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Translationally Invariant Measure on the Infinite
Dimensional Vector Space

By

Yasuo YAMASAKI*

Introduction

On an infinite dimensional vector space, any measure can not be invariant
nor quasi-invariant under all translations ([1]1[2]). However, for some dense
subspace E;, there exist such measures that are E,-quasi-invariant, i.e. quasi-
invariant under the translations: x—»x+¢& where £ € E;. For instance, Gaussian
measure g on R is (/?)-quasi-invariant. We have many other quasi-invariant
measures ([3]), but the known examples including the measure g above have no
equivalent invariant measure. Historically the translational quasi-invariance
of probability measures has been discussed in detail ([4]), while the study of
translational invariance has been neglected, perhaps because of difficulties of
infinite measures which have less connection with the theory of probability.

In this paper, we shall construct directly a o-finite invariant measure.
First we consider the product of Lebesgue measure and uniform probability
measures on R*x[—1/2, 1/2]®, and in the limit of n—o0 we obtain the re-
quested measure 4 on R*®. We can easily show that p is RP-invariant, and a
detailed study shows that u is (I')-invariant. We can modify u to get an (/?)-
invariant measure, and other modifications can give invariant measures with
respect to a larger subspace of R®.

The measure p thus constructed is translationally ergodic, rotationally
invariant, and rotationally ergodic. It is singular with Gaussian measures, so
that the uniqueness of rotationally invariant measure ([1]) does not hold for
infinite measures.

Finally we shall prove the existence of a measure which is invariant both
under translations and homotheties. This fact, which is false for the finite
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dimensional case, arises from the singularity of the infinite dimensional Lebesgue
measure with respect to homotheties.

§1. Infiniteness of RY-Invariant Measure

Let X be a vector space, and u be a measure on X (defined on a suitable
o-ring B). For x € X, we define the translated measure t,u by

(1.1) T u(B)=u(B—x), YBe®B,
assuming that B is invariant under translations.

Let Y be a subspace of X. We say that y is Y-invariant if
(1.2) YyeY, tu=u,
and that p is Y-quasi-invariant if
(1.3) YyeY, tu~u,

where u,~u, means that yu, and p, are equivalent in the sense of absolute
continuity.

If u~p' and if p is Y-quasi-invariant, then p’ is evidently Y-quasi-invariant.
Especially, if u~py' and if p is Y-invariant, then u’ is Y-quasi-invariant. The
converse is not always true. Namely, even if u is Y-quasi-invariant, y has not
always an equivalent Y-invariant measure.

Let R® be the vector space consisting of all real sequences. It contains
R as a subspace where

(1.4) Ry ={(x,) eR*; IN, 2 N=x,=0}.

Proposition 1.1. On the space R%, no finite Borel measure (with respect
to the weak topology) is RY-invariant.

Proof. Let p, be the projection of R® to R";
(1.5) DPnt X=(X1, X25eus Xpse-.) ER® = (X4, X5,..., X,) ER".

It is a measurable map from R® onto R”, namely denoting the Borel fields of
R* and R”* with B and B, respectively, we have p,(B,) =B.
For a given Borel measure y on R®, we define the measure p, on B, as

(1.6) .u(p;I(Bn)) =uB,) , VBn €B,.

If u is a finite measure, then u, is evidently finite. On the other hand, for x e R®
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and BnE Qim we have p;l(Bn)—x=p;1(Bn—pn(x))s so that
(I 7) Tx.u(pzl(Bn)) =Tp,‘(x)”n(Bn) ’

hence the R®-invariance of u implies the R-invariance of p, (because p,(RY¥)
=R"). However, it is well known that on the space R”, the Lebesgue measure
is the only one which is o-finite and R"-invariant, so no R"-invariant measure
on R" is finite. Therefore on the space R®, no Ry-invariant measure is finite.

Q.E.D.

We can prove a more detailed result; for every o-finite Ry-invariant Borel
measure 4 on R, its projection p, to R” is necessarily (0, o) type.

Proposition 1.2. Let u be a o-finite R¥-invariant Borel measure on R®.
For the measure u, defined in (1.6), we have

U(B,)=0  if the Lebesgue measure of B,=0,
(1.8)

U(B,)=00 if the Lebesgue measure of B,>0.

Proof. First, let v be a finite measure equivalent with p. Since v is Ry-
quasi-invariant, its projection v, is R"-quasi-invariant. It is well known that on
the space R”, every R"-quasi-invariant o-finite measure is equivalent with the
Lebesgue measure, so v,, hence u,, is equivalent with the Lebesgue measure.
Therefore u,(B,)=0 if and only if the Lebesgue measure of B, is zero.

Next, we shall derive a contradiction assuming that for some B,e B, we
have O<yu,(B,)<w. For x=(x;, X5,...) ER®, put ¢, (*)=(X,+1> Xp4+2,---) ER®,
then by the correspondence x«(p,(x), 4,(x)), we have the isomorphism R®~R”
x R®. In this sense, u can be regarded as a measure on R” x R®. Putting

(1.9) wB)=wB,xB), YBeB,

we define a Borel measure v on R®. Since WR®)=pu(B, x R®)=p,(B,)< o0, v is
a finite measure. On the other hand, for x e Ry we have

W(B—x)=u(B, x (B—x))=uB,x B—(0, x))=u(B, x B)=¥B),

so that v is R@-invariant. This contradicts with Proposition 1.1, so we have
proved the non-existence of such B, that satisfies 0 < u,(B,) < co. Q.E.D.

Thus, we have shown that even if there exists an R¥-invariant o-finite
measure on R®, its projection on each R” is (0, o) type. This situation is just
the case of a self-consistent sequence of (0, co)-type measures, and we can not
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define the limit measure in a definite sense (see [8]). So if we want to define an
Ry -invariant measure p as a limit of some self-consistent sequence, we must rely
on a somewhat indirect discussion. Nevertheless, we can construct an R¥-
invariant o-finite measure rather easily, as shown later.

Before the construction of such a measure, we shall remark that among
Ry-quasi-invariant finite measures on R*®, some one has an equivalent RJ-
invariant o-finite measure, while another one has not. Many well known
measures belong to the latter case, as shown in the next section.

§2. Gaussian Measure and Stationary Product

Proposition 2.1. Let f(x) be a measurable function on R' which satisfies

f(x)>0 and Sw f(x)dx=1. Let u be the stationary product measure of f (i.e.

du=ﬁf(xi)dx;), then p is R¥-quasi-invariant but p has no equivalent R¥-
i=1

invariant o-finite measure.

Proposition 2.2. Consider an inner product ( , ), on the space Ry. If
the topology defined by ( , ), is identical with the topology of (I1?) (on RY),
then the Gaussian measure corresponding to ( , ), is Ry-quasi-invariant, but

it has no equivalent R¥-invariant o-finite measure.

Proof of Proposition 2.1. As proved in [3], the stationary product measure
uis RP-ergodic. Let X be the permutation group on the set of all natural num-
bers N={1, 2,...}. X can be regarded as a transformation group on R%, and u
is Z-invariant. Let X, be the subgroup of X generated by all transpositions (of
two elements of N). X, consists of such a permutation ¢ € X that satisfies o(i)=1
except finite numbers of i e N. As shown in [3], the measure p is X,-ergodic.

