Publ. RIMS, Kyoto Univ.
16 (1980), 785-810

The Initial-Value Adjusting Method for
Problems of the Least Squares Type
of Ordinary Differential Equations

By

Taketomo Mitsur*

Introduction

This work is concerned with the numerical processes to solve problems of
the least squares type for ordinary differential equations. Consider the differ-
ential equation

dx _
—d?—X(t’ x), a<t<b

where x and X(t, x) are real n-dimensional vectors and try to obtain a solution
x=x(t) of the above equation on the interval [a, b] such that

3 2, "TLyx(1) = ;1 [Lx(t) = d;] = minimum,
where t; are given points on [a, b], a=t,<t,<---<ty=b, and L; and d; are
given matrices and vectors, respectively.

Some authors have discussed these types of problems and proposed several
numerical methods to solve them. Banks and Groome [1] have discussed the
quasilinearization algorithm and established the quadratic convergence of it.
Urabe [8] has shown that the problem can be reduced to the multipoint bounda-
ry value problem of nonlinear boundary condition, and proposed the application
of the Newton iterative process. After Urabe’s works, Fujii [2] has shown
another reduction of the problem to a boundary value problem and discussed
the Chebyshev-series-approximation with a-posteriori error bound.

In the present paper, we first propose a new method which is an applied
version of the initial-value adjusting method given by Ojika and Kasue [6] for
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nonlinear boundary value problems of ordinary differential equations (on an
analysis of the method, see also [5]). In the next sections, we analyse the
process and prove the convergence of an approximate value to the exact one
under some conditions, roughly speaking, of sufficient smoothness of X and
suitable choice of the initial data of the iteration. Our method would be ex-
pected to have the advantages that they are easy to understand and program
the algorithm. Finally, in the last section, an illustrative numerical example

will be given.

§1. The Initial-Value Adjusting Algorithm

At first, we shall state the problem clearly. Consider a nonlinear differ-

ential equation

dx _
(1.1 W_X(t’ x), a<t<b.
Here x and X(t, x) are n-dimensional vectors. Find a solution x(¢) of (1.1)

which minimizes the following value
N
(12) J=%J§1 ‘LLyx(t;) — ;1 [Lyx(t) —d,],

where t; (j=1,..., N) are the given points on the interval I, a=t,<t,<---<ty
=b, L; and d; (j=1,..., N) are the given nxn matrices and n-dimensional
vectors, respectively. As far as the equation (1.1) is stable, the problem is
equivalent to find an initial value 5 such that the solution x(f) starting with
x(a)=n minimizes J.

Let us define a linear operator L: C(I)—R"N such that for x e C(I)

(1.3) Lx=*(Lx(ty),..., Lyx(ty)) .
Denote the nN-dimensional vector ¥(d,,..., dy) by d. Note that J is represented

by

(1.4) J=—é—‘{Lx—d} (Lx—d}.

Our algorithm is expressed in the following steps.

Step 0. Choose a suitable positive perturbation parameter ¢ and an initial
value 77, € R*, and set k=0.

Step 1. Compute the numerical solution x,(¢) of (1.1) with the initial con-
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dition x,(a)=n,, and obtain the resulting values L,=Lx, and J,‘=-;‘—‘{Lk —d}
x {L,—d}.

Step 2. If the value J, differs from J,_, by less than a specified value,
terminate the iteration. Otherwise, go to the next step. (If k=0, skip this step.)

Step 3. Set j=1.

Step 4. Compute the numerical solution y{’(r) of (1.1) with the initial
condition y{’(a)=1n,+ee ;. Here e; means the j-th unit vector of R".

Step 5. Replace j by j+1, and return to Step 4 until j=n.

Step 6. Determine the nN xn matrix S(e; x,) (the adjusting matrix)
such that

(15) S 5 =(THI PO~ Loy HIp ~ L, Iy - LY.
Step 7. Determine the initial value 7, ; for the next iteration by

(1.6) Nes1 =1~ {'S(&; x)S(e; %)} *S(e; xp) {L—d} .

Then replace k by k-1, and return to Step 1.

Computational Remarks. In the above process, the numerical integra-
tion of the differential equation (1.1) are carried out by a suitable step-by-step
method, for example, the Runge-Kutta method. Since the matrix 'S(e; x,)S(¢;
X,) is an n x n symmetric, positive definite matrix, the square-root-free Cholesky’s
method is preferable for the solution of the linear equations in (1.6).

In what follows we shall denote the Euclidean norm of an n-dimensional
vector x by [|x||. C(I) stands for the Banach space of vector-valued continuous
functions on I, equipped with the norm

llxllc=max [|x(2)] .
tel

Cl(I) means a subset of C(I) of continuously differentiable functions on I.
The norms for matrices R"—R™ and other linear operators should be taken as
the induced norms by the corresponding vector norms.

Let 2 be the domain of the tx-space bounded on x, intercepted by two
hyperplanes t=a and t=b. The boundary points of 2 on the hyperplanes
t=a and t=>b are supposed to be included in 2 and to make an open set on each
hyperplane. Put

D ={xeC'(); (t, x(t)e2 for tel},
D'={xeC() ;(t, x(t)) ez for tel}.
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We shall need the following assumptions to the problem (1.1) and (1.2).

