectral sequence imply that the spectral sequence

collapses, with E^*(X)^n4t(X}. In this case, the homotopy groups of X

(and even the homotopy type of X) are determined by the module of primitives

PH*(X; BP) as an unstable F-comodule (see §3). In particular, this is true

for X = SU. We also give an explicit description of the generators of £§'%$[/).

In Section 4, we consider the case X = SU(n). We compute E^*(SU(n))9

which gives information about the pullback of the groups n2k(SU(k)) to

n2k(SU(ri)) for n<k. We also compute the kernel of the map £f'*(Sl/(«))-»

E%'*(SU(n + lJ). In the case of an odd prime p, the non-zero elements in

this kernel survive to E^*(SU(n)) to give elements in homotopy related to

the unstable image of the J-homomorphism. There is a similar but more com-

plicated result for p = 2.

In Section 5, we give a vanishing line for £f'r(S'2w+1), and also for

Es
2
ft(SU(n)). We then show that in a range of dimensions, n%(S2n+1) and

n*(SU(n)) may be computed as Ext groups in the category of unstable

F-comodules. These calculations agree with, and extend those of Zabrodsky

[11], and Mimura, Nishida and Toda [7].

Throughout the paper, space means simply connected Hausdorff topological

space with basepoint, and map means continuous function preserving basepoint.

The homotopy relation for spaces and maps is ~. The smash product is

denoted by A . In an algebraic situation, homomorphism means that the alge-

braic structure is preserved, and « means a homomorphism which is an iso-

morphism onto. The ring of integers is denoted by Z, and the rational numbers

by Q. For a prime number p9 the ring of integers localized at p is Z(p).

Except for 4.10(3) all spaces are assumed to be p-localized. For an integer w,

the ring of integers modulo n is Zn.

Acknowledgement
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§ 2. The Unstable Adams-Novikov Spectral Sequence

In this section, we summarize the main results of [2], which gives the

construction and main properties of the unstable Adams-Novikov spectral
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sequence. When a prime p is fixed, BP refers to the Brown-Peterson spectrum
associated with p. For a space X, the (reduced) homology groups of X with
coefficients in BP are denoted by H^(X; BP). The coefficient ring n*(BP) is

called A, and the ring of co-operations n*(BP A BP) is called F (F is the BP-

analogue of the dual of the Steenrod algebra).
The spectrum BP defines a functor BP( • ) from spaces to spaces by

BP(X)=limQn(BPnAX).
n-*oo

The unit in BP is a map i: S-+BP of the sphere spectrum S to BP5 which gives
a map

ri = ri(X):X-»BP(X).

This gives rise to functors Ds( • ) and a tower of fibrations

(2.1) •-->DS(X) -^U D'-'CX^.-.

as follows. Inductively on s,

is the fibration over Ds~l(X) induced from the path-space fibration over

DS~1(BP(X)) by the map D*"1^). The homotopy exact couple of this tower

is called the unstable Adams spectral sequence for X with respect to BP and its

terms are denoted {Es
r^(X\ BP)}. When the ring spectrum BP is assumed, we

call this the spectral sequence for X, and write (Es
r
st(X)}. From [2, §7], we

have the following.

Theorem 2.2. For each simply-connected CW-space X, the spectral

sequence {E^^X; BP)} converges to the homotopy groups of X localized at p.

If H*(X; BP) is free as an A-module, and cofree as a coalgebra, then

Ep(X; £P)«ExtS,G4|7], PHt(X; BP)).

Here °tt is the category of unstable F-comodules (which will be described

below). A\f\ stands for the free A-module on one generator of degree t;

PH*(X; BP) stands for the submodule of primitives in H*(X\ BP). Further-

more, these Ext groups may be calculated as the homology of an unstable

cobar complex C*s*(FJf^(Z; BP)), which will be described explicitly below.

We next recall some facts about BP from [1] and [6]. First
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where degree (mi) = 2(pi — 1) = degree (tt). The elements tt are chosen so that

(2.3) *?*(>*)= £ mtttii=0

where rjR is the right unit map. The elements ra0 and t0 are to be interpreted

as 1. Then the Hazewinkel elements vt are defined recursively by the formula:

(2.4) v^pmt-^mtf-j.

It is shown in [5] that the t;f are in the image of the Hurewicz homomorphism

n* (BP)-*H*(BP; Z^)9 which is a monomorphism, so the vt may be considered

to be in n* (BP) also. Then

The structure maps for (A, JT) consists of a product 0: r®^F-»r, left and

right unit maps rjL, YIR: A-+F, a counit map s: F->A9 and a diagonal map \j/:

F-*F®AF. The product 0 and the left unit map ?7L are built into the descrip-

tion of F as a polynomial algebra over A. The right unit map rjR is given above

(2.3) for the mi9 and thereby, using (2.4), for the vt also. The diagonal map \]/

satisfies the formula

(2.5) L m^(t;X= Z mtf®^.
i+j=n i+j+k=n

The notation M®AN requires that M be a right ^4-module, and that N be a

left yl-module. F is a right ^.-module by TJR, and a left ^4-module by rjL. The

notation ?|L is usually suppressed, and qR is sometimes called q.

There is a formal group law associated with BP as follows. Let CP°°

stand for infinite dimensional complex projective space, and let

(2.6) /r. CP^xCP^CP00

be the map which classifies the tensor product of the canonical line bundles.

