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Translationally Invariant Measure on the
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Introduction

On an infinite dimensional vector space, any measure can not be invariant

nor quasi-invariant under all translations ([1] [2]). However, for some dense

subspace E19 there exist such measures that are El-quasi-invariant, i.e. quasi-

invariant under the translations: x-»x + £, where ^eE1. For instance, Gaussian

measure g on R°° is (/2)-quasi-invariant. We have many other quasi-invariant

measures ([3]), but the known examples including the measure g above have no

equivalent invariant measure. Historically the translational quasi-invariance

of probability measures has been discussed in detail ([4]), while the study of

translational invariance has been neglected, perhaps because of difficulties of

infinite measures which have less connection with the theory of probability.

In this paper, we shall construct directly a cr-finite invariant measure.

First we consider the product of Lebesgue measure and uniform probability

measures on R"x[—1/2, 1/2]°°, and in the limit of n-»oo we obtain the re-

quested measure /i on R°°. We can easily show that \JL is Mg3-invariant, and a

detailed study shows that ju is (/^-invariant. We can modify \JL to get an (J2)-

invariant measure, and other modifications can give invariant measures with

respect to a larger subspace of R°°.

The measure \i thus constructed is translationally ergodic, rotationally

invariant, and rotationally ergodic. It is singular with Gaussian measures, so

that the uniqueness of rotationally invariant measure ([!]) does not hold for

infinite measures.

Finally we shall prove the existence of a measure which is invariant both

under translations and homotheties. This fact, which is false for the finite
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dimensional case, arises from the singularity of the infinite dimensional Lebesgue

measure with respect to homotheties.

§ 1. Infiniteness of R^-Invariant Measure

Let X be a vector space, and n be a measure on X (defined on a suitable

o--ring 33). For x e X, we define the translated measure TXJU by

(1.1)

assuming that 95 is invariant under translations.

Let Ybe a subspace of X. We say that \i is Y-invariant if

(1.2) *yeY, V=/i,

and that \i is Y-quasi-invariant if

(1.3) v jeY, vi~ jx,

where fii~n2 means that jUx and \i2
 are equivalent in the sense of absolute

continuity.

If VL~\JL' and if /i is Y-quasi-invariant, then \i! is evidently Y-quasi-in variant.

Especially, if ju~^' and if \JL is Y-invariant, then fjf is Y-quasi-invariant. The

converse is not always true. Namely, even if \JL is Y-quasi-invariant, \JL has not

always an equivalent Y-invariant measure.

Let R°° be the vector space consisting of all real sequences. It contains

RJ as a subspace where

(1.4)

Proposition 1.1. On the space R°°, no finite Borel measure (with respect

to the weak topology) is R^ '-invariant.

Proof. Let pn be the projection of R°° to R" ;

(1.5) pn: x = (xl9 x2,...,xn,...)eRco-»(x1, x2,..., xM)eRM .

It is a measurable map from R00 onto R", namely denoting the Borel fields of

R00 and R* with 95 and 95B respectively, we have p^OBJczSB.

For a given Borel measure /* on R°°, we define the measure \in on 23n as

(1.6) H(Pn\BnD = Hn(Bn),
 vBne®tt.

If jU is a finite measure, then fj,n is evidently finite. On the other hand, for x e R°°
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and £„€»„, we have p-\Bn}-x = p-\Bn-pn(x)\ so that

(1.7)

hence the RJ -in variance of \JL implies the RMnvariance of \in (because pn(Ro))

=R"). However, it is well known that on the space Rn, the Lebesgue measure

is the only one which is cr-finite and R"-invariant, so no R"-invariant measure

on R" is finite. Therefore on the space R°°, no Rjf -invariant measure is finite.

Q.E.D.

We can prove a more detailed result; for every cr-finite RJ-invariant Borel

measure \i on R00, its projection \in to Rn is necessarily (0, oo) type.

Proposition 1.2. Let \JL be a a-finite S^ -invariant Borel measure on R°°.

For the measure un defined in (1.6), we have

n) = 0 if the Lebesgue measure of Bn = 0 ,

}jin(Bn)= oo if the Lebesgue measure of Bn>Q.

Proof. First, let v be a finite measure equivalent with /*. Since v is Rg3-

quasi-invariant, its projection vn is R"-quasi-invariant. It is well known that on

the space R", every R"-quasi-invariant <r-finite measure is equivalent with the

Lebesgue measure, so vn, hence un9 is equivalent with the Lebesgue measure.

Therefore jUn(Bw) = 0 if and only if the Lebesgue measure of Bn is zero.

Next, we shall derive a contradiction assuming that for some Bn e 23n we

have 0<^(Bn)<co. For x = (*i» x2,...)eR*>, put qn(x) = (xn+l9 x,J+2?...)eR°°,

then by the correspondence x<->(pn(x), qn(xj), we have the isomorphism R^^R"
x R°°. In this sense, \JL can be regarded as a measure on R" x R20. Putting

(1.9) v(B) = »(BnxB), v B 6 j B j

we define a Borel measure v on R°°. Since v(Rco) = u(Bn x Rco) = un(Bn)<ao, v is

a finite measure. On the other hand, for x e RJ we have

x B) = v(B) ,

so that v is RJ-in variant. This contradicts with Proposition 1.1, so we have

proved the non-existence of such Bn that satisfies Q<iin(Bn)< oo. Q. E. D.

Thus, we have shown that even if there exists an Rg3 -invariant cr-finite

measure on R°°, its projection on each R" is (0, oo) type. This situation is just

the case of a self-consistent sequence of (0, oo)-type measures, and we can not
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define the limit measure in a definite sense (see [8]). So if we want to define an

RO>-invariant measure \JL as a limit of some self-consistent sequence, we must rely

on a somewhat indirect discussion. Nevertheless, we can construct an R^-

invariant cr-finite measure rather easily, as shown later.

Before the construction of such a measure, we shall remark that among

R^-quasi-invariant finite measures on R°°, some one has an equivalent RJ-

invariant 0--finite measure, while another one has not. Many well known

measures belong to the latter case, as shown in the next section.

§ 2o Gaussian Measure and Stationary Product

Proposition 2.1. Let f(x) be a measurable function on R1 which satisfies

/(x)>0 and \ f(x)dx = l. Let \i be the stationary product measure of f (i.e.
J-GO

00

dn=Ylf(xi)dxi), then PL is ^-quasi-invariant but ju has no equivalent RJf-

invariant a-finite measure.

Proposition 2.2. Consider an inner product ( , )1 on the space Rg3. //

the topology defined by ( , ): is identical with the topology of (I2) (on R^),

then the Gaussian measure corresponding to ( , )j_ is ~RQ*-quasi-invariant, but

it has no equivalent RJ'-invariant a-finite measure.