Assumption 1. (i) X(¢, x) is defined and three-times continuously differ-
entiable with respect to x on 2. X and its derivatives up to the third order are
continuous with respect to ¢ on 1.

(i) In 9, there exist a positive number §, and a mapping Q(¢; -): R"—>
R* such that the equation

(LT) X x+O=X(t, %)+ Xty DE+5Xlt, NEE+QE 0)
holds whenever |£||<d, for each (t, x)e 2. Here X,(t, x) is the Jacobian
matrix of X(¢, x) with respect to x and X,.(t, x) stands for the tensor of the

third order with components 02X (t, x)/0x,0x; (j, k, I=1, 2,..., n).
(iii) The constants K,~ K3 can be defined finitely as following:

Ko=sup [ X(t, x|,

Ky=sup | X, x|,

Ky =sup | Xo(t, 1),

19(; I =K;lE1° for [£[|<6p uniformly to (1, x)eD.

(iv) For arbitrary scalar number A, the equality Q(A&; x)=A3Q(&; x)
holds. Ifé&,, &,, &; are such vectors that ||&, +&, ], €11, €3]l =0, the equation

(1.8) Q&1 +&25 x)— Q&5 x)— Q&35 x)
=8191(82)+¢2q2(E1) + (62— &3)q3(E2s €3)

holds for (t, x)e 2. Here q,(&) and g,(£) are of the behaviour of the quadratic
form of &, i.e.

(1.9); lim g,()/€)1?,  lim ga(&)/[E]* <+,
l1&li—o l1gi—o

and g3 has the estimation

(1.9), l93(%2, ) = K5

for (1,1, 11€311 = o

Because of the equation (1.7), put
(1.10) X(t, x+O=X(t, x)+ X, (t, x)E+R(¢; %),
then it is evident that R(¢; x) has the estimation

(1.11) IR(; 9l =K3l1¢01%
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and is Lipschitz-continuous
(1.12) IR(E1s x)—R(E2; x)| S Lgllg; — &2l

for 1€:11, [1€211 = do.
Let us consider an operator & mapping R" to a function of C*(I) along the
flow generated by the differential equation (1.1) such that

d
dt

Fn(a)=n.

If #* is a vector such that (a, #*)e 2 and n* is a minimal solution for

Fn=X[t, #n(¥)], a<t<b,

J) = SH{LFn—d}{LFn—d}

then grad J(n) | ,-,~=0 holds, that is
HLP(-; Fn*)} {LFn*—d}=0,

where @(t; x) denotes the matrizant of the linear homogeneous matrix differ-
ential equation

Q_Xx[z X()]®, a<t<b.

Moreover, considering that J is a quadratic form of vector, we may take the
following assumption.

Assumption 2. There exists a vector #* such that (a, n*)e 9, Fyn* €D,

(1.13) HLo(-; ZFn)H{LFn*—d}=0
and

(1.14) det {LO(-; Fn*)}ILP(-; Fn*)#0
hold.

Furthermore, there exists a positive constant & such that for 0<e<é the
initial value problem

dy _
—d—t—X(t, y), a<t<b

ya@)=n*+ee;
has a unique solution in D for every j.

We shall call n* the exact (local) isolated minimal point of J(n).
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Throughout the present paper we take the above two assumptions implicitly
and will not mention in the statement of Theorems and Lemmas.

Then we shall make some preliminaries after [S].
The j-th column vector of @(¢; x), denoted by ¢{/)(¢), is bounded by

(1.15) W] < e2K16=a)
for xe D’ and j=1,..., n. Therefore the estimation
(1.16) 19(-; )| SneKit-a =M,

holds. We shall call the matrix L®(- ; #7) the G-matrix and denote it by G(r).
Since D is open in C(I), for a positive constant M, we can take a positive number
4 such that in the 4-neighbourhood B, of n* defined by

B ={neR"; |ln—n*| =4},
the inverse of compound G-matrix defined by G&(n)=*G(n)G(n) exists and the
estimation
(1.17) 16~ =M,
holds. Replace 4 by a suitable value less than 4 if necessary, then it is possible
that the inequality

Fn—Fn*c=do

holds for ne B,. We shall fix the number 4.

Corresponding to our iterative process, an operator «/ mapping R" into
itself is defined by the following:

(1.18) wrn=n—{'S(e; Fm)S(e; Fn)} ' 'S(e; Fn){LFn—d} for neBy,
where the domain of & is identical to B,. Then the iterative process (1.6) is
simply represented by

(1.19) nk+l=d}1k’ k=0, 1, 2,....

Lemmas 2~4 in [5] assert the followings.
For neB,, put x(t)=%n(t). yU)Xt) in Step 4 of the algorithm has the
following expression.

(1.20) YOO =x()+e{eD@)+vD(@)} on I,

where v(/)(¢) satisfies the differential equation
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Figure 1.1.
2y W00 Loy, x()+elo0 @) +00@}] - XTt, x(0])

—X.[t, x()]oUW)t), a<t<b
with the initial condition
(1.22) v (a)=0.

