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Quasi-Invariance of Measures on an Infinite
Dimensional Vector Space and the Continuity

of the Characteristic Functions

By

Yasuo YAMASAKI*

Introduction

Since the Bochner theorem was extended to the infinite dimensional case by

Minlos [1] and Sazonov [2], the continuity of a characteristic function has been

discussed mainly in connection with the carrier of the corresponding measure.

However, the study of the relation between the continuity of a characteristic

function and the quasi-invariance of the corresponding measure has been rather

neglected. In this paper we shall discuss this problem. Our main results are

as follows.

Let £ be a vector space, £' be its algebraical dual space, ^ be a finite measure

on £', and x be the characteristic function of \i defined on E. Consider the

weakest vector topology on E that makes x continuous, and denote it with T^.

Let 7J, be the set of all translations on E' under which \i is quasi-invariant.

T^ is regarded as a subset of E' by identifying any translation x-»x + a on E'

with a. Then we have the following

Theorem8 (1) We have T^cE* (cE'), where £J is the topological dual

space of E with respect to TM.

(2) Let Ef be the topological dual space of E with respect to a locally

convex topology T on E. Then, Ef c T^ ( c £') implies that T is weaker than

Especially, if fi is Ef -quasi-invariant and if x is continuous in T, then we

TfJL = Ef and T = T^.

Using these results, we can estimate T^ from the continuity of /.
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Combining this with the relation between the continuity of % and the carrier of

u, we can establish the relation between the carrier and quasi-invariance of u.

This fact implies various results. For instance, we can give another proof

of the following results due to Xia Dao-Xing [3].

1. Let X be a separable and metrizable locally convex vector space,

and Y(ciX) be a complete metrizable topological vector space imbedded

continuously in X. If some Borel measure on X is Y-quasi-invariant, then

Y has a neighbourhood 0/0 which is totally bounded in X. (§5,)

2. Let X be a Hilbert space, and Y(aX) be another Hilbert space im-

bedded continuously in X. Then, there exists a Y-quasi-invariant measure

on X if and only if the canonical imbedding Y-*X is of the Hilbert-

Schmidt type. Especially, Y must be separable even if X is not. (§6.)

§ 1. Linearization of a Topology

In this section, as a preliminary discussion, we shall explain a method to

linearize a topology on a vector space.

Proposition 1.1. Let E be a vector space, and suppose that E becomes a

topological additive group with respect to a topology i on E. Furthermore,

assume that T satisfies the following condition',

(1.1) VxeE , VFe93, 3a0>0, |a|ga0 =»axe V,

where 33 is a fundamental system of neighbourhoods 0/0 with respect to T.

Then, putting

(1.2) Vv= r\ (aF),
l « l * i

we obtain a topology T' in which H = {C/K}Keg5 is a fundamental system of

neighbourhoods 0/0. The topology i' is the weakest topology that is stronger

than T and compatible with the linear structure of E.

Definition 1.1. The topology T' given in Proposition 1.1 is called the

linearization of T.

Proof of Proposition 1.1. Suppose that a topology T" on E is stronger than

T and compatible with the linear structure of E. Then, for each Fe 23, there

exist a0>0 and a neighbourhood U of 0 in T" such that |a|^a0 implies al/ciF.

Therefore we have a0l/c:[/F. From the continuity of scalar multiplication,
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a0L7 is a neighbourhood of 0 in T", so that T" is stronger than T'.

The topology T' is evidently stronger than T. Next, we shall show that T'

is compatible with the linear structure of E.

Since the addition in E is continuous in T, for each VE 95 there exists F' e 93

such that K' + K ' c K This implies Uv>+Uv>c:Uy. Therefore, if we define a

fundamental system of neighbourhoods of xe£ by {x + l/F}Ke§8 (actually the

topology T' is defined in this way), the addition in £ becomes continuous, so

that £ is a topological additive group with respect to T'.

In order to prove the continuity of the scalar multiplication, it is sufficient

to show the following three facts :

1) V K e 9 3 3 3a0>0, 3V 0 e95, |a|^a0 =>al/Foc:[/F,

2) Va^O, VKeSi , 3F0e23, al/Foc[/F5

3) Vxe£, VFeSB, 3a0>0,

From (1.2), we have aC7K= A (ajSF)= n (j5F), so that |a|gl implies
l ^ l ^ i W £ l « l

aUvciUv. Therefore the condition 1) is satisfied choosing V0= Fand a0 = 1.

