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The Initial-Value Adjusting Method for
Problems of the Least Squares Type

of Ordinary Differential Equations
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Taketomo MITSUI*

Introduction

This work is concerned with the numerical processes to solve problems of

the least squares type for ordinary differential equations. Consider the differ-

ential equation

*[L = X(t,x)9 a<t<b

where x and X(t, x) are real n-dimensional vectors and try to obtain a solution

x = x(f) of the above equation on the interval [a, 6] such that

-y S *[.LjX(tj) - dj] LLjX(tj) - djl = minimum,
^ j=i

where tj are given points on [a, fo], a = tl<t2<--<tN = b, and Lj and dj are

given matrices and vectors, respectively.

Some authors have discussed these types of problems and proposed several

numerical methods to solve them. Banks and Groome [I] have discussed the

quasilinearization algorithm and established the quadratic convergence of it.

Urabe [8] has shown that the problem can be reduced to the multipoint bounda-

ry value problem of nonlinear boundary condition, and proposed the application

of the Newton iterative process. After Urabe's works, Fujii [2] has shown

another reduction of the problem to a boundary value problem and discussed

the Chebyshev-series-approximation with a-posteriori error bound.

In the present paper, we first propose a new method which is an applied

version of the initial-value adjusting method given by Ojika and Kasue [6] for
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nonlinear boundary value problems of ordinary differential equations (on an

analysis of the method, see also [5]). In the next sections, we analyse the
process and prove the convergence of an approximate value to the exact one

under some conditions, roughly speaking, of sufficient smoothness of X and

suitable choice of the initial data of the iteration. Our method would be ex-
pected to have the advantages that they are easy to understand and program

the algorithm. Finally, in the last section, an illustrative numerical example
will be given.

§ 1. The Initial-Value Adjusting Algorithm

At first, we shall state the problem clearly. Consider a nonlinear differ-
ential equation

(1.1) 4j*L = x(t,x)9 a<t<b.

Here x and X(t, x) are n-dimensional vectors. Find a solution x(t) of (1.1)

which minimizes the following value

(1.2) J = -|- £ *lLjx(tj) - dj] lLjx(tj) - dj],

where tj (j = l,..., N) are the given points on the interval /, a = t1<t2<--<tN

= b, Lj and dj (j = l,..., N) are the given nxn matrices and n-dimensional
vectors, respectively. As far as the equation (1.1) is stable, the problem is
equivalent to find an initial value rj such that the solution x(t) starting with

x(a) = rj minimizes J.

Let us define a linear operator L: C(I)-»RnN such that for x e C(I)

(1.3) JLx = f(L1xai)5...5LNx(tjV)).

Denote the nAT-dimensional vector *(dl9...9 dN) by d. Note that J is represented

by

(1.4) J = ±'{Lx-d}{Lx-d}.

Our algorithm is expressed in the following steps.

Step 0. Choose a suitable positive perturbation parameter s and an initial
value rj0eRn, and set fc = 0.

Step 1. Compute the numerical solution xk(f) of (1.1) with the initial con-
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dition xk(d) = rjk, and obtain the resulting values Lk=Lxk and Jk =—t{Lk — d}

x{Lk-d}.

Step 2. If the value Jk differs from Jk_l by less than a specified value,

terminate the iteration. Otherwise, go to the next step. (If k = 0, skip this step.)

Step3. Setj = l.

Step 4. Compute the numerical solution j4J)(0 of (1.1) with the initial

condition y(
k\a) = rjk-\-sej. Here ej means the j-th unit vector of Rn.

Step 5. Replace j by j + 1, and return to Step 4 until j = n.

Step 6. Determine the nNxn matrix S(s; xfc) (the adjusting matrix)

such that

(1.5) S(8;**)=(^{Lj4^^

Step 7. Determine the initial value rjk+l for the next iteration by

(1-6) ifc+i=ffc-{'.S(fi; xJS(e; x*)}-1 <S(e; x^^-d} .

Then replace k by /c+ 1, and return to Step 1.

Computational Remarks. In the above process, the numerical integra-

tion of the differential equation (1.1) are carried out by a suitable step-by-step

method, for example, the Runge-Kutta method. Since the matrix rS(e; xk)S(s;

xk) is an n x n symmetric, positive definite matrix, the square-root-free Cholesky's

method is preferable for the solution of the linear equations in (1.6).