Proof of Proposition 2.1. As proved in [3], the stationary product measure

\JL is R^-ergodic. Let I be the permutation group on the set of all natural num-

bers N = {1, 2,...}. I can be regarded as a transformation group on R00, and \JL

is J-invariant. Let I0 be the subgroup of Z generated by all transpositions (of

two elements of N). ZQ consists of such a permutation a E I that satisfies o(i) = i

except finite numbers of i eN. As shown in [3], the measure \JL is 2J0-ergodic.

Now, we shall derive a contradiction assuming that ^ has an equivalent

R5>-invariant cr-finite measure v. Since u~v and /i is I^-invariant and I0-

ergodic, if v is £0-invariant, then we have f.i — cv for some constant c>0. Thus,

the RJ-invariance of v implies that of u, which is a contradiction.

Therefore, it is sufficient to prove that v is £0-invariant, namely Vo-Gl'0,

Tffv = v, where

(2.1) T<TV(#) = v^"1^)), VB 6 23.

Since tffu = u, we have T f fv~v. On the other hand, v is RJ-ergodic because \i

is so. Therefore if iav is Rjf-invariant, then we have rffv = cav for some constant
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cfr>0. Especially for a transposition a, o2 = l implies c2 = l, hence ca—\.

This means that v is invariant under any transposition. Since £0 is generated

by the set of all transpositions, we have proved the Z0-invariance of v.

To complete the proof of Proposition, it remains only to prove that Tffv is

Rf-invariant. Since v is RQ -in variant, we have TXV = V for any xeRJ. There-

fore

(2.2) vxeRg>, W = T,V.

However, we can easily show VT^V = T^T^V, so (2.2) implies that TCTV is cr(RoO-

invariant. Since a maps Rg3 onto Rg3, namely cr(Ro)) = Ro)
5 we have proved the

R^-in variance of Tffv. Q. E. D.

Next we shall prove Proposition 2.2. For the inner product ( , ) defining

the topology of (I2), the corresponding Gaussian measure is the stationary

product of one-dimensional Gaussian measures, so Proposition 2.2 is a special

case of Proposition 2.1. For a general inner product ( , )l9 the corresponding

Gaussian measure is not always a product measure, so Proposition 2.2 is not

included in Proposition 2.1.

For a Borel measure /z on R°°, we shall denote the set of all admissible trans-

lations by TJi, namely:

(2.3) T^xeR00;^-^}.

For the Gaussian measure \JL corresponding to the inner product ( , )1? we

have Tlt = L where L is the topological dual of Rj? with respect to ( , )15 and fi

is ^-ergodic if and only if X is dense in L with the dual topology (c.f. [1] or [6]).

If the topology defined by ( , )l is identical with that of (/2), then L = (/2)9 so ju
is Rg3 -quasi-invariant and Rf-ergodic.

As proved later, Proposition 2.2 is valid under a weaker assumption:

(*) RO" is contained densely in L .

If (£, c) t=0 implies c = 0, there exists an algebraic isomorphism A from RJ onto

Rff such that

(2.4) (t,ri)i

where ( , ) is the usual inner product of (I2). In this case, since L = A*(12)9

the assumption (*) is equivalent with

(**) 4*~1(Ro ) is contained densely in (I2) ,
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where A* is the adjoint map of A defined on R°°.

Let G be the rotation group of RO° with respect to the inner product ( , )1?

then the Gaussian measure \JL is G-invariant. Let G0 be the group of all finite

dimensional rotations. (17 e G is called finite dimensional, if there exists a finite

dimensional subspace R of Rg3 such that Ux = x on JR1.) Then G0 acts transi-

tively on the unit sphere of Rg3, so JJL is G0-ergodic (c.f. [1]). Note that G0 is

generated by the set of all two dimensional rotations.

Proof of Proposition 2.2. We shall derive a contradiction assuming that

IJL has an equivalent RJ-in variant a-finite measure v. Since ^~v and \JL is Go-

invariant and G0-ergodic, if v is G0-in variant, then we have fi = cv for some

constant c>0. Thus, the RgMnvariance of v implies that of ju, which is a con-

tradiction.

Therefore, it is sufficient to prove that v is Go-invariant, namely vU"eG0 ,

ruv = v9 where

(2.5) TC/V(£) = v(l[/*-1(5)) , VB e 93 .

Since T:V^ = ̂  we have rvv~v. On the other hand under the assumption (#), \i

is R^-quasi-invariant and R^-ergodic, hence v is so. Therefore if T:VV is RQ-

in variant, then we have Tt/v = cc/v for some constant c[7>0. We want to derive

cv = l, but even if U is a two-dimensional rotation, we have not always U2 = I,

so the proof is not straightforward as in Proposition 2.1.

Moreover, the proof of RgMnvariance of T^V is not so easy. Since v is

RO° -in variant, we have TXV = V for any x eRJ. Therefore

(2.6) vxeRo°, TUTXV = TUV.

However, we can easily show T£/TJCC/ = Tc/!NjcT[7vJ so (2.6) implies that T^V is l/*(Ro°)-

invariant. (17* is the adjoint map of U defined on R°°.) But U* does not always

map RO° onto RO°, so we can not conclude the R^-invariance of T^V.

Since U is a rotation with respect to the inner product ( , )13 17* maps L

onto L (=the topological dual of RO° with respect to ( , )!). Therefore, if v is

L-invariant, we have

(2.7) vxeL, vr,v = TtfV

instead of (2.6), thus -cvv is L/*(L) = L-invariant, hence it is RO° -invariant

So, we want to prove the L-invariance of v. It is L-quasi-invariant because

\JL is so, namely vxeL, T^V^-V. Since txv is R^-in variant, the Rjf-ergodicity of
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v implies that -cxv = cxv for some constant cx>0. We want to derive cx=l. In

(2.6) if we put 17= —I, then 17* = -/maps RJ? onto Mg3, so t_7v is Rf-in variant.

Moreover 172 = ( — I)2 = J implies c_/ = l, so that we have T_ jV = v. Now,

applying T_ r on the both hand sides of T^V = c^v (x e L), we have i_^r _/v = CJCT_ /V,

so T_JV = V implies T_X.V = CXV hence c.^c^. Thus, we have V = T_JC(TJCV)

= e_xcxv = c2v, so we get cx = l.

Here, we have completed the proof of RJf-invariance of T^V (17 e G0). So

as mentioned before, we have

(2.8) v I7eG 0 , 3cc />0, %v = 6vv.

We want to derive cv=l. It is sufficient to consider only the case that U is a

two-dimensional rotation.

For any x e Rg3 such that ||x|| j_ = 1, put

(2.9) l/,:R?3J>-*J>-2(x, jOi*,

then (7X is a rotation with respect to ( , )^ Since U% = I, we have cUx = 1, hence

TC/XV = V.

Next, suppose that 17 is an arbitrary two-dimensional rotation, namely for

some two-dimensional subspace R of Rf, we have 17 = 1 on jR1. Consider an

orthonormal system {x, y} of R with respect to ( , )15 then U can be represented

by an orthogonal matrix;

cos 0, sin 6 \
(2.10)

— sin 0, cos 9 I

The matrix corresponding to UXUUX changes the signs of the first column and

the first row of that of [7, so it changes 6 to —9, hence we have UXUUX= U'1.