Then (in unreduced homology),

xCP00; BP)&AlXi9 X2l ,

which are respectively the formal power series rings in one and two variables

over A. The formal group law F is defined by the formal power series:
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where the coefficients aitj belong to A2i+2j-2- As in [1], let log be the formal
power series (over A®Q):

Let exp be the formal power series inverse to log, which satisfies log(expZ)

= X. Then

F(X19 X2) =

The formal group law F is associative and commutative. Elements zi from F

may be substituted for the undeterminates, and we write £]F zi for F(zl9 F(z25

...)). Then formula (2.5) becomes

(2.7) Z F '

There is a canonical anti-automorphism c: F-»F, which satisfies criL = rjR

and cqR = qL. This gives a formal group law F* conjugate to F, defined by the

formula:

(2.8) EF^^c(ZFc(z,)).

Notation 2.9. Let c(t f) = ft,.

The elements hi satisfy the following formulas, which are obtained by ap-

plying c to (2.3), (2.5), and (2.12):

(2.10) mn=£(/7n_^(m;)
i=0

(2.11) £ W'»K«i)= Z fcf
i+j-n i+j+k=n

(2.12)

We also have F

For each finite sequence of non-negative integers, I = 0'i, J2vj ''«)> let

^=^1^2...^no

The length of / is the integer /(/) = i1-\ ----- h ZB.

Definition 2,13. For each non-negatively graded, free left yl-module M,

let U(M) be the sub-^4-module of F®^ M spanned by all elements of the form

h*®A m where 21(1) < degree (m).
For an arbitrary non-negatively graded left ^4-module let
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F! -^ F0 -> M -> 0

be exact with F0 and Fx free. Then define

t/(Af) = coker(t7(/): l/^)-

It is easily verified that U(M) is independent of Fl9 F0 and/.

Remark 2.14. In [2, (7.4)], the functor [/(•) is defined in terms of another

functor G( • ) (specifically, U(M) is the submodule of primitives in G(M)). The

discussion of [2, (8.7)] shows that the two definitions of U(M) agree.

There is a F-comodule structure on F®AM by the map

\l/®i: r®AM-*r®Ar®AM.
An easy induction using (2.12) shows that ^®1 takes 17(M) to U2(M), and

hence induces a map

5U: U(M)->U2(M).

There is also a counit map su: U(M)-+M induced by the counit map in F. In

the notation of [2, § 5], (17, 5U, su) is a cotriple on the category j& of non-

negatively graded left yl-modules.

A module M in j& with a [/-structure will be called an unstable F-comodule

(see [2, (7.4)]). This means that there is a map \l/: M-+U(M) such that the

following diagrams commute :

M — *_> u(M) M — *— * U(M)

(2.15)

The category of unstable F-comodules will be called ^ (91 is called jtf(U) in

[2]). By construction ^ is an abelian category. To simplify notation, we shall

write

Exts/(M) for Extf, (A\f]9 M)

for M in ^r. These Ext groups may be calculated as the homology groups of

an unstable cobar complex C*»*(M). Specifically, for each pair (s, f) of non-

negative integers,

As is customary, we write [y1 \ ••• \ ys]m for the element yi®~-®ys®m in US(M).

The complementary degree t of such an element is the integer
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The differential

is given by

where ^(y^= Z y}®/j an^ $(iri) = Z /Ow?". Then, from [2, (9.3)], we have

Extf (M) « Hs> '(C*' *(M)) .

Remark 2B16B As in the stable ease, there is a smaller "normalized" cobar

complex C*'*(M). This is obtained from the functor

U(M) = ker {su :

by

The inclusion C(M)-»C(M) is a chain equivalence. This gives the following

"easy" vanishing line.

Proposition 2.17, // M is a k-connected unstable F-comodule, then

Ext5/ (M) - 0, for t^ 2(p - l)s + k.

The proof is immediate because Cs'f(M) = 0 for t <£ 2(p — l)s + fc.

This vanishing line will be improved in Section 5.

§3o The Spectral Sequence for SU

When the space X is SU (=the infinite special unitary group), the unstable

Adams-Novikov spectral sequence simplifies considerably, as shown below;

compare with the unstable spectral sequence for SU based on mod p homology

in [4, p. 191]. In fact, we have the following general result.

Theorem 3.18 Let X be an H-space with torsion-free homology and

torsion-free homotopy. Then the unstable Adams-Novikov spectral sequence

for X collapses. That is,
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nt(X)9 for 5 = 0,
0, for s>0.

Before giving the proof of Theorem 3.1, we recall the results of Wilson [10]

which are the main ingredients of the proof.

Wilson's Spaces Yk (3.2). There are indecomposable ^/-spaces 7fc(/c = l, 2,

...), which have the following properties.

(i) Yk is (fc— l)-connected, and nk(Yfe)=Z(p).

(ii) For k^2(pn+pn~l-\ hi), QYk+1~Yk. For /c = 2Q?n + pn~1H—

+ 1), QYk+1^YkxYpk.

(Hi) If/: Yk->Yk is a continuous map which induces an isomorphism/*:

nk(Yk)&nk(Yk)9 then/is a homotopy equivalence.

(iv) If X is a H-space with torsion-free homology and torsion-free

homotopy, then X is a product of the Y k s :

(but not necessarily as H-spaces).

(v) Let BPk be the k-th space in the £2-spectrum for BP. Then there are

maps i and j

where j°i is a homotopy equivalence. Moreover we may consider BPk= YkxZ

where Z is a space at least fc-connected.

