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Some Theorems about Formal Functions
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§ 0. Introduction

It is well-known that in algebraic geometry there are very few nontrivial

problems about continuation of objects from open subsets, which is a big differ-

ence to analytic geometry. So we may expect that in the algebraic version of

analytic geometry, formal geometry, there are some interesting problems of this

kind, and this assumption is supported by the following paper.

In there we take a local ring which is complete in some */-adic topology and

consider the formal scheme obtained by completing the spectrum of our local

ring along the closed subscheme defined by */. As all interesting formal objects

on this formal scheme stem from objects on the usual spectrum of our local

ring, we remove a closed subset. After that there may exist nonalgebraic

formal objects, and such objects are characterized by the fact that there is no

continuation of them to the whole formal scheme.

The objects we are interested in are formal meromorphic functions and

formal subsheaves of algebraic formal sheaves. As it is the case in analytic

geometry these two cases are connected, and any result about one of them im-

plies a corresponding result about the other.

As application of our theory we prove certain results about connectedness,

including a generalization of Zariski's connectedness-theorem.

I express my gratitude to Professor Hironaka for some very stimulating

discussion, and to the Deutsche Forschungsgemeinschaft for support during

the last year.
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* Mathematisches Institut, Universitat Minister, Roxeler Str. 64, 4400 Minister, West

Germany.
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§ 1. Preliminaries

In this paper all rings are supposed to be commutative with a unit,

noetherian and to have a dualizing complex. The last assumption carries over

to localizations and completions and implies that the formal fibers are gorenstein

(compare [F]). Suppose A is such a ring, which in addition is local, and J^ca

^A two ideals. Then we denote Spec (A) by X, the closed subscheme Spec (A/S)

of X by Y, and Spec (A/a) ^ 7 by Z. If A is complete in the j^-adic topology,

then X = Spf(A) is the formal completion of X along 7, and U<^X is its open

subscheme obtained by removing Z. If somewhere in this paper we introduce

A, </, a as above these notations are in force automatically, and if furthermore

there occur Al9 A2,..., Sl9S29...9 and a1? a2,..., the objects denoted by Xl9

X29...9 Yl9 Y29...9 etc. are exactly what the reader expects them to be. 0" is

covered by the affine open subschemes Spf (A(f))9 where / moves in a system of

generators of a or only a/./, and A^ denotes the ./-adic completion of the usual

localization Af.

If K' is a dualizing complex for A9 then it is seen as in [F] that K'®AA(f}

is a dualizing complex for A(n, and that for /, g e a the fibers of the mapping

Spec (A(fg))-+ Spec (A(n) are gorenstein. If d is the codimension-function of

K' and if we denote the codimension-functions of K'®AA(f} and K'®AA(fg)

by the same name, then for all primeideals pa A d takes the value d(p) on all

minimal prime overideals of p • A^, which are by the way all the associated

prime ideals of A(n/p - A(n. A similar conclusion holds for the basechange

from A^ to A^fg^ and this allows to handle the following difficulty:

If the finitely generated A^-module M has only one associated prime

ideal, this need not be the case for M®A(nA(fg}. But d takes the same value

on all associated prime ideals of M®A(f)A(fg}.

Hence, although the primary decompositions of a coherent sheaf on U on

the affine parts Spf (A(n} need not glue together to a global decomposition, we

may get a global decomposition of we take the intersection of the primary com-

ponents belonging to a fixed value of d. As d changes with K\ we change the

numeration in the following way :

As / is no unit (since /e a ̂  A), and as maximal ideals of A(n contain

c/=^4(/), they can be identified with maximal ideals of A^J-A^ = (XA/)/ or with

prime ideals q of A for which (^4/q)/ is a field and hence dim (yl/q) = 1. If m is
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the maximal ideal of A, we therefore obtain d(c\) = d(m) — 1, and for any prime

ideal p^A(f) we have dim (^4(/)/p) = d(m) — d(p) — 1. So, instead of the d-

function we can use the dimension for our parametrisation, and we obtain the

following

Lemma 1. If J5* is a coherent sheaf on U, there exist uniquely determined

coherent subsheaves ^f (0 ̂  i < dim (A)) of ^9 such that n^( = (0) and such

that for all fea and all associated prime ideals p of F(Spf (A(f

We denote the sheaf of formal meromorphic functions on 0, which by

definition is the total sheaf of fractions of 00, by Jt$, and its global sections by

M(17). The sections of J?e over some Spf (^4(/)) can be identified with the total

ring of fractions of A(n, and the intersection of the support of a global formal

meromorphic function with Spf (A(n) is the union of certain primary com-

ponents of Spf C4(/)). If the local rings of U are integral domains, then the

support of a formal meromorphic function is open and closed, and hence M(G)

is a field if and only if 17 (or Y— Z) is connected.