For arbitrary small positive number ¢ there exists a positive constant C* such
that v()(t) satisfies

(1.23) o] c=C*e.
There exists a small positive number g, such that for 0<e=<¢g, the estimation
(1.24) I1S(e; #Zn)— G| = C**e=4,

holds in B,. Moreover for 0<e¢=<eg, and ne B, the inverse of the compound
adjusting matrix *S(e; #n)S(e; Fn) exists and the estimation

M,
—51M1(2L0M0+61)

(1.25) 1{*S(e; #Fm)S(e; Fn)} 71 = i

holds, where L, is the bound of the operator norm of L on D.
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§2. Fixed Point of the Operator .«

It is noteworthy that the exact minimal point #* is not a fixed point of .7,
because a fixed point of .o/ must satisfy the equation

(2.1) {*S(e; #n)S(e; Fn)}~11S(e; Fn){LFn—d}=0,
ie.
(2.1 tS(e; Fn){LFn—d}=0.

On the other hand, from (1.13) #5* satisfies
'G*){LFn*—-d}=0.

S(e; #1) is surely an approximation of G(y), but is not identical to that as far
as e#0.

Therefore, we should answer the question whether a fixed point of o/
exists. Throughout this section we shall allow a negative value for & for con-
venience’ sake. In the case of negative &, we can define the matrix S(g; #7)
and the operator .« in the natural way. The estimations (1.23)~(1.25) hold
by replacing ¢ by |e|.

We shall prove the existence of the fixed point of .« in some neighbourhood
of #* by the implicit function theorem.

Define a function (1, €) by

(2.2) T (n, ©)="S(e; Fn){LFn—d}
for (n, €) such that ne B, and 0<|¢| Z¢&,.

Lemma 1. Define 5(n, 0) by

(2.3) 7 (n, 0)=1ir{)1 T, e,
then

(2.49) T (1, 0)='G(n) {LFn—d}
holds.

Proof is evident.
Lemma 2. For ne B, and |e,|, |e,| <&, the estimation

(2.5) [S(eys Fn)—S(ey; Fn)| Sconst. [g; —é,|
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holds. Here the constant does not depend on 1, ¢, and ¢,.

Proof. Let us denote the j-th column vector of S(e; #n) by s;(e: Fn).
Put

Fn+ee)=y{ =x+e{pV +0{"}
and
F(1-+226) =y =x+2{0\ + 0§}
(see (1.20)), then the equation
siers Fn)—sex; Fn)=L(v{" —vy)
holds. Define wl) by wt)=p{) —p$), then wl)) must satisfy the differential
equation

awd)

2.6) g~ o (X[ P O1- Xt x(01)

- L XTIy O] - XTt, (0]}

with the initial condition
(2.7) w(a)=0.

By virtue of Assumption 1 and the equation (1.10),
(the right-hand side of (2.6))

= o XL xOTe {000 +0 (0} + RLyY - x; %1}

— 4 (L X©1es (9D +09 (O} + RyY —x; 1)
= X,[t, XOIw D)+ -RLpY —x; x] = LRIy —x; 5]

=X [t, xO) D (@) +e; {R[9V + 0475 x] = R[9D +0%"; x]}
+(e;— ) R[oN + v ; x].

Therefore, the integral form

28) w(f)(t)=S:Xx[s, ()W (s)ds
+o1 | {RIPDO+07); x]-RIpDE) +0(s); x]}ds
+@=2)| RIGDO+0§(5); x1ds

holds, which brings the inequality
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2.9 W) gmﬁl WU (s)| ds
+larl{| IRV +07); X]1=RLp($) +05(5): x]]ds

+loy =2l IR0V +0579); x]ds.
Because of the estimations (1.11) and (1.12) we have
(2.10)  [w@| éKlg[ Wi X(s)llds+ I81!Lxgt wiX(s)llds
+ ey —&,|K303(b—a)
' .

< ley — &, K308(b— a) + (K + EOLR)S wt(s)lds .
Applying the Gronwall’s lemma to (2.10), it holds that

WD) < ey — el K303(b — a)e(Kiteotmi=a,
which implies

@.11) WD ¢ S ey — 22| K353(b — a)e(Ks+sotmi=a), 0

Lemma 3. For sufficiently small positive numbers A and &, the relation
(2.12) S(e; F(n+8)—S(e; Fn)=LP(- ; F1, )¢+o(l|<])

holds if n, n+ &€ B; and |¢| <&, where P(t; &1, ¢) is a linear mapping which
maps £E€R" to an nxn matrix P(t; #n, e)¢ with components of continuous

functions on I.
Proof. We shall put

FM+=x1, Fn=x;, FN+i+ee)=yi"=x+eul?,
F(n+ee)=yy =x,+eul’.

Then we have
@13)  ses F+0)—se; F)=-—{Ly{ —Lx, — Ly{ + Lx,}
L —uf?).
Define w) by wii) =u{) —u{), then w)) must satisfy the differential equation
) ,
@14) 220~ 1 xl, 2,0 +euf()]

= X[t, x,(D)] = X[t x,() +eu, V(O] + XTt, x,(1)]}, a<t<b,

with the initial condition
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(2.15) wl(a)=0.
Because of the equation (1.7), the right-hand side of (2.14) can be written as
following:

L Xt o014 X0t xa()] Goy — x5+ euf?)