Proof of Theorem 3.L For each of the spaces Yk9 consider the following

homotopy-commutative diagram :

i\ JBP(i)

BPk -*-> BP(BPk) -±-+ BPk

where n' = rj(Yk)9 r] = rj(BPk); the map ^ is induced by the product in BP, and

ft' =jofj,oBP(i). The properties of BP as a ring spectrum imply that /^ is a

homotopy equivalence. Hence II'°Y\' induces nk(Yk)^nk(Yk)9 and so by (3.2,

(in)) must be a homotopy equivalence. By the construction (2.1) or [2, (2.4)]

this implies that the spectral sequence for Yk collapses. It follows that for any

product of the 7fc's, the spectral sequence collapses. By (3.2, (iv))9 X is such a

space, so the spectral sequence collapses for X. Q. E. D,
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Remark 3.3. Using the facts that S U is an H-space with torsion-free

homology and torsion-free homotopy, we see that the spectral sequence collapses

for SU. For an alternative approach, see Remark 3.8.

We proceed to analyze the image of the J3P:I.-Hurewicz homomorphism

Here PH*(SU;BP) stands for the submodule of primitives in H*(SU;BP)

considered as an unstable f-comodule. For later use, we give a description of

PH*(SU', BP). Recall from [8] that there is a map

/: S^ACP^-^SU.

As in [1], let jff fc, for fe= 1, 2,... be the natural generator of H2k(CP°° ; BP). Let

/*('i A Pk)~x2k+ i> which is a primitive element in H2fc+1(S'L7'; BP). H*(SU',

BP) is cofree as a coalgebra, and PH*(SU', BP) is the free ^4-module generated

by {*2*+iK fc=l, 2,....
To describe the unstable F-coaction on PH*(SU; BP) we proceed as follows.

As in [I], by abuse of notation, let f$k also stand for the generator of H2k(CPcci

MU\ and let bffv be the generator of H2k(MU', MU). Then from [I, (11.4)]

the formula for the coaction in H#(CP°°; MU) is

j

where (Zs*O*-; stands for the terms of degree 2/c-2j in (E,b*fuy. The
Quillen idempotent induces a map from H*(MU; MU) to H#(BP\ BP) which

sends Zs^f17 to Sf* '^ as shown in [2, (8.3)]. Thus the formula for the
coaction in #*(CP°° ; BP) is

Then by naturality of/*, the formula for the coaction in H^SU; BP) is

(3.4)
J 5

It would be awkward to calculate the groups Exty9*(PH*(SU; BP))

directly. Instead, we do the following. Define an ^4-linear map

; BP)

by
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i+l

<K*2i+i)=Z fcfl i- f ck=l

where cts = aSii (the aitj- are the JBP-formal group law coefficients). The as may

be computed recursively by aQ = l, and the formula (see [1, (10.1)]):

Let 6k stand for the fc-th iterate of the map (f). The following is motivated by

Toda's proof of the Bott Periodicity Theorem [8].

Proposition 3.5. For each non-negative integer k, (j>k(x3) generates

E°2>
2k+*(SU).

Proof. The Hopf construction applied to the map \JL : CP00 x CP00 gives a

map:

H(fi) : S1 A CP00 A CP00 -> 51 A CP00.

The restriction of H(JJI) to S1 A S2 ACP00 will be called (. C induces a map in

homology :

C*: H*(CF°; BP)-»H* + 2(CP™', BP).

By dualizing the formal group law for BP, we see that

i + l

C*(ft)=Z fca/-t+iA.fe=l

Consider the composite map (which will be called £ fc+1):

••• S2(0 > S3

The map Cfc+i induces a map of the unstable Adams-No vikov spectral sequences

(C*+ 1)* : ^2'2fc+3 (S2*-*-3)-*^-2*-1 3(S[/)

with (£k+i)*(t2k+3) = 4>k(x3)- This shows that </>/c(x3) is a cycle. By examining

the coefficient of x2m+i, where m is the integer k— 1 reduced modulo p—1, we

see that 0fc(x3) is not divisible by p. Therefore, 0fe(x3) is a generator of

£pfc+3(SU). Q.E.D.

Remarks 3.6. (i) The above proof also shows that the composite map

f f c + 1 is a generator of 7i2fe+ 1 (SU). This reproves a theorem of Toda [8].

(ii) Some examples of the generators of £§>* (SU) for the prime p = 2 are

the following
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02(x3) = 6x7 — 61^
03(X3) = 24x9 - 36v1x1 + 3(bf x5 - (I2v2 + 9i;?)x3 .

Theorem 3.7. Lef Y be an H-space w z f / / torsion-free homology and

torsion-free komotopy. Suppose that X is a space such that H*(X; BP) is

cofree as a coalgebra over A, and that

PH*(Y\ BP)

as unstable F-comodules. Then X~Y.

Proof. By (3.1), the unstable Adams-Novikov spectral sequence for Y col-

lapses. Both X and Y satisfy the assumptions of (2.2), so Ef •* (X)«J5f •* (Y).

Thus the spectral sequence collapses for X too, and n#(X) is free over Z(pY

Also, H*(X\ Z(p)) is free over Z(p) because of the isomorphisms:

Therefore, by [1, (5.23)], X is an H-space with torsion-free homotopy and

torsion-free homology. By (3.2, (iv)), X and Yare each a product of the Yk's.