In what follows we shall denote the Euclidean norm of an n-dimensional

vector x by ||x||. C(/) stands for the Banach space of vector- valued continuous
functions on /, equipped with the norm

||x||c=max WOII -

means a subset of C(J) of continuously differentiable functions on /.

The norms for matrices Rm-+Rm' and other linear operators should be taken as

the induced norms by the corresponding vector norms.

Let 2 be the domain of the ta-space bounded on x, intercepted by two

hyperplanes t = a and t = b. The boundary points of & on the hyperplanes

t = a and t = b are supposed to be included in <£ and to make an open set on each

hyperplane. Put

D ={xe Cl(I) ; (t, x(f)) e ̂  for re/},

D' = {xe C(I) ; (r, x(0) € 2 for t e 1} .
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We shall need the following assumptions to the problem (1.1) and (1.2).

Assumption 1. (i) X(t, x) is defined and three-times continuously differ-

entiable with respect to x on @ . X and its derivatives up to the third order are

continuous with respect to t on /.

(ii) In &9 there exist a positive number <50 and a mapping Q(£°, •): Rn-+

Rn such that the equation

(1.7) X(t, , x,

holds whenever ||{||^50 for each (t,x)e&. Here Xx(t, x) is the Jacobian

matrix of X(t, x) with respect to x and Xxx(t, x) stands for the tensor of the

third order with components d2Xj(t, xJ/dx^Xi (j, fc, /=!, 2,..., ri).

(iii) The constants K0~K3 can be defined finitely as following:

KQ = sup\\X(t,x)\\,
3l

X, = sup \\Xx(t, x) ||,
3i

K2 = sup\\Xxx(t,x)\\,
31

HG«;x)||£X3||e||3 for l^ll^^o uniformly to (r,x)e^.

(iv) For arbitrary scalar number A, the equality Q(A£; x) = A3Q(^; x)

holds. If £lf {2, ^3 are such vectors that ||f 1 + { 2 l l j II f i l l * II f a l l =^o> the equation

holds for (f, x) 6 ̂ . Here ^fi(0 and #2(£) are °f tne behaviour of the quadratic
form of £, i.e.

(1.9)! lim <imi-x)
and q3 has the estimation

for| |€2 l l , l l^ll^^o-

Because of the equation (1.7), put

(1.10) X(t, x + Q = X(t, x) + Xx(t, xX + H«; x),

then it is evident that R(£ ; x) has the estimation

0.11)
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and is Lipschitz-continuous

(1-12)

Let us consider an operator & mapping Rn to a function of C^I) along the

flow generated by the differential equation (1.1) such that

9 a<t<b,

If q* is a vector such that (a, ?/*) e ^ and r\* is a minimal solution for

then grad J(rj) | ̂ =^=0 holds, that is

where $(t\ x) denotes the matrizant of the linear homogeneous matrix differ-

ential equation

^ = X,[f,x(0]*, a<t<b.

Moreover, considering that J is a quadratic form of vector, we may take the

following assumption.

Assumption 2. There exists a vector ^* such that (a, ?/*) e ^, ^rj* e D,

(1.13) '{!,<£>(•;

and

(1.14) det'{I<<f>(-

hold.

Furthermore, there exists a positive constant e such that for 0<e^8 the

initial value problem

4L = X(t,y)9 a<t<b

has a unique solution in D for every j.

We shall call rj* the exact (local) isolated minimal point of J(r\).
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Throughout the present paper we take the above two assumptions implicitly

and will not mention in the statement of Theorems and Lemmas.

Then we shall make some preliminaries after [5].

Thej-th column vector of $(?; x), denoted by cpu)(t), is bounded by

(1.15) l(p(Jy\\c^e2K^b-^

for x e D' and j = 1 , . . . , n. Therefore the estimation

(1.16)

holds. We shall call the matrix L0(> ; ̂ rj) the G-matrix and denote it by G(Y\).

Since D is open in C1^), for a positive constant Ml we can take a positive number

A such that in the A -neighbourhood BA of rj* defined by

the inverse of compound G-matrix defined by &(rj) = tG(rj)G(rj) exists and the

estimation

(LI?)
holds. Replace A by a suitable value less than A if necessary, then it is possible

that the inequality

holds for rjeBA. We shall fix the number A.

Corresponding to our iterative process, an operator 3$ mapping Rn into

itself is defined by the following :

where the domain of ja/ is identical to BA. Then the iterative process (1.6) is

simply represented by

(1.19) rJk+i='s&rlk> fc = 0, 1, 2,

Lemmas 2~4 in [5] assert the folio wings.