Now, we shall derive a contradiction assuming that u has an equivalent
R§-invariant o-finite measure v. Since p~v and p is Xy-invariant and X-
ergodic, if v is Xy-invariant, then we have y=cv for some constant ¢>0. Thus,
the R¥-invariance of v implies that of u, which is a contradiction.

Therefore, it is sufficient to prove that v is Xy-invariant, namely Yo € X,

T,v="v, where
(2.1) 1, v(B)=v(c"1(B)), YVBe®.

Since T,u=u, we have 7,v~v. On the other hand, v is Ry-ergodic because u
is so. Therefore if 7,v is RP-invariant, then we have t,v=c,v for some constant
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¢,>0. Especially for a transposition o, 02=I implies c¢2=1, hence c¢,=1.
This means that v is invariant under any transposition. Since X, is generated
by the set of all transpositions, we have proved the X-invariance of v.

To complete the proof of Proposition, it remains only to prove that 7,v is
R@-invariant. Since v is Ry-invariant, we have 7,v=v for any x e R§. There-
fore

(2.2) YxeRQ, T,Tv=1,v.

However, we can easily show 1,7,v=1,,7,V, so (2.2) implies that 7,v is o(R)-
invariant. Since ¢ maps Ry onto R¥, namely o(Ry)=RY, we have proved the
Rg-invariance of 7,v. Q.E.D.

Next we shall prove Proposition 2.2. For the inner product ( , ) defining
the topology of (I2), the corresponding Gaussian measure is the stationary
product of one-dimensional Gaussian measures, so Proposition 2.2 is a special
case of Proposition 2.1. For a general inner product ( , ),, the corresponding
Gaussian measure is not always a product measure, so Proposition 2.2 is not
included in Proposition 2.1.

For a Borel measure u on R®, we shall denote the set of all admissible trans-
lations by T,, namely:

(2.3) T,={xeR®; t,u~pu}.

For the Gaussian measure pu corresponding to the inner product ( , );, we
have T,=L where L is the topological dual of R§ with respect to ( , );, and u
is X-ergodic if and only if X is dense in L with the dual topology (c.f. [1] or [6]).
If the topology defined by ( , ), is identical with that of (I2), then L=(I?), so u
is RP-quasi-invariant and Rg-ergodic.

As proved later, Proposition 2.2 is valid under a weaker assumption:

(%) RY is contained densely in L.

If (¢, &), =0 implies ¢ =0, there exists an algebraic isomorphism 4 from R¥ onto
R such that

2.4) (& my=(4¢, An), ¢ neRy,

where ( , ) is the usual inner product of (I2). In this case, since L=A%*(1?),
the assumption (*) is equivalent with

(%%) A*YRY) is contained densely in (/2),
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where A* is the adjoint map of 4 defined on R®.

Let G be the rotation group of R® with respect to the inner preduct ( , ),
then the Gaussian measure y is G-invariant. Let G, be the group of all finite
dimensional rotations. (U € G is called finite dimensional, if there exists a finite
dimensional subspace R of RY such that Ux=x on Rt.) Then G acts transi-
tively on the unit sphere of R®, so u is Gy-ergodic (c.f. [1]). Note that G, is
generated by the set of all two dimensional rotations.

Proof of Proposition 2.2. We shall derive a contradiction assuming that
u has an equivalent R¥-invariant o-finite measure v. Since u~v and u is Gy-
invariant and Gg-ergodic, if v is Gy-invariant, then we have u=cv for some
constant ¢>0. Thus, the R¥-invariance of v implies that of y, which is a con-
tradiction.

Therefore, it is sufficient to prove that v is Gy-invariant, namely YU € G,,

Tyv="v, where
(2.5) y(B)=w(U*1(B)), YBe®.

Since tyu=p, we have tyv~v. On the other hand under the assumption (x), u
is RP-quasi-invariant and R¥-ergodic, hence v is so. Therefore if 7,v is R¥-
invariant, then we have tyv=cyv for some constant c;>0. We want to derive
cy=1, but even if U is a two-dimiensional rotation, we have not always U%?=1,
so the proof is not straightforward as in Proposition 2.1.

Moreover, the proof of R§-invariance of 7yv is not so easy. Since v is
Ry-invariant, we have 7,v=v for any xe Ry. Therefore

(2.6) YxeR®, Tyt v=1yV.

However, we can easily show 7,7, U =Ty, TyV, so (2.6) implies that 7,vis U¥(RE)-
invariant. (U* is the adjoint map of U defined on R®.) But U* does not always
map R¥ onto RY, so we can not conclude the Ry-invariance of yv.

Since U is a rotation with respect to the inner product ( , );, U* maps L
onto L (=the topological dual of RF with respect to ( , );). Therefore, if v is

L-invariant, we have
2.7) YxeL, tyty=1yv

instead of (2.6), thus t,v is U*(L)= L-invariant, hence it is Ry-invariant.
So, we want to prove the L-invariance of v. It is L-quasi-invariant because

U is so, namely Yxe L, t,v~v. Since 1,v is R¥-invariant, the R¥-ergodicity of
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v implies that t,v=c,v for some constant ¢,>0. We want to derive c,=1. In
(2.6) if we put U= —1I, then U*= —I maps RY onto R¥, so 7_,v is R¥-invariant.
Moreover U2=(—I)?=I implies ¢_,=1, so that we have 7_,v=v. Now,
applying 7_; on the both hand sides of 7,v=c,v (x € L), we have 7_,t_;v=c,T_,v,
so T_pv=v implies 7_,v=c,v hence c_,=c,. Thus, we have v=1_,(1,v)
=c_,c,v=c2, so we get ¢, =1.

Here, we have completed the proof of R¥-invariance of tyv (U e Gy). So
as mentioned before, we have

(2.8) YUeGy, 3Fcy>0, tyv=cyv.

We want to derive ¢cy=1. It is sufficient to consider only the case that U is a
two-dimensional rotation.

For any x e R¥ such that || x|, =1, put
(2.9) Uy RF2y - y—2x, ¥);X,
then U, is a rotation with respect to ( , );. Since U2=], we have ¢, =1, hence
Tva=V.

Next, suppose that U is an arbitrary two-dimensional rotation, namely for
some two-dimensional subspace R of Ry, we have U=1I on R*. Consider an

orthonormal system {x, y} of R with respect to ( , );, then U can be represented
by an orthogonal matrix:

cosf, sin @
(2.10) U~ .
—sin 0, cosf

The matrix corresponding to U, UU, changes the signs of the first column and
the first row of that of U, so it changes 6 to —6, hence we have U, UU,=U"1.
Thus the U,-invariance of v implies cy=cy-1, hence ci=1,s0 cy=1. Q.E.D.

§3. Lebesgue Measure on R”

In this section, we shall construct concretely an Ry-invariant g-finite measure
on R*.