As n% (X)xn* (Y), the factors which occur for X are the same as those which

occur for Y. . Q.E.D.

Remark 3.8. It is possible by a lengthy calculation to determine the co-

action in the space Y= Y3 x Y5 x ••• x Y2p-\^
 anc* then to show that

PH*(SU; BP)xPH*(Y; BP)

as unstable F-comodules. Thus (3.7) implies that

Making use of (3.2, (iv)), we have that Q2Y3^Slx Y2p_l, and that for

^y^. Thus
)~Si x Y2p^ x Y3 x ... x Y2/7_3

czStxSU

which is the (complex) Bott periodicity theorem.

§ 4. Calculations of EJ» *(S U(n))

Let SU(ri) be the spectral unitary group in n variables. H*(SU(n)i BP) is
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free as an yl-module, and cofree as a coalgebra. The submodule of primitives

PH*(SU(n)', BP) will be called M(n). By (2.2), we have

ES
2>* (SU(n}} ~ Ext J' (M(n)) .

As an y4-module, M(n) is freely generated by the elements x3, xs,..., x2n-i

defined in Section 3. The unstable F-comodule structure if/: M(ri)->UM(ri)

is given by formula (3.4). The groups ExtJ»* (M(n)) are the homology of the

unstable cobar complex. By sparseness, we have

E*2'* (SU(n)) = 0 , for t even .

Consider the fibration

Passing to BP* -homology, and then taking primitives, we obtain a short exact

sequence of unstable F-comodules :

0->M(n)->M(n

This induces a long exact sequence of Ext groups, which, after identifying them

as £2-terms, becomes

(4.1) •'•^E2>
t(SU(n))^E2>

t(SU(n + l))^E2>
t(S2n+1)-^-+-''

where d has bidegree (1, 0). The indexing (s, t) is such that t-s is the homotopy

dimension, whereas in [2], as in the stable case (e.g. [6]), t-s is stem dimension.

Proposition 4.2.

(i) E5''(SC7(n))«E|''(Sl7(n + l)), for

(ii) E°2^(SU(n))^Q , for t^2

£Pf+1(Sl/(n))*Z(p), for lgi

(iii) E2>^(SU(n))*Z(p)l(nl)Z(p).

(iv) For n<k, the inclusion SU(ri)-+SU(k) induces a monomorphism

E2'
2k+1(SU(nJ)->E2'

2k+l(SU(k)) .

Proof. Statements (i) and (ii) follow immediately from the long exact

sequences (4.1), the easy vanishing line (2.17) for £f'f(S2n+1), and the calcula-

tion of E§'*(Sl/)- Part (iii) follows from (3.5) and (4.1). Part (iv) follows

from (4.1) and the fact that £g'f(S2w+1) = 0, for t^2n + l. Q. E. D.

The calculation of the rest of the 1-line for SU(ri) is the calculation of

which elements of E2'
2k+1(SU(k)) pull back to Ep*+1(Sl/(n)), for n<k. The
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difficulty in working directly with the cobar complex C*'*(M(n)) is the formal

sum which occurs in the expression for the differential. That is,

To overcome this difficulty, we introduce a map e: F-+Q as follows. From

Section 2, we see that F®ZQ is a polynomial algebra over Q generated by

the mk and the rjR(mk), k=i, 2,... .

Definition 43. Let e: F®%Q-*Q be the homomorphism defined on the

generators by

for k=l, 2,... . Also, let e: F-+Q denote the restriction of this map to F.

Lemma 4.4. For the Hazewinkel elements vt in F, we have e(y1

Proof. ul=pml9 so e(v^) = \. For />!, the vt are defined by formula

(2.4), and it follows by induction on / that e(vi) = Q for f > l . Q.E. D.

In the unstable cobar complex C*'*(S2B+1), we have O* (S2n+1)&A.

For a in A, d(a) = r]R(a) — a, so

Therefore, e(d(A))c=.Z(py Passing to the homology of the unstable cobar

complex, we obtain a well-defined map

which is (up to sign) an unstable analogue of the complex Adams e-invariant

localized at p. The description of E\>*(S2n+l) in [2, §9] shows that e is a

monomorphism. Thus the order of any element a in EJ»*(S2w+1) is the same

as the order of e(a) in Q/Z^.

Definition 4.5. For each pair (k, j) of positive integers, we define a

rational number bkj as follows. For each j^ 1, let

in the formal power series ring Q IF] .
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The properties of e which will be used in the proof of (4.7) are the following.

Recall from (2.9) that hk = c(tk), where c is the canonical anti-automorphism.

Lemma 4.6. ( i ) e(hk} — l/pk ,

(ii) *(ZF*Ji.)£-y = &*j-

Proof. Apply the canonical anti-automorphism c to (2.3) to obtain

As e is 0 on the image of Y\R, part (i) follows. For part (ii), we have

p p
Q.E.D.

The matrix B = [bkt^\ is lower triangular, with diagonal entries bkfk=i.

Hence there is a well-defined inverse matrix C = [cfcJ] which is also lower tri-

angular. For each 2^n^k, let a)k(n) be the integer defined by

a)k(n) = maximum {order ckj in Q/Z(p)} .
n^j^k

Theorem 4.7. For each 2^n^k,

Proof. From Section 2 (see also [2]), we know that JSf'*(SL/(?i)) may

be calculated as the homology of the unstable cobar complex C*s*(M(n)).