Next, suppose that a real number a/0 is given, and choose an integer n

such that |a|<n. Since the addition in £ is continuous in T, for each Fe 35,

there exists Vn e 33 such that

n terms

Especially we have nVnaV. Therefore we have

uy= r\ (pv)^ n (npvj= n (pvn)^ r\

This shows that the condition 2) is satisfied.

Lastly, the assumption (1.1) is equivalent with

Vxe£ , VFe23, 3a0>0,

Then, |oc|:ga0 implies ax = aao1(oc0x)eaao1l/Fc:[/F. Thus the fact 3) has been

proved. Q.E.D.

§ 2. The Characteristic Topology

Let £ be a vector space, £' be its algebraical dual space, and 33£ be the

smallest a-algebra of E' in which every element of £, regarded as a function on

E'9 becomes measurable. For a probability measure \JL on (£', 95£), we shall
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define the characteristic topology on E as follows.

Let %(£) be the characteristic function of ju.

Proposition 2.1. There exists the weakest topology on E that makes

continuous and compatible with the linear structure of E.

Proof. Since % is a positive definite function, we have the inequality:

(2.1)

Therefore, if we put

(2.2)

then £ e VB and r\ e Vt imply £ + »j e V6+,/2i • In other words we have

(2.3) V.+ Vt<=

Thus, if we define a fundamental system of neighbourhoods of <!;e£ by

{£ + F£}£>0, E becomes a topological group (not necessarily Hausdorff). Fur-

thermore, on every finite dimensional subspace of E, i is continuous with

respect to the Euclid topology, so that we have

(2.4) V£e£ , Vs>0, 3a0>0, |a]ga0 =>a£e V£.

Consequently, from Proposition 1.1, we can consider the linearization of

this topology. The linearized topology is evidently the requested one in our

Proposition. Q. E. D.

Definition 2.1. The topology mentioned in Proposition 2.1 is called the

characteristic topology of \JL and denoted with T^.

In the topology T^, a fundamental system of neighbourhoods of 0 is given

by {UE}E>0, where

(2.5) 17. = A (aF£)

The topology T is not necessarily Hausdorff. The condition £ e A UE is
£>0

equivalent with #(a£)=l for |a|^l. Therefore, from (2.1) we have #(a£) = l

for every aeU1, so that we have (<!;, x) = 0 for /^-almost all x. In fact, T^ is a

Hausdorff topology on the factor space E/M, where

(2.6) M = {{ e E ; ({, x) = 0 for ju-almost all x} .

Suppose that E becomes a topological vector space with respect to a to-

pology T. Then from the definition of t^ we have
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Proposition 2.2. %(<!;) is continuous in T, if and only if i is stronger than

V

§ 3. The Topology of Measure Convergence

In this section, we shall prove that the characteristic topology is identical

with the topology of measure convergence. First, we shall explain the latter.

Let \JL be a probability measure on a measurable space (X, 95), and JJf be the

set of all ^-measurable real-valued functions on X. g forms a vector space.

Definition 3.1. A sequence {/„}<= J? is said to converge to 0 in measure,

if

(3.1) Voc>0, M({xeZ;|/n(x)|^a})^0 (n-*oo).

Definition 3.2. Consider a topology on g whose fundamental system of

neighbourhoods of 0 is given by {U(X}E}(X>0>E>0, where

(3.2) U^ = {fe

This topology is called the topology of measure convergence.

A sequence {/„} cz g converges to 0 in measure, if and only if it converges to

0 in the topology of measure convergence.

I7a>e is increasing with respect to both a and e, so that {£/!/„, !/„}„= 1,2,...
becomes a fundamental system of neighbourhoods of 0.

g is a topological vector space with respect to the topology of measure

convergence. First, |/(x) + 0(x)|^oc + j8 implies |/(x)|^oc or |0(x)|^j8, so that

we have U^+Up^aU^+p^^^ hence the addition in g is continuous. Next,

|/(x)|^oc is equivalent with |c/(x)|^|c|a, so that we have cU Xte= U ̂ Xme. Com-

bining this with the fact :

V/eg, V6>0, 3a>0, /eC/a>£5

we see that the scalar multiplication in 5 is also continuous.