For an integral domain A we denote by Q(A) its field of fractions. An

extension of fields K <= L is called regular if it is separable and if K is algebraically

closed in L. This is equivalent to the fact that for some algebraically closed

extension of K, K, L®KK is an integral domain.

We have the following result :

Lemma 2, If K^L is a regular extension of fields, then K((Tly...9 TJ)

c=L((Tl9..., TJ) is regular too.

Proof. We first reduce to the case of an algebraically closed K. If K is

an algebraically closed extension of K, we claim that the natural mapping

l5..., Tn)) - >Q(L®KR)((T19...9

is an injection.

If this were not true we could find ^6L((rl5..., TB)) and y^K^T^..., Tn))

for l^i^m, such that x f /0 for all i and such that the yt are linearly independ-

ent over K((T19...9 TJ), so that f xryt = Q in Q(L®KK)((Tl9...9 TJ). After
i=l _

multiplication with nonzero factors from L[[Tl5..., TJ] resp. K[[Tl9...9 TJ]

we may assume that XieL[[Tl9...9 TJ] and yieK[lTl9...9 TJ].

If si L-+K is a K-linear retraction of the injection K^>L, we can extend s

to a retraction L[[Tl5...? TJ]-+K[[T19...9 Tn]] by letting s act on the coef-
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ficients of the powerseries, and as s induces a retraction L®KK-+K of the

injection K<-*L®KK, we obtain in the same way a ^[[T^..., TfJ]]-linear retrac-

tion s: (L®KR)[£T19...9 TJ]-»K[[Tl9..., TJ]. So we obtain that

As s(X-)eK[[Tl9..., TJ] and as the ^ are linearly independent over this ring,

s(X) = 0 for all i. But if xt^Q, we can clearly find an s with s(xf)^0. This

proves our claim, which obviously allows us to assume that K is algebraically

closed.

In this case the separability of K((Tl9...9 TJ)^L((Tl9...9 TJ) is clear, since

the Tt form a p-base of K((Tl9...9 TJ) and are part of a p-base of L((Tl9..., TJ)

Hence it remains to prove that K((T19..., TJ) is algebraically closed in

L((T1?..., TJ), which is equivalent to the fact that K[[Tl9...9 TJ] is integrally

closed in L[[T1?...,TJ].

We first consider the case n = l: Suppose E^L((TJ) is a field containing

and being finite over K((TJ). Then the integral closure of -K[[T]] in £ is a

discrete valuation-ring, and the corresponding valuation of E is the unique

extension of the T-adic valuation on K((TJ) and therefore it is equal to the

restriction of the T-adic valuation on L((T)) to E. This implies that the rami-

fication index of J£((T))<=£ is one, which of course also is the case for the

degree of the extension of the residue-fields, since K is algebraically closed. As

the product of these two quantities is the degree of the extension K((T))^E,

E must be equal to K((TJ). For general n we take a powerseries /(Ti,..., Tn)

eL[[T1?..., TJ], which is integral over J£[[Tl5..., TJ]. For arbitrary elements

xl5..., xneK this implies ihatf(xi •£,..., xn • S) e L[[S]] is integral over K[[S]]

and hence an element of .K[[S]] by the previous considerations. As K is infi-

nite, this implies immediately /e^[[r1,..., TJ]. This proves our lemma.

We denote by ® the complete tensorproduct as in [S], Chapter V, 2.

Lemma 3. Suppose K is afield, p and qcX[[T1,...J TJ] prime ideals,

such that Q(A/p) is a regular extension of K. Then (A/p)®K(A/q) is an in-

tegral domain, and its field of fractions is a regular extension

Proof. If Xl9...,Xm is a system of parameters for Afa, then

A/q is finite over K[_[Xl9..., XmJ], and (A/p)®K(A/q) is isomorphic to
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(Alp)[[X1,...,Xm]']®K[LXl ..... xmTjG4/q) and hence contained in (X/p)[[Arl5..., XmJ]

Since X((X,,..., XJ^eC^/p)!!*!,..., XJ]) = e(^)((^i,-, *J), the first
extension is regular by Lemma 2 and our claim can be derived by standard

field-theory.

Elementary facts from commutative algebra, as they are for example listed

in [Af], are used without explicit reference.

§2. 63-Theorems

Theorem 1. Suppose A is a complete local integral domain containing a

field, j^czA an ideal, which can be generated by n elements for some natural

number n and for which dim (A /^) = dim (A) — n. If a^><# is another ideal

with dim(^/a)^dim(,4/jO-2, then U is G3, or equivalently, M(U) = Q(A)

(U as in the introduction}.