Let gk be the element -d(x2k+i) in Cl>2k+\M(k + \))\ that is

k-l

where ykj = (XF* hs)i-j- The long exact sequence (4.1) shows that the homology

class of gk generates £=P*+1 (SC7(fe)).

Next, let integers Tfc(n) for l^n<k and rational numbers akj(ri) for 1 g n

^ /c, all 1 ^ j, be defined as follows. First, let akj(k) = e(yk>j). Then recursively

for 1 <£ n < k, let

Tfc(n) = order of ak>n(n + 1) in <?/Z(p)
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ak> /n) = Tk(n) (akj(n + 1 ) - akitl(

We shall show by downward induction on n that for 1 rg n ̂  /c, there are elements

0fc(?i) in UM(ri) of the form

71-1

0*00= E yfcjOO®*2.mj=i
where the Jkj(n) are *n ^ with ^fejC^)) — akj(n^ an<i such that the homology
class of gk(ri) in Ei'2^1^^!")) represents the generator. This is true for n — k,

because gk(k) = gk. Then assume inductively for n<k that there is an element

gk(n + 1) as asserted. Consider the map

El
2>

2k+1(SU(n + 1)) -J±+

Then P*(gk(n
jrl)) = y®x2n + i> where y is in T5 with e(y) = ak)ll(n + l}. Then

Tk(?t) = order of y®x2n +1 in £^'2fc+1(S2"+1), so there is an element ak(n + l) in

A, with

Then the element

0fcOO = *fc(n)0*(n + 1)-

generates £i'2fc+1(5C/(?7)), and satisfies

%fcjOO) = flfc,jOO-

Next we define rational numbers bkj(ri) for all pairs of integers (k, j) with

k^n as follows. First, bkj(k) = bkj as defined in (4.5). Then recursively for

n< k, let

Observe that the result of row-reducing the fe-th row of the matrix B = [bkJ~\ by

using rows fc— 1, fc — 2,. . .3 /? + l takes the /oth row

to the row

Hence, in the matrix C ( = the inverse of B), we have ckiH= — bk}H(n + l). In

particular, these two rational numbers have the same order in QjZ^. We
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assert that

which we shall show by downward induction on n. The statement is true for

« = /c, as akj(k) = bkj(k), and cok(k) = l. Assume inductively that

Then

kj(n + 1) - aktn(n + \ )anj)

1) (bkj(n + 1) - ^,?l

= order (aM(n 4- 1)) • cofe(n + 1) • bkj(n)

= order (cok(n + l)bk}H(n + 1)) • cok(n + 1) - bktj{n)

= max {cok(n + 1 ), order (bkitt(n + 1 )} bfcj y(n)

Finally, we consider the map

induced by the inclusion /W f k : SU(ri)-*SU(k). By (4.2, (iv)), (i,,fk)* is a mono-
morphism, and by the above,

(in,k)*9k(ri) = a>k(ri)-gk.

Thus £i.«+1(-St7(n)) w cok(n)Z(p)/k!Z(p) as asserted. Q. E. D.

From these calculations, we can determine the kernel of the homomorphism

£§•* (Sl/(n))-»Ei'* (SL7(n + 1)) .

Recall from [2], that JE^'2fc+1(S2"+1) is shown to be a cyclic group of order

vk(n) where crfc(n) is as follows. If k — w^O mod 2p — 2, ork(w) = l. Otherwise,

write k — n = (2p — 2) -pm-q, where g is prime to p. Then for an odd prime p,

ak(n) = mm{pn, pm+l}

and for p = 2,

'2, if fe — n is odd,

2, if fe = 3, n = l,

4, if k-n = 2,n^2,

^ min {211, 2m+2} , otherwise .
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Corollary 4.8. For k<n, the kernel of

E%>2k+1(SU(nj)-+E*>2k+1(SU(n + 1))

is a cyclic group of order ak(n)ji:k(n), where vk(ri) is as above, and ik(ri) is the

integer defined in the course of the proof of Theorem 4.7.

Proof. From the long exact sequence (4.1), we must determine the co-

kernel of

We have calculated that for k<n9 the order of the image is ik(n). Therefore

the cokernel has order Gk(ri)ltk(n) as asserted. Q. E. D.

Remark 4.9. The results of Bousfield [3] concerning products in the un-

stable homotopy spectral sequence with coefficients in a ring may be generalized

to a ring spectrum (in place of the ring). The statements of [3, (8.2)] apply to

our situation. In particular, the differentials are seen to act as derivations with

respect to the action of Ef'*(S2n+l) on E*'*(S[/(n)). The coboundary map

6: £^(S2»+1)^£|+

has the form <5(a)= ±a®d'(x2n+1), for a in £|»f(S2"+1). Thus d is map

of spectral sequences. For an odd prime p, the elements of E\>2k+l(S2n+l)

are all permanent cycles [2], and their coboundaries are permanent cycles

in E^2k+1(SU(n)). When non-zero, these represent non-zero elements of

7r^(SL7(n)). A similar but more complicated statement holds for p = 2, taking

into account the differential d3 on E\>* (S2n+1).