+_"1)—Xxx[1’ x,(0)] (g — x5 +eut??) (xy — x5 +eut)+ Qx, — x, +eul?; x,)

= XT[t, x,(0]— X [t, x2()] (x; —x5)— %Xxx[t; xo(1)] (% —x3) (%1 —X3)
—0(x1—X3; X;)
= X[, x50 = X[, x2(0]eus” = 2 X Tt xo()]euoug)
—Q(eus”; x,)+ X[t x,()1}
=X,[1, x;(t)]w‘“+—sXxx[t x2()] (@ +uffywd
+X xx[t x2(0] (%1 —x,)uf”
+ {Q(x1 —x2+eu(“ X3)—0(x; — X35 X3)— Q(su”) x,)}
=Xx[t’ xz(t)]w(j)+aXxx[ta xl(t)]u(j)w(j) +Xxx[t xz(t)] (X1 _XZ)ugj)
+Xx.x[t xz(t)] (Yl _XZ)W(“ +-5- SXxx[t xz(t)]w(l)w(l)
+ {Q(M —x4eul?; x,)— Q(x; —x,5 x5)— Qeul’); x,)) .
Utilizing (1.8) and (1.9), we have
_{Q(xx —x+eul?; x,)— Q(x; —x55 X5)— Qeus; x,)}
=e(x, —x,)q: () +uq,(x; — X)) + 2w gy (ul?, uf?),
which brings the equation
@16) Dl = (X [t xa(O] +eX oty (DG D)D)
+ Xty x2(8)1 (2, (8) = x2(1))ul (1)

Xty 201 {310 = %0 + w0 bt

+ui(D)g(x, —x5) +e(x; —x,)q,(us?) + 2w g3 (ul?, uy).

Let us denote the matrizant which corresponds to

X, [t, x,(D] +eX [t x5(0)]uy”
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by ¥(t; #n, &) (note that ¥; does not depend on &) and define a mapping H; ,
which maps a function y(t) e C(I) into C*(I) by

t
(030 =20 21, 9 #7253 70, 9(5)ds,

then we can transform (2.16) and (2.15) into the integral equation
(2.17) wUXt)=[H; Y{F(n+O)~Fnui”1()

+e[H; {F(+ )~ Fna, )1 (1)

+e2[H; {wqs(ut?, ui)}1(1)

HH, Y0+ - Fn+ 5 avP ] ()

+[H; {utq(F(+ - Fm10).
Here Y(¢) stands for X .[t, #n(t)].

Since F(n+&)—Fn=d(-; Fn)i+o(|E]) and ul is equal to @)+ vy
which is bounded, the first term of the right-hand side of (2.17) is the order
O(|€]). Also, the second term is the order O(|&|). Moreover, because of
(1.9) in Assumption 1, the last term is the order o(||€]]). There is no factor which
brings terms of the order lower than O(||¢]|) in the other terms of the right-hand
side of (2.17), thus we can assert that w()(¢) is O(||€]) as a whole.

Define an n x n matrix h,(t) with continuous components by

[H; {F(n+8—Fn}q, )] () =h O +o(|E]) .

In the same manner we have

[H; WD q3ui?, u)}1(0)=hE ()¢ +o(IC1) -

where h,(t) is an n x n matrix with continuous components. Put
w(‘)”(t)=[H,-,EY{?"(Hé)—fn +—é~swm}w(“] @,

then H; Y{Fn+&—Fniwl) is the order O(||£[?). On the other hand
—%GH 5. YWOWE must be the order O(||€]|2). Therefore w§” =o(||£]]) bolds.
Summing up the above considerations, the equation (2.17) can be rewritten as
(2.18) w()=[H,;,YP(-; Fnéus"](0)+eh{ (N +e2h(DE+o(lIE]) .-

Hence, define the linear operator P(t; #¥n, €) such that P(t; #y, ¢)¢ is formed
by

[H; YO(-; Fnuf] (1) +ehi (1) +e2hs (1)
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as the j-th column vector, then we have the conclusion. 0

Corollary. For sufficiently small positive numbers A and &, the estima-
tion

(2.19) [S(e; Fny)—S(e; Fny)l Sconst. || —n,ll

holds if |ny—n*|l, Ina—n*I|<4 and |e|<& Here the constant does not de-
pend on ny, 11, and e&.

Now we are ready to state

Theorem 1. There exist positive numbers A, and &, such that, for any
¢ satisfying |e| Ze,, the equation

7, e)=0

has a unique solution f=#(e) in the ball |n—n*|| =4,, and f—n* as e—~0

[ SR ——— A

Figure 2.1.

Proof. We divide the proof into three parts.
First stage. Put the neighbourhood Nb of (n*, 0) as

Nb={(n, &); In—n*| <4, || &},

and assume that Nb is included in B, X {¢; |¢|<&}. For (ny, &), (112, &;) in Nb,
the difference of 7 (n,, ;) and 7 (n,, &,) is written by
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(2200 T (11, &) — T (12, €2)
='S(ey; Fn){LFn —d}—'S(ey; Fny) {LFn,—d}
={S(e;; Fn1)—S(ez; Fn)}{LFn,—d}
+1{S(ez; Fn1)—S(ey; Fny)} {LFn, —d}
+18(ey; Fn)L(Fn,—Fny).