First, consider the Lebesgue measure on R”* and denote it by 2,. Evidently,
for a Borel set B, of R* we have

3.1 1B =ua(Bax| =5, % ]).
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For m>n, put
3.2) L,,,,,={x=(xk)eR"‘; n<k§m=|xkl§-_}} ,

and restrict 4,, on L,, (we shall denote the restricted measure by the same no-
tation 4,,). Then, {2,},.>, becomes a self-consistent sequence on the measurable
spaces {Lyy By N Lywtmsn Where B, is the Borel field of R™. Since each 4,
is o-finite, according to [8], {4,,}m>. can be extended uniquely to the projective
limit measure.

By the way, the projective limit measurable space of {L,,,, B, N Lyu}m>n 1S
measurably isomorphic with {L,, B n L,}, where

(3.3) L,,={x=(xk)eR°°;lz<k=>|xklg—;*}
~ n ) L ]' e
S
and B is the Borel field of R®. Therefore, the projective limit measure of {4,,} >

can be regarded as a measure on {L,, BN L,}. Weshall denote it by y,. Name-
ly we have

(3.9) m>n, YB,e%B,,
m mn #"< m X [ '1) 9 ’]j ‘]w> i"l( "l) .
-— — —J

In other words, we get the following result. Imbedding L, into R®, we regard
u, as a measure on R®. Denoting the projection from R*® onto R” by p,, we

have
(3'5) ’11 > n 3 V‘Bm E %m ? l’lll(p;ll(Bm)) = )"m(Bm n Lmn) .

Now, for m>n we have evidently L,=L,. Here we shall prove that the
restriction of u,, on L, is identical with y,. Namely we shall show;

(3.6) m>n=YBe®B, u(B)=p,(BnL,).

For this purpose, we shall define u;, by u,(B)=u,(BnL,) and prove u,=pu,.
Consider the projection of u, onto R/ (j>m), then we have

(3.7) (P37 1(B)) = p(p7*(B;) 0 L)
=y’m(p;1(BJ n Ljn) n L_,) .

However, j>m implies u,(L%)=0, so from (3.5) the right hand side of (3.7) is
equal with
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=u(P5'(B)))-

This equality holds for every j>m and every B; e B;, so we get u,=u, because
of the uniqueness of the extension of self-consistent o-finite measures. Thus,
we have proved (3.6).

Definition 3.1. Using the measure u, given in (3.5), we put

(3.8) u(B)=lim p,(B), YBe®B.

H—>00

Then u is called the Lebesgue measure on R®.

As shown later, we have a {family of ‘‘Lebesgue measures” with parameters
{ai, b}, and the above one (given in (3.8)) is only an example of them. But
here according to Definition 3.1, we adopt the special one (3.8) as the
Lebesgue measure on R®.

Proposition 3.1. The Lebesgue measure p on R® is an Ry-invariant o-
finite Borel measure on R™.

Proof. First we shall show that y is a g-additive measure on B. u(¢)=0
is evident, because u,(¢)=0 for each n. Next, for a sequence of mutually
disjoint Borel sets {B,} of R®, we shall show that

(3.9) n(UB)=3 uBy.
k=1 k=1

From (3.6), {u,(B)} is monotonically increasing with respect to n, so the limit
in (3.8) exists certainly. Since each p, is a o-additive measure, putting o,

=u,(B,) =0, the left side of (3.9) is equal with lim f_‘, o, While the right side is

n—®© k=1

equal with i lima,,. Since a,, is monotonically increasing with respect to n,
the sum ankd= lt'il_(;w]imit commute mutually, according to Lebesgue’s theorem
(regarding the sum as the integral by an atomic measure on the set of natural
numbers). Thus, (3.9) has been proved.

Second, we shall show that u is o-finite. Each p, is o-finite, because it is
the projective limit of o-finite measures. From (3.6) and (3.8), we see that
Bc L, implies (B)=p,(B). Therefore i is g-finite on L,. Hence, u is o-finite

on \ci/ L,. On the other hand, from (3.6) we have p,(( G L,)€)=0 for each n,
k=1

n=1

so we get u(( v L,)¢)=0. This means that u is o-finite on R”.
k=1
Lastly, we shall prove the R¥-invariance of u. Namely, we shall show that
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(3.10) YxeRY, YBeB, uB-—x)=wBh).

First, note that x=(x,) e RY implies 3n, k>n=>x,=0. For this n, we shall show
that

(3.11) m> n=>p,(B—x)=pu,(B).

For this purpose we shall define y, by u,(B)=u,(B—x), and prove u,,=p,,.
Consider the projection of uj, on RJ (j>m), then we have

(3.12) (P71 (B)) = (P57 '(B;) — X)
= (P57 (B;— (X)) -

However, using (3.5) as well as the relation L;,—p;(x)=L;,, and the R/-invari-
ance of 4;, we can rewrite the right hand side of (3.12) as;

2{(Bj— p(x)) N Lj)=A4B; N Lj»— p(x))
=lj(Bj n ij) =.um(p;1(Bj)) .
This equality holds for every j>m and every B; € B, so we get u,, = pu,, because
of the uniqueness of the extension of self-consistent o-finite measures. Thus,

for any m>n we have u,,(B—x)=u,(B), so letting m—> o0 we get (3.10).
Q.E.D.

§4. Equivalent Measure in Product Type

The Lebesgue measure on R® has equivalent finite measures in product
type. In this section, we shall give an example of them.

Let {c,} be a sequence of positive numbers such that 0<c¢,<1. On the
real line R1, for each n consider a function f,(x) which satisfies;

o<fi<t, [ feodx=1,

(4.1
fn (JC) =C,y for —

IIA

x=

I\Jl'——
l\)'»——A

Such a function f,(x) exists certainly for any given constant 0<c,<1.

Proposition 4.1. Define a product measure v on R as follows:
(4.2) dv =TT f,(x)dx, .
n=1

o0
If T1 ¢,>0, then v is equivalent with the Lebesgue measure u on R®.
n=1 .
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Remark. Of course, v is R¥-quasi-invariant. According to [3], every
product measure on R® is R¥-ergodic. Therefore, v, hence p also, is R-
ergodic.

Proof. For x=(x,) € R, define a function f(x) by;

(4.3 =11 fx)-

Since 0< f,(x,)<1, the partial product decreases monotonically, so that the
infinite product in (4.3) exists certainly. If xeL,, then |x,|<1/2 for k>n, so
we have

F@=11 /i) IT e>0.

Thus f(x) is positive on L,, hence positive on \U L,. On the other hand, since

n=1
n(( @ L,)¢)=0, we see that f(x) is positive for u-almost all x.
n=1
Now, define a measure v on R® by;
4.49) av'=fdu.
Then, we have evidently v'~u. Therefore, it is sufficient to prove v’ =v.
Consider the projection of v’ on R™;

(4.5) V(P (By)) = lim v'(py,'(B,,) N Ly)

= lim S
n—e JprY(Bm)NL,

~tim {  fdu o
Pm' (Bm)

n—o

J(X)du(x)

- . N
= lim lim g
n—0 N> Jpnl(Bm) k=

— lim lim S TT fi(x)dx,---dxy.

n=>® N-®© Jpil(Bm)NLyn k=1

) Sllxdu(x)

The last equality is due to (3.5).
However, for m<n<N, we have

—1 — n—m _1_ L N
me(Bm) n LNn_Bm xR X| = 2°72 s

[

so that the last side of (4.5) is equal with

[, [LAeods-dctim{ 11 (* feoan
B, k=1 n—o —00

k=m+1
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1

N
xlim T S fk(mdxk}

N-o k=n+1

Using (4.1) and (4.2), we see that it is equal with

v(pp}(B,)) lim lim 11 e,.

