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Quasi-Invariance of Measures on an Infinite
Dimensional Vector Space and the Continuity
of the Characteristic Functions

By

Yasuo YAMASAKI*

Introduction

Since the Bochner theorem was extended to the infinite dimensional case by
Minlos [1] and Sazonov [2], the continuity of a characteristic function has been
discussed mainly in connection with the carrier of the corresponding measure.

However, the study of the relation between the continuity of a characteristic
function and the quasi-invariance of the corresponding measure has been rather
neglected. In this paper we shall discuss this problem. Our main results are
as follows.

Let E be a vector space, E’ be its algebraical dual space, u be a finite measure
on E’, and y be the characteristic function of u defined on E. Consider the
weakest vector topology on E that makes y continuous, and denote it with 7,.

Let T, be the set of all translations on E’ under which u is quasi-invariant.
T, is regarded as a subset of E’ by identifying any translation x—»x+a on E’
with a. Then we have the following

Theorem. (1) We have T,cE} (cE’), where E} is the topological dual
space of E with respect to 1,.

(2) Let E* be the topological dual space of E with respect to a locally
convex topology © on E. Then, E¥fcT, (cE’) implies that t is weaker than
T,

Especially, if p is E¥-quasi-invariant and if y is continuous in <, then we
have T,=E? and t=1,.

Using these results, we can estimate T, from the continuity of .
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Combining this with the relation between the continuity of y and the carrier of
u, we can establish the relation between the carrier and quasi-invariance of u.
This fact implies various results. For instance, we can give another proof
of the following results due to Xia Dao-Xing [3].

1. Let X be a separable and metrizable locally convex vector space,
and Y(<X) be a complete metrizable topological vector space imbedded
continuously in X. If some Borel measure on X is Y-quasi-invariant, then
Y has a neighbourhood of 0 which is totally bounded in X. (§5.)

2. Let X bea Hilbert space, and Y (=X) be another Hilbert space im-
bedded continuously in X. Then, there exists a Y-quasi-invariant measure
on X if and only if the canonical imbedding Y—X is of the Hilbert-
Schmidt type. Especially, Y must be separable even if X is not. (§6.)

§1. Linearization of a Topology

In this section, as a preliminary discussion, we shall explain a method to
linearize a topology on a vector space.

Proposition 1.1. Let E be a vector space, and suppose that E becomes a
topological additive group with respect to a topology t on E. Furthermore,

assume that t satisfies the following condition;
(1.1) VxeE, YVe®B, 3Ju,>0, |«Zay —axeV,

where B is a fundamental system of neighbourhoods of 0 with respect to 1.

Then, putting

(1.2) Uy= N (aV),

la|21

we obtain a topology ' in which W={Uy},s is a fundamental system of
neighbourhoods of 0. The topology ' is the weakest topology that is stronger
than T and compatible with the linear structure of E.

Definition 1.1. The topology t’ given in Proposition 1.1 is called the

linearization of 7.

Proof of Proposition 1.1. Suppose that a topology t” on E is stronger than
T and compatible with the linear structure of E. Then, for each Ve, there
exist oo >0 and a neighbourhood U of 0 in t” such that |«|<«, implies aU < V.
Therefore we have ayUcU,. From the continuity of scalar multiplication,
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aoU is a neighbourhood of 0 in 7", so that t” is stronger than 7'.

The topology 1’ is evidently stronger than 7. Next, we shall show that 1’
is compatible with the linear structure of E.

Since the addition in E is continuous in t, for each Ve B there exists V'€ B
such that V'+V'<V. This implies Uy.+ Uy.cU,. Therefore, if we define a
fundamental system of neighbourhoods of xe E by {x+Uy},.s (actually the
topology 1’ is defined in this way), the addition in E becomes continuous, so
that E is a topological additive group with respect to 7'.

In order to prove the continuity of the scalar multiplication, it is sufficient
to show the following three facts:

1) YWe8, 3a,>0, 3VeB, |a£a, =alUy,=Uy,
2) Va#0, VVe®B, 3IVeB, alUy,,cUy,
3) VxeE, VVeB, 3Joy>0, |a|Sey=—axeUy.