For rjEBA, put x(f) = ̂ ri(f). yu)(i) in Step 4 of the algorithm has the

following expression.

(1.20) yU)(f)=x(f) + s{(p(J\f) + v(J)(f)} on /,

where v^(t) satisfies the differential equation
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b t

Figure 1.1.

(1.21)

-

with the initial condition

(1.22) i?u>(a) = 0.

For arbitrary small positive number e there exists a positive constant C* such

that 0U>(f) satisfies

(1.23)

There exists a small positive number e0 such that for 0 ̂  £ ̂  e0 the estimation

(1.24) IM

holds in BA. Moreover for 0^e^e0 and r\eB^ the inverse of the compound

adjusting matrix fS(e; ^Y\)S(&\ 3Fr\) exists and the estimation

(1.25) U'S(

holds, where L0 is the bound of the operator norm of L on D.



792 TAKETOMO MITSUI

§ 2. Fixed Point of the Operator jf

It is noteworthy that the exact minimal point *?* is not a fixed point of

because a fixed point of jtf must satisfy the equation

(2.1) {<S(

i.e.

(2.1)' <S(

On the other hand, from (1.13) rj* satisfies

S(s; ^YI) is surely an approximation of GO?), but is not identical to that as far

as ST^O.

Therefore, we should answer the question whether a fixed point of $£

exists. Throughout this section we shall allow a negative value for s for con-

venience' sake. In the case of negative e, we can define the matrix S(e; ^rj)

and the operator j/ in the natural way. The estimations (1. 23) ~ (1.25) hold

by replacing e by |e|.

We shall prove the existence of the fixed point of jaf in some neighbourhood

of r\* by the implicit function theorem.

Define a function ^~(rj, s) by

(2.2) <T(

for (77, e) such that r\ e EA and 0< |e| :g£0.

Lemma 1. Define F(Y\, 0) by

(2.3)

(2.4)

is evident.

Lemma 2. For ^65^ and jej, |e2|^eo5 ̂ e estimation

(2.5)
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holds. Here the constant does not depend on rj, s± and s2.

Proof. Let us denote the j-th column vector of S(e; ^i]) by s/e;

Put

and

(see (1.20)), then the equation

holds. Define w(- /) by w(j) = v(j) — v(
2
J\ then w(n must satisfy the differential

equation

(2.6) dt

with the initial condition

(2.7)

By virtue of Assumption 1 and the equation (1.10),

(the right-hand side of (2.6))

Therefore, the integral form

(2.8) w")(t) = (' JC.Cs, x(s)] w»)(s)ds

holds, which brings the inequality
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(2.9) ||

Because of the estimations (1.11) and (1.12) we have

(2.10) H

g |8l - e2|Ki$(6 - a) + (K,

Applying the Gron wall's lemma to (2.10), it holds that

which implies

(2.11) || w<-» ||c ̂  |c! - s2\K'25t(b - a)^i+£oL«X&-fl) . Q

Lemma 3. For sufficiently small positive numbers A and e, the relation

(2.12) S(e

z and |e|^s, w/zere P(£; J5"?/, s) w a linear mapping which

maps £eJR" to an nxn matrix P(i\ J^, e)^ wf f f t components of continuous

functions on I.

Proof. We shall put

&(] + eej) = y(
2
J) =

Then we have

(2.13) 5/

Define w^'> by w(j'} = i4J) — w^J), then w^') must satisfy the differential equation

-X[t, Xl(t)]-X\t, x2(f) + Eu^1\f)']+X{t, xz(t)~]}, a<t<b,

with the initial condition
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(2.15)
Because of the equation (1.7), the right-hand side of (2.14) can be written as

following :

~-Xxx\i, x2(f)] (xt - x2 + EU\J >)(*!- x2 + e«(/>) + Q(x,- x2 + Eu{j) ; x2)

X[t, x2(0]-X»[

Q(xl-x2; x2)

X[t, x2(ff\-XJL

Q(«u2»;x2)+X[t,x2(tJ}}

+ XXX[1, xz(

+ -f{e^i-^2 + £"iJ'); x2)-Q(xL-x2- x2)-Q(su^; x2)} .