Proof. If x !,..., xn is a system of generators of ,/, we can find a complete

regular local subring R^A9 such that A is finite over R[[xl9...9 xj] and such

that dim(£) = dim(A/./). We further may replace a by any smaller ideal

fulfilling the same assumptions, since this means removing some part of U and

since the support of a nonzero formal meromorphic function cannot be contained

in the removed part :

For on some Spf (A(f)) with /set our function can be identified with an

element of the total ring of fractions of A(n. As A is quotient of a regular local

ring, the support of this element has pure dimension dim(A(n) = dim(A) — l,

and hence its intersection with F(</), which is the support of our formal mero-

morphic function on Spf(/l(/)), is either void or of dimension ^ dim (A) — 1 — n

> dim (Aj a).

If we define A^A as 4, =jR[[xlv.., xj], ^1 = (x1,..., xn)-Al9 ax = a n Al9

we may replace a by al-A. Then U is finite over Ul9 and it is immediate

that M(£) = M(t/0®Q(^) 004).

Hence it is enough to prove our theorem for Ul. If /eMfOj is a formal

meromorphic function, the ideal ^=&Vi n f'l-0^^00l defines the polar-divisor

of/. </ is locally free, and so is jg? = .#* ̂ ^ (./, 00l). f and the constant

function 1 define global sections of j£? , and we have to prove that these sections

are linearly dependent over A} . Hence it remains to prove the following claim:
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If o^f is a formal line-bundle on t/l9 then F(0l9 <£) is a finitely generated,

torsion-free Av -module of rank gl.

We prove this claim by induction over n, where Al=R[f_xl9...9xnJ]. If

n = 0, then -2^00!, and r(t/l5 &)*lAl9 since

If n > 0, we have an exact sequence

o — > r([/l9 j*?) -^ r(ff ls .so — r(ff !, jgr/x, • -20 .
If we apply induction to the last module, which is therefore finitely generated

over Al/xn'A1^R[][xl9...9xn-l'}']9 and if we use the fact that F(0l9 &) is

separated and A1 is complete in the x^-adic topology, we see that F(0l9 JS?) is

finitely generated over A^ It is clear that F(0l9 &) is torsion-free, and if we

localize the exact sequence above in the prime ideal xn-Al^A1 and use induc-

tion and Nakayama's lemma, we see that the localiztion of F(0l9 &) at this

prime ideal can be generated by one element over the localization of Al9 and

hence the rank of F(0l9 &} is g 1.

Corollary. If A9 «/, a are as in Theorem 1 and in addition A is normal,

Proof. Any global section of 0$ is contained in Q(A). If it were not

contained in A9 its polar divisor would have a nonvoid trace on U, since its

dimension is dim (^4) — 1, and so its intersection with Yhas dimension grdimOl)

— n — 1 >dim (X/a) and cannot be contained in Z= V(A/d).

We now generalize Theorem 1 and solve a problem first posed by A. Ogus

([O], Remark on p. 344).

Theorem 2. Suppose K is a field, R = K[[Tl9...9TJ]9 p, qc£ prime

ideals with Q(R/p) a regular extension of K. Define A = R/q.) </ = y>A, and

let ac^4 be an ideal containing J. If dim(^l/t/) = dim(jR/(p + q)) = dim(E/p)

+ dim(JR/q)-n (we always have "^" by [S], Ch. V, Th. 3) and this quantity

is ^dim04/a) + 2, then M(U) = Q(A).

Proof. If d = dim(A/p), we may assume that Tl9...9 Td form a system of

parameters for R/p. We consider the ring A1 = (R/p)®KA = (R/p)&K(R/c\) and

the ideal J^A^ which corresponds to the diagonal and is generated by the

7}<|)X1-1®XT, for l^i^n. Then A^^RKp + cO^A/^, and Al is an
^4-algebra via the second factor in (R/p)@)KA. If we define ax as a-Al9 we

get a formal scheme Ul and a bijective fiat mapping of formal schemes C/j-^17.

Therefore
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As Al is an integral domain by Lemma 3 and as it fulfills the conditions of

Theorem 1, M(01) = Q(A1)9 and this is a regular extension of Q(A) by Lemma 3.
Hence it suffices to show that M(U) is finite over Q(A). For this we consider

the minimal prime overideals of (^(g^l — l®KTly..., Td&Kl — l^KTd)^Al,

which we number as p 2 > - - - > Pm- As dim(A1/J
r
1)=dim(Al) — n, we get that

— d = dim(A) for 2^z:gm, and as

A/(^i®Ki-i®KT1?...5rd<§^^
is finite over A, the At are finite over A, and we must have, that pt n ^4 = (0) for

If we define t^i = Jr
1 • A{ and ^ = a^ - At for 2^igm, we get closed formal

subschemes Ut of 0" 15 whose set-theoretic union is U1. All this implies that

M(#)e 0 M(Ui). But as the triples (Ai9 Si9 at) also fulfill the conditions of

Theorem 1, we have M(Gt) = Q(A^ and therefore M(U) has finite dimension

over Q(A). This proves our theorem.