Examples 4.10. Some examples (of the upper left-hand corners) of the

matrices of (4.5) are the following:

(1) Forp = 2,

/I 0 0 0 0 0 \

y 1 0 0 0 0

0 1 1 0 0 0

i o o

0 T T 2

5

~2
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/ 1 0 0 0 0 0 \

0 0 0 0

1 0 0 0

_!5 A J_ A
\ 16 2 4 2

(2) Forp =

B =

/I 0 0 0 0 0\

0 1 0 0 0 0

y 0 1 0 0 0

0 y 0 1 0 0

0 0 1 0 1 0

\° I ° T ° V
/ 1 0 0 0 0 0\

0 1 0 0 0 0

- y 0 1 0 0 0

0 - y 0 1 0 0

y 0 - 1 0 1 0

7 4
\ 9 3

(3) The methods of this section also apply to the unstable Adams-Novikov

spectral sequence based on MU (instead of BP). In this case, the definition of

e becomes

where the mk=[CP*]//c+1 in n2k(MU). The matrix B of (4.5) is defined by
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\J
— Y h Yk

T ' a ' j ~~ 2^. °k,j1 •2 J / fc^j

The matrix C is the inverse of B, and then con(k) is the least common multiple

of the orders of ckj in Q/Z as n^j^k. The analogue to Theorem 4.7

becomes:

For this, the integral case,

/I 0 0 0 0 0\

\ 1 0 0 0 0

y 1 1 0 0 0

— - -- 1 A A4 12 2 i o o

1 137 15 17 5
\ 6 180 8 6 2 V

1 0 0 0 0 0'

--— I 0 0 0 0

4~ ~ 1 1 0 0 0

c=

j L A
120 4 4

\~720 360 ~T

§5. Some Calculations In E*>*(S2n+1)

In this section, we describe a method of making resolutions of unstable

F-comodules which are convenient for calculations. We use these resolutions

to establish vanishing lines for unstable Ext groups. In particular, we give a

vanishing line for £f »*(S2n+1). We also make some calculations of E2
2^(S2n+l)

in low stems, which together with the calculations of E^'*(S2"+1) of [2], give

some of the unstable groups n*(S2n+1).
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Throughout this section, a prime p is fixed, BP is the Brown-Peterson

spectrum associated with p, n*(BP) = A, and n*(BP /\BP) = F. The category

of connected ^4-modules is called j/. The category <% of unstable T-comodules

is defined in Section 2 by the cotriple (17, eu, dv) on jtf. Let J: ^->jaf be the

forgetful functor. Then for M in j/ and N in W, there are natural isomorphisms

a and /? :

(5.1) Homr (N, L7(M)) j=± Hom^ (J(N), M) .

If/: JV-»17(M) is a map in #, then <x(f) = su°f: J(JV)->M is a map in j*. If

#: J(N)-+M is a map in jaf, then p(g)=U(g)°\l/: N-+U(M) is a map in ^r.

Specifically, if x is in N, with ij/(x)= £i 7i®xi? then

(5.2)

= u°In particular, a map /: JV-*l/(M) in ^r is determined by the map g = su°f by

formula (5.2).

Recall that ^4[f| is the free ^-module on one generator ct of degree t, with

trivial T-coaction. Then for any ^4-module M,

>, M) «Mr .

Acyclic Resolutions (5.3). Suppose that M is in <^. Then an acyclic reso-

lution of M by models is a sequence

which is acyclic, and the maps d-l9 30, dl9... are in ^. From this, we obtain
a complex

MO-^Mi-^M2-*.-.

where, for each i^O, d is the map

Then, by standard homological algebra in the abelian category <%, we have :

(5.4) ExtJ' (M) w (ker ds/im d8-1), .

Our next step is to find convenient resolutions for certain kinds of modules.

Definition 5.5. An ^4-module M is called quasi-free if M&F/R where F

is a free y4-module with homogeneous basis {xj, and R is a sub-y4-module of F

which is generated by homogeneous elements {r}, each of which is of the form
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r=2>«x«
«

where the ca are in Z(p).

The usefulness of quasi-free modules is the following.

Proposition 5.6. Let M be a quasi-free A-module. Let n be a fixed

positive integer, and let N be the sub-A-module of M spanned by the elements

of Mm for m<n. Then

as A-modules.

Proof. Write M&F/R as given in the definition (5.5). Then let

F0 = span {xa | degree (xa) < n}

Fl = span {xx \ degree (xa) ̂  n}

R0 — span {r \ degree (r) < n}

K! = span {r | degree (r) ̂  n} .

Then it is immediate that F = F0@F1, R = R0@Rl9 and N&F0/R0, M/N

«**!/#!. Thus

Q.E.D.

Proposition 5.7. Let M be an unstable F-comoduIe, which is quasi-free

as an A-module, and suppose that connectivity (M) = /c— 1, with k^2p—l.

Then

Ext|M(M) = 05 for t <2(p - l)ps + fc ,

Proof. By downward induction on the connectivity of M. If M is highly

connected, (5.7) holds by the Miller-Zahler vanishing line for stable f-comodules

([6], [12]). Assume inductively that (5.7) holds for connectivity g: fc and let M

be an unstable F-comodule, quasi-free as an ^-module, with connectivity (M)

= /c~-l, and k^.2p — l. We construct an acyclic resolution of M by models as

follows.

Let S2P~2M be the (S2P-2M)2p.2+n = Mn. For x in M5 let S2P~2x denote

the corresponding element in S2p~2M. The unstable F-comodule structure on

M is a map i/r. M-»IT(M). Recall from (2.13) that U(M) is spanned by
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the elements hr®x where x is in M, and 2 /(/)< degree (x). Thus coker i// is

spanned by the same h*®x but excluding the l®x. We define an ^[-linear

map

/: coker \I/-*S2P-2M

by

f(h1®x) = S2P~2x

/(/77®x) = 0, for h^ht.