The topology of measure convergence is not necessarily Hausdorff. The

condition /e A l/a,E is equivalent with /(x) = 0 for /^-almost all x. This
a>0,£>0

means that the topology of measure convergence is Hausdorff on the factor

space %/M, where

(3.3) aR = {/e g;/(x) = 0 for ^-almost all x} .
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Here, we shall give another representation of the topology of measure

convergence.

Let F(£) be a bounded continuous function on [0, oo). For fe 5, we shall

put

(3.4) 7F(/)= F(\f(x)\)du(x).
j x

Lemma. 1) IF(f) is continuous at /=0 in the topology of measure

convergence.

2) // we assume that

(3.5) Va>0, infF(0>F(0),
t^x

then /F(/n)-*/F(0) implies that {/„} converges to 0 in measure.

Proof. First, we shall prove 1). Since we have

(3.6)

we can estimate as follows:

(3.7) |/F(/)

^ sup |F(0-F(0)| + sup |F(0-F(0)| • ji({x e *5 l/(x)| ^}).

Since F(t) is continuous, for any given s > 0, there exists 5 > 0 such that the

first term in (3.7) becomes smaller than s. Putting sup \F(f)\=M, we see that

for every /e UdiE/2M, the second term in (3.7) becomes smaller than s. Thus,

/G UdiE/2M implies |/F(/) —IF(0)|<2e, so that 1) has been proved.
Next, we shall prove 2). From the assumption (3.5), we have

so that we get

(3.8)

;>i
~ )|/(*)l£«

Therefore, for any given e>0 and a>0,/e UXjE can be derived from

so that 2) has been proved. Q. E. D.

Thus, if a bounded continuous function F(0 on [0, oo) satisfies (3.5), {/„}
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converges to 0 in measure if and only if lF(/n) converges to 1 (̂0). In other

words, a fundamental system of neighbourhoods of 0 in the topology of measure

convergence is given by

(3.9) WE = { f i l F ( f ) < I F ( 0 ) + 8}.

Note that whenever F(t) is monotonically increasing, F(t) satisfies (3.D).

Furthermore, if we assume that F(t) is a convex function with F(0) = 0, then

d(f, 9) = If(f—g) becomes a metric on g, and the topology of measure conver-
gence can be denned by the metric d. (Accurately, d is a pseudo-metric on gf,

and becomes a metric on gf/iDl, where 901 is given by (3.3).)

Especially, choosing F(t) — t/(l + f), we obtain the metric d given as follows:

(3.10)

Proposition 3.1. Let \i and v be probability measures on (X, 23). If

v<[i(v is absolutely continuous with respect to /x), then the topology of measure

convergence corresponding to \i is stronger than that corresponding to v.

Corollary. If u~v, then two topologies of measure convergence are

identical with each other.

Proof. Since a neighbourhood of 0 in the topology of measure convergence

is given by (3.2), it is sufficient to show that

(3.11) Ve>0, 3(5>0, fi(B)<6 =

We shall prove the contraposition. Assume that

3e>0, Vn, 3B.eS, u(Bn)<± and

Then, putting 5 = Urn Bn(= r\ U Bn), we get ^(B) = Q and v(B)^e. This con-
k = l n = k

tradicts with v < p. Q. E. D.

Now, we shall return to the case of (£', 23 £). Every element of £, regarded

as a function on E', is 23£-measurable, so that we can imbed E into gf, where g

is the set of all 23£-measurable real-valued functions on E'.

Proposition 3.2. For a probability measure on (E'9 23E), the characteristic

topology on E is identical with the restriction of the topology of measure

convergence on E.

Proof. Since we have
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E'

E

fi'

putting f x(t) = 1 — cos t and F2(t) = |sin f|, we have

Therefore from Lemma 1), %(£,) is continuous with respect to the topology

of measure convergence. In other words, the topology of measure convergence

is stronger than the characteristic topology on E.