From (1.2), we have aU,= N (@fV)= N (BV), so that |¢|<1 implies
aU,<cU,. Therefore the condmoln 1)is satlslﬁed choosing Vy=Vand a,=1.
Next, suppose that a real number a#0 is given, and choose an integer n
such that |¢|<n. Since the addition in E is continuous in 7, for each Ve B,
there exists V, € B such that
V,+V,+--+V,cV.

n terms

Especially we have nV,c V. Therefore we have

UV— (BV)D m (nﬁ n)'_ A (ﬁVn)D N (ﬁVn)=aUV,.'
18121 1Blzn 1812 ||

This shows that the condition 2) is satisfied.
Lastly, the assumption (1.1) is equivalent with

VxeE, YVe®B, Fay>0, oyxel,.

Then, |o| o implies ax=oog(ayx) € aoglU, =U,. Thus the fact 3) has been
proved. Q.E.D.

§2. The Characteristic Topology

Let E be a vector space, E’ be its algebraical dual space, and B be the
smallest g-algebra of E’ in which every element of E, regarded as a function on
', becomes measurable. For a probability measure 4 on (E’, Bg), we shall
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define the characteristic topology on E as follows.
Let x(&) be the characteristic function of p.

Proposition 2.1. There exists the weakest topology on E that makes y(&)
continuous and compatible with the linear structure of E.

Proof. Since y is a positive definite function, we have the inequality:

2.1 (& +m) = 2O /21T~y -
Therefore, if we put
(2.2) Ve={¢eE; [1-x(Ol|=¢},

then éeV,and neV, imply E+neV,, 5. In other words we have
(2.3) Vit Vo<V iz

Thus, if we define a fundamental system of neighbourhoods of (€ E by
{&+V,};>0, E becomes a topological group (not necessarily Hausdorff). Fur-
thermore, on every finite dimensional subspace of E, y is continuous with
respect to the Euclid topology, so that we have

(2.4) VEeE, Ve>0, 30y>0, [¢Say=0alel,.

Consequently, from Proposition 1.1, we can consider the linearization of
this topology. The linearized topology is evidently the requested one in our
Proposition. Q.E.D.

Definition 2.1. The topology mentioned in Proposition 2.1 is called the
characteristic topology of u and denoted with t,.

In the topology t,, a fundamental system of neighbourhoods of 0 is given
by {U,}.>q, Where

(2.5) U5=|af;1(°<Vs)={€€E; Igrgll—x(aé)|§6}-

The topology 7, is not necessarily Hausdorff. The condition éesg\o U, is
equivalent with y(a&)=1 for |¢|<1. Therefore, from (2.1) we have y(af)=1
for every a e R', so that we have (¢, x)=0 for p-almost all x. In fact, 7, is a
Hausdorff topology on the factor space E/M, where

(2.6) M={¢e€E; (¢ x)=0 for p-almost all x}.

Suppose that E becomes a topological vector space with respect to a to-
pology T. Then from the definition of 7,, we have
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Proposition 2.2. x(&) is continuous in 7, if and only if © is stronger than

§3. The Topology of Measure Convergence

In this section, we shall prove that the characteristic topology is identical
with the topology of measure convergence. First, we shall explain the latter.

Let p be a probability measure on a measurable space (X, B), and § be the
set of all B-measurable real-valued functions on X. & forms a vector space.

Definition 3.1. A sequence {f,} = is said to converge to 0 in measure,
if
(3.1) Va>0, p({xeX;|fi(Nza}) >0  (n—o0).

Definition 3.2. Consider a topology on & whose fundamental system of
neighbourhoods of 0 is given by {U, .}4>0,.>0, Where

(3.2) Uy ={fe&; p({xe X; |f(x)|2a})<e}.
This topology is called the topology of measure convergence.

A sequence {f,} =& converges to 0 in measure, if and only if it converges to
0 in the topology of measure convergence.

U, is increasing with respect to both « and &, so that {U,,, 1/a}n=1,2
becomes a fundamental system of neighbourhoods of 0.

& is a topological vector space with respect to the topology of measure
convergence. First, | f(x)+g(x)|=a+f implies | f(x)| =« or |g(x)|=f, so that
we have U, .+ Up;<=U,4p..5 hence the addition in & is continuous. Next,
| f(x)| =« is equivalent with |cf(x)| = |c|e, so that we have cU,,=U.,,. Com-
bining this with the fact:

Vfe, Ve>0, 3Ja>0, feU,,,

we see that the scalar multiplication in & is also continuous.
The topology of measure convergence is not necessarily Hausdorff. The
condition fe N U,, is equivalent with f(x)=0 for p-almost all x. This
2>0,e>0

means that the topology of measure convergence is Hausdorff on the factor
space &/IM, where

(3.3) M={feF; f(x)=0 for u-almost all x}.
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Here, we shall give another representation of the topology of measure
convergence.