1—>00 N—oo k=n+1

N
But the assumption H ¢,>0 implies lim lim [] ¢,=1, so we have proved the
n—-w N-owk=n+1
equality v'(p,'(Bn) = V(p,,. (B,))-
This equality holds for every m and every B,,€B,,, so we get v=v' because
of the uniqueness of the extension of self-consistent finite measures. Q.E.D.

§5. Determination of T,

As mentioned in Proposition 3.1, the Lebesgue measure p on R® is R¥-
invariant. In this section, we shall determine exactly the set of all admissible
translations T, defined in (2.3).

First we shall remark that for every x e T,, we have T, u=pu. As seen from
(3.5), u, is an even measure (i.e. u,(— B)=p,(B)), so that the limit measure p is
also an even measure. Therefore, by a similar discussion with the proof of L-
invariance of v below (2.7), we can conclude that 7.~ p implies T,u=pu.

Since p and t,u are R§-ergodic, if x¢& T, then we have 7,u L p (singular with
each other). Thus, we get the following conclusion:

For each xeR™®, we have either T u=u or t,ulu. Moreover T u=p is
equivalent with xe T,

Proposition 5.1. T,=(I*). Namely, p is exactly (I')-invariant.

Proof. Put Ly=[-1/2, 1/2]*, then for each n we have L,=p,([—1/2,
1/2]") n L,, so that from (3.5) we get p,(Ly)=4,([—1/2, 1/2]*)=1. Therefore,
letting n— 00, we have u(Ly)=1.

Now, suppose that t,u=u. Then, we must have u(L,—x)=1. Here, we
shall calculate p,(L,—x) to find a necessary condition for t,u=u. For x=(x;)
€R>, we have
. Lo=xepa(| =55 [ =pu0) = (1| -4 =50 5 -5 ),

$0 supposing n<m, we have from (3.5)
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52 wo-0=i(f1 ~Loxn L oy]
=1L 2 2 i
m 1 1 l ‘l
X k=l;[+1 <1[__2__xk’ 2 _x":t n [—kj ’ f:}))
= H (I_ka|)+=
k=n+1

where r, =Max (0, r). Therefore, u(L,—x)=1 implies that

(5.3) lim lim [T (I=|x0)s=1.

n-n moo k=p+1

Thus, for a sufficiently large n, we have ]"DI (1—|x)+>0. This means
hk=n+1

f‘, |x,| < oo, namely x e (I'). So the fact: t,u=pu=>xe(I') has been proved.
= Conversely, assuming x €(I'), we shall derive xe T,. For the measure v
defined by (4.2), we have v~y so that T,=T,. Since v is a product measure,
x=(x,) belongs to T, if and only if

(5.4) 11" VROaRm=%)dv,>0,

according to [3].
However, from (4.1) we have

(5.5) [ VRO dy,

dynzcn(l - Ian+ .

n
g[—%,%ln[——%+x",%+x,.]

oo
From the assumption in Proposition 4.1, we have [] ¢,>0. Since xe(/!)

n=1

implies ﬁ (1—1x,])+>0 for a sufficiently large m, we see that (5.4) is satisfied

for eve;y x € (1Y), hence we get (I)<=T,. Q.E.D.

Remark. As seen from (3.6), we have u((@ L)%)=0. Since L,c(I*)
for every n, we have u((I*)¢)=0. Thus the Lebe;g_&e measure pu on R* lies on
(I®). Therefore u (also the equivalent measure v in (4.2)) gives an example of
an (I')-quasi-invariant measure lying on (I®).

§6. Linear Transformations of the Lebesgue Measure

Consider two sequences a=(a,)eR* and b=(b,)eR®, and suppose that
a,<b, for every k.
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For n<m, putting
(6.1) L, (a, b)y={x=(x)eR™; n<k<m=x,e[a,, b}
=R x [1 [a b,
k=n+1

the sequence of measurable spaces {L,,(a, b), B,,N L,.(a, b)},>, forms a
projective sequence (with respect to the usual projection). Furthermore, the
sequence of measures {4,/ ﬁ (by—a)}m>n Where 4, is the Lebesgue measure
on R™, forms a self-consistg;; sequence on {L,,(a, b), B,,n L,,(a, b)}. There-
fore, the sequence {i,,,/’fll(bk——ak)} can be extended uniquely to a g-additive

measure A, , on the projective limit measurable space:
(6'2) Ln(aa b)={x=(xk)ERw; n<k:xkE [ak7 bk]}

=R"x [T [ap byl.
k=n+1

Regarding u,.,, as a measure on R®, we can define a measure y,, as the
limit measure of u,,5 M, is @ ‘‘Lebesgue measure” with parameters a and b,
as remarked below Definition 3.1.

Map is @ special case of translations and linear transformations of p, as
explained below. Let u be the Lebesgue measure on R® defined in Definition
3.1. Then u is RP-invariant and RP-ergodic. For any x € R®, the translated
measure T,u is also Ry-invariant and Ry-ergodic, and 7,u L p if xe ().

Next, for an algebraic isomorphism A4 from R onto RE, the transformed
measure T,u is A¥(RY)-invariant and A¥(R¥)-ergodic. (t,u is defined by 7 ,u(B)
=u(A*"1(B)) for every Be B.) From Proposition 5.1, we can replace Ry by
(IY), so that whenever A* 1(R®) is contained densely in ('), t,u (hence 7,71
also) is R¥-invariant and R¥-ergodic. (For ergodicity, see [6].)

Thus, starting from u defined in Definition 3.1, by the translations and linear
transformations we can construct infinitely many R¥-invariant and Rg-ergodic
measures.

For given a e R® and b € R®, putting x=(a + b)/2 and defining 4 by y=(y,)
—Ay=((b,—a,)y,), we have p, ,=7,7,u. In this sense, y,, is a special example
of translations and linear transformations of p.

Especially for a e RY (namely a,> 0 for every k), u_, , is denoted simply with
Ug. Defining A by y=(y,)—>Ay=a,y,), we have u,=1 4.

For a suitable a e RY, u, becomes (I?)-invariant. Generally u, is A*((11))-
invariant, however A*((I!)) is identical with the following (I1),.
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(6.3 ®={r=0nere; ¥ Lilcol.

If i alz < oo (for instance if a,=n), we have (I?)=(I'),, thus u, becomes an
( Iz)n-irllva;iant measure.

Not insisting on ([2), if we choose a € R suitably, T, =(I'), becomes a very
large space. In this sense, even for a sufficiently large subspace X of R®, we can
construct an X-invariant measure.

However the measure y, lies on (I°),={y=(y,) e R*®; sup |y,|/a, <}, so
if we choose T, =(I'), to be a very large space, then (I*), becomes a larger space,

thus the gap between T, and the carrier of p, is not narrowed.