Utilizing (1.8) and (1.9), we have

J'>; x2)-Q(Xl-x2; x2)-Q(6u^>; x2)}

which brings the equation

(2.16) -= [^[t, x2(t)] + fiJf»[t, x2

D, x2(0] x^o-xjCO +

+ «i'/)(09(X1 -X2) + £(X1 -X2)?1(

Let us denote the matrizant which corresponds to
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by Wj(f, J% e) (note that Yj does not depend on c) and define a mapping HjtB

which maps a function y(t) e C(J) into C^I) by

then we can transform (2.16) and (2.15) into the integral equation

(2.17) w">(0 = [#;, £7 {JFO; + 0 - .F^uy >] (0

(«iy))] (0

Here 7(0 stands for ^[

Since J^Of + O- J^ = $(- ; ^)c + o(||^||) and w^y ) is equal to

which is bounded, the first term of the tight-hand side of (2.17) is the order

0(||{||). Also, the second term is the order 0(||{||). Moreover, because of

(1.9) in Assumption 1, the last term is the order 0(||C||). There is no factor which

brings terms of the order lower than 0(||£||) in the other terms of the right-hand

side of (2.17), thus we can assert that w^'^r) is 0(||^||) as a whole.

Define an n x n matrix h^t) with continuous components by

In the same manner we have

lHjtE{w^q3(u[J\ ,#>)}] (0 = fc^>(r){ + o( || {||) .

where h2(t) is an n x n matrix with continuous components. Put

then #;iBy{^fo + <l;)-^}w(./) js the order O(||(^||2). On the other hand

~ must be the order 0(||£[|2). Therefore w(
0

n = o(\\£\\) holds.

Summing up the above considerations, the equation (2.17) can be rewritten as

(2.18) wU>(f) = [/f/,8y#(- ; ^rj)£u(
2

n](t) + sh[j\t)% + e2hy\t)% + o(\\%\\).

Hence, define the linear operator P(t\ $?Y\, e) such that P(i\ ̂ r\, e)^ is formed

by
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as the j-th column vector, then we have the conclusion. Q

Corollary. For sufficiently small positive numbers A and &, the estima-

tion

(2.19) ||S(e; ^l)-S(e'9 ^i/2)||£ const. ll^-tell

holds if \\rji-ri* |], \\fi2 — rj*\\^A and M^e- Here the constant does not de-

pend on j / j , /72
 aw^ e-

Now we are ready to state

Theorem 1. T7?ere exist positive numbers A1 and sl such that, for any

£ satisfying |e|^fii5 the equation

has a unique solution fj = fj(s) in the ball ||>/ — ̂ *|| ^ Jl5 and ff-^rj* as e->0

Figure 2.1.

Proof. We divide the proof into three parts.

First stage. Put the neighbourhood Nb of (^*, 0) as

and assume that ATfo is included in BA x {g; |s| ge}. For (f/ l 9 ej, (^2? £2) in

the difference of ^"Oh, ej and «^"0?2J
 £2) i§ written by
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(2.20) .rOh, &d-ff-(n2, e2)
= 'S(et;

= '{5(6,;

+ <{S(e2;

Because of Lemma 2, the first term of the right-hand side of (2.20) is estimated
by const. \ei — s2\. Besides, Corollary of Lemma 3 gives us the estimation

The inequality

is easy to show.
Hence we have

z, e2)ll ^ const. |8!-e2| + const. | |»h-/hll-

This shows the joint continuity of "̂(17, e) with respect to t\ and e.
Second stage. We shall calculate the Frechet derivative of &~(t], e) with

respect to tj in Nb. If E ̂  0, the equation

(2.21)

+ 'S(e ;

holds. By virtue of Lemma 3, we have

On the other hand,

'S(e;

holds. Therefore, from (2.21) we have

which implies that the Frechet derivative ff ' n(v\, e) exists in Nb and is given by

(2.22) ff-fa 8){
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In the case e = 0, we obtain

(2.23)

As shown in [8], the Frechet derivative <P,,(f, ^r\) of the matrizant 4>(f ;

with respect to rj exists and is represented by

(2.24) <*>„(*;

Hence the equation

(2.25) ^0?, 0) =

holds.