Let F(t) be a bounded continuous function on [0, o0). For fe &, we shall
put

(3.4) Ie(f)= Sx F(f()Ddu(x).

Lemma. 1) Ix(f) is continuous at f=0 in the topology of measure
convergence.
2) If we assume that

3.5 Va>0, inf F(f)>F(0),
t=a

then Ix(f,)—Ix(0) implies that {f,} converges to 0 in measure.

Proof. First, we shall prove 1). Since we have

(3.6) [Ix(f)—Ix0)| = SX [F(If(x))— FO)ldu(x),
we can estimate as follows:

3B.7  H{()—I0)
< sup [F(1) = F(O)[ + sup |[F(1) — FO)| - u({x € X5 | f(x)| 2}).

Since F(t) is continuous, for any given £>0, there exists 6 >0 such that the
first term in (3.7) becomes smaller than &. Putting sup |F(f)| =M, we see that
for every fe U;, oy, the second term in (3.7) becomteés0 smaller than &. Thus,
S€Us 2y implies [Ix(f)—1Ix(0)| <2, so that 1) has been proved.

Next, we shall prove 2). From the assumption (3.5), we have F(t) = F(0),
so that we get

(3.8) 1(f)=1x0)

>

Slf(x)lga F(fX))—F(0))du(x)
;(gl{F(t)—F(o)) p{xeX; | f(x)|=a)).

Therefore, for any given ¢>0 and «>0, fe U, , can be derived from
1)~ Ix(0) <e(inf F()— F(0)),
so that 2) has been proved. Q.E.D.

Thus, if a bounded continuous function F(f) on [0, o) satisfies (3.5), {f,}
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converges to 0 in measure if and only if Ix(f,) converges to Ix(0). In other
words, a fundamental system of neighbourhoods of 0 in the topology of measure
convergence is given by

(3.9) W={f; Ie(f)<Ix(0)+¢} .

Note that whenever F(f) is monotonically increasing, F(t) satisfies (3.5).
Furthermore, if we assume that F(¢) is a convex function with F(0)=0, then
d(f, g)=I¢(f—g) becomes a metric on &, and the topology of measure conver-
gence can be defined by the metric d. (Accurately, d is a pseudo-metric on &,
and becomes a metric on /M, where M is given by (3.3).)

Especially, choosing F(t)=t/(1 +1), we obtain the metric d given as follows:

_( I ®=gm)
(3.10) A, 9)=\ LR L dut).

Proposition 3.1. Let u and v be probability measures on (X, B). If
v u (v is absolutely continuous with respect to ), then the topology of measure
convergence corresponding to u is stronger than that corresponding to v.

Corollary. If pu~v, then two topologies of measure convergence are
identical with each other.

Proof. Since a neighbourhood of 0 in the topology of measure convergence
is given by (3.2), it is sufficient to show that

(3.11) Ve>0, 36>0, wB)<dé=—v(B)<s.

We shall prove the contraposition. Assume that

%>0, Vn, 3B,eB, uB)<-; and »B)Ze.

Then, putting B=Iim B, (= A v B,), we get u(B)=0 and v(B)=e. This con-
k=1 n=k
tradicts with v<pu. Q.E.D.

Now, we shall return to the case of (E’, Bg). Every element of E, regarded

as a function on E’, is Bz-measurable, so that we can imbed E into §, where §
is the set of all Bz-measurable real-valued functions on E’.

Propesition 3.2. For a probability measure on (E', Byg), the characteristic
topology on E is identical with the restriction of the topology of measure
convergence on E.

Proof. Since we have
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L-x@I=_ 11=exp (i¢6, x)Iducx)
< 11—cos &, x)lducx)

+_Isin (€, 9lduc,
E
putting F(f)=1—cos t and F,(t)=|sin t|, we have

1= x(OI=IF,(O+1p,0).

Therefore from Lemma 1), x() is continuous with respect to the topology
of measure convergence. In other words, the topology of measure convergence
is stronger than the characteristic topology on E.