§ 3. Algebraization of Formal Subsheaves

Let A, e/3 a, 0 be as in the introduction and M a finitely generated A-

module. M defines a coherent formal sheaf J5" on U, and if ^ is a formal

subsheaf of ^, we may ask whether there exists a submodule N of M such that

^ is the formal sheaf associated with N. If there exists one such N, there exists

a canonical one, namely the kernel of the combined mapping M-»r(l7, J5")

We call ^ algebraic if there is an N as above, and we have the following

Theorem 3. Suppose A is a complete local ring containing a field,

an ideal, which can be generated by n elements for some natural number n,

and for which A is complete in the J'-adic topology. Let a=>*P be another

ideal with a^A9 and let M be a finitely generated A-module with associated

coherent formal sheaf IF on U. If ^^^ is a coherent formal subsheaf, such

that for all fed and all associated prime ideals pc^4(/) of F(Spf (A(f)), ^/g)

dim G4(/)/(p + J • A(n) = dim G4(/)/p) - n > dim (A/ a) ,

then ^ is algebraic.

Remark. It is an easy exercise in commutative algebra, to show, that we

only need to test the condition in the theorem for / in some fixed generating
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system of a, since this implies the condition for all /.

Proof of Theorem 3. If we apply Lemma 1 to jF\<3 and use the fact that

the intersection of algebraic ^'s is algebraic, we see that we may assume

that for all /ea and all associated prime ideals p of r(Spf (>4(/)), tFl<&)

dim (A^p) = n + r is constant independent from / and p. As in the proof of

the previous theorem we may make a smaller:

This means removing some part of U. If we have an N^M which defines

^ over the smaller U, we take the maximal one. Then it is elementary that all

associated prime ideals p <= A of M/N fulfill dim (A/pi) = n + r +1. Hence for

any/ea and all associated prime ideals p^A(f) of (M/N)®AA(f} we also have

dim G4(/)/(p + S - A(n)) ^r> dim (A I a). But as the submodules F(Spf (A(n), &)

and N®AA(f) of F(Spf (A(f)), ^) = M®AA(f} differ only in the part removed from

U during the change of a, and as the dimension of this part is smaller than the

dimension of any associated component of (M/N)®AA(n or r(Spf G4(/)), ^/tf),

they must be equal.

Let K^A be a field of representatives and b c A the annihilator of

r(fJ9(&l&)®0v(GolS-00)). Then our conditions imply dim(,4/b) = r+l , and

we can chose xl9...,xr^.leA which form a system of parameters for (A/V)9

such that A/b is finite over the subring R = K[[xl9...9 ^r+1]] of A.

We now replace a by a 4- b: This enlarges U, but on the new piece we have

a trivial continuation of ^, namely by !F itself.

After that we change a into (a n R)-A + b9 which also fulfills the necessary

dimension-inequalities.

If y!,..., yn is a system of generators for S, we may form the ring of formal

powerseries Al=R[[Tl9...9 TJ], and we get a mapping A±-+A sending Tt to yt,

which makes A an A1 -algebra. Let t/1 = (T1,..., Tn)aA1 and define c^ as the

kernel of the combined mapping Al -^A-^A/a, so that S = S1-A and a = a1 • A + b,

and therefore we have an adique mapping of formal schemes U — V ( a l - ( 9 c )

->£/!. I f /Ea x and paA(n is an associated prime ideal of F(Spf (A(f)), &/&),

our construction implies that A(f)/p is finite over A1}(n. As both rings have the

same dimension and as Ali(f) is integral (it is regular and has no nontrivial

idempotents), we have p n ̂ 41.(/) = (0). Hence we see that F(Spf (^(/)), ^/g) is

finitely generated and torsion-free over Ait(f) and therefore has a well-defined

rank s. As 0^ is connected, 5 is independent of the particular choice of/ea10

Define N^M as the kernel of the combined mapping M-*r(U, $?}-*

F(U, &/&). We want to show that M/N is finite and torsion-free over A}:
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The torsion-freeness is trivial, and for the finiteness it suffices if ^4/Ann (MjN)

is finite or only integral over A^.

So let x e A. If fe al9 we look at the characteristic polynomial F(T) of the

multiplication with x on the torsion-free 4lj(/)-module F(Spf (^4(/)), &I&).

This is a monogeneous polynomial of degree s, whose coefficients fit together to

global sections of GGl. The corollary to Theorem 1 implies FeA^T], and

according to Hamilton-Cayley the support of F(x) • (!F\&) must be contained

in V(a^ -00) and hence is disjoint from the support of ^\^, which is equal to

K(b - G0). Therefore F(x) e Ann (M/N).