Conversely, if £ belongs to Ue in (2.5), integrating 1 — #(a£) with respect to

a, we get

(3.12) s > - ( 1 -*(««) < f a

However, F(t) = 1 — sin f/f is bounded and continuous on [0, oo) and satisfies

the assumption (3.5), so that from Lemma 2), we see that the characteristic

topology is stronger than the topology of measure convergence. Q. E. D.

Corollary. Let \JL and v be probability measures on (£', 23 £). I/v<ju,

then the characteristic topology of \JL is stronger than that of v. Especially if

v~t*9 then two characteristic topologies are identical with each other.

§ 4. Proof of our Mam Theorems

For a probability measure \i on (E7, 93£), let E* be the topological dual

space of E with respect to the characteristic topology TM. (Though T^ is not

necessarily Hausdorff nor locally convex, we can define £* as the set of all con-

tinuous linear functions in the topology T^.)

For an element x of E', the translated measure p.x is defined by

(4.1)

Let Tp be the set of all translations on E' under which \JL is quasi-invariant,

namely put
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(4.2)

7J, forms an additive group, but it is not a vector space in general.

Theorem 4.1. We have

Proof. Suppose that xeT^. Since itx~n, the characteristic topology of
fix is identical with that of u. If we denote the characteristic function of IJL with

#(£), then the characteristic function of IJLX is given by exp (/(£, x))x(£)- There-
fore, in the characteristic topology TM of ^, the function exp (/(£, *))/(£) must be
continuous. Since #(<!;) is continuous in TM, exp (i(£, x)) must be continuous in
TM at every £ such that #(<!;) ̂  0, especially at £ = 0. Namely, for some neighbour-
hood (7e in (2.5), we have

(4.3) {Gl/.=>|l-exp(i(£,x))|<l.

However, £eUB implies a£ G Ue for |a| ^ 1, so we have |1 — exp (za(£» *))! < 1
for |a|:gl, hence we have |(£, x)|<7i/3.

Thus, |(£, x)| is bounded on l/£. This means that x is continuous in TM,

namely xeE*.

This holds for every x e T^ so we have T^aE*. Q. E. D.

Corollary. //£ z'5 a topological vector space in some topology T, and if

X(£) is continuous in T, then we have TMG£*, where E* is the topological dual

space of E with respect to i.

Proof. Since x is continuous in T, T^ is weaker than T, so that we have
£*<=£*. Therefore, we get the corollary from Theorem 4.1. Q. E. D.

This corollary enables us to tell about the quasi-invariance of a measure in
terms of the continuity of the characteristic function. For instance, for a
measure on JR°°, if the characteristic function is continuous in the (/2)-norm on
Hg3, then we must have TMc:(/2).

For a subset A of E, we shall put

(4.4) NLi = sup|«,x)|,
^e^

Similarly for a subset 4' of E', we shall put

(4.5) ll«L' = sup|«,x)|,
jce^4'

These values may be oo. The set of all x such that ||x||A<oo forms a linear
subspace of E', and || • ||^ becomes a semi-norm on this space. Similar argu-

ments hold for |1 • \\A>.
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Theorem 4.2. Let Y be a linear subspace of Ef. Suppose that Y is a

complete metrizable topological vector space with respect to a topology

stronger than the weak topology on E' . If Ya T^, then for some neighbourhood

VofQ in Y, \\£\\v is finite for all £eE, and the semi-normed topology defined

by \\'\\v is weaker than the characteristic topology TM.

Proof. For a neighbourhood t/£ of 0 in the characteristic topology, let

AE be its polar set, namely put

(4.6) ^ = {xe£';|«,x)|^l for fe l /J .

Then, AE is evidently a weakly closed subset of E', so that Ae n Y is a closed

subset of Y.

Since {U1/tt}n=lt2,... *s a fundamental system of neighbourhoods of 0 in
T,,, x E £* is equivalent with x e A1/n for some n, namely we have

n=l

co

Thus, we get U (A1/n n Y)=Y. Since 7 is a complete metric space, from
n = l

Baire's category theorem, some A1/n fl Y has an inner point in Y. Namely, we

have

(4.7) 3j0 e 7, 3 V (neighbourhood of 0 in Y) ,

We shall show that this Vis a requested one in our theorem. If y e Fand

e Ul/n9 then we have

Therefore £el/1/n implies ||^||F^2. Hence, ^eal/1 / n implies ||<;||^g2a. This

shows that ||^||K is finite for all £ G£ and that the topology defined by || • \\v is

weaker than TM. Q. E. D.