Conversely, if ¢ belongs to U, in (2.5), integrating 1 — y(«€) with respect to

o, we get
(3.12) &> [%Sil (1= 2(e)) do

However, F(t)=1—sin t/t is bounded and continuous on [0, co) and satisfies
the assumption (3.5), so that from Lemma 2), we see that the characteristic
topology is stronger than the topology of measure convergence. Q.E.D.

Corollary. Let p and v be probability measures on (E', Bg). If vy,
then the characteristic topology of u is stronger than that of v. Especially if
v~ u, then two characteristic topologies are identical with each other.

§4. Proof of our Main Theorems

For a probability measure u on (E’, Bg), let E¥ be the topological dual
space of E with respect to the characteristic topology 7,. (Though 7, is not
necessarily Hausdorff nor locally convex, we can define E} as the set of all con-
tinuous linear functions in the topology 7,.)

For an element x of E’, the translated measure u, is defined by

4.1 u(B)=w(B—x), VBeBg.

Let T, be the set of all translations on E’ under which p is quasi-invariant,

namely put
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4.2) T,={x€E’; py~p}.
T, forms an additive group, but it is not a vector space in general.
Theorem 4.1. We have T,cE}.

Proof. Suppose that xe T,. Since p,.~p, the characteristic topology of
1, is identical with that of u. If we denote the characteristic function of p with
%(&), then the characteristic function of u, is given by exp (i(¢, x))x(¢). There-
fore, in the characteristic topology 7, of y, the function exp (i(¢, x))x(&) must be
continuous. Since y(&) is continuous in 1, exp (i(£, x)) must be continuous in
7, at every & such that y(&) #0, especially at £=0. Namely, for some neighbour-
hood U, in (2.5), we have

4.3) (e U, = |1—exp (i(¢ x))|<1.

However, & e U, implies aé € U, for || <1, so we have |1 —exp (ia(é, x))| <1
for |a| =1, hence we have |(, x)|<m/3.

Thus, |(¢, x)| is bounded on U,. This means that x is continuous in 7,
namely x € E¥.

This holds for every x € T, so we have T,c E}. Q.E.D.

Corollary. If E is a topological vector space in some topology t, and if
x(&) is continuous in t, then we have T,c E¥, where E¥ is the topological dual
space of E with respect to 1.

Proof. Since x is continuous in 7, 7, is weaker than 7, so that we have
E}fcE¥. Therefore, we get the corollary from Theorem 4.1. Q.E.D.

This corollary enables us to tell about the quasi-invariance of a measure in
terms of the continuity of the characteristic function. For instance, for a
measure on R®, if the characteristic function is continuous in the (/2)-norm on
RY, then we must have T, <(I?).

For a subset 4 of E, we shall put
(4.4) Ixla=supl& x)l, VxeE'.

Similarly for a subset A’ of E’, we shall put
(4.5) 1€y =sup (S, x)|, VEeE.

These values may be oo. The set of all x such that ||x|,<oo forms a linear
subspace of E’, and || - ||, becomes a semi-norm on this space. Similar argu-
ments hold for || - | .
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Theorem 4.2. Let Y be a linear subspace of E'. Suppose that Yis a
complete metrizable topological vector space with respect to a topology
stronger than the weak topology on E'. If YcT,, then for some neighbourhood
Vof0in Y, |&]ly, is finite for all £ € E, and the semi-normed topology defined

by |- lly is weaker than the characteristic topology t,,.

Proof. For a neighbourhood U, of 0 in the characteristic topology, let
A, be its polar set, namely put

(4.6) A;={xeE; |({, x)|s1 for leU.j}.

Then, A, is evidently a weakly closed subset of E’, so that 4, N Y is a closed
subset of Y.
Since {U,u}p=1,2,.. is a fundamental system of neighbourhoods of 0 in

7,, X € E}f is equivalent with x € A,,, for some n, namely we have

O Ay=E*sT,oY.

n=1

[co)
Thus, we get \U (4;,nY)=Y. Since Y is a complete metric space, from
n=1
Baire’s category theorem, some A,,, N Y has an inner point in Y. Namely, we
have

4.7 dyo€ Y, 3V (neighbourhood of 0 in Y),
Yo+ VcA,,NnY.