Let t be the rank of the finite torsion-free A±-module MjN. As 3?\& is

a quotient of the coherent formal sheaf associated with M/N, s-^t. We can

find elements zl9...9 zs from M such that for any /ea t the zt form a maximal

system of ^1)(/)-linearly independent elements in F(Spf (^4(/)), &J&). If then y

is an arbitrary element of M, we can find c0,..., cs9 c0^0, from A l i ( f ) 9 such that
s

Co-y+ Z Ci-z—Q in r(Spf(/!(/)), «^/^). The cf/c0 are uniquely determined
i=l ^

and therefore glue together to a formal meromorphic function on Ul9 which

is an element of Q(A1) according to Theorem 1. Hence we can find such a
s

relation where all the ci lie in Al9 and then the global section c0-y+ X cr zt
i=l

of &/& vanishes on V(b-00)9 which is the support of «^*/^, so that c0-y +
s

X Ci-z^N. This implies f< j s , so we have s = t
1=1

For /ea1 the kernel of the canonical surjection (MjN)®AA^^

F(Spf(A(f))9 &I&) is now torsion-free of rank t — 5 = 0, hence vanishes. So

the support of the kernel of the canonical surjection from the formal sheaf

associated with M/N to ^/g is contained in V(a1 • &0)9 and a simple argument

as before shows, that its dimension is too small to allow the kernel not to

vanish. This proves our theorem.

We now prove a theorem about the ring of formal powerseries which

stands to Theorem 3 in the same relation as Theorem 2 to Theorem 1.

Theorem 4. Suppose K is afield, tfc=A = K\_[T1,...9 TnJ] a prime ideal,

such that Q(AI</) is a regular extension of K, a^A another ideal containing

<f. Let M be a finitely generated A-module and & its associated coherent

sheaf on U. If ^^^ is a coherent subsheaf, such that for all /ea and all

associated prime ideals pc^4(/) of F(Spf (A(f))9 &/&)

dim G4(/)/(p + */ • A(nJ) = dim C4(/)/p) - height^ (./) > dim (A I a),
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(a priori the first equation is an inequality because of Serre's dimension

formula, [S], Ch. V, Th. 3) then & is algebraic, i.e., there exists a submodule

N of M such that & is the coherent sheaf associated with N.

Proof. Let 41=(4/>)(&JCX = (A/y)[[r1,..., TJ], AK^®*!-!®^,
...? rw(§)xl — !®KTn)cy41 and a1=Jr

1 + a-A1, where A1 did become an A-

algebra via the second factor in the complete tensorproduct which defines

it. Then we get a formal scheme G1 with a bijective flat mapping U1-+U,

and as we want to use descent-methods, we also consider A2 = A1®AA1 =

(A/jP)®K(A/J?)®KA with its ideal

and with a2=^2 + a-A2, where A2 becomes an ^4-algebra via the second com-

plete tensorproduct in its definition. The first tensorproduct induces two

^4-linear mappings jl9 j2: A±-*A2, given by Ji(a) = a®Al and j2(a) = l®Aa.

So we get a diagram of flat mappings

j'i v
A - *Ai IZZMi,

72

where all the mappings respect the different ^/-adic topologies, and so we have

a diagram of formal schemes :

o<— e^u2.
72

We define ^t and ^ for f = l, 2 as the pullbacks of & resp. ^ on Ut. Then

the ^t can be defined by the finitely generated ^-modules Mi = M®AAi.

We intend to show first that & \ can be defined by a submodule Nt ^M1.

If we have any such submodule, we get submodules Nl ®AljlA2 and

N1®AlJ2A2 of M2. If these are equal there exists a submodule N<=M, such

that N1 is the submodule N®AA^ of M1=M®AA1: If we would use the usual

tensorproduct instead of the complete tensorproduct this would be an immedi-

ate consequence of the usual descent-theory. But we can reduce to this case :

If m is the maximal ideal of A, we first replace in the definition of Al and

A2 A\J by A/(^ + mh) for some natural number h. Then the complete tensor-

product in the definition becomes an ordinary one? and if we apply descent-

theory to the submodule induced by N on M®^(new A^9 we obtain an unique

N^M inducing our A^. By uniqueness this N is independent of h, and it is
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easy to see that N®AAl = Nl. To show that ^r
l is algebraic we use Theorem

3. To fulfill the conditions of this theorem comes down to proving that the

fibers of C1->0' have no imbedded primes. Hence we only need the following

Lemma 4. ///eci, then the fibers of the mapping A(n-»A1>(n have no

imbedded primes, i.e., they fulfill the Si-condition.