Theorem 4.3. Suppose that E is a locally convex vector space with respect

to a topology i. If Ef c T^ then t is weaker than TM.

Proof. Let U be a convex symmetric neighbourhood of 0 in T. Defining

|| • \\v on E' by (4.4), we shall put

(4.8) £»

Evidently we have £*c£*3 so that we have E^aT^. On the other hand,
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Efj is a Banach space with respect to || • ||^, and its topology is stronger than the

weak topology on Er. Therefore, there exists a neighbourhood V of 0 men-
tioned in Theorem 4.2. Since £g is a normed space, we can suppose that V is

the unit ball in Eg. Then, from Theorem 4.2, the topology defined by || • ||F is

weaker than T^, namely the polar set

contains a neighbourhood of 0 in TM. However, since Fis the polar set of U9 B

is the bipolar set of U. Therefore, remembering that U is a convex symmetric

set, we have B=U ( = the closure of U). Thus, V contains a neighbourhood of

0 in TM.

This fact holds for every convex symmetric neighbourhood 17 in T. Since

the topology of a topological group is regular, this means that T is weaker than

V Q.E.D.

Corollary. Suppose that E is a locally convex topological vector space

with respect to a topology T. For a probability measure ^ on (£', 93£)? if n is

E*-quasi-invariant and if the characteristic function % is continuous in t, then

we have T[t = E* and T = T^.

Proof. Since LL is E*-quasi-invariant, we have T^E* and T is weaker than

V
Since / is continuous in T, we have T^cE* and T^ is weaker than T.

Q.E.D.

For instance, for a Borel measure \JL on JK°°, if \JL is (P)-quasi-invariant and

if the characteristic function is continuous in the (/2)-norm, then we have T^ =

(/2) and the characteristic topology T^ is identical with the topology of (/2).

Assume that T/f = E*, then /,t is E*-quasi-invariant and % is continuous in

T/r The corollary insists that such a situation (that \i is £*-quasi-invariant and

X is continuous in T) occurs only for the characteristic topology T^. Further-

more, such a situation occurs for r/t if and only if r^ = E*.

§ 5. Totally Boundedness

As applications of the theorems in Section 4, in this and the following

sections, we shall prove the results 1 and 2 mentioned in Introduction,

First we shall prove;
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Theorem 5.1. Let X be a separable and metrizable locally convex vector

space, and Y(<=X) be a complete metrizable topological vector space imbedded

continuously in X. If some Borel measure on X is Y-quasi-invariant, then Y

has a neighbourhood 0/0 which is totally bounded in X.

Proof. Let Z* be the topological dual space of X. Then, X can be

imbedded into (X*y, the algebraical dual space of X*. We can define the

measurable space ((X*)', 93**) as in Section 2, replacing E with X*. Denoting

the Borel algebra of X with 93, we shall first prove:

(5.1) 93=93** n-s r .
For every £ e X*9 since (£, x) is continuous on X, it is 93-measurable, so

that we have 93=^93** n X.

Conversely, we shall show that every open set of X belongs to 93^* H X.

Since X is separable and metrizable, every open set O of X satisfies Lindelof s

property (that is, an open covering of 0 contains necessarily a countable covering

of O). Therefore, there exist a sequence of points {xn} and a sequence of convex

symmetric neighbourhoods {[/„} of 0 such that

(5.2) 0=\j(xn+Un).
n=l

We shall show Un e 93** n X. We can suppose that Un is a closed neigh-

bourhood. Then, Un is the bipolar set of itself, namely we have

(5.3) Un = {xeX;\(t,x)\£l for every £eAn}9

where An = {{ e X*; |(f, jc)| ^ 1 for every x e C7J .

Thus, Un is a weakly closed set. However, a weakly open set of X belongs to

95 ** n X, because from Lindelof's property it can be written as a countable union

of weak neighbourhoods, which belong evidently to 93** n X.

Hence Un9 so the given O also, belongs to 93** n X. This completes the

proof of (5.1).