We shall show that this V is a requested one in our theorem. If yeVand
e Uy, then we have

Therefore e U, ), implies [£[,<2. Hence, {eaU,,, implies |||y <2«. This
shows that |||, is finite for all £ € E and that the topology defined by || - ||, is
weaker than . Q.E.D.

Theorem 4.3. Suppose that E is a locally convex vector space with respect
to a topology ©. If Ef<T,, then t is weaker than t,.

Proof. Let U be a convex symmetric neighbourhood of 0 in 7. Defining
|- lly on E’ by (4.4), we shall put

(4.8) i={xeE'; |x|y<oo}.

Evidently we have Ef < Ef, so that we have Ef=T,. On the other hand,
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E} is a Banach space with respect to || - ||y, and its topology is stronger than the
weak topology on E’. Therefore, there exists a neighbourhood V of 0 men-
tioned in Theorem 4.2. Since E} is a normed space, we can suppose that Vis
the unit ball in E¥. Then, from Theorem 4.2, the topology defined by | - ||, is
weaker than t,, namely the polar set

B={¢€eE; ||¢|ly£1}

contains a neighbourhood of 0 in 7,. However, since V'is the polar set of U, B
is the bipolar set of U. Therefore, remembering that U is a convex symmetric
set, we have B="U (=the closure of U). Thus, U contains a neighbourhood of
Oint,.

This fact holds for every convex symmetric neighbourhood U in 7. Since
the topology of a topological group is regular, this means that 7 is weaker than
T, Q.E.D.

Corollary. Suppose that E is a locally convex topological vector space
with respect to a topology t. For a probability measure p on (E', Bg), if u is
E¥*-quasi-invariant and if the characteristic function y is continuous in 1, then
we have T,=E¥ and t=1,.

Proof. Since p is E¥-quasi-invariant, we have T,> E¥ and 1 is weaker than

Since y is continuous in 7, we have T, < E¥ and t, is weaker than 7.
Q.E.D.

For instance, for a Borel measure p on R®, if pu is (I2)-quasi-invariant and
if the characteristic function is continuous in the (/?)-norm, then we have T,=
(1?) and the characteristic topology 7, is identical with the topology of ().

Assume that T,=E%, then p is E%-quasi-invariant and y is continuous in
7,. The corollary insists that such a situation (that u is E¥-quasi-invariant and
x is continuous in t) occurs only for the characteristic topology t,. Further-
more, such a situation occurs for 7, if and only if T,=E}.

§5. Totally Boundedness

As applications of the theorems in Section 4, in this and the following
sections, we shall prove the results 1 and 2 mentioned in Introduction,
First we shall prove:
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Theorem 5.1. Let X be a separable and metrizable locally convex vector
space, and Y(<=X) be a complete metrizable topological vector space imbedded
continuously in X. If some Borel measure on X is Y-quasi-invariant, then Y
has a neighbourhood of 0 which is totally bounded in X.

Proof. Let X* be the topological dual space of X. Then, X can be
imbedded into (X*)’, the algebraical dual space of X*. We can define the
measurable space ((X*)', By) as in Section 2, replacing E with X*. Denoting
the Borel algebra of X with B, we shall first prove:

(5.1) B=B,.NX.

For every ¢ e X*, since (£, x) is continuous on X, it is B-measurable, so
that we have 8oB,.n X.

Conversely, we shall show that every open set of X belongs to By.n X.
Since X is separable and metrizable, every open set O of X satisfies Lindelof’s
property (that is, an open covering of O contains necessarily a countable covering
of 0). Therefore, there exist a sequence of points {x,} and a sequence of convex
symmetric neighbourhoods {U,} of 0 such that

(5.2) 0= ('_31 (x,+U,).

We shall show U,e By N X. We can suppose that U, is a closed neigh-
bourhood. Then, U, is the bipolar set of itself, namely we have

(5.3) U,={xeX;|¢ )1 for every &¢e€Ad,},
where A,={Ee X*; |(& x)|=1 forevery xeU,}.

Thus, U, is a weakly closed set. However, a weakly open set of X belongs to
By N X, because from Lindelof’s property it can be written as a countable union
of weak neighbourhoods, which belong evidently to By.n X.

Hence U,, so the given O also, belongs to By.N X. This completes the
proof of (5.1).