Proof of Lemma 4. We choose xl9...,xdeA which form a system of

parameters for A\J. Then A\J is finite over its subring K[[xl9...9 xd]], and

A1 = (A/S)&KA^A[£xL,...9xdJ\®KlLxi. ...lXd-n(AlS). If P^A(n is a prime
ideal, Ali(f)/p -A1>(f) is the j^-adic completion of (./-adic completion of

As all our rings have dualizing complexes and as therefore their formal

fibers are gorenstein, we need only to show that the latter ring has no imbedded

primes, and as this ring is a submodule of the direct sum of a finite number of

copies of its subring (e/-adic completion of ^[[x^,..., ^]]/)®x(/)(^(/>/P) (since
A\J can be imbedded in the direct sum of a finite number of copies of its subring

K[\_xl9...9 xd]]), we only have to consider this subring. But as the rings A(f}

and (./-adic completion of ^[[xj,..., xj]/) are regular, any flat mapping be-

tween them has fibers which are complete intersections, and this remark finishes

the proof of our lemma.

Now we know that <3V is algebraic, and hence is induced by N^= kernel of

the combined mapping M->r(01? ^
ri)-*r(0i, J^i/^i). We want to show

that the submodules N1<S)AiJ-l A2 and N±®AlJ2 A2 of M2 are both equal to the

kernel of the combined mapping M2-»F(L/2, ^r
2)~>A^2» ^"2/^2) or equiva-

lently that the mapping (MlINl)®AlJlA2-*r(029 ^r
2/&2) is injective (and the

same for j2 instead of j^. Lemma 3 immediately implies that for any prime

ideal p^Aljl(p)-A2 is also a prime ideal, and by the usual calculation the asso-

ciated primes of (MilN^)®Alji A2 are therefore of the form jL(p) • A2 with some

associated prime p^At of MJN^ If such a prime j 1 ( p ) - A 2 is associated to

the kernel of our mapping (M1/Nl)®AljlA2-+r('029 Jsr
2/^2), we must have

./i(p)'0(72 = 0C2 an<^ ^ence by faithfully flat descent p.^0 l = ^0l, which is
impossible, since p is associated to M^/JV^ which is contained in Fffi^ -^il&i).

After all we now know that there is a submodule N^M for which N®AA^

= Nl. The pullback of the coherent subsheaf of & defined by N to U± is

equal to the pullback of ^, and by faithfully flat descents ^ is the algebraic

subsheaf of 3F which is defined by N. This proves our theorem.
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§ 4. Descent-Methods

We now consider rings A which are not necessarily complete in the topology

defined by the maximal ideal but only in the </-adic topology. By the previous

theorems our formal objects become algebraic after the base-change to the

completion in the topology defined by the maximal ideal, and we want to use

descent to prove that our original objects are algebraic.

Theorems. Suppose A is a local ring, J'c^a^A ideals, such that A is

complete in the J'-adic topology. Assume further that A contains a field and

has a dualizing complex. If either

i) «/ is generated by n elements for some natural number n,

or

ii) A is regular, J' a prime ideal of height n, such that the completion of

A/Jf is integral and such that A, the completion of A, contains afield

of representatives Kfor which Q(A\J -A} is a regular extension of K9

we have the following results, where U etc. are defined as in the introduction:

a) If pa A is a prime ideal, such that for Al=A/p, e/1=«/-y41, ax

= a-Al9 dim(Al/l#l) = dim^j) — n ̂ dim (A1/a1) + 2 (we always have

"^" in the first equality), then M(&1) = Q(Al).

b) If M is a finitely generated A-module with associated sheaf & on

U, and if & ̂  ^ is a coherent formal subsheaf such that for all

feaand all associated prime ideals qciv4(/) of F(Spf 04(/)), &"/&)

dim(A(n/(q + ̂  'A(n)) = dim(A(f)/q)~n^dim(A/a)-i-2 (we again

have always "^" in the first equality), then there exists a submodule

N^M such that <& can be defined by N.

Proof, a) is an easy consequence of b), if we consider the graph of a formal

meromorphic function. To prove b) we make the base-change to Al=A

= completion of A with its ideals «/1=«/-^41 and a1=a-A1, the finitely gener-

ated A1 -module M1=M®AA1 and the formal sheaves & ' l and ^x on Ul9 which

of course are the pullbacks of ^ and ^. The previous two theorems imply

that ^x can be defined by a submodule N1^Ml, for which we take the kernel

of the combined mapping M-^F(Ui, &
r
i)-*r(U1, ^i/^l). For any natural

number d the sheaf ^ + Jrd • ^^^ is algebraic and can be defined by Nd^M,

which is the kernel of the combined mapping



SOME THEOREMS ABOUT FORMAL FUNCTIONS 733

M

We are ready if we show that for any natural number m the decreasing sequence

of the submodules Nd-\-J
m - M (for rf->oo) of M becomes stationary:

For if Lm is its limit, we have for fc^m, Lm = Lk-}-Jtm -M, and the ./-adic
completeness of M implies that the submodule L= r\ Lm = \im (Lm/Jrm'M)^M

meN
fulfills Lm = L + Sm • M and that therefore ^ can be defined by L.