Let us consider lim &~n(ri, e) in (2.22). By (1.20) and (1.23) we have
e-»0

and

j) (0 -

hence «^')->9»(-') as e-+0. Moreover, as e->0 the matrizant *Fj(t ; &t], e), which

corresponds to

Xx\t,

has the limit f/f ; 3Fv\, 0) which is the matrizant corresponding to Xx[t,

That is, *Pj(f, &i\, 0) is identical to <P(t; &r\) for every;. Therefore

Ja

holds as e->0. In such limitation,

which implies



800 TAKETOMO MITSUI

as e->0. Hence, we obtain the equation

= *%(i;, 0){,

which implies the continuity of ff~n(t], e) at e = 0.

Third stage. For the isolated minimal point r\*, we have

(2.26) rw, OK = WK + '(£#„( • ; ̂ *)<D {L^* -d} .

Then,

where pjy means an operation such that /ty.y = f(X*i)»-"5 X*jv)) ^or J7

Because of (1.13) in Assumption 2, the above term is equal to 0. Hence, from

(2.26) the relation

holds, which implies the invertibility of ^(f?*, 0) by virtue of (1.14) in Assump-

tion 2.

By the implicit function theorem (Th. 1.7 in [3]), we have the desired

conclusion. Q

§ 3. Convergence of the Iterative Process

In the preceding section we have shown the existence of a fixed point for the

operator j/ in Nb. We shall denote the fixed point by fj = f)(s) and call it the

approximate minimal point of J(rj) because it is an approximation of jy* and

tends to r\* as e->0.

In this section we shall show that in some neighbourhood of $ the iterative

process (1.19) converges to r\ while e is fixed as a positive number less than e^

Since fj is defined by &~(fj, e) = 0, the equation

(3.1)
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holds as far as ||/f — f/*|| ^A.

On the convergence we have the following theorem.

Theorem 2. There exists a positive number A2 such that the iterative

process (1.19) starting with any Y\Q = Y\ in the A2-neighbourhood off] converges

to fj.

Proof. Let A2 be sufficiently small such that the ^-neighbourhood of fj

is included in BA. We shall show that jtf is a contraction mapping on the A2-

neighbourhood of fj.

We have

(3.2) ^-/? = f/-/7-{f5(8; *j/)S(g; ^ij)}-1^, e)

Because of (2.22), the equation

(3.3) 'S(8;

holds. The first term of the right-hand side of the above equation is written by

(3.4) {<S(

+ 'S(s; J^){S(e; ^) - G(^)} (i, - ij) .

By virtue of (2.12), the estimation for the compound adjusting matrices

||'S(e; ^ri)S(s; &ti)-'S(s; &fj)S(s; ^)||g const, \\r\-f\\\

holds, which brings

(3.5) {'S(e; &r,)S(s; *•»/)- 'S(s;

Utilizing the inequality (1.24), we have

(3.6) ||'S(

On the other hand, the principal part of the second term of (3.3) has the follow-

ing j'-th column vector
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where pN means the same operation in Section 2. Then we have the estimation

; J*% e)-S(e; ^rf)

= 0(8)

because of (1.24) and the same assertion in the proof of Theorem 1.

Therefore, we have

(the j-th column vector of 1{LP(- ; &fj, 6)0/-

x'S(e;

which implies the estimation

(3.7) ||<{£P(. ; J%

because of (3.1).
Remembering the estimation (1.25) and summing up (3.4), (3.5) and (3.6),

we have

Thus choose e and \\rj- fl\\ sufficiently small such that the inequality

holds, where a is a positive number satisfying the inequality

^ 1-S1L0M0M1
==

for an arbitrary positive K< 1. Therefore, we have

which shows the contraction property of $# . Q

From the above considerations we have the assertion as in [5] that the
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convergence of the iteration would not be expected to be quadratic in the neigh-

bourhood of rj while a fixed £ is chosen to be apart from zero. The reason is

the following. The equation

implies that the Frechet derivative of stf at ff is given by

(3.8) j/'(^ = C-{'S(
+ 'S(e;

As in the derivation of (3.7), we have

On the other hand, S(s; !Fr\) — G($\) does not vanish if e^O. Then, we can not

expect that j^f(^)£, vanishes for any £=£0. Hence the convergence is not quad-

ratical.

If we assume that Xxx[t, x] is identically zero on & (almost linear case for

differential equation), then the convergence is quadratic because in such case

v(J}(t) in (1.20) is identically zero and S(e; ^v\) = G(r\) holds, which makes our

iterative process very simple and guarantees the quadratic convergence.