From (5.1), a Borel measure on X can be identified with a measure on
((X*), Bys). Since Y is continuously imbedded in X, it is also imbedded in
(X*)', and the topology of Yis stronger than the weak topology of (X*)'. There-
fore, if the measure p is Y-quasi-invariant, then from Theorem 4.2, there exists
a neighbourhood V of 0 in Y such that the semi-normed topology defined by
| - Il is weaker than the characteristic topology 7,. Then, the unit ball in |- ||,
contains a neighbourhood of 0 in t,,.
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On the other hand, since the measure u lies on X, for any given ¢>0 there
exists a totally bounded set B such that u(B)>1—¢. (The Borel measure u on
X can be identified with a Borel measure on X, the completion of X. Since X
is complete, metrizable and separable, every Borel measure on X lies on a
countable union of compact sets. Cf. Parthasarathy [4].)

Considering the semi-norm | - |3 on X*, we have

=&)< Sx 11— exp (i(Z, x))ldp(x)

< 16&, ldux) +2(5°)

=l€lp+2e,

so that we have
(5.4) [¢llp<e = [1—x(&)<3e.

Since | £]| p<eis equivalent with ||£| 5, <1, (5.4) implies that each neighbouthood
of 0 in 7, contains the unit ball in || - | , where A4 is some totally bounded set of X.

Thus, the unit ball in |- ||, contains the unit ball in ||-||,. Therefore we
have

(5.5) V<=C(4),

where C(A) is the convex closed hull of 4. Since A4 is totally bounded, C(A4),
hence V also is totally bounded in X. Q.E.D.

Corollary. Let X be a complete, metrizable and separable locally con-
vex vector space. (For instance, suppose that X is a separable Banach space
or a separable Fréchet space.) Let Y be a closed subspace of X. If some Borel
measure on X is Y-quasi-invariant, then Y must be finite dimensional. In

other words, T, never contains an infinite dimensional closed subspace.

Proof. Since Y is closed, Y becomes a complete metrizable topological
vector space with respect to the induced topology from X. Therefore from
Theorem 5.1, some neighbourhood of 0 in Y must be totally bounded in X,
hence in Y. This means that Y is locally totally bounded. This is impossible
unless Y is finite dimensional. Q.E.D.

Example. Let (I7) be the set of all p-th power summable sequences:

(5.6) ()= {x=(x); 3 Ixol? <0}
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(1) is monotonically increasing, namely p’<p implies ([?")<=(I?). However, if
p<oo, no Borel measure on (/P) is (/?")-quasi-invariant, because the unit ball
in (I} is not totally bounded in (I?). (Putting e,=(0y,)n=1,2,.. €(I?"), we have
lexll,,=1 and |le,—e;|,=1 for k# j.)

For p= o0, though (I*) is a Banach space, it is not separable, so Theorem
5.1 can not be applied. In fact, some Borel measure on R* is (/*)-quasi-invari-
ant and lies on (I®) (cf. [S]). However the space (Ig), the set of all sequences
such that lim x,=0, is separable in || - |, so that Theorem 5.1 can be applied,

n—o0

thus no Borel measure on (I§) is (I')-quasi-invariant.

§6. Hilbert-Schmidt Imbedding

In this section, we shall prove the result 2 in Introduction. Namely we

shall prove:

Theorem 6.1. Let X be a Hilbert space, and Y (= X) be another Hilbert
space imbedded continuously in X. There exists a Y-quasi-invariant measure
on (X, Bx.NX) if and only if the canonical imbedding Y-X is of the
Hilbert-Schmidt type. Especially, Y must be separable even if X is not.

Proof. Suppose that the topology of X is defined by the inner product
(', )x, and the topology of Y is defined by ( , )y. Consider the gaussian measure
g corresponding to ( , )y, then g is Y-quasi-invariant and lies on X, if ( , )y is
of the Hilbert-Schmidt type with respect to ( , )y on Y (cf. [6]). Thus, the
sufficiency part of Theorem 6.1 has been proved.