If we make the base-change from A to Al9 Nd changes into its counterpart
on Al9 and by faithfully fiat descent we only have to prove that the descending

sequence of these counterparts becomes stationary. So we may assume that A

is complete. We also may replace M1 by M1/N19 and then we see that for all
associated primes p^A of Ml height(Xl/p)(a1 •>4 1 /p)>w, since otherwise we
would get a contradiction to our assumption about the associated prime ideals

of the r(Spf 041)(/)), J^i/^i). From now on we drop the subscripts for A^ and
assume that A = Alu

If we write A as the quotient of some big regular local ring it is easy to

derive case i) from ii), so that we only have to consider the latter. Our Nd are
now given by Nd= \J («/d-M: afe), and so it is enough to prove the following

keN

Lemma 50 Suppose A is a regular local ring, «/ ̂ A a prime ideal of height

n, a^A another ideal containing «/. If M is a finitely generated A-module,

such that for all associated prime ideals p of M height (^ /^ ) (c i -^ /p )>w, then for

all d EN there exists an m^d with \J (Jm-M\ ak)^j?d-M.
keN

Proof. We start with the remark that the conditions for our lemma re-
main true if we complete A in the ./-adic topology or if we localize in a prime
ideal q^J5" of A. We use induction over dim (A /a). If dim(A/a) = Q, the
modules of the decreasing sequence (\J ( t/

m-M: ak) + ̂ d-M)/J^d-M (m-»oo)
keN

have finite length and hence become stationary, so that for big m they are equal
to Ld/^

d • M for some submodule Ld^

For s^t we have Ls = Lt + ̂ s- M, and hence if some Ld is not equal to

Jd-M we get that r\ Ld = \im (ldlJfd -M)^\im(Ml^d -M) is different from
deN

zero. (We may assume that A is complete in the ./-adic topology.) We may
choose an element xeM which is contained in all Ld and for which A-x^A/p

for some associated prime ideal p of M. The j^-adic and the a-adic topology
on M then induce the same topology on A • x, which by Artin-Kees in the e/-adic

resp. a-adic topology of A-x^A/p. But this is impossible, since by Scrre's
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dimension -inequality ([S], Ch. V, Th. 3)

height(/4/j0 (S - A/p) ^ height^ (S) = n < heightM/|3) (a • X/p) .

Therefore the Ld are equal to J2rd-M, and this implies our lemma in the case

If dim (/I/a) > 0, we consider for fixed d the modules

(\J (Sm-M\ ak) + jfd'M)lSd-M
keN

for ra-»oo. As the supports of these modules decrease with increasing m, they

become constant, and as the localizations of these modules in any prime ideal

of A different from m, the maximal ideal, tend to zero by induction, they have

for big m finite length.

For a fixed d we can by the first case find an l^d with \j(^l-M: mfc)
keN

^J~d • M, and by the preceding considerations there exists an m^/ with

\J (J?m - M: ak) c \j (J?1 - M: mfe) .
keN keN

Hence we have W f j f m -M: a&)^j^-M, which is exactly what we had to
keN

prove.

§ 5. Connectedness-Theorems

We now start with the applications of our theory. As in the classical case

the algebraization of formal functions implies results about connectedness.

Theorem 6. Let Abe a local ring containing afield which has a dualizing

complex, ,/ciac: ,4 two ideals, such that J can be generated by n elements for

some natural number n. If A is an integral domain and is J'-adically

complete and if dim (^4/a) ̂  dim (X) — n — 2, then Spec (A/J') — Spec (A /a) is

connected.

Proof. We use induction over n. If n = l3 we may assume that

and then we may apply case a) of Theorem 5 :

As M(C7) is a field, U must be connected. But this is exactly what we have

to prove. For general n we choose an element x e «/ such that J\A • x can be

generated by n — 1 elements. If pl5..., ph are the minimal prime overideals of

A-x, the case n = I implies that, if we allow repetitions in the sequence pl3..., ph,

we may assume that dim(A/(pi+pi+i))^.dim(A) — 2 for l^ig/i — i, so that
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im (A/ a). As by induction the

Spec (A/(S + p^) - Spec (A/(a + p,))

are connected and as by reasons of dimension SpQc(AI(Jr + pi + pi+1)) is not

contained in Spec(^4/a), we may conclude that Spec (A\J} — Spec (A/ a) must

be connected.

Corollary. Suppose K is a field, p, qcz^ = K[[T1?..., TJ] prime ideals,

such that Q(A/p) is a regular extension of K. If ac:A is another ideal which

contains p - fq and for which

dim (Ala) ^ dim (A/p) + dim (A/q) - n - 2 ,

then Spec (A/(p + q)) — Spec (A/ a) is connected.