Remark. In [8], Urabe mentioned the convergence rate of the several

iterative processes, and wrote that the quasilinearization algorithm by Banks and

Groome is not quadratically convergent because it is not the Newton iterative

process (p. 182 of [8]). But, the sufficient condition of the quadratic con-

vergence is the zero spectral radius of the Frechet derivative of the nonlinear

operator representing the iterative process at the limit point (fixed point of the

operator), and the quasilinearization algorithm has such property as shown in

[i].
Concluding this section, we investigate the approximation order of fj for

17*. We shall improve the statement of Lemma 2.

Lemma 4. ForrjeBA and |e|, |e + v|^e0, the equation

(3.9)
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holds, where p(t; J*% s) is an n x n matrix with components of continuous func-

tions on I.

Proof. After the notations in Lemma 2, let us put

^-) = y{fl = x + (s + v) {<pW + v\J>} ,

eej) = y(
2

n =

and

Then we have

and w0^ must satisfy the differential equation

(3.10)

!_

and the initial condition

(3.11) w<J>(a) = 0

just as (2.6) and (2.7). Utilizing the equations (1.7) and (1.8), we have

(the right-hand side of (3.10))
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where ^(w^, 0) is abbreviated by

Let Qj(t; ^r\, e) be the matrizant which corresponds to

Xx[t9 *(*)] + fiXJ!*, x(tmcp^ + v^ + siq2(<p

and transform (3.10) and (3.11) into the integral equation

(3.12)

Here

(3.13) S/t; jr,, 8) = -i-

and

(3.14)

Then, the first term of (3.12) is the order of O(|v|) and the second term has no

factors of the order lower than O(|v|). Hence w(J-)(0 is the order of 0(|v|) as a

whole. Considering this fact, each term of Wj is the order of 0(|v|2).

Therefore we have the equation

(3.15) w^(0 = vO;(f; J% 8) OjHs; ^i/, e)S/s; ^,
Ja

Put p(t; J5"^, e) such that p has the j-th column vector equal to w(j'>/v, then we

have (3.9). Q

Corollary. For 17 eBA and |v|ge0, ^/te equation

(3.16) S(v; *fi)-G(fi)

s. /fere p(^j ^^?) is formed by

-

as the j-th column vector.

By virtue of Lemma 4 and its Corollary we obtain informations about the

derivatives of &~(rj, e) with respect to e at some neighbourhood of (*/*, 0), which
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implies the following

Theorem 3. In the neighbourhood

Nb(A3,s3) = {(n,s);\\ri-^\\^A3 and

jj(s) whose existence is guaranteed in Theorem 1 has the estimation such as

(3.11) II/JOO -r\* || g const. |e| as e->0.

Proof. We have shown in the third stage of the proof of Theorem 1 that

c^O?*, 0) is identical to ©(??*) and is invertible. Taking the continuity of the

derivative ^~n(rj9 e) at e = 0 into consideration, we can choose the numbers A3

and e3 such that Fffl, e) has the bounded inverse in Nb(A3, e3).

On the other hand the equation

)-^(fl, e)

holds, and by Lemma 4 we obtain the assertion that ^"O/, e) has the derivative

with respect to e at (*f(e), e) such as

(3.18) *-.«, 8)v

Then, replacing A3 and s3 by suitable numbers less than them if necessary,

Theorem 20.3 in [3] implies the existence of the derivatives of fj(s) in Nb(A3, e3),

which is defined by

(3.19) fc(fi)v= -(^0?, e))-1^^, e)v .

Thus fj(s) is the order of O(|e|) as e-^0 in JV6(^3, e3). D

Remark. Let e tend to 0 in (3.18), then we have

by virtue of Corollary of Lemma 4. By the fact

the equation

holds. However, we obtain
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where Z(£; J^) stands for the matrix which is composed by Xxx[t,
x <pU\t) as the j-th column vector. Remembering that tG(ri*){L#rti*--d} = Q,
we obtain the statement that the derivative fjE(Q) vanishes, which implies that
we can expect the approximate minimal point rj(s) to be the order of o(|e|)
extremely near to 77*.

§ 4. An Illustrative Example

Let us consider the following problem originally mentioned in [4], which
occurs relating to the tubular flow chemical reactor with axial mixing.

The differential equation is

(4.1) ^.-6^-12;c2 = 05 0 < r < l .

By the transformation

(4.2) f= l -2 t ,

the equation (4.1) can be reduced to the following differential equation:

(4.3) - - ,at at

The constraining condition of least squares type is the following :

10
(4.4) £ (x(tj)- y j}2 = minimum,

J=0

where

(4.5) fy = 0.2./-1.0 0 = 0, 1,..., 10)

and yj 0 = 0, 1,..., 10) are given in Table 4.1.