§7. Mutual Equivalence of z

In this section, we shall discuss the condition for u~t,u. Here, we are
interested in the norm of (I!), so differently from the case of Gaussian measures
(see [5] or [6]), it is difficult to find the necessary and sufficient condition for
KTyl

We shall denote with A4, the set of algebraic isomorphisms A which satisfy
U~ T4l

Proposition 7.1. For the Lebesgue measure i on R®, we have T,T,u
~T.Tap if and only if x—x" € A*((I')) and AA'* € A,.

Proof. Before the proof of sufficiency, we shall remark that 7,(t,.u)
=144, because for every BeB we have 1,(11)(B)=r1,u(4*1(B))
=u(A"* 1 A*1(B)) = u((A"A)*~(B)) = 4 4(B).

Now suppose that 447! e 4, then we have p~1, -4, so operating 7,
on the both hand sides, we get T u~7T, (T 4 -1)=74u. Since T u is A*((1V))-
invariant, if x—x’e A*((I')), then we have 7, u~1,_, 7,41, SO operating 7, on
the both hand sides, we get 7,7 ,u~7,T,u. This completes the proof of suf-
ficiency.

Conversely, suppose that t,7,u~7,.T,u, then we have T, T, u~T U.
Since both 744 and 7 4.4 are even measures, operating T_; on the beth hand sides,
we get T, _, T u~7u. Therefore we have 1, T u~7, _, T, hence 15, T 4u
~1 44, Which implies x—x" € A*((I')). Combining this with 7 ,u~1,_,.Tu, We
have 7 u~74u, hence p~t,4.-1u. This implies A4 1 e 4,. Q.E.D.

Since it is difficult to determine the set 4, concretely, we shall be content
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with a rough necessary condition: 4 A,=>A*((I))=(l'). This condition comes
from T,=(I') and T;,,=A*((I')). We shall remark that from this condition,
AA'"' e A, implies A¥((1'))=A"*((I")).

On the sufficient condition for AeA,, we shall discuss in a somewhat
detailed manner.

Proposition 7.2.

1) Let X be the permutation group of the set of all natural numbers N.
Regarding X as a transformation group on R§, we have Zc A,.

2) For an algebraic isomorphism A from RY onto RY, suppose that the
image of I — A is finite dimensional, then we have A € A, whenever A*((I'))=(I1).

3) For an algebraic isomorphism A such that y=(y,)— Ay =(a,y,) (Where
a,>0 for any n), we have A€ A, if and only if

(1.1) §1|1—a,,|<oo.

Corollary (of 3)). For four elements a, b, a’ and b’ of R®, suppose that
a,<b, and a, <b, for every n. Then, we have

(7'2) ”a,bNI'l'a’,b'
©§ 1 __bn—an

7

n=1 b;,—a,,

i a,+b,—a,—b,

<o and
n=1 b,,—tl,,

<.

The corollary can be proved combining Proposition 7.1 with 3) of Propo-
sition 7.2.

We shall prove Proposition 7.2 after the following Proposition 7.3.

Next, we shall inquire whether an R@-invariant and R¥-ergodic measure
exists besides the translations and linear transformations of the Lebesgue
measure, namely besides measures of the form t,7,u. This question has not
been answered up to the present. But under some additional condition, we
can insist the uniqueness of the Lebesgue measure.

Proposition 7.3. Let p' be an Ry-invariant and R-ergodic, o-finite Borel
measure on R®. Putting Ly=[—-1/2, 1/2]%°, if 0<p'(Ly)<o0, then we have
w =cu for some constant ¢>0, where y is the Lebesgue measure on R®.

Proof. Put L,=R*x[—1/2, 1/2]®, then we have Ly=L, and @ L, is an

n=1
Ry-invariant set. Therefore from the R¥-ergodicity of u’, we have

(7.3) w (O L)e)=0.

n=1
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From this and the o-additivity of p’, we have
(7.9 YBeB, p'(B)=limu(BnL,).

Therefore, putting u,(B)=p'(BnL,), if we can prove u,(B)=cpu,(B) for every
Be B, then we get u'=cu from (7.4).

Now, for each x=(x,) eRY that satisfies k>n=>x,=0, we have 7,.u,=u,,
because u' is Rg-invariant and L,=L,—x, hence (B—x)nNL,=BnL,—x.
Therefore, the projection of u, onto R” is R”-invariant. On the other hand,
since pn(py ([—1/2, 1/121M)) =’ ([—1/2, 1/2]"xR®) N L,)='(Lo), the assump-
tion 0 < 1/(Ly) < oo implies that the projection of y,, onto R” is a o-finite measure.
Thus, from the uniqueness of an R”-invariant o-finite measure on R”, there exists
a constant ¢>0 such that

(7.5) YB,€B,, w(p;'(B))=cl(B,),
where 4, is the Lebesgue measure on R”». Especially, substituting B,=[—1/2,
1/2]* in (7.5), we have c=pu'(Ly), so that ¢ does not depend on n.

Next, suppose that m>n. Since we have u,(p,'(B,)=u'(p,'(B..) NL,)
=@ (ppn' (B 0 L) 0 L) = p(P7 (B 0 L)) = € 2By N L) = ctn(p ' (By)),  (the
last equality comes from (3.5)), the projections of u;, and cu, onto R™ (m>n)
are identical. Therefore from the uniqueness of the extension of self-consistent
o-finite measures, we get u,=cu,. Thus, in the limit of n—oco0, we get u’' =cpu

where ¢=pu'(Ly). Q.E.D.
Corollary.

1) Let i’ be an R¥-invariant and RY-ergodic, o-finite Borel measure on
R®. For two elements a and b of R® such that a,<b, for every n, suppose that

(7.6) 0<([1 [ay b <o,

then we have p'=cu, for some constant ¢>0.

2) For an algebraic isomorphism A from RY onto Ry, let p' be an
A*(RY)-invariant and A*(RY)-ergodic, o-finite Borel measure on R®. Suppose
that for some x € R® we have
7.7 O<u'(A*(Lg)+x)< o0,
then we have y'=ct,t 41 for some constant ¢>0.

Proof. 1) is a special case of 2). To prove 2), it is sufficient to apply
Proposition 7.3 to the measure 7,-:17_, 4.
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Thus, the question whether an R¥-invariant and RZ-ergodic g-finite measure
exists besides the translations and linear transformations of the Lebesgue
measure can be reduced to the question whether there exists a measure y’ which
does not satisfy (7.6) for any a and b of R®, nor (7.7) for any x and A. If such
a measure u’ exists, it becomes (0, co)-type on the set of infinite dimensional
rectangles and their images by linear transformations.

Now, we shall prove Proposition 7.2, using Proposition 7.3. The proof
of 1) is easy. For any oeZX, we have evidently 6(Ly)=L,, so that we have
T.4(Lo)=u(o(Ly))=u(Lo)=1. Therefore from Proposition 7.3, we get t,u=p.