It is easy to see that /is well defined.

Let N be the sub->l-niodule of coker \l/ spanned by the elements of degree

strictly less than 2(p-l)p + k. Then by (5.6),

coker if/ « JV© (coker \I//N) .

Let M^S^^MffiCcoker^/V), and let

(/©A): coker i//-*Ml

be the map where / is as above and A is the natural projection. Then g =

0(/©A) is a map

g : coker ̂ [/(M1).

We claim that (i): g is one-one; and (ii): g is subjective in degrees < 2(p — l)p

+ k. Note that M quasi-free (as an v4-module) implies that U(M) and coker i//

are quasi-free also. Consider

coker \j/ _£-> {/(M1) -§_> M1

-I !-
^¥0 (coker ij/lN) S2?~2M® (coker ^/7V) .

Suppose that x} is in N and x2 is in (coker \I//N) and that ^(xj ©x2) = 0. Then

the projection of eg(x1©x2) on coker \j//N is x2, so x2 = 0. AT is spanned by

elements of the form h!®x which have degree <2(p— l)p + k. Thus ]V is

spanned by elements /ij®x, where 0<n<p. Then

Statements (i) and (ii) now follow readily by induction on n.

We next construct an acyclic resolution of M by models

± U(M) -^ U(Mi) -2U U(M2)
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as follows. The map d_1 = \l/, the coaction map for M. The map B0 is the

composite

[/(M) -A-» coker \// _§U I/CM1)

where A is the natural quotient map and g is defined above. Let M2 = coker 30,

and for i>2, let Mi = Ui~2(M2). For z^ l , the dt are the maps in the cobar

resolution for M2. Then by (5.4),

Exts/(M)*(ker ds/im ds~l\

of the sequence

By construction, MJ=0, for f<2(p-l) + fc and M2 = 0, for f<2(p-l) + fc.

Therefore

Ext|;'(M) = 0, for

Ext|'f(M) = 0, for t<2J(p-\)p + k.

For s ̂  39 we have isomorphisms

Ext5^t(M)«Exts^2'f (M2) .

The statement of (5.7) follows by induction. Q. E. D.

Corollary 5,8, For n^p — l,

Definition 5.9. For each pair of positive integers (m, k) with m<p, let

Mm(fc) be the free yl-module with generators

The T-coaction on Mm(k) is given by formula (3.4). (The coaction is defined

because F is sparse, i.e. Ff = 0 if ^0 mod (2p — 2).)

Corollary 5.10.
) = 0, for

Proo/. The short exact sequence of unstable F-comodules

Al2m + 1 +2(p-
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induces a long exact sequence of Ext groups. Then (5.10) follows by induc-

tion, using (3.3) and (5.8). Q. E. D.

Corollary 5.11. Let n^p-1. Then for each

£2s+M(s2,H-i) = o5 for r<2(p

£is+2>'(S2«+1) = 0, for t<2(p-l)(ps + 2) + 2n + l.

Proof. This is the statement of (5.10) with k= 1 . Q. E. D.

Remarks 5.12. (i) In [7], spaces Bm(k) are constructed, with

(In [7], Bm(k) is denoted B^(p).) As a consequence of [7, (3.5)], the unstable

Adams-No vikov spectral sequence for SU(n) breaks up into a direct sum of

(p — 1) spectral sequences, with

E2(SU(nj)v © ExV(Mm(/c(n, m)))

where k(n, m) =

(ii) The vanishing line (5.11) cannot be improved on S3 as ^af^O in

£2(S
3) for all r. (/?! and al denote the classes in E2 which represent the cor-

responding homotopy elements.) This is not the best possible for higher

spheres; see Theorem 5.16, below.

Corollary 5.13. Fort-s< 2(p - 1) (p(p - 1) + k) + 2m - 1 ,

and there are no extensions if t — s<2(p — l)(p(p — l) + /c — 1)4- 2m.

Proof. Sparseness. Q.E. D.

Example 5.14. If n<p-l, and q<2p(p-l) + 2n + l,

and all non-zero elements occur in filtrations 0, 1 and 2. Compare with [12;

(5.7.4)].

Remarks 5.15. The above applies to any space X such that H%(Xi BP) is

free as an ^4-module and cofree as a coalgebra, and such that PH#(X; BP) as an

unstable F-comodule is isomorphic to a direct sum of Mm(fc)'s. In particular,

for p an odd prime, by [7; (4.1)], these methods apply to Spin (n) and to Sp(ri).
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We leave the details to the reader.

To illustrate the method (5.7) of resolving unstable T-comodules, we

show the following (see [9; (7.1)]).

Theorem 5.16. Let a prime p be fixed. For q in the range 2n + l<q

<2p2 + 2n — 4, the p-localized group nf{(S
2n+1) is zero except in the following

cases :

(i) ForQ<k<p,

~7l(2

Also (the case when k = p),

*(2p-2)P+2n(S2n+1)~^, for ii =
&ZP2, for n>

(ii) For n<k<p

Also (the case when k = p),

i(S2n+i)^Zp, for n = l, or n^

&Zp2, for

Proof. We prove (5.16) for n<p. The proof for n^p is similar. For

the range 2n + \<t-s<2p2 + 2n-4, by (5.11), we have £|>'(S2"+1) = Q for

s>2. Hence in this range,

+1), for q even,
+1), for q odd.