Table 4.1.

/ 0 1 2 3 4 5

yj 0.38727 0.39476 0.41305 0.43862 0.47017 0.50764

6 7 8 9 10

0.55172 0.60372 0.66559 0.74012 0.83129
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This problem is equivalent to the example in [2].

We shall rewrite the problem into the vector form as (1.1) and (1.2). The

equation (4.3) is transformed into

' dxl _

Let x be the vector x=\ Xl L then (4.6) is equivalent to
L -*2 _i

P v
2(4.6)' -

and the functional value J to be minimized is
10

(4.7) J

Here tj (j = 0, 1,..., 10) are the same as in (4.5), the matrices Lj (j = 0, 13..., 10)

are

Ji o
L0 — Lj ---- — L10 —

!_0 0

and the vectors d} (j=Q, 1,..., 10) are given by

0.0 J

The results of the numerical computation carried out by FACOM M-190

in the Data Processing Center, Kyoto University are shown in Table 4.2. For

the numerical integration of ordinary differential equations the Runge-Kutta-

Gill method programed by T. Ojika was used. All the calculations were

carried out in the double precision arithmetic.
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Table 4.2.

iteration times

tQ = — 1.0

0
Xl *2

0.5
/i = -0.8 1 0.51252090985
fs=-0.6
/8 = — 0.4
f4 = — 0.2
t5= 0.0
fe = 0.2
/7= 0.4
/8= 0.6
/9 = 0.8

fio = 1.0

0.54334736769
0.58721750119
0.64281390289
0.71115159268
0.79503126629
0.89914650517
1.0307690460
1.2012163950
1.4287209566

0.0
0.11507113359
0.18909213769
0.24863472740
0.30821629103
0.37748477983
0.46516837677
0.58192807415
0.74350525298
0.97571861039
1.3241632086

1
Xi X2

0.37806769956
0.40171204036
0.42937707807
0.46135283076
0.49830337268
0.54123626991
0.59155143668
0.65116185255
0.72270288155
0.80987497209
0.91800946931

0.10806510612
0.12821189883
0.14869156970
0.17162147360
0.19871943583
0.23176626442
0.27296261250
0.32531012072
0.39313865121
0.48294851916
0.60486691312

4.93xlO-i I 1.16x10-2

iitiauuii U1JUCO

fo = -1.0
/i = -0.8
ra = -0.6
fs = -0.4
^4 = -0.2
ts = 0.0
t6= 0.2
t,= 0.4
t8= 0.6
/9 = 0.8
fio= 1.0

JCl

0.38702086627
0.39490532424
0.41341909766
0.43913778607
0.47081948324
0.50841638291
0.55263785706
0.60480645049
0.66689448238
0.74170948834
0.83325492973

Xz \ Xi

0.00261251861
0.07015010707
0.11229585764
0.14393243601
0.17287829974
0.20369262002
0.23962085391
0.28369352839
0.33949736231
0.41193878825
0.50828488609

/fr | 5.81X10-6

0.38727177735
0.39476040385
0.41304637216
0.43861177501
0.47016701758
0.50763820223
0.55171808024
0.60371555428
0.66558820885
0.74012428084
0.83129911340

X2

-0.00004288586
0.06869739433
0.11139645273
0.14326111462
0.17226427328
0.20303615170
0.23885031164
0.28274087195
0.33828049978
0.41034340656
0.50613875295

1.12x10-"

iteration times

/o =
fi =
tz =
t$ =
ti =
ts =
te =
t7 =
t8 =

t,=
tlQ =

— 1.0
—0.8
—0.6
-0.4
—0.2
0.0
0.2
0.4
0.6
0.8
1.0

Jk

4
*i x2

0.38727191330
0.39476032659
0.41304617227
0.43861149266
0.47016666726
0.50763778440
0.55171758641
0.60371496863
0.66558750766
0.74012343005
0.83129806389

-0.00004431630
0.06869661205
0.11139596872
0.14326075367
0.17226394342
0.20303579926
0.23884989812
0.28274036083
0.33827984706
0.41034255099
0.50613760232

l.lOxlO-10

convergence criterion 1.0 x 10~7

step size for the Runge-Kutta method 0.003125
e = 1.0xlO-«
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