Because of Lemma 2, the first term of the right-hand side of (2.20) is estimated
by const. |¢; —¢&,|. Besides, Corollary of Lemma 3 gives us the estimation

['{S(ez; Fn)—S(ey; Fny)} {LFn,—d}| <const. [n,—n,| .
The inequality
|#Fn—Fn,| Sconst. |[n; —n,|l

is easy to show.
Hence we have

17 (1, €)= T (12, &;)] Sconst. |e; —&,| +const. [ln; —n,]| .

This shows the joint continuity of (5, &) with respect to n and e.
Second stage. We shall calculate the Fréchet derivative of 7 (y, €) with
respect to n in Nb. If ¢5#0, the equation

(221) TM+¢ 9—T(, €)
='S(e; F+N{LF(n+&)—d}—'S(e; Fn) {LFn—d}
="{S(e; F+E)—S(e; FM}H{LF(+&)—d}
+1S(e; FML(F(+E)—Fn)

holds. By virtue of Lemma 3, we have

{S(e; F(n+)—S(e; FMI{LF(n+¢)—d}
=HLP(- ; #n, ) {LFn—d}+o([E]).

On the other hand,
S(e: FML(F(n+8)—Fn)="S(e; FMGME+o(lIE])
holds. Therefore, from (2.21) we have

y(’l"’éa 8)_'7(’79 8)
=HLP(-; Fn, ) {LFn—d}+'S(e; FMGME+o(lIE]),

which implies that the Fréchet derivative 77 ,(y, &) exists in Nb and is given by
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In the case ¢=0, we obtain

223)  TWM+E0)—T(n,0)
='Gn+O{LFm+&) —d} -G {LFn—d]
=G+ &) -G} {LFM+E)—d}+'GL{F(n+E)~Fn}.

As shown in [8], the Fréchet derivative ®,(t; #n) of the matrizant &(t; Fn)
with respect to # exists and is represented by
(2.24) @,(t; Fn)é

=013 Fn)| D715 FN X5, FAEND(s3; Fu)ED(s; F)ds
Hence the equation
(2.25) T, 0)="(LD,(-; FNE{LFn—d}+6(n)¢
holds.

Let us consider lim & ,(#, &) in (2.22). By (1.20) and (1.23) we have
e=0

w0 =4 {F 1+ 8e) ()= Fn(D)} =9U(B) + o)
and
[vP]c=C*el,

hence u$’—>¢) as e>0. Moreover, as e—0 the matrizant ¥ (t; £, €), which
corresponds to

Xlt, D] +eX o lt, Fn()]uz (@),

has the limit ¥ ,(t; ##, 0) which is the matrizant corresponding to X,[t, #n(1)].
That is, ¥,(¢t; #n, 0) is identical to &(t; #n) for every j. Therefore

[H;,YP(-; Fnus”1(1)

—w(t; 71, a)S' W3i(s; #n, )X s, Fa(s)]1(s; Fn)Eus(s)ds

~o(; F1)| 07 (s: FNX s, FAOI0(s: FN)EP (s
holds as e—0. In such limitation,
ehP(t)E +e2hs () — 0,

which implies

P(t; Fn, &) - @,(t; Fn)E
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as e—-0. Hence, we obtain the equation
1ijf)1 T, &, ="(LP,(-; FME{LFn—d}+6(n)
=7 ,n, 0)¢,

which implies the continuity of 7 (1, €) at e=0.
Third stage. For the isolated minimal point #*, we have

(2.26) T n*, 0E=6n*")E+(LP,(-; Fn*)E){LFn*—d}.
Then,
‘Lo, Fn*)){LFn*—d]
=Lo(-; F n*)g P(s; FN*)Xixls, Fn*(9)]D(s; Fn*)EP(s; Fn*)ds)

x {LFn*—-d}
= ’(pNS DY(s; Fn*)Xxi[s, Fn*(s)1D(s; Fn*)ED(s; Fn*)ds)

x'Gn*) {LFn*—d},
where py means an operation such that pyy=*(y(t,),..., ¥(ty)) for ye C(I).
Because of (1.13) in Assumption 2, the above term is equal to 0. Hence, from

(2.26) the relation
T (n*, 0)E=6n*)¢

holds, which implies the invertibility of .77, (#*, 0) by virtue of (1.14) in Assump-
tion 2.
By the implicit function theorem (Th. 1.7 in [3]), we have the desired

conclusion. 0

§3. Convergence of the Iterative Process

In the preceding section we have shown the existence of a fixed point for the
operator &/ in Nb. We shall denote the fixed point by /=#(e) and call it the
approximate minimal point of J(n) because it is an approximation of n* and
tends to n* as e—0.

In this section we shall show that in some neighbourhood of # the iterative
process (1.19) converges to # while ¢ is fixed as a positive number less than &;.

Since 7 is defined by 7 (#, €)=0, the equation

(3.0 {*S(e; #MS(e; F)}7" 'S(e; FA){LFfH—-d}=0
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holds as far as ||fj—n*| 4.
On the convergence we have the following theorem.

Theorem 2. There exists a positive number A, such that the iterative
process (1.19) starting with any no=n in the A,-neighbourhood of #j converges
to 1.

Proof. Let 4, be sufficiently small such that the 4,-neighbourhood of
is included in B,. We shall show that o is a contraction mapping on the 4,-
neighbourhood of #.