Proof. By Lemma 3 (A/p)®K(A/q) is an integral domain, and ^4/(p + q)

is isomorphic to the quotient of this ring after the ideal generated by the

We also can prove a generalization of Zariski's connectedness-theorem:

Theorem 7. Suppose K is a field, X, Y, K-schemes of finite type which are

integral and such that Y is normal, f: X-+Y a proper surjective mapping such

that f*(&x) = @Y or equivalently such thai the field of meromorphic functions

of Y, which via f becomes a subfield of the field of meromorphic functions of

X, is algebraically closed in this field. If then ZaX is a closed subscheme

with dim(Z)^dim(JO — dim(F) — 2, the fibers of the induced mapping X — Z

-+Y are connected.

Proof. We may replace X by its normalization and Z by its inverse image

in this normalization and therefore we may assume tha.t X is normal. As the

fibers of/: ^T-»Yare connected by Zariski's connectedness-theorem (which by

the way can be derived from Theorem 6), we only have to prove that for any

closed point x e Z the intersection of Spec (&x,x) ~ % with the fiber of / over x

is connected. We call the completion of 0XiX, which is again normal and

therefore integral, A, and the ideal in A which defines the preimage of Z is

named a. If then y=f(x) and if t l5..., tde&Y}y form a system of parameters

(d = dim ( 7))3 Theorem 6 implies that Spec (A/(tl9 ..., tdj) - Spec (A/ (a + (tl9...9 td)))

is connected, and so is its image in X, which is exactly the set of points whose

connectedness we have to prove.
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We also get the main result of [FH] :

Theorem 8. Suppose K is a field, P = P% x P ™ x ••• xP£ the product of r

copies of the projective m-space, and A^P the image of the diagonal embedding

of P^ in P. If X is an irreducible K-variety and f: X-*P a proper mapping

with dim (/(Z)) > (r — l ) - m , then f~l(A) is connected.

Proof. By using Zariski's connectedness-theorem we may assume that /

is finite. Consider the product of the projective cones over the P^ and the

completion of its local ring in the product of the vertices. This is a complete

regular local ring, and the closed subset of its spectrum corresponding to the

preimage of A can be defined by (r- 1) • (m + 1) equations. X corresponds to a

finite integral algebra over this ring of dimension ^ ( r— l ) - (m + l) + 2, and if

we remove from its spectrum the maximal ideal and intersect with the preimage

of A, we obtain something connected according to Theorem 6. From this it is

easy to derive our theorem.

§ 60 Formal Subsehemes of the Projective Space

If we apply our results to the completion of the local ring in the vertex of

the projective cone over the projective space, we immediately obtain the following

results :

Theorem 9. Let K be a field, X, Y <^Pn
K irreducible subvarieties such

that X is geometrically integral. If dim(X n Y) = dim (X) + dim (Y) - n (X

and Y intersect properly), and if Z^X n Y is a closed subscheme with dim(Z)

n Y)-2 (where dim(0)= -1), then (XnY)-Z is G3 in Y-Z.

Theorem 10. Let K be a field, X^P"K a geometrically integral sub-

scheme defined by the ideal /(X)<^0Pn. Let Z^X be a closed subscheme

and U = Pn
K — Z. Define U as the formal completion of U along Ur\X. If

^ is a coherent formal sheaf on U which is induced from an algebraic sheaf

on PK and if tf^^ is a formal sub sheaf such that for all xe U and all as-

sociated prime ideals p^&CiX of (^/^)x, dim (&cj(p + /(X) - &CiJ) =

dim (&0iX/p) -n + dim (X) ^ dim (Z) + 2 (where again dim (0) = - 1). Then &

also can be defined by an algebraic sheaf on the Pn
K, which furthermore can be

taken as a subsheaf of the algebraic sheaf defining ^".

We also may apply our theory to complex-analytic geometry: If we
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complete the complex projective space along a closed subvariety, any analytic

object in a neighbourhood of our subvariety induces a formal complex-analytic

object. By the usual GAGA-theory this object is formal algebraic, and we may

apply our theory to conclude that sometimes this object is algebraic in the

usual sense. In this way we obtain the following results:

Theorem 11. // X and Y are irreducible closed subvarieties of the P£

which intersect properly and whose intersection is not discrete, any mero-

morphic function defined on a connected neighbourhood (in the metric topology)

of X fl Y in Y can be extended to the whole of Y.

Theorem 12. // X is an irreducible subvariety of the Pn
c defined by the

ideal /(X)<^.0P^ if IF is a coherent analytic sheaf on P£ and if tf^^ is a

coherent analytic subsheaf defined in a neighbourhood of X in Pn
c (in the

metric topology), such that for all xeX and all associated prime ideals

P = 0PB.» of (*\#)x dim (0,n p jc/(p + /(*) - 0P£iX)) = dim (0,a» - n + dim (X)

>0? then there exists a coherent subsheaf of & on the whole P£ which coincides

with <& in a smaller neighbourhood of X,
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