We shall prove the necessity part of Theorem 6.1. Let (, )y and (, )y
be the dual inner products of ( , )y and (, )y respectively defined on X*, the
topological dual space of X. Imbedding X into (X*)’, we can suppose that a
measure p on ((X*), By.) is Y-quasi-invariant and lies on X. Since the to-
pology of Yis stronger than the weak topology of (X*)’, from Theorem 4.2 we
see that the topology defined by ( , )y is weaker than the characteristic topology
T,

On the other hand, since j lies on X, the characteristic function is con-
tinuous in Sazonov topology of ( , )k, hence Sazonov topology is stronger than
1,. (Cf. [2], Sazonov topology is the topology defined by the family of all inner
products which are of the Hilbert-Schmidt type with respect to ( , )%.) Thus,
the topology defined by ( , )y is weaker than Sazonov topology, namely ( , )y
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is continuous in Sazonov topology. This means that ( , )y is Hilbert-Schmidt
with respect to ( , )x. Therefore, on the space Y, the dual inner product ( , )x
must be Hilbert-Schmidt with respect to ( , )y. This implies that the canonical
imbedding Y— X is of the Hilbert-Schmidt type, so that the proof has been com-
pleted. Q.E.D.

This theorem can be generalized to the case that Y is a complete metrizable
topological vector space.

Proposition 6.1. Let X be a Hilbert space, Y (< X) be a complete metriza-
ble topological vector space imbedded continuously in X. Then, there exists a
Y-quasi-invariunt measure on (X, By. N X) if and only if (, )x is of the Hilbert-
Schmidt type with respect to some continuous inner product ( , )y on Y.

Proof. The sufficiency part can be proved by considering the gaussian
measure corresponding to ( , )g-

For the proof of the necessity part, similarly with the proof of Theorem
6.1, we see that there exists a neighbourhood V of 0 in Y such that || - |, is con-
tinuous in 7,. Since 7, is weaker than Sazonov topology of ( , )k, this implies
that |||, is continuous in Sazonov topology, therefore we have [&|,Z|¢ly
for some inner product ( , )y which is of the Hilbert-Schmidt type with respect
to (', )x

On the space Y, considering the dual inner product( , )4 of ( , )y, we see
that ( , )y is of the Hilbert-Schmidt type with respect to ( , )y and that ( , )y
is continuous in Y. Q.E.D.

The reason why we discuss a measure on a Hilbert space is that we know
exactly the continuity of the characteristic function by Sazonov’s theorem.

Even if X is not a Hilbert space, we can estimate T, by similar discussions,
if we know some results on the continuity of the characteristic function. For
instance, we can prove:

Proposition 6.2. For a sequence a=(a,) of positive numbers, we shall
define the space (IP), as follows:

6.1) (IP), = {x =(x,): i_’:l aylx,l? <o) .

(If a,=1, then we get the usual (IF).)
For 1=p<oo, if an (I*")-quasi-invariant Borel measure exists on (IP),

oo
then we must have Y. a,<c0.
n=1 -
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Remark. Considering the case a,=1, we obtain again the result of the
example in Section 5.

Proof. Suppose that a Borel measure p on (I7), is (I?')-quasi-invariant.
From Theorem 4.2, if we denote the unit ball of (I?") with V, the semi-norm
[ - Iy is continuous in the characteristic topology 7, on Rg.

Denoting the unit ball of (I7), with B, we have

(6.2) lim u(nB)=1.

On the other hand, we have

L-x@I=|__11=exp (i(& )lducx)
< €], +2u(nBC),

where
63 Ieh={ 16 9duco.

Therefore, the topology defined by the family of semi-norms |- |, is stronger
than 7,. Thus, the semi-norm || - ||, is continuous in the topology defined by
{Il - I}, so that we have

(6.4) 3C>0, 3n, [Cly=Cléll,-
Putting e, =(0yp)=1,2,.. € R, we have

[(ers )| =%l ,

so that x € V implies |(e;, x)| <1, thus we have |le.||y,=1. Substituting this into
(6.4), we get 1 < CJe],, namely we get

6.5) 1=C S Ieldu(x)

Taking the p-th power of the both hand sides, and applying Hoélder’s inequality,
we get

(6.6) 100 { Ixleduco).
nB
Multiplying a, and summing up the both hand sides with k, we have

(6.7 S ascr| $ abapdu,

k=1
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o0
but the integrand being <n”, we get > a,<CPn?<oo. This completes the
k=1

proof of Proposition 6.2. Q.E.D.
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Added in proof: Note for the last statement in Section 4: Under the assumption that z,, is
locally convex, T,=E% occurs only if (E, z,) is a Hilbert space. This result was obtained
recently by H. Shimomura, and will be published in the near future.