From (5.1), a Borel measure on X can be identified with a measure on

((X*)', 93**)- Since 7 is continuously imbedded in X9 it is also imbedded in

(X*)'9 and the topology of 7is stronger than the weak topology of CX"*)'. There-

fore, if the measure \JL is 7-quasi-invariant, then from Theorem 4.2, there exists

a neighbourhood V of 0 in 7 such that the semi-normed topology defined by

\\-\\v is weaker than the characteristic topology Tr Then, the unit ball in \\-\\v

contains a neighbourhood of 0 in %^
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On the other hand, since the measure \JL lies on X, for any given s>0 there

exists a totally bounded set B such that fi(B) > 1 — s. (The Borel measure ^ on

X can be identified with a Borel measure on X, the completion of X. Since X

is complete, metrizable and separable, every Borel measure on X lies on a

countable union of compact sets. Cf. Parthasarathy [4].)

Considering the semi-norm || • ||B on X*, we have

[I-exp(i'(€,

so that we have

(5.4) ||£||a<fi=^|l-jt

Since ||^||jB<e is equivalent with ||£||B/£< 1, (5.4) implies that each neighborhood

of 0 in TM contains the unit ball in || • ||^ where A is some totally bounded set of X.

Thus, the unit ball in \ \ - \ \ v contains the unit ball in || • ||^. Therefore we

have

(5.5)

where C(A) is the convex closed hull of A. Since A is totally bounded, C(A),

hence Falso is totally bounded in X. Q. E. D.

Corollary. Let X be a complete, metrizable and separable locally con-

vex vector space. (For instance, suppose that X is a separable Banach space

or a separable Frechet space.) Let Y be a closed subspace of X. If some Borel

measure on X is Y-quasi-inuariant, then Y must be finite dimensional. In

other words, T^ never contains an infinite dimensional closed subspace.

Proof. Since Y is closed, Y becomes a complete metrizable topological

vector space with respect to the induced topology from X. Therefore from

Theorem 5.1, some neighbourhood of 0 in Y must be totally bounded in X,

hence in Y. This means that Y is locally totally bounded. This is impossible

unless Y is finite dimensional. Q.E. D.

Example. Let (lp) be the set of all p-th power summable sequences:

(5.6) ('*) = {* = (**);!; l*J*<oo}.
n=l
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(lp) is monotonically increasing, namely p'<p implies (/p')c=(^). However, if

p<oo, no Borel measure on (lp) is (/p/)-quasi-invariant, because the unit ball

in (P') is not totally bounded in (lp). (Putting ek = (8kn)n=lt2,... e(/p ' )> we have

l l e f c l l p ' = l and l l ^ ~ £ / l l p = l f°r fc^j'O

For p=oo, though (/°°) is a Banach space, it is not separable, so Theorem

5.1 can not be applied. In fact, some Borel measure on Rx is (/^-quasi-invari-

ant and lies on (/°°) (cf. [5]). However the space (/JO, the set of all sequences

such that limxn = 0, is separable in || • J l^ , so that Theorem 5.1 can be applied,

thus no Borel measure on (/jf) is (/^-quasi-invariant.

§ 6. Hilbert-Schmidt Imbedding

In this section, we shall prove the result 2 in Introduction. Namely we

shall prove:

Theorem 6.1. Let X be a Hilbert space, and Y(aX) be another Hilbert

space imbedded continuously in X. There exists a Y-quasi-invariant measure

on (X, 23X« H X) if and only if the canonical imbedding Y-+X is of the

Hilbert-Schmidt type. Especially, Y must be separable even if X is not.

Proof. Suppose that the topology of X is defined by the inner product

( , )x, and the topology of Y is defined by ( , )y. Consider the gaussian measure

g corresponding to ( , )y, then g is Y-quasi-invariant and lies on X, if ( , )x is

of the Hilbert-Schmidt type with respect to ( , )y on Y (cf. [6]). Thus, the

sufficiency part of Theorem 6.1 has been proved.