Thus the 17^-invariance of v implies c[7 = cc/-i, hence c^ = l, so c[/=l. Q.E. D.

§ 3. JLebesgue Measure on R°°

In this section, we shall construct concretely an R^-invariant cr-finite measure

onR00.

First, consider the Lebesgue measure on R" and denote it by An. Evidently,

for a Borel set Bn of R" we have

(3.1) An(^)=AK
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For m>n, put

(3.2) L^ = {* = (*,) e R"; n<k£m*>\xk\£

and restrict Am on L,wl (we shall denote the restricted measure by the same no-

tation Am). Then, {Am}w>/J becomes a self-consistent sequence on the measurable

spaces {Lmn, 93 m n Lmn}m>n, where 93 m is the Borel field of Rm. Since each lm

is (T-finite, according to [8], {A.m}m>n can be extended uniquely to the projective

limit measure.

By the way, the projective limit measurable space of {Lmn, 93 m n Lmn}m>n is

measurably isomorphic with {LM, 93 n LB}, where

(3.3) LB

-L

and 93 is the Borel field of R°°. Therefore, the projective limit measure of {Am}m>n

can be regarded as a measure on {Ln, 93 n LJ. We shall denote it by JUM. Name-

ly we have

i r

In other words, we get the following result. Imbedding Ln into R°°5 we regard

fjin as a measure on R°°. Denoting the projection from R°° onto R" by pn, we

have

(3.5) m > n ,

Now, for m>n we have evidently LnciLw. Here we shall prove that the

restriction of [im on LK is identical with /v Namely we shall show;

(3.6)

For this purpose, we shall define /4 by n'n(B) = nm(B n LB) and prove ^'n=^n.

Consider the projection of /4 onto R-7' (;>m), then we have

(3.7) ti(P7l(BJy)=»m(p'J1(Bj) n L,t)

However, j>m implies jum(L^) = 0, so from (3.5) the right hand side of (3.7) is

equal with
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This equality holds for every j>m and every JE^eS,-, so we get fJLn = fJLr
n because

of the uniqueness of the extension of self-consistent or-finite measures. Thus,

we have proved (3.6).

Definition 3.1. Using the measure /,(„ given in (3.5), we put

(3.8)

Then \JL is called the Lebesgue measure on R°°.

As shown later, we have a family of "Lebesgue measures5' with parameters

[flfc, bk}9 and the above one (given in (3.8)) is only an example of them. But

here according to Definition 3.1, we adopt the special one (3.8) as the

Lebesgue measure on R°°.

Proposition 3.1. The Lebesgue measure /x on R°° is an R^ -invariant o-

finite Borel measure on R°°.

Proof. First we shall show that /i is a <r-additive measure on 93.

is evident, because ^(^) = 0 for each n. Next, for a sequence of mutually

disjoint Borel sets {Bk} of R°°, we shall show that

(3.9) xC/5 f c)=Z **(**).
7c = l fc=l

From (3.6), {ftn(B)} is monotonically increasing with respect to n, so the limit

in (3.8) exists certainly. Since each un is a a-additive measure, putting a,jfc
00

= un(Bk)^Q, the left side of (3.9) is equal with lira ]£ ank, while the right side is
k=l

00

equal with X nm %nk- Since ank is monotonically increasing with respect to w,
fc=l «-»-GO

the sum and the limit commute mutually, according to Lebesgue's theorem

(regarding the sum as the integral by an atomic measure on the set of natural

numbers). Thus, (3.9) has been proved.

Second, we shall show that JJL is a-finite. Each /*„ is cr-finite, because it is

the projective limit of cr-finite measures. From (3.6) and (3.8), we see that

BaLn implies ^(B) = ^Ln(B). Therefore J.L is d-finite on L,r Hence, JA is a-finite
OC 00

on W Ln. On the other hand, from (3.6) we have pn(( W Lfc)
c) = 0 for each n9«=i k=i

en

so we get n(( W Lfe)
c) = 0. This means that /i is a-finite on R^.

Lastly, we shall prove the R^-invariance of /*. Namely, we shall show that
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(3.10) vJceR?,

First, note that x = (xk) ERJf implies 3w, /c>n=^>x^ = 0. For this n, we shall show

that

(3.11)

For this purpose we shall define /4 by fj,'m(B) = nm(B — x), and prove j4 = ^m.
Consider the projection of /4 on R; (j>m), then we have

(3.12) *4(P7 W) = *UP7 W - *)
=M«(P71(^-PX*)))-

However, using (3.5) as well as the relation Ljm — pj(x) = Ljm and the R-Mnvari-

ance of Ay, we can rewrite the right hand side of (3.12) as;

Ljm) = ̂ (Bj n Ljm-Pj(x))

This equality holds for every j> m and every 5y 6 237-, so we get \jLm — \jL'm because
of the uniqueness of the extension of self-consistent a-fmite measures. Thus,

for any m>n we have fj,m(B — x) = Lim(B), so letting m->oo we get (3.10).
Q.E.D.

§ 4. Equivalent Measure in Product Type

The Lebesgue measure on R°° has equivalent finite measures in product

type. In this section, we shall give an example of them.
Let {cn} be a sequence of positive numbers such that 0<cn<l. On the

real line R1, for each n consider a function fn(x) which satisfies;

o </„(*)< i,
(4-1) l

/,,(x) = c , , for — - ^ x .

Such a function fn(x) exists certainly for any given constant 0 < cn < 1 .

Proposition 4.1. Define a product measure v on R°° as follows:

(4.2) dv = flUXn)dxn.
n=l

00

If II c«>0> then v is equivalent with the Lebesgue measure \JL on R°°.
n=l
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Remark. Of course, v is RJ-quasi-invariant. According to [3], every

product measure on R°° is R^-ergodic. Therefore, v, hence \JL also, is Rg3-

ergodic.

Proof. For x = (xn) e R°°, define a function /(x) by;

(4.3) /w=n/„(*,).»=i

Since 0</n(xn)<l, the partial product decreases monotonically, so that the

infinite product in (4.3) exists certainly. If xeLn, then |xk|^l/2 for k>n, so

we have

/(*)=n/*(**) n c t>o.
fc= l k=n+l

oo

Thus f(x) is positive on Ln, hence positive on W Ln. On the other hand, since
n=l

00

X( W Ln)
c) = 0, we see that/(x) is positive for ju-almost all x.

n=l

Now, define a measure v' on R°° by;

(4.4) dvf=fdn.

Then, we have evidently v'~f.i. Therefore, it is sufficient to prove v' = v.

Consider the projection of v' on Rm;

(4.5) v'(p-i(BJ) = lim v'(p-W n LJ

= lim j ^ f(x)dfin(x)

C N

= lim lim \ H /fc(xfc)

$ N
n j

The last equality is due to (3.5).