We shall calculate E%>*(S2n'ti) in this range by an acyclic resolution of

as follows. Let Af° be the free ^-module with one generator x of

degree 2n + l. Let M1 be the free v4-niodule with one generator y of degree

(2p — 2) + 2w + l. Let M2 be the ./4-module generated by elements zl5 z2,...,

zp_n , where degree (zf) = (2p - 2) (« + /) + 2n + 1 , modulo the ideal of relations:

We note that these relations imply that in M2,

p%. = 0? for l^i<p — n,
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Let M3 be the sub-^-module of F®AM2 generated by the elements {fcf®zj,

where l ^ i^p — n and /c>0, and with relations induced from those in M2.

Let

be the map with d_l(c2n+i) = l®x. By [2, §8], in the range of dimensions

under consideration, L/(M°) has an ,4-basis consisting of the elements:

/ t i®x, for 0^ /c^n ,

/7i^i®x, for n^

Let d0: U(M°)-*U(M1} be the ^-linear map defined by

doOi®*)^/?]?-1®}', for O ^ f c ^ n ,
50(/ift;1®x) = /ci;1/2f-1®3;- jp(^+l)^i®v3 for

Let 5t : [/(M^-^t/CM2) be the ^-linear map defined by

for O g f c < w ,

» - i + i . f o r wgi=o

Finally, let d2: l/(M2)->l/(M3) be the composite

t/(M2) -^ t/(M2)/Im 5! ̂ M3 -JU L/(M3)

where A is the natural quotient map and \f/ is the coaction map for M3.

It is readily verified that

Q->A[2n 4- 1] -^> C/(M°) -^ [/(M1) _£L, [/(M2) -

is an acyclic resolution of A[2n + 1] in the range of dimensions under considera-

tion. Thus, by (5.4), in the range t-s<2p2 + 2n-4, £|'f(S2"+1) may be

calculated as the homology of the complex

M° -^ M1 -4L> M2 -*L> M3 .

The maps ^£ are given in (5.3), which in this case become:

, 0, if w > l ,
(t;fj;)= 0, if n = l,

^ p*-lzp-i, if n = l, fc = p-l.
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Furthermore, the kernel of d2 is generated by the elements {vfpk~lzk} for

77t ^ 0, k §: 1 . The relations in M3 imply that

(to within a factor of a unit in Z(p}). Thus in the range t<2p2 + 2n — 3,

Ep(S2n+1) is generated by the classes {v\y} (except when n = l9 and k = p— 1,

in which case pv{~ly is the generator). These classes have the orders asserted

in (5.14, (i)). Also, in the range t < 2p2 + 2n - 2, E^l(S2n+l) is generated by

the classes {rjzj for Q^k<p — n — 1, and by v%~"~1z1/p. These classes have

the orders asserted in (5.16), (ii). Q. E. D.

Remarks 5,17. In the range q<2p2 — 5, the double suspension homo-

morphism

is the multiplication by p except in the following cases, when the double sus-

pension sends a generator to a generator.

(1) g = (2p-2)fc-l and Q<k<p, all n,

q = (2p — 2)p — 1 and n > 1 .

(2) q = (2p-2)k-2, and n jgp -1 .

References

[ 1 ] Adams, J. F., Stable homotopy and generalized homology, University of Chicago
Press, 1974.

[2] Bendersky, M., Curtis E. B. and Miller, H. R., The unstable Adams spectral sequence
for generalized homology, Topology, 17 (1978), 229-248.

[3] Bousfield A. K. and Kan, D. M., Products and pairings in the homotopy spectral
sequence, Tram, Amer. Math. Soc., Ill (1963), 319-343.

[ 4 ] Curtis, E. B., Simplicial homotopy theory, Advances in Math., 6 (1971), 107-209.
[ 5 ] Hazewinkel, M., A universal formal group and complex cobordism, Bull. Amer.

Math. Soc., 81 (1975), 930-933.
[6] Miller, H. R., Some algebraic aspects of the Adams-Novikov spectral sequence, Thesis,

Princeton University, 1974.
[ 7 ] Mimura, M., Nishida G. and Toda, H., Mod-/? decomposition of compact Lie groups,

Publ, RIMS, Kyoto Univ., 13 (1977), 627-680.
[ 8 ] Toda, H., A topological proof of theorems of Bott, Borel and Hirzebruch, Mem.

Kyoto Univ., 32 (1958), 103-119.
[ 9 ] , On iterated suspension I, /. Math. Kyoto Univ., § (1965), 87-142.
[10] Wilson, W. S., The /2-spectrum for Brown-Peterson cohomology, Part II, Amer.



766 MARTIN BENDERSKY

/. of Math., 97 (1975), 101-123.
[11] Zabrodsky, A., Hopf spaces, North-Holland Math. Studies 22, North-Holland Publ.

Co., Amsterdam, 1976.
[12] Zahler, R. S., The Adams-Novikov spectral sequence for the spheres, Ann. of Math.,

96 (1972), 480-504.

Note added in proof: In order to compute the matrix C in Section 4 it is convenient to
use the following observation: For a polynomial A(Y)=Y+a2Y

2 + --- let [A(Y)] be the
matrix with the entries in the y'-th column given by the coefficients of (A(Y)y. Then [B(Y)]