We shall prove the necessity part of Theorem 6.1. Let ( , )x and ( , )y

be the dual inner products of ( , )x and ( , )y respectively defined on X*, the

topological dual space of X. Imbedding X into (X*)', we can suppose that a

measure ^ on ((X*)', 83^0 is Y-quasi-invariant and lies on X. Since the to-

pology of 7 is stronger than the weak topology of (X*)', from Theorem 4.2 we

see that the topology defined by ( , )y is weaker than the characteristic topology

V
On the other hand, since /* lies on X, the characteristic function is con-

tinuous in Sazonov topology of ( , )x, hence Sazonov topology is stronger than

V (Cf. [2], Sazonov topology is the topology defined by the family of all inner

products which are of the Hilbert-Schmidt type with respect to ( , )'x.) Thus,

the topology defined by ( , )y is weaker than Sazonov topology, namely ( , )'Y
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is continuous in Sazonov topology. This means that ( , )'y is Hilbert-Schmidt

with respect to ( , }'x. Therefore, on the space Y, the dual inner product ( , )x

must be Hilbert-Schmidt with respect to ( , )y. This implies that the canonical

imbedding Y-+X is of the Hilbert-Schmidt type, so that the proof has been com-

pleted. Q. E. D.

This theorem can be generalized to the case that Y is a complete metrizable

topological vector space.

Proposition 6.1. Let X be a Hilberl space, Y(c:X} be a complete metriza-

ble topological vector space imbedded continuously in X. Then, there exists a

Y-quasi-invariant measure on (X, 33X* n X) if and only if( , )x is of the Hilbert-

Schmidt type with respect to some continuous inner product ( , )H on Y.

Proof. The sufficiency part can be proved by considering the gaussian

measure corresponding to ( , )H.

For the proof of the necessity part, similarly with the proof of Theorem

6.1, we see that there exists a neighbourhood Fof 0 in Y such that \\-\\v is con-

tinuous in rr Since T^ is weaker than Sazonov topology of ( , )x, this implies

that || - \\v is continuous in Sazonov topology, therefore we have ||£||F = \\€\\'H
for some inner product ( , )'H which is of the Hilbert-Schmidt type with respect

to ( , yx.
On the space Y, considering the dual inner product ( , )H of ( , )'H, we see

that ( , )x is of the Hilbert-Schmidt type with respect to ( , )/f and that ( , )H

is continuous in Y. Q. E. D.

The reason why we discuss a measure on a Hilbert space is that we know

exactly the continuity of the characteristic function by Sazonov's theorem.

Even if X is not a Hilbert space, we can estimate TM by similar discussions,

if we know some results on the continuity of the characteristic function. For

instance, we can prove :

Proposition 6.2. For a sequence a = (an) of positive numbers, we shall

define the space (lp}a as follows:

(6.1) ('a ={* = (*»); Z c/jxj^ooj.
n-\

(If an=l, then we get the usual (lp).}

For l^p<oo, if an (lp')-quasi-invariant Borel measure exists on (/*%,

then we must have ]£ an<oo.
71=1
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Remark. Considering the case 0B=1, we obtain again the result of the

example in Section 5.

Proof. Suppose that a Borel measure \JL on (lp)a is (^')-quasi-invariant.

From Theorem 4.2, if we denote the unit ball of (lp') with V, the semi-norm

\\-\\v is continuous in the characteristic topology TM on 1?̂ .

Denoting the unit ball of (lp)a with B, we have

(6.2)

On the other hand, we have

where

(6.3)
JnB

Therefore, the topology defined by the family of semi-norms || • ||B is stronger

than Tp. Thus, the semi-norm || • ||K is continuous in the topology defined by

{|| • || J, so that we have

(6.4) 300, 3w,

Putting ek = (5kn)n=li2_ER$, we have

|c, x = |jc

so that xe V implies \(ek, x)|^l, thus we have 11^11^ = 1- Substituting this into

(6.4), we get l<£C||ek||B, namely we get

(6.5) l^c \xk\dv(x).
JnB

Taking the p-th power of the both hand sides, and applying Holder's inequality,

we get

(6.6) l^CM \xk\'drix).
JnB

Multiplying ak and summing up the both hand sides with fc, we have

(6.7) E
k=l
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00

but the integrand being ^np, we get X ak^Cpnp<co. This completes the
/c=i

proof of Proposition 6.2. Q. E. D.
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Added in proof: Note for the last statement in Section 4: Under the assumption that Tff is
locally convex, Tft=E* occurs only if (E, TM) is a Hilbert space. This result was obtained
recently by H. Shimomura, and will be published in the near future.