However, for m < n < Ny we have

PNm(Bm) n LNn = Bm x R" ^| 25 2 I

so that the last side of (4.5) is equal with

( fl T fMdxkBmk=l
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N r~2

xlim FI \ . f k (
N-*x k=n + l )-±-

Using (4.1) and (4.2), we see that it is equal with

v(p-l(Bm))\im lim ft ck.
//->oo N->oo k=n + l

oo N

But the assumption Yl cn > 0 implies lim lim O cfc = l, so we have proved the
?i=l M-+OO Af-»oofc = n+l

equality v'(p-1(Bm)) = v(p-1(^m)).

This equality holds for every m and every BflIeSni, so we get v = v' because

of the uniqueness of the extension of self-consistent finite measures. Q. E. D.

§5. Determination of 1\

As mentioned in Proposition 3.1, the Lebesgue measure \JL on R00 is Rg5-

in variant. In this section, we shall determine exactly the set of all admissible

translations TJ, defined in (2.3).

First we shall remark that for every x £ T^ we have Tx^i = fi. As seen from

(3.5), /*„ is an even measure (i.e. /*„( — B) = ftn(B)), so that the limit measure fj, is

also an even measure. Therefore, by a similar discussion with the proof of L~

invariance of v below (2.7), we can conclude that T^/^/Z implies Tx^ = f^.

Since /t and txii are R^-ergodic, if x^ T^ then we have T^JM J_ ju (singular with

each other). Thus, we get the following conclusion :

For each xeR00, we have either TX^ = /Z or TX JU±/L Moreover IX\JL = \JL is

equivalent with x e T^.

Proposition 5.1. T^ = (/1). Namely, \JL is exactly (l^-invariant.

Proof. Put L0 = [-l/2, 1/2]°°, then for each n we have L0 = p-1([-l/2,

l/2]w) n LM, so that from (3.5) we get ^(L0) = ̂ ([-l/2, 1/2]")= 1. Therefore,

letting n-»oo, we have ju(L0) = l.

Now, suppose that TXJU = ^. Then, we must have /,e(L0 — x)=l. Here, we

shall calculate ^n(L0 — x) to find a necessary condition for TX^ = ^U. For x = (xk)

eR°°, we have

(5.1) Lo-^d

so supposing n<m, we have from (3.5)
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(5.2) //„(£()-

O (\ __ __
X JJ+i \L 2 Xk> 2 * * J M L ~ ~ ~ 2 ' 2 jy

in= kn+ i ( i - i* k i )+ ,
where r+=Max(0, r). Therefore, ju(L0 — x ) = l implies that

(5.3) lim Hm JT^(1-|**I)+ = 1 -

Thus, for a sufficiently large n, we have fl (1 —!**!)+>0. This means
00

£ |xk|<oo, namely xe( / x ) . So the fact: TJCjU = ju=>xG(/1) has been proved.

Conversely, assuming xe( / x ) , we shall derive xeT^. For the measure v

defined by (4.2), we have v^jit, so that T^ = TV. Since v is a product measure,
x = (xn) belongs to Tv if and only if

(5.4) 11 ^/fn(yn)fn(yn - *„) dyn > 0 ,
n=l J-co

according to [3].

However, from (4.1) we have

(5.5)

[~—— —InF——+x —+x 1 n n
1 2 ' 2 j n L 2 *M >2+*" J

oo

From the assumption in Proposition 4.1, we have H cn>0. Since xe(/^
oo

implies II (1— xj)+>0 for a sufficiently large m, we see that (5.4) is satisfied
n=m

for every xe(/1), hence we get (ll)cTv. Q. E.D.
oo

Remark. As seen from (3.6), we have /,(((\j Ln)
c) = 0. Since ^^(J00)

for every n, we have /i((/°°)c) = 0. Thus the Lebesgue measure ju on R°° lies on

(/°°). Therefore p. (also the equivalent measure v in (4.2)) gives an example of

an (/1)-quasi-invariant measure lying on (P).

§ 6. Linear Transformations of the Lebesgue Measure

Consider two sequences a = (ak)eRco and b = (bfe)eR00, and suppose that

ak < bk for every k.



706 YASUO YAMASAKI

For n < m, putting

(6.1) Lmn(a, b) = {x = (xk)eRm; n<k^m=>xke[_ak, bj}

the sequence of measurable spaces (Lmn(a, b), $OT n Lmn(a, b)}m>n forms a

projective sequence (with respect to the usual projection). Furthermore, the
m

sequence of measures {IJT1 (bk — ak)}m>n, where Am is the Lebesgue measure
/c=l

on Rm, forms a self-consistent sequence on {Lmn(a, fe), 23 w n Lmn(a, ft)}. There-

fore, the sequence {^JTl (bk — #&)} can be extended uniquely to a tr-additive
k=i

measure \in.^b on the projective limit measurable space :

(6.2) Ln(a, b) = {x = (xk)ER°°; n<k^xke{_ak, bj}

= R"x fl [«»&*].
fe = n+l

Regarding /*w;a>& as a measure on R°°, we can define a measure jua>fe as the

limit measure of iin;a,b. ^b is a "Lebesgue measure" with parameters a and &,

as remarked below Definition 3.1.

fiajb is a special case of translations and linear transformations of /*, as

explained below. Let /i be the Lebesgue measure on R°° defined in Definition

3.1. Then \JL is R^ -in variant and R^-ergodic. For any xeR00, the translated

measure IX\JL is also R^-in variant and R^-ergodic, and ix\iL\ji if x&(l1}.

Next, for an algebraic isomorphism A from RJ onto RJ, the transformed

measure IA\JL is ^(Rg^-invariant and ^4*(Ro))-ergodic. (T,A\JL is defined by i;An(B)

= H(A*~1(BJ) for every JSeS.) From Proposition 5.1, we can replace Rg3 by

(I1), so that whenever y4*"1(R§)) is contained densely in (I1), IA\JL (hence IXIA\JL

also) is Rg3 -in variant and RJ-ergodic. (For ergodicity, see [6].)

Thus, starting from \JL defined in Definition 3.1, by the translations and linear

transformations we can construct infinitely many Rg> -invariant and R^-ergodic

measures.

For given a e R°° and b e R°°, putting x = (a + b)j2 and defining A by y = (yn)

->Ay = ((bn — an)yn)9 we have Ma,b = Tx^^- I*1 this sense, \i^b is a special example

of translations and linear transformations of \JL.

Especially for a e R + (namely afc > 0 for every /c), /u_ f l j a is denoted simply with

fjia. Defining A by y = ( y^-*A y = (2anyn)9 we have /^ = T^.

For a suitable 0eR+, /ia becomes (/2)-invariant. Generally \ia is

invariant, however A* ((I1)) is identical with the following (I1)a.
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(6.3) C/1).^=OOsir; f; ^<
I n=l an

00 1

If X —T-<OO (for instance if an = ri), we have (/2)c= (/*)«> thus \JLQ becomes an
n=l f ln

(/2)-invariant measure.