Next, we shall prove 2). Suppose that the image of I - A4 is finite dimen-
sional, then for some n the image is contained in R” x {0}. Therefore putting
e,=(0,0,..., 1, 0,...) (only the k-th coordinate is 1), A has the following form:

(7.8) Ae,=e,+ ix oy je; -
=

Then for y=(y,) e R, putting 4*¥*y=(z,), we have

(7.9) Zg=y;+ ;1 O¥j-

On the other hand, from the assumption A*((I'))=(l'), 7 ,u is RP-invariant
and R¥-ergodic, therefore from Proposition 7.3 it is sufficient to prove 0< 1t u(L)
<o0. However from the definition of t,u, we have T, u(Ly)=pu(A*¥"1(Ly)).
Since y € A*~1(L,) is equivalent with A*y e L,, from (7.9) we have

e
(7.10) A L)=pr (M)N A PR,
=n

for 1=k=n}, and for k>n, M,

where M,={yeR" ka+lglakjyj|§—é_

={y eR¥; |y + 2 “kj.)’j|§—l“}-
j=1 2
Therefore we have
(7.11) w(A*71(Lo)) = lim ,(A*71(Ly))
N
=lim limp,(p; (M) N N pil(My).
m—o N—w® k=n+1
Supposing n<m <N, we have from (3.5)
N
pn(p' M) 0 P (MY)

N
=In((MyxRY) 0 N\ (M, xRY9) 0 Ly,)
=n+
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m r 1 1 n
=SM Am—n(}(H L 27 Z AijYjs '2——121 “ij’ij
v n 11
XlN—m( H ( _—%-_E___: “ij’,, 1 Z “kjy]] !:_?97:D)dyldy2dyn

=S T (1—1Zak,y,l)+dhdh Ay,

Mn k=m+1

We shall substitute this into (7.11). From the assumption A*((I'))=(IY), we
have A*(i‘, yje;) € (l'), hence we have i [i‘, oy;yjl<oo. Therefore we get

lim lim H (1—|Z o;yil)+=1 for any y=(y;)eR", so that Lebesgue’s

m—© N-®© k=m+1

theorem assures that
WA*(Lo)) =2,(Mp)=1/det | (6;+ )1 <k, j<nl -

This completes the proof of 2) of Proposition 7.2.

Lastly we shall prove 3). From the assumption for 4, we have A*(RY)
=Ry, so that t,u is Ry-invariant and Ry-ergodic. Therefore A€ 4,, namely
T4~ U, is equivalent with 0 <7 ,u(Ly) < co.

However we have t, u(Ly)=u(A* 1(L)y)=pu( 1ﬁ1 [—1/2a;,1/2a,]). Since
T u~u is equivalent with p~t,-:u, for the convenience of calculation we
shall consider A4~! instead of A. Then, the necessary and sufficient condition
for T u~p is as follows:

(7.12) O<y<ﬁ l_ " ><oo
k=1L
In order to check the condition (7.12), we shall calculate as follows:

WL ~5 5 )= tim e (11

n— o

n—m m—®0

%
= lim lim ,,(p;l
(1

=1lim lim H a, 11 Min(l, a)

n—> m—o k=1 k=n+1

_hm(H 2, H Mm(l ay)) -

n->o k=1

Therefore, (7.12) is satisfied if and only if ﬁ Min (1, a,)>0 and ﬁ Max (1, ap)
k=1 k=1

0
<oo. However, the former is equivalent with } (1—a;), <oo, while the
k=1
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latter is equivalent with i (a,—1); <oo. Combining them, (7.12) is equivalent
k=1

with OZD‘, |1 —a,| <o, namely with (7.1). In other words, (7.1) is a necessary
k=1
and sufficient condition for A€ 4,. Q.E.D.

§8. Rotational Invariance and Ergodicity

The Lebesgue measure on R®, which is R§-invariant, is also invariant under
finite dimensional rotations. We shall prove this below.

Let G be the rotation group of RY with respect to the inner product ( , )
of (1), and let G, be a subgroup of G which consists of all finite dimensional
rotations (namely such rotations which become the identity mapping on R* for
some finite dimensional subspace R of RY).

Proposition 8.1. Let u be the Lebesgue measure on R®. For an element
x of R® and an algebraic isomorphism A from R¥ onto RY, 1.7T,4u is Gy-invari-

ant whenever it is RY-invariant and Ry-ergodic.

Proof. First we shall prove that t,7,u is Go-quasi-invariant. Namely we
shall prove

(8.1) YUEGy Tyl T i~ToT4HU-
Since TyT, T =Ty, T4ylt> from Proposition 7.1 it is sufficient to show
(8.2) x—U*xe A*((I')), and AU '47'ed,.

Now, for any Ue G, there exists n such that Ue,=e, for k>n (where
¢,=(0,0,...,1,0,...) (only the k-th coordinate is 1)). Then for each x=(x;)
€ R®, putting U*x=(y,), we have x,=y, for k>n, so that we get x — U*x e R§.
On the other hand, from the assumption that .7, is R¥-invariant, we have
RY = A*((IY)). Therefore we get x— U*x e A*((I')) for every x € R®, which is
one of the desired relations.

Next, U™t € G, implies that the image of ] — U~! is finite dimensional, hence
the image of AU—U"1)A"1=I—-AU"1A7!is so. Therefore from 2) of Propo-
sition 7.2, the relation (AU 1A-Y)*((IY))=(I') implies AU 'A"'eA,. How-
ever, since (AU 1A~ )*=A*"1U*"14% it is sufficient to show A*~1U*~14*((I1))
=(I1), namely U*~14*((I'))=A*({(11)).

Since for every xe R® we have x—U*xe A*((I!)) as proved above, x €
A*((IY) is equivalent with U*xe A*((I')), hence with xe U* 14*((I})). This



TRANSLATIONALLY INVARIANT MEASURE 713
means A*((I'))= U*~14*((I1)), which is the wanted relation.
Thus we have proved that t,7,u is Go-quasi-invariant. Then we have
(8'3) v Ue GO ’ 3cU >0 s TuTxTAR=CyT T4H,

because both 7,t,u and tyt,T,u are RP-invariant and Rg-ergodic. Using
similar discussions with those below (2.8) (considering .7 ,u instead of v), we can
derive ¢y =1. This means that t,7,u is Gy-invariant. Q.E.D.

However, u is not G-invariant. For instance, consider the following rota-
tion U:

(8.4) Uesi—4 =71—2‘“‘(92k— 1 e,
Ue2k=—V—/1§—(—e2k_1+e2k), k=1, 2,....
Then, we have
(8.5) UF1(Lo)={r=(x) eR; lxz,c_1+x2kl§‘/_;f_, oy — Xl §~/2_5
for k=1,2,.}.

Therefore, putting

(36)  By={(ri %) eRY x4 wl SV, [x -] <32

b

we have U*"1(L,)=BY%, so that for m>n we have

H2a(U* 1 (Lo)) £ p2a(BE X R™)
=)"2m(B'2n n L2m,2n)

={a(Ban -4 5 T =2z -0y

Letting m— o0, we get 1,,(U*1(L,))=0, and letting n— oo, we get w(U*~1(L,))
=0, namely tyu(Lo)=0. This implies tyu£ u. (Furthermore we can conclude
Typ L u because of Ry-ergodicity of u and t,u.) Thus, u is not quasi-invariant
with respect to U, hence u is not G-quasi-invariant.