We have

(3.2) n—f=n—n—{'S(e; FN)S(e; Fn)} T, ¢)
=n—A—{'S(e; Fn)S(e; F)} {7, &)= T (@, ¢)}
={'S(e; Fn)S(e; Fn)}~{*S(e; Fn)S(e; Fn)(n—1A)

=7 (A, &) (=M} +o(ln—1l).

Because of (2.22), the equation
(3.3) 'Se; Fn)S(e; Fn)(n—)—T (@, &) (n—1h)
='S(e; #mS(e; Fn)(n—A)—'S(e; FAGH) (—1)
—HLP(-; 74, ) (n—MIHLFh—d}+o(ln—1Al)

holds. The first term of the right-hand side of the above equation is written by
(€2 {*S(e; #m)S(e; #n)—'S(e; FAGW)} (n—1h)
={'S(e; Fn)S(e; Fn)—'S(e; FMS(e; FM}(n—1h)
+1S(e; FM){S(e; FN)—GWH)} (n—1).

By virtue of (2.12), the estimation for the compound adjusting matrices
I*S(e; #mS(e; Fn)—"S(e; FA)S(e; FA)| Zconst. |n—A|
holds, which brings
(3.5) {*S(e; ZmS(e: Fn)—'S(e; FM)S(e; FM}(—M=o(In—Al).
Utilizing the inequality (1.24), we have
(3.6) I*S(e; ##) {S(e; Fh)— G} =(LoMo+6,)d, .
On the other hand, the principal part of the second term of (3.3) has the follow-

ing j-th column vector

W #h, 9| P76 Fh DX ls, FHIOG: ) (1= g ()ds)
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x {LFfi—d}
=y, W53 FA, X ls, FAIO(s: FH) (1= ugP(s)ds)
X (LY(-; #4, e)){LFH—d},
where py means the same operation in Section 2. Then we have the estimation
LY (-; 71, e)—S(e; #i)
=LY (-; ##, &)— GH) + G(#H) — S(e; #1)
=0(e)

because of (1.24) and the same assertion in the proof of Theorem 1.
Therefore, we have

(the j-th column vector of *{LP(-; ##, &)(n—#)} {LFhH—d})
= (ow #5163 FA, DXL, FAOIO(: F) (1D (5)ds)

x*S(e; FM{LFA—d}+o(e)(n—h),
which implies the estimation
(3.7) IH{LP(- ; 74, &) (n—} {LFA—d}]| =o(e) [n—Al
because of (3.1).
Remembering the estimation (1.25) and summing up (3.4), (3.5) and (3.6),
we have
ln—#—{'S(e; FnS(e; Fm)}~'*S(e; FNGH) (—Nl

< 61M1(L0M0+51) ”n__ﬁ” .
- 1—51MI(ZLOMO+61)

Thus choose ¢ and ||y —7| sufficiently small such that the inequality

of < 1M\ LoMp 1 Fa

holds, where « is a positive number satisfying the inequality

as 1—51L0M0M1

S8, M, LgM+ 5 ™)

for an arbitrary positive k<1. Therefore, we have
lezn—all=(1—x) n—Al,
which shows the contraction property of . 0

From the above considerations we have the assertion as in [S] that the
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convergence of the iteration would not be expected to be quadratic in the neigh-
bourhood of # while a fixed ¢ is chosen to be apart from zero. The reason is
the following. The equation

L+ —Lh
=L+ -1
=¢—{'S(e; ZN+NS(e; Z(+ N} HT (M +¢, &)= T (@, o)},
implies that the Fréchet derivative of o at # is given by

(3.8) L' (ME=S—{'S(e; #NS(e; FN}T'(LP(-; 71, ) {LF—d}
+18(e; FMGA)E]
={'S(e; FMS(e; FM}[*S(es FM){S(e; #M— G}
—'LP(-; #h, ) {LFh—d}].

As in the derivation of (3.7), we have
‘LP(-; 71, ) {LFh—d}=0(e)l.

On the other hand, S(g; ##)— G(f) does not vanish if ¢#£0. Then, we can not
expect that o/'(f)¢ vanishes for any £#0. Hence the convergence is not quad-
ratical.

If we assume that X,,[t, x] is identically zero on 2 (almost linear case for
differential equation), then the convergence is quadratic because in such case
vU)(t) in (1.20) is identically zero and S(¢; #n)=G(n) holds, which makes our
iterative process very simple and guarantees the quadratic convergence.

Remark. 1In [8], Urabe mentioned the convergence rate of the several
iterative processes, and wrote that the quasilinearization algorithm by Banks and
Groome is not quadratically convergent because it is not the Newton iterative
process (p. 182 of [8]). But, the sufficient condition of the quadratic con-
vergence is the zero spectral radius of the Fréchet derivative of the nonlinear
operator representing the iterative process at the limit point (fixed point of the
operator), and the quasilinearization algorithm has such property as shown in

[1].

Concluding this section, we investigate the approximation order of # for
n*. We shall improve the statement of Lemma 2.

Lemma 4. For ne B, and g, |e+v|Z¢,, the equation

(3.9 S(e+v; Fn)—S(e; F)=Lp(-; Fn, e)v+o(|v])
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holds, where p(t; Fn, €) is an n x n matrix with components of continuous func-
tions on I.