Not insisting on (/2), if we choose a eR+ suitably, T^a = (/1)a becomes a very

large space. In this sense, even for a sufficiently large subspace X of R00, we can

construct an Z-invariant measure.

However the measure jua lies on (/co)fl = {>7 = (yn)eR00; sup \yn\lan<co}, so

if we choose TMa = (/1)fl to be a very large space, then (l°°)a becomes a larger space,

thus the gap between T^a and the carrier of fta is not narrowed.

§ 7. Mutual Equivalence of TA/I

In this section, we shall discuss the condition for ^~t^u. Here, we are

interested in the norm of (J1), so differently from the case of Gaussian measures

(see [5] or [6]), it is difficult to find the necessary and sufficient condition for

M~^J".
We shall denote with A^ the set of algebraic isomorphisms A which satisfy

Proposition 7.1. For the Lebesgue measure \JL on R°°, we have

>tA'IJi if and only if x — xf e A*^1)) and AA'~1GA^.

Proof. Before the proof of sufficiency, we shall remark that T

'A^ because for every Be 33 we have T-4(

Now suppose that AA'~leA^ then we have \I~IAA'-I\*"> so operating TX,

on the both hand sides, we get ^A'^^^A'^AA'-^ — ̂ A^' Since IA\JL is A*((llJ)~

invariant, if x~ • x' e A*^!1)), then we have ^A'^^^X-X^A^ so operating TX> on

the both hand sides, we get V^'M^V^M- This completes the proof of suf-
ficiency.

Conversely, suppose that VT^^VT^, then we have TJC_X,TA/,I~T^/Z.

Since both IAIL and %A,\JL are even measures, operating T_J on the both hand sides,

we get V_,T^~T^. Therefore we have T,_^T^~ V_XT^, hence Ta^.^^^

~TXJU, which implies x — x' e^*^/1)). Combining this with ^A'^^^X-X^A^ we

have T^^T^, hence ^^^AA'-^- This implies A^7"1 e yl^. Q. E. D.

Since it is difficult to determine the set /1M concretely, we shall be content
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with a rough necessary condition : A e A^A*^!1)) = (/*). This condition comes

from TM = (/1) and Tr n = A*((l1)). We shall remark that from this condition,

AA'-^eA^ implies A*((liy) = A'*((l1)).

On the sufficient condition for AeA^, we shall discuss in a somewhat

detailed manner.

Proposition 7.2.

1) Let I be the permutation group of the set of all natural numbers N.

Regarding Z as a transformation group on RJ, we have IciAfl.

2) For an algebraic isomorphism A from R^ onto Rg5, suppose that the

image of I— A is finite dimensional, then we have AeA^ whenever A*((ll)) = (I1).

3) For an algebraic isomorphism A such that y = (yn)-^Ay = (anyn) (where

an>Qfor any n), we have AeA^ if and only if

(7.1) i | l -f l j<oo.
w = l

Corollary (of 3)). For four elements a, b, a' and b' of R°°, suppose that

an<bn and a'n<b'nfor every n. Then, we have

(7.2) Ha,b~Va>,b>

n=l
o 1-^ <oo andb'-a' n=l

<oo .

The corollary can be proved combining Proposition 7.1 with 3) of Propo-

sition 7.2.

We shall prove Proposition 7.2 after the following Proposition 7.3.

Next, we shall inquire whether an Ro3-invariant and RJ-ergodic measure

exists besides the translations and linear transformations of the Lebesgue

measure, namely besides measures of the form txtAu. This question has not

been answered up to the present. But under some additional condition, we

can insist the uniqueness of the Lebesgue measure.

Proposition 7.3. Let ur be an RQ-invariant and R^-ergodic, a-finite Borel

measure on R°°. Putting L0 = [-l/2, 1/2]°°, if 0<^/(^o)<°°» ^en ™e have

ju' = cju/or some constant c>0, where \L is the Lebesgue measure on R°°.

Proof. Put LW = R" x [-1/2, 1/2]°°, then we have L0c=Lw and 0 Ln is an
»=i

Rg3-invariant set. Therefore from the R^-ergodicity of //, we have

(7.3)
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From this and the a-additivity of ju'? we have

(7.4) VB e 95, n'(B) = Km n'(B n Ln) .
w-coo

Therefore, putting n'n(B) = u'(B(]Ln), if we can prove u'n(B) = cun(B) for every

Be SB, then we get u' = cf.i from (7.4).

Now, for each x = (xk)eRv that satisfies k>n=>xk = Q, we have txn'n = ii'n,

because //' is RJ-invariant and Ln = Ln — x, hence (B — x) n Ln = B n Ln — x.

Therefore, the projection of \i'n onto R" is Rn-invariant. On the other hand,

since n'n(p?(l-ll2, l/2]»)) = 0'(([-l/2, l/2]» xR-) n LJ = //(L0), the assump-
tion 0</('(L0)< oo implies that the projection of /4 onto R" is a cr-finite measure.

Thus, from the uniqueness of an R"-invariant cr-finite measure on R", there exists

a constant c>0 such that

(7.5) *

where kn is the Lebesgue measure on R". Especially, substituting Bn = [— 1/2,

l/2]w in (7.5), we have c=//(L0), so that c does not depend on n.

Next, suppose that m>n. Since we have fJLr
n(p~l(BJ) = iJLr(p-l(Bm)nL^

= n'(p2(Bm n Lmn) n Lw) = nf
m(p-\Bm n Lwn)) = cAm(Bm n Lmn) = ̂ (p-^BJ), (the

last equality comes from (3.5)), the projections of ju,', and CJUB onto Rm (m>n)

are identical. Therefore from the uniqueness of the extension of self-consistent

cr-finite measures, we get ^'n = cp,n. Thus, in the limit of H-»QO, we get ju' = c/i

where c = ti'(L0). Q. E. D.

Corollary.

1) Let /(' 6e a/i *R$-invariant and ^Q-ergodic, o-finite Borel measure on

R°°. For two elements a and b o/R30 such that an<bnfor every n, suppose that

(7.6)
11=1

then we have u' = c\ia^ for some constant c>0.

2) For an algebraic isomorphism A from RJ onto RJ, let fir be an

A*(JBL$)-invariant and A*(J&Q>)-ergodic, a-finite Borel measure on R°°. Suppose

that for some xeR00 we have

(7.7) 0<n'(A*(LQ) + x)«x>9

then we have tf — cixtAii for some constant c>0.

Proof. 1) is a special case of 2). To prove 2), it is sufficient to apply

Proposition 7.3 to the measure T^-it.^ju7.
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Thus, the question whether an RQ> -invariant and R^-ergodic cr-fmite measure

exists besides the translations and linear transformations of the Lebesgue

measure can be reduced to the question whether there exists a measure \JL' which

does not satisfy (7.6) for any a and b of R°°, nor (7.7) for any x and A. If such

a measure \JL' exists, it becomes (0, oo)-type on the set of infinite dimensional

rectangles and their images by linear transformations.