We shall remark that G, acts transitively on the unit sphere of R¥. There-
fore, every Gg-invariant finite measure can be written as a superposition of
Gaussian measures (see [1]). But Proposition 8.1 gives a counter-example of
this fact for infinite Gy-invariant measures. (Since 7,t,u is RP-ergodic, if it is
a superposition of Gaussian measures, it must be a single Gaussian measure.
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This is impossible. Furthermore, 7,7, is not equivalent with a superposition
of Gaussian measures, because from Proposition 2.2 a Gaussian measure has
no equivalent o-finite R¥-invariant measure.)

Example. Defining 4 by y=(y,)—»4y=(a,y,), the measure p,=1,u is
(IY),-invariant and lies on (I®),, where (I1), is given by (6.3) and (I®), is explained
below (6.3). If ae(I?), then we have (I°),=(I2), so that we get the following
result: “‘On the space (/2), there exists a o-finite Borel measure (other than
Dirac measure) which is invariant under all finite dimensional rotations”.
For any given be(I') nRY, this measure can be chosen to be (I2),-invariant,
because putting a,=/b,, i, is (1),-invariant and lies on (1?). (be(I') implies

a e (1), so u, lies on (1?). On the other hand, (I2),=(I'), comes from i [x,l/a,
n=1
= i\/bnlxnllbné{i1 b,- 3 x3[b2}1/2)
n= n= n=1

Proposition 8.2. The Lebesgue measure p on R® is Gy-ergodic, where G,
is the group of all finite dimensional rotations.

Proof. Assuming u(BE U*(B))=0 for every U e G,, we shall prove u(B)
=0 or pu(B%)=0.

From (3.5), the restriction of u on L, becomes the infinite product of
uniform measures on [—1/2, 1/2] (namely, restrictions of one-dimensional
Lebesgue measures on [—1/2, 1/2]). Therefore, as shown in [3], the restriction
of pon Ly is Xy-ergodic. (X, denotes the group of permutations generated by
all transpositions of two elements of N.)

Now, we shall assume

(8.7) YUeG,, wBOU*B))=0.

Then, since Xy<=G,, we have w(BOo(B))=0 for every c0e€2,. On the other
hand, o(Ly)=L, implies o(B N Ly)=0(B) n Ly, therefore we have

(8.8) H(B N Ly©0(B N Lo))=u(BOa(B)) N Lo)=0.

Since the restriction of u on L, is Z,-ergodic, from (8.8) we get w(B N Ly)=0 or
W(BE N Ly)=0. So, considering B® instead of B if necessary, the proof will be
completed if we can derive u(B)=0 from u(B N L,)=0 under (8.7).

Under (8.7), w(Bn Ly)=0 implies u(U*(B)N Ly)=0 for every UeG,, so
we get u(Bn U*1(L,))=0 from the Gy-invariance of u. Furthermore, -con-
sidering a countable union with respect to U, we get
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(8.9) U,eGy, k=1,2,.... =u(Bn \J UF(Ly)=0.
k=1
Therefore, the proof will be completed, if we can show
(8.10) WieGo, k=12 u(J UHL))=0.
=1

Let G, be a subgroup of G, which consists of all rotations U such that
Ue,=¢, for k>n. G,, can be identified with the n-dimensional rotation group
O(n), which is separable with respect to the natural topology (the induced
topology from R”*). Namely, there exists a dense countable subset 4, of O(n).
Identifying O(n) with G,,, the set 4, is a countable subset of G,,, hence of G,.
If we put A= U A,, A is a countable subset of G,. Now, we shall show that
A={U,} satlsﬁes (8.10).

On the set L,, we have |x,|<1/2 for k>n, and (x});>, is mutually inde-
pendent with respect to u. On the other hand, the mean of xZ with respect to
uis

1

Z L2 ,__2_<_1_>3__1_
(8.11) S_Lx dx= 35) =12

2
Therefore, from the law of large numbers, for almost all x € L, we have

N
(8.12) lim L 3 xz=-L .

This holds for each n, so that combining with pu(( \wj L,)®)=0, we have (8.12)
n=1
for almost all xeR®. In other words, putting

(8.13) {xeRw lim L ¥ xz=-11

we have (D€)=0. Thus, we have also (D€ U ( \_/ L,)¢)=0.

Therefore, we can conclude (8.10) if we can show

(8.14) Dn(uL,,)cU UX(L,).

n=1

Suppose that xe D n (CJ L,), then we have
n=1

. _
(8.15) Ip, %‘é <%, and  |x,|< for k>N.

l~)|'-—-

Then, for a suitable rotation U of RY (namely for some U € O(N)), (X1, X2,.-- Xy)
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can be mapped to (c, c,...,c), where c=./2¥_ x}/N. From (8.15), we
have c<1/3. Since Ay is a dense countable subset of O(N), we have

(8.16) IV, e AycO(N), Max [Ux—Upx| <4/-L,
llxll =1 4N
where | - | is the Euclid norm in RY. Putting U,(x;, X3,.-., Xy)=(V15 V25--e5 Y )s

we get |y, —c|</1/4N-/N/9=1/6, hence |y,|<c+1/6<1/3+1/6=1/2. Thus,
we get Uy(xy, x5,..., xy) €[—1/2, 1/277.

Imbedding O(N) into G,, U, becomes a rotation of R§ which keeps e;
invariant for j>N. Then, the mapping U}~! is defined on R*. It is identical
with U, on Ry, and keeps x; invariant for j>N. Therefore we have Ujf~'x
e[—1/2,1/2]*=L,, hence we have xe Uf(L,). This completes the proof of
(8.14). Q.E.D.

Remark. Generally, not only the proof, but also Proposition 8.2 itself is
invalid for the measure i, As shown in the example before Proposition 8.2,
if a € (12), the measure y, lies on (1?), so that denoting the unit ball of (I2) with
B, we have u(nB)>0 for some n>0. Since nB is a Gy-invariant set, combining
with u((nB)¢)>0, we see that p, is not Gy-ergodic. (Putting A={xeR*; |x,|
>n}, we have A<=(nB)® and p,(A4)=co, which comes from R¥-invariance of y,.)

§9. Invariance under Homotheties

In this section, we shall discuss about the invariance under homotheties.
Denoting the Lebesgue measure on R® with u, we shall define a countably
additive measure i on B by

o (7] (~1 /1
9.1) a(B)=\ —-t.u(B)dc=\ ——p(—-B)dc.
o ¢ o C C
The measure i is R§-invariant (actually (I/!')-invariant), G,-invariant, and
invariant also under homotheties. Namely we have

9.2) Yeo>0, YBeB, [i(coB)=i(B).

In the case of finite dimensional space R", the Lebesgue measure is a unique
Rr-invariant o-finite measure, and it is not invariant under homotheties. (In
(9.1), if we adopt the Lebesgue measure on R” as p, the corresponding measure
i becomes (0, oo0)-type, so it is not o-finite.) In contrast with this, we have:

Proposition 9.1. The measure i defined in (9.1) is a o-finite Borel measure
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on R®. Therefore, on the space R®, there exists a -finite Borel measure which
is invariant simultaneously under translations R, finite dimensional rotations
Gy, and homotheties.