Proof. After the notations in Lemma 2, let us put

Fn+E+v)e) =yt =x+(e+v) {pt +vi)},
F(n+ee)=y) =x+e{loW +0v{}

and
W) = () — p{)
Then we have
sie+v; Fn)—s,(e; Fn)=Lwll),
and w() must satisfy the differential equation

(3.10) Bl — L XTn yP0] - X1, %]}

~Lix1, y901- X1t x91}, a<t<b

and the initial condition

(3.11) wli)(a)=0

just as (2.6) and (2.7). Utilizing the equations (1.7) and (1.8), we have
(the right-hand side of (3.10))

ety {X [z, x(©)]1(e+Vv) (W) +U£"))

3 Xty XD+ O +0) (0 + ()

+OLE+V) (00 +0(); x1} —L{ X8 x01e(pP+08)

3 Xeult, ¥©182(0P+0) (00 +0§) + QLa(e D + v§); x1}

=X, [t 5(OTWD +5 @+ V)Xt QT @D+ 0P) (9D +0)

— e X[, 5O +05) (0D +05) + (64 9)20(0D + 07, )

~220(p ) +0); x)
- {X [£, %(O] + X1, 510D +087) +22g5(0 + 0§ )
VX[, 501D +057) (0D +05) +2v20(9 D) + 1§, x)

+v X[t x(0)] () + 0w +7(8+ V) X, [2, x(@)JwDwD
+82{(pW + v g, (WD) + wWgs(w)} ,
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where g;(w(/), 0) is abbreviated by g3(w(¥).
Let Q,(t; #n, ¢) be the matrizant which corresponds to

X[t x()] +eX [, X(D] (9D +057) +2q,(0 P +v57)

and transform (3.10) and (3.11) into the integral equation

(3.12) w()=vQ (t; Fn, s)gt Q7(s; Fn, )2 (s; Fn, e)ds
a
+Q(t; Fn, s)gt Q7(s; Fn, e)Wi(s; wiids.
a

Here

(3.13) E1; #n,¢) =—é—X =Lt X(OT {1 + 05 (1)} {9 (1) + 05 ()}
+28Q(¢V(1) +057(1); x)
and
(G14)  Wit; w)=vX [t x(O)H{eP(1) + 05 (D} w)
+ AN X ult, X(OTWOWD
+2{(OV() + 0§ AD)a, (WD) + WD g (WD)}
Then, the first term of (3.12) is the order of O(|v]) and the second term has no
factors of the order lower than O(|v]). Hence wli)(¢) is the order of O(|v]) as a

whole. Considering this fact, each term of W; is the order of O(]v|?).
Therefore we have the equation

(3.19) wli(t)=vQ(t; Fn, s)gt Q71(s; Fn, )5 (s; Fn, e)ds+o(|v]).

Put p(t; #n, ¢) such that p has the j-th column vector equal to w())/y, then we

have (3.9). O
Corollary. For ne B, and |v|<g,, the equation

(3.16) S(v; #n)—Gm)=Lp(-; Fn)v+o(]v))

holds. Here p(t; #n) is formed by

LG #n) 071 FDXLFO), TP GoD()ds
=~ a
as the j-th column vector.
By virtue of Lemma 4 and its Corollary we obtain informations about the
derivatives of .7 (y, &) with respect to & at some neighbourhood of (*, 0), which
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implies the following

Theorem 3. In the neighbourhood

Nb(43, &5)={(n, &); In—n*=45 and |e|=es},

fi(g) whose existence is guaranteed in Theorem 1 has the estimation such as
3.17) 1(e) —n*|| Sconst. |¢] as &—0.

Proof. We have shown in the third stage of the proof of Theorem 1 that
7 ,(n*, 0) is identical to &(»*) and is invertible. Taking the continuity of the
derivative 7 ,(n, ) at =0 into consideration, we can choose the numbers 4,

and &3 such that 7 ,(f, ) has the bounded inverse in Nb(43, &3).
On the other hand the equation

T (A, e+v)— T (#, €)
=1S(e+v; FN{LFH—d}-'S(e; FH){LFH—d}
="{S(e+v; #FA)—S(e; FN}{LFA—d}

holds, and by Lemma 4 we obtain the assertion that 7 (s, ¢) has the derivative
with respect to ¢ at (f(g), &) such as

(3.18) T (0, e)v="{Lp(-; #h, e} {LFA—d}.

Then, replacing 4; and &3 by suitable numbers less than them if necessary,
Theorem 20.3 in [3] implies the existence of the derivatives of #(g) in Nb(45, &),
which is defined by

(3.19 Aev=—(7,(#, )T (A, e)v.
Thus #(¢) is the order of O(|e|) as e—0 in Nb(43, &5). 0
Remark. Let ¢ tend to 0 in (3.18), then we have
T n*, Ov="{Lp(- ; Fn*} {LFn*—~d}

by virtue of Corollary of Lemma 4. By the fact

T 4%, 0)=60*),
the equation

Q)= —G~1(E*){Lp(- ; Fn*W} {LFn*—d}

holds. However, we obtain

HLp(- ; Fn*)v}
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='{~5‘VL<I>(- s F n*)g;q)_l(g; FHILS; f"*)ds}

=t{-§—vplvg. O~1(s; Fn*)L(s; fﬂ*)ds}tG("/*L

where Z(t; #n) stands for the matrix which is composed by X .[t, Zn()Jo(¢)
x @)(t) as the j-th column vector. Remembering that ‘G(n*){LFn*—d}=0,
we obtain the statement that the derivative #,(0) vanishes, which implies that
we can expect the approximate minimal point #(¢) to be the order of o(|e])
extremely near to n*.