Now, we shall prove Proposition 7.2, using Proposition 7.3. The proof

of 1) is easy. For any aeZ, we have evidently a(L0) = L0, so that we have

Tff/x(L0)=//(oi(L0))=X^o)==l- Therefore from Proposition 7.3, we get ia\jL = \i.
Next, we shall prove 2). Suppose that the image of I — A is finite dimen-

sional, then for some n the image is contained in Rn x {0}. Therefore putting

efe = (0, 0,..., 1, 0,...) (only the k-ih coordinate is 1), A has the following form:

(7.8) Aek = ek+± akjej.
7 = 1

Then for y = (yk)eR°°, putting A*y = (zk), we have

(7.9) zk

On the other hand, from the assumption A*((l1)) = (l1), TAII is Rf -in variant

and RJ-ergodic, therefore from Proposition 7.3 it is sufficient to prove Q<T;A[JL(LQ)

<oo. However from the definition of T^U, we have T^(^o) = X^*~1(j^o))-
Since y eA*~l(LQ) is equivalent with A*y eL0, from (7.9) we have

(7.10) A*-\Ls) = p-\Mn)K A Pll(Mk),
k=n+l

n i
where Mn = {_yeRn ; \yk+ ]£ akjyj\<Z— for Ig/c^w}, and for k>n,Mk

Therefore we have

(7.11)

Supposing n<m<N,we have from (3.5)

A Pll(
k=n+l

"-»)n A
&=«+!

\ A
k=n+l
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/ N /r i « i « ~i r i 1
J n ( -T~£ a*^' o -£a«^ hi "?' ?\ fc=m+l \L — j = l — 7 = 1 J L_ — ^

ft (l-it *kjyj\)+dyidy2...dyn.
Mnk=m+l j = l

We shall substitute this into (7.11). From the assumption A*((ll)) = (l1), we

have -/4*(X j^-e,-) e (J1), hence we have X I Z ^kjyj\<CG- Therefore we get
7=1 *=i 7=1

N N

lim lim Yl (1 — IX «fc/) ; i l )+= = l f°r any J^Cy^eR", so that Lebesgue's
m->oo JV-^oo fe=m+l j = l

theorem assures that

This completes the proof of 2) of Proposition 7.2.

Lastly we shall prove 3). From the assumption for A, we have

=Rg3, so that T^/X is RJ-invariant and RJ-ergodic. Therefore AeA^ namely

T^/Z^/Z, is equivalent with 0 < tA/z(L0) < co .

However we have tX^o) = M^*~1(^)o) = Mn [-l/2flk, 1/20 J). Since
fe=i

T^/X^^ is equivalent with JU^T^-IJU, for the convenience of calculation we

shall consider A'1 instead of A. Then, the necessary and sufficient condition

for T^JU^/J is as follows:

(7.12) > -2 2 _

In order to check the condition (7.12), we shall calculate as follows:

- - n -iL 2 2 J/ «^oo \k=iL 2 2

= lim lim
n-*oo m-*oo

= lim lim iJfl I" - .̂, «L] n
H-»-OO m-*cx) \ fc=l l_ Z Z J

n m
— lim lim Yl ak Yl Min(l, ak)

n-»oo m-*<» k = l fc=n + l

= lim(fl a* ft Mm(l,ak)).
n-*oo fc=l fc=«+l

Therefore, (7.12) is satisfied if and only if f[ Mm (1, afc)>0 and f[ Max (1, ak)
fc=l k=l

oo
<oo. However, the former is equivalent with ]T (i—ak)+ <oo? while the
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00

latter is equivalent with £ («*— 1)+ < °°. Combining them, (7.12) is equivalent
GO

with X 11 —fl fc l<°o , namely with (7.1). In other words, (7.1) is a necessary
k=i

and sufficient condition for A e A^. Q. E. D.

§8. Rotational Invariance and Ergodicity

The Lebesgue measure on R°°, which is R^-in variant, is also invariant under

finite dimensional rotations. We shall prove this below.
Let G be the rotation group of RJ with respect to the inner product ( , )

of (J2), and let G0 be a subgroup of G which consists of all finite dimensional
rotations (namely such rotations which become the identity mapping on RL for

some finite dimensional subspace R of R^).

Proposition 8.1. Let \JL be the Lebesgue measure on R00. For an element

x o/R°° and an algebraic isomorphism A from Rg3 onto RJ, TxrAfi is G0-invari-

ant whenever it is RJ-invariant and R^-e

Proof. First we shall prove that i^A\i is Go-quasi-invariant. Namely we

shall prove

(8.1) vt/eG0 , VV^-T^JI.

Since %TxT^ = Tl7*;cTy4l7/j, from Proposition 7.1 it is sufficient to show

(8.2) x-U*xeA*((l1)), and

Now, for any U e G0 there exists n such that Uek = ek for k > n (where
ek = (Q, 0,..., 1, 0,...) (only the /c-th coordinate is 1)). Then for each x = (xk)

eR°°, putting U*x = (yk), we have xk=*yk for k>n, so that we get x-U^xeRg3 .
On the other hand, from the assumption that txtA^ is RJ-invariant, we have

RJc^*^1)). Therefore we get x-U*xeA*((l1)) for every xeR00 , which is

one of the desired relations.
Next, U'1 e G0 implies that the image of /— I/"1 is finite dimensional, hence

the image of A(I- U'^A'1 =I-AU-1A~i is so. Therefore from 2) of Propo-

sition 7.2, the relation (^l/-M-1)*((/1)) = (/1) implies AU^A'^A^. How-
ever, since (^L/-M-1)* = ̂ *-1L/*-M*, it is sufficient to show ,4*-1l/*-1,4*((/1))

= (F), namely l/*-M*((/1))=v4*((/1)).

Since for every xeR00 we have x— (7*xe^4*((/1)) as proved above, xe

A*((llJ) is equivalent with U*xeA*((ll))9 hence with xet/*-1/l*((I1)). This
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means ^4*((P))= l/*"1^*^/1)), which is the wanted relation.

Thus we have proved that IXIAH is Go-quasi-invariant. Then we have

(8.3)

because both IXIAH and T^T^ are RO° -invariant and RJ-ergodic. Using

similar discussions with those below (2.8) (considering txtAn instead of v), we can

derive cv = 1 . This means that ixtAii is G0-invariant. Q. E. D.

However, \JL is not G-invariant. For instance, consider the following rota-

tion U:

(8.4) Ue2k-1=-j

Ue2k = —T=-
\ -

Then, we have

(8.5) U*

for & = 1,2, . . .J .

Therefore, putting

(8.6)

we have C/*~1(L0) = ^2), so that for m>n we have

Letting w->oo, we get /(2n([/*~1(L0)) = 0, and letting «->oo, we get

= 0, namely T[/^(L0) = 0. This implies T^JU 76 /z. (Furthermore we can conclude

T^-L/j because of RJ-ergodicity of \JL and T^.) Thus, /i is not quasi-invariant

with respect to 17, hence \i is not G-quasi-in variant.