Proof. Let D be the set defined in (8.13). Then, for ¢>0 we have

N 2
9.3) cD= {xeRw lim ]b Z xz—c—},
N—=©

so that {¢D},., is mutually disjoint. Since u(D€)=0, we have tu((cD)®)=0.
On the other hand, since y is a o-finite measure, we have

(9.4) IEe®B, k=1,2,.. pE)<o, u((kcojEk)C)=O.
=1

Here, we can suppose that E, <D for every k, because u(D€)=0 implies u(E,)
=u(E, N D). Furthermore, we can suppose that {E,} is monotonically in-
creasing.

The mapping (x, ¢)—>cx maps continuously R® x (0, o) onto R*, and
one-to-one on E, x[1/k, k] because {cE} .o is mutually disjoint. Therefore,

the image F,= \U (cE;) becomes a continuous one-to-one image of a Borel
ce[1/k,k]

subset of R® x (0, oo), so F, itself is a Borel subset of R®. (For instance, sce
[71)

{F,} is also monotonically increasing, and for c € [1/k, k], we have F,>cE,.
So that, for any given ¢>0, choosing k such that 1/k<c=<k, we have

05 w(e(Zn))=(e(Zn))su(%5))=0.

Since this holds for any given ¢>0, from (9.1) we have

(9.6) ,u((lulF> > 0.

On the other hand, since we have

| . u(E), if CE[%,J'-',
W(Fs)=u(rin D)= 1
0, if ce[—i—,ﬂ,

we get

(9.7) A(F) = u(E)S 4 2 10gj-u(E) <.
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Combining this with (9.6), we see that fi is a o-finite Borel measure on R*.
Q.E.D.

It seems to be somewhat curious that there exists a o-finite measure on R*®
which is invariant simultaneously under translations and homotheties. This
comes from the fact that the Lebesgue measure u on R® is singular with respect
to homotheties, so that we can find suitable sets F; in the proof of Proposi-
tion 9.1 with finite j-measures. However, for a ‘‘more natural” set, i is
(0, oo)-type. For instance, on the family of rectangles in R®, z is (0, co)-type
as shown below.

For an algebraic isomorphism 4 from R onto Ry, whenever A*(RY) is
contained densely in (I'), f(A*(Lo)+x) is O or co for any xe R®. Because if
we assume 0< ji(4*(Ly)+ x) < oo, the set of ¢>0 such that 0<7,u(A*(Ly)+x)
< oo has a positive measure, so especially for two different values ¢ and ¢’, we
have O0<t,u(A*(Lo)+x)<oo and O0<t.ju(A*(Lo)+x)<co. Then from the
corollary of Proposition 7.3, both 7, and 7, u are equivalent with 7.7, hence
we have 7 u~7. . This is a contradiction to c#c’.

For an algebraic isomorphism A from R onto Rg, from (9.1) we hévg
- *1

9.8) ©iB)= (" Lo rau(Bc.
From now on, we shall assume that A*"1(Rg) is contained densely in (I1).

Then, 7,4 is R¥-invariant and Gy-invariant, so that 7, is R¥-invariant,
Gy-invariant, and invariant also under homotheties. Since g is o-finite, T,
is also o-finite. Therefore, we conclude that on the space R® there exist infinitely
many o-finite Borel measures which are invariant simultaneously under trans-
lations R@, finite dimensional rotations G,, and homotheties.

Proposition 9.2.

1) Let H be a transformation group of R® which is generated by homo-
theties and translations by elements of RY. Then, T, is H-ergodic.

2) If p~t 4 for some cy>0, then we have fi~1 i (more exactly we have

T Ad=0afl for some a>0). Otherwise, we have i 1t .
Proof. Assume that a Borel subset B of R satisfies:

(9-9) YxeRy, 7,A(BO(B-Xx)=0,
Ve>0, t,i(BO(cB)=0.
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The proof of 1) will be completed if we can derive 7,i(B)=0 or 7,i(B€)=0
from (9.9).

On the space RY, consider the inductive limit topology of Euclid topologies
on R*x {0}. Then, Ry is separable, so that there exists a countable dense sub-
group X ={x,}. According to [6], the measure 7,u is X-ergodic.

Now, we shall assume the first line of (9.9). Then, we have Yn, 1,Z(BO
(B—x,))=0, hence for almost all ¢>0 we have n, T u(c"!BE&(c"!B—c"1x,))
=0, which implies t,u(c™'B)=0 or t,u(c"1B®)=0 because of ¢ 1X-ergodicity
of t,u. We shall put

(9.10) N={c>0; r;,u(%B)=0} .

Denoting the Haar measure on (0, c0) with 2, if A(N€)=0, then t,u(c"1B)=0
for almost all ¢>0 so that 7,i(B)=0. Similarly, A(N)=0 implies 7,fi(B¢)=0.
Therefore, the proof will be completed if we can exclude the case: A(N)>0
and A(N€)>0. In this case, we must have AN NcoN€)>0 for some cy>0.
(For instance, see [9].) If ce Nne¢yN®, then we have t,u(c'B)=0 and
T u(coe™1B) >0, hence we have 7, u(c™(BE&(cyB)))>0. Combining with A(N n
¢oN€) >0, this implies 7 ,i(BO(coB))> 0, which contradicts with the second line
of (9.9).

Thus, the proof of 1) has been completed.

Since both fi and 7, i are H-ergodic, we have either jg~<t i or gl /.
Therefore, for the proof of 2), it is sufficient to show

9.11) 3co>0, pu~T e E~TYL
< >0, tujA=al.

If we assume p~t, 44, then we have 7, u=ou for some a>0, so from
(9.8) we have 7, 4fi=aji. Since T,f is invariant under homotheties, we have
Tooall =T 4Hl, thus we get 7,jl=aji, so especially we get 7 ,ji~ [i.

Conversely, assuming ji ~ 741, we shall derive y~7, 4u. Since both u and
T.,4M are Ry-ergodic, pu<St, 44 implies 1, 4u~p. Therefore, it is sufficient to
show

9.12) 3p>0, YEeB, wE)>0=1,,u(E)>0.

Consider the set D defined in (8.13). Since w(D®)=0, we have u(E)
=u(E n D), so that it is sufficient to prove (9.12) under the assumption EcD.
Then, as explained below (9.4), F= \U (cE) is a Borel subset of R®, and

0<c¢c<w
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satisfies

=" 4 w(gF)ae=pE)|" L =0

Thus, from the assumption 7 ji~ [i, we must have 7,fi(F)>0. However, since
¢~F=F for every ¢>0, we get 7,u(F)>0 from (9.8).

Especially, choosing E=D, we have t,u( \U (cD))>0. Since t,u is
Ry-ergodic and each ¢D is an R¥-invariant set, tﬁ;scfr:plies 7,4((cgtD)C)=0 for
some ¢, >0, which is equivalent with 7, ,u(D€)=0.

In the general case of EcD, u(E)>0 implies 7,u(F)>0 as seen above.
Since F=cy'F, we have t,u(F)=r1,4u(F), so that we have 0<rt. u(F)
=1, 4U(F N D)=, u(E). This completes the proof of (9.12). Q.E.D.
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