§4. An Illustrative Example

Let us consider the following problem originally mentioned in [4], which
occurs relating to the tubular flow chemical reactor with axial mixing.
The differential equation is

d’x _dx 1, 5 _
4.1) P 6W 12x2=0, O<7<I1.

By the transformation
4.2) t=1-2z,

the equation (4.1) can be reduced to the following differential equation:

d?x | ,dx 4 5 _
(4.3) EE3ii =0, —l<i<l.

The constraining condition of least squares type is the following:

0
(4.4) $* {x(t;)— y;}2 =minimum
j=o0
where
(4.5) £,=02j—10  (j=0, 1,..., 10)

and y; (j=0, 1,..., 10) are given in Table 4.1.

Table 4.1.
j 0 1 2 3 4 5
Vi 0.38727 0.39476  0.41305 0.43862 0.47017  0.50764
6 7 8 9 10

0.55172  0.60372  0.66559  0.74012  0.83129
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This problem is equivalent to the example in [2].
We shall rewrite the problem into the vector form as (1.1) and (1.2). The
equation (4.3) is transformed into

=
t 2
(4.6) 4 —l<z<1.
X2 242
a 3x%—-3x,,

Let x be the vector x=[ ;1 ], then (4.6) is equivalent to
2

dx ["2 1

(4.6)' = E —l<t<1
3x%_3x2 |

and the functional value J to be minimized is

10
4.7) J=+1 2 (Ll —d) Lya(t) ~d;].
Here t; (j=0, 1,..., 10) are the same as in (4.5), the matrices L; (j=0, 1,..., 10)
are
10
Lo=Ly=--=Lo= )
L0 O

and the vectors d; (j=0, 1,..., 10) are given by

d,:[ “ ]

0.0 |

The results of the numerical computation carried out by FACOM M-190
in the Data Processing Center, Kyoto University are shown in Table 4.2. For
the numerical integration of ordinary differential equations the Runge-Kutta-
Gill method programed by T. Ojika was used. All the calculations were
carried out in the double precision arithmetic.
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Table 4.2.
o 1
1teration times —

X1 X3 X1 X2
to=—1.0 0.5 0.0 0.37806769956  0.10806510612
t;=—0.8 | 0.51252090985 0.11507113359 0.40171204036  0.12821189883
ty=—0.6 0.54334736769  0.18909213769 0.42937707807  0.14869156970
ty=—0.4 0.58721750119  0.24863472740 0.46135283076  0.17162147360
ty=—0.2 0.64281390289  0.30821629103 0.49830337268  0.19871943583
ts= 0.0 0.71115159268  0.37748477983 0.54123626991  0.23176626442
tg= 0.2 0.79503126629 0.46516837677 0.59155143668 0.27296261250
t= 04 0.89914650517  0.58192807415 0.65116185255 0.32531012072
ts= 0.6 1.0307690460 0.74350525298 0.72270288155  0.39313865121
ty= 0.8 1.2012163950 0.97571861039 0.80987497209  0.48294851916

f1o= 1.0 1.4287209566 1.3241632086 0.91800946931  0.60486691312
Jy 4.93 x10-1 1.16 x 10-2
o 3 B
1teration times i * X X x
1 2 1 2
ty=—1.0 0.38702086627 0.00261251861 | 0.38727177735 —0.00004288586
t;=-—0.8 0.39490532424  0.07015010707 0.39476040385  0.06869739433
ta=—0.6 0.41341909766  0.11229585764 0.41304637216  0.11139645273
t;=—0.4 0.43913778607  0.14393243601 0.43861177501  0.14326111462
ty=—0.2 0.47081948324  0.17287829974 0.47016701758  0.17226427328
ts= 0.0 0.50841638291  0.20369262002 0.50763820223  0.20303615170
tg= 0.2 0.55263785706  0.23962085391 0.55171808024  0.23885031164
t;= 04 0.60480645049  0.28369352839 0.60371555428  0.28274087195
tg= 0.6 0.66689448238  0.33949736231 0.66558820885  0.33828049978
ty= 0.8 0.74170948834  0.41193878825 0.74012428084  0.41034340656
tio= 1.0 0.83325492973  0.50828488609 0.83129911340  0.50613875295
T | 5.81x10 -8 1.12x10-10
iteration times

X1 X3
ty=—1.0 0.38727191330 —0.00004431630
t1,=—0.8 0.39476032659  0.06869661205
t;=—0.6 0.41304617227  0.11139596872
ty3=—0.4 | 0.43861149266  0.14326075367
tn=—0.2 | 0.47016666726 0.17226394342
ts= 0.0 0.50763778440  0.20303579926
tg= 0.2 0.55171758641  0.23884989812
t,= 04 0.60371496863  0.28274036083
tg= 0.6 0.66558750766  0.33827984706
ty= 0.8 0.74012343005  0.41034255099

tio= 1.0 0.83129806389 0.50613760232
T | 1.10x10-10

convergence criterion 1.0 x 10~7

step size for the Runge-Kutta method 0.003125

e=1.0x10-8
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