We shall remark that G0 acts transitively on the unit sphere of Rg3. There-

fore, every Go-invariant finite measure can be written as a superposition of

Gaussian measures (see [1]). But Proposition 8.1 gives a counter-example of

this fact for infinite Go-invariant measures. (Since rxiAfi is Rg^-ergodic, if it is

a superposition of Gaussian measures, it must be a single Gaussian measure.
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This is impossible. Furthermore, t^/z is not equivalent with a superposition

of Gaussian measures, because from Proposition 2.2 a Gaussian measure has

no equivalent cr-finite RC? -invariant measure.)

Example. Defining A by y = (yn)-^Ay = (2anyn), the measure \ia = tAn is

(/1)a-invariant and lies on (/°°)fl, where (^X is given by (6.3) and (J°°)fl is explained

below (6.3). If ae(/2), then we have (/°°)flc:(/2), so that we get the following

result: "On the space (I2), there exists a cr-finite Borel measure (other than

Dirac measure) which is invariant under all finite dimensional rotations".

For any given foE(/1)nR?3 this measure can be chosen to be (/^-invariant,

because putting an=^fbn, fia is (F)&-invariant and lies on (I2), (be (I1) implies
00

a e(/2), so \jia lies on (I2). On the other hand, (/2)fcc=(J1)fl comes from £ \xn\/an

n=l n = l n=l

Proposition S*2. The Lebesgue measure n on R°° is G0-ergodic, where G0

is the group of all finite dimensional rotations.

Proof. Assuming n(BQU*(B)) = Q for every UeG0, we shall prove fji(B)

From (3.5), the restriction of \i on L0 becomes the infinite product of

uniform measures on [—1/2, 1/2] (namely, restrictions of one-dimensional

Lebesgue measures on [—1/2, 1/2]). Therefore, as shown in [3], the restriction

of jti on L0 is r0-ergodic. (r0 denotes the group of permutations generated by

all transpositions of two elements of N.)

Now, we shall assume

(8.7)

Then, since ZQ^GQ, we have ^(BQa(ff)) = Q for every G»eZ0. On the other

hand, <j(L0) = L0 implies a(B D LQ) = a(B) n L0, therefore we have

(8.8) n(B n L0Qa(B n L0)) = M(^0^)) n LQ) = Q .

Since the restriction of \JL on L0 is r0-ergodic, from (8.8) we get \i(B n L0) = 0 or

f.i(Bc n L0) = 0. So, considering Bc instead of B if necessary, the proof will be

completed if we can derive /i(JB) = 0 from ju(U n L0) = 0 under (8.7).

Under (8.7), ^(5nL0)=0 implies fi(U*(B) nL0) = 0 for every UeG& so

we get /x(B n U*~1(L0)) = 0 from the Go-invariance of PL. Furthermore, con-

sidering a countable union with respect to £/, we get
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(8.9) UkeG0, fc = l,2,..., => iJB D L/ri

&=i

Therefore, the proof will be completed, if we can show

(8.10) 3UkeG0, fc=l, 2,...,

Let G0w be a subgroup of G0 which consists of all rotations U such that

Uek = ek for /C>H. G0n can be identified with the ^-dimensional rotation group

O(n\ which is separable with respect to the natural topology (the induced

topology from R"2). Namely, there exists a dense countable subset An of O(n).

Identifying O(ri) with G0n, the set An is a countable subset of G0n, hence of G0.
00

If we put A= \J Aw A is a countable subset of G0. Now, we shall show that

A = {Uk} satisfies (8.10).

On the set Ln, we have |xfe|gl/2 for fe>w, and (xfe)fe>w is mutually inde-

pendent with respect to fi. On the other hand, the mean of x% with respect to

li is

ram 2 - _ 2 Y J L Y _ J(8.11)

Therefore, from the law of large numbers, for almost all x e Ln we have

(8.12) lim-Li ^ = iy.
]V-»oo ^V k = 1 12

CO

This holds for each n, so that combining with fj,((\J LB)C) = 0, we have (8.12)
n = l

for almost all x e R°°. In other words, putting

(8.13) D

we have /((Dc) = 0. Thus, we have also /i(Dc U ( W Ln)c)-0.
n=l

Therefore, we can conclude (8.10) if we can show

(8.14) D n ( C / L n ) c = G Uf(L0).11=1 fc=i

iT)

Suppose that x e D n ( W Ln), then we have
«=i

(8.15) 3AT, ^j^ **<-$-, and |^|^4~ for ^> 7 V-

Then, for a suitable rotation U of R^ (namely for some U e 0(JV)), (Xj, x2,..., %)



716 YASUO YAMASAKI

can be mapped to (c, c,..., c), where c = >/££=1 xf/JV. From (8.15), we
have c< 1/3. Since AN is a dense countable subset of 0(N), we have

(8.16) *UkeANcO(N), Max \\Ux-Ukx\\ ^
\\X\\£1 ™

where || • || is the Euclid norm in R*. Putting Uk(xl9 x2,..., xN) = (yl9 y2,~; J^X

we get \yk-c\^^lj4N'^Wj9 = ll6, hence |j;k|^c + l/6<l/3 + l/6 = l/2. Thus,

we get Uk(xl9 x29..., xN)e[-l/29 1/2]*.
Imbedding O(N) into G0, Uk becomes a rotation of Rg3 which keeps ej

invariant for j>N. Then, the mapping U*~l is defined on R00, It is identical

with Uk on RJ, and keeps Xj invariant for j>N. Therefore we have Uf~1x

e[ —1/2, 1/2]°° = L0, hence we have xel7?(L0). This completes the proof of

(8.14). Q.E.D.

Remark. Generally, not only the proof, but also Proposition 8.2 itself is
invalid for the measure fia. As shown in the example before Proposition 8.2,

if a e(P), the measure \ia lies on (P), so that denoting the unit ball of (/2) with

B, we have na(nB)>Q for some n>0. Since nB is a Go-invariant set, combining
with na((nB)c}>0, we see that f.ia is not G0-ergodic. (Putting ^ = {XGR°°; \x^\

>n}9 we have Aa(nB)c and fj,a(A)=co9 which comes from RgMnvariance of ^fl.)

§ 9. Invariance under Homotheties

In this section, we shall discuss about the invariance under homotheties.
Denoting the Lebesgue measure on R°° with ^ we shall define a countably

additive measure /Z on 93 by

(9.1)

The measure p. is RJ-invariant (actually (/^-invariant), Go-invariant, and

invariant also under homotheties. Namely we have

(9.2)

In the case of finite dimensional space R", the Lebesgue measure is a unique
RMnvariant a-finite measure, and it is not invariant under homotheties. (In

(9.1), if we adopt the Lebesgue measure on Rn as JJL, the corresponding measure
p, becomes (0, oo)-type, so it is not a-fmite.) In contrast with this, we have:

Proposition 9.1. The measure // defined in (9.1) is a u-finite Borel measure
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on R°°. Therefore, on the space R°°, there exists a a-finite Borel measure which

is invariant simultaneously under translations Rg3, finite dimensional rotations

G0, and homotheties.

Proof. Let D be the set defined in (8.13). Then, for c>0 we have

(9.3) cD

so that {cD}c>0 is mutually disjoint. Since f,i(Dc) = Q, we have Tc//*((cD)c) = 0.

On the other hand, since u is a cr-finite measure, we have

(9.4) 3

k=l

Here, we can suppose that Ek^D for every /c, because n(Dc) = Q implies

= u(Ek(}D). Furthermore, we can suppose that {Ek} is monotonically in-

creasing.

The mapping (x, c)^cx maps continuously M°°x(0, oo) onto M"30, and

one-to-one on £ fex[l//c, fc] because {c£Jc>0 is mutually disjoint. Therefore,

the image Fk = \J (cEk) becomes a continuous one-to-one image of a Borel
C6[l/fe,fc]

subset of R00 x (0, oo), so Fk itself is a Borel subset of R°°. (For instance, see

[7].)
{Fk} is also monotonically increasing, and for c 6 [1/fc, /c], we have Fk^>cEk.

So that, for any given c>0, choosing k such that l / /crgcgfc, we have

Since this holds for any given c>0, from (9.1) we have

On the other hand, since we have

A if
o T0 , if

we get

(9.7)
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Combining this with (9.6), we see that Ji is a cr-finite Borel measure on R00.

Q.E.D.

It seems to be somewhat curious that there exists a d-finite measure on R00

which is invariant simultaneously under translations and homotheties. This

comes from the fact that the Lebesgue measure \JL on R°° is singular with respect

to homotheties, so that we can find suitable sets Fj in the proof of Proposi-

tion 9.1 with finite /Z-measures. However, for a "more natural" set, ji is

(0, oo)-type. For instance, on the family of rectangles in R°°, ji is (0, oo)-type

as shown below.

For an algebraic isomorphism A from RJ onto Rg5, whenever A*(RQ) is

contained densely in (I1), /I(>4*(L0) + x) is 0 or oo for any xeR00 . Because if

we assume 0</Z(^*(L0) + x)<oo, the set of c>0 such that Q<tcIn(A*(L0) + x)

< co has a positive measure, so especially for two different values c and c', we

have 0<Tc/^*(L0) + x)<oo and Q<rc,I[i(A*(L0) + x)<co. Then from the

corollary of Proposition 7.3, both rcl^ and TC^ are equivalent with TxrAfi, hence

we have TCJ^~TC,J//. This is a contradiction to

For an algebraic isomorphism A from Rg3 onto Rg3, from (9.1) we have

(9.8)

From now on, we shall assume that ^4*""1(Rg>) is contained densely in (I1).

Then, IA\JL is RJ-invariant and Go-invariant, so that r^/Z is R^-invariant,

G0-invariant, and invariant also under homotheties. Since Ji is a-finite, tAji

is also (T-finite. Therefore, we conclude that on the space R°° there exist infinitely

many oxfinite Borel measures which are invariant simultaneously under trans-

lations Rf, finite dimensional rotations G0, and homotheties.

Proposition 9.2.

1) Let H be a transformation group q/R°° which is generated by homo-

theties and translations by elements of RQ°. Then, ?Aji is H-ergodic.

2) If H^icoAnfor some c0>0, then we have j2~tAfi (more exactly we have

rAfi = ccfi for some a>0). Otherwise, we have fil-T;AjJ.

Proof. Assume that a Borel subset B of R°° satisfies :

(9.9)
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The proof of 1) will be completed if we can derive TA/Z(J5) = 0 or tAfi(Bc) = Q

from (9.9).

On the space R*, consider the inductive limit topology of Euclid topologies

on Rn x {0}. Then, RJ is separable, so that there exists a countable dense sub-

group X = {xn}. According to [6], the measure tAfjL is ^-ergodic.

Now, we shall assume the first line of (9.9). Then, we have vn, ?Afi(BQ

(B — xn)) = 0, hence for almost all c>0 we have vn, iAfj,(c~1BQ(c~iB — c~1xn))

= 0, which implies tAfj,(c~1B) = Q or i:A^(c~1Bc) = Q because of cr^-ergodicity

of IA\JL. We shall put

(9.10) N

Denoting the Haar measure on (0, oo) with A, if A(2VC) = 0, then t^ju(c~1B) = 0

for almost all c>0 so that TA/Z(fl) = 0. Similarly, A(JV) = 0 implies rAjl(Bc) = Q.

Therefore, the proof will be completed if we can exclude the case: A(iV)>0

and A(IVC)>0. In this case, we must have A(IV n c0iV
c) > 0 for some c0>0.

(For instance, see [9].) If ce]Vnc0 iVc , then we have tAij,(c~1B) = Q and

T^(c0c~1B)>0, hence we have T^(c~1(5©(c0B)))>0. Combining with A(JV n

c0A/rc)>0, this implies Tv4/Z(B©(c0B))>0, v/hich contradicts with the second line

of (9.9).

Thus, the proof of i) has been completed.

Since both /I and iAJl are H-ergodic, we have either /Z^r^/Z or Jll.iAJi.

Therefore, for the proof of 2), it is sufficient to show

(9.11) %>0,

If we assume ^^^CQA^ then we have TcoAju = a/j for some a>0, so from
(9.8) we have Tcoyl/Z = a/Z. Since iAJi is invariant under homotheties, we have

tcoAfi = ?Aji9 thus we get -cAfi = a/i, so especially we get TA/Z ~ f i .

Conversely, assuming Ji^xAJi, we shall derive ^~Tc0^- Since both \JL and

tCoAfj, are R^-ergodic, AI;$TCOXJU implies ICQA\JL~VL. Therefore, it is sufficient to

show

(9.12) 3c0>0, v£e», K^)>0=>TcoXX£)>0.

Consider the set D defined in (8.13). Since /x(Dc) = 0, we have fj,(E)

= fj,(E n D), so that it is sufficient to prove (9.12) under the assumption EaD.

Then, as explained below (9.4), F= W (cE) is a Borel subset of R°°, and
0<c<oo
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satisfies

dc
-= 00

Jo c

Thus, from the assumption tAfi~[i, we must have t^//(F)>0. However, since

c~iF = F for every c>0, we get iA^(F)>Q from (9.8).

Especially, choosing E = D, we have r^( U (cD))>0. Since tA\i is
0<c<oo

RJf-ergodic and each cD is an R^-invariant set, this implies rA^((cQ1D)c) = Q for

some c0>0, which is equivalent with tcoAn(Dc) = Q.

In the general case of £c:Z), ju(£)>0 implies tAn(F)>Q as seen above.

Since F = CQIF, we have t^(F) = TcoX/*(F), so that we have 0<Tfo^(T)

= ^COAf4F n D)==TCOX£)- This completes the proof of (9.12). Q. E. D.
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