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Complex Analytic Construction of the Kuranishi

Family on a Normal Strongly Pseudo-Convex
Manifold. II

By

Takao AxAHORI* and Kimio MIYAJIMA**

Introduction

This paper is a continuation of the previous paper [2] by the first named
author. The deformation of partially complex structures on a compact strongly
pseudo-convex manifold was investigated first by M. Kuranishi [4] in order to
give a new insight into the problem of deformations of isolated singularities, and
he constructed a family of partially complex structures on a compact strongly
pseudo-convex real hypersurface of a complex analytic space with an isolated
singularity parametrized by a finite number of parameters and inducing the
versal family of deformations of the isolated singularity in some sense. If
(V, x) is an analytic subset of a domain in a complex euclidean space with an
isolated singular point x, we obtain a real submanifold M by cutting the analytic
set by a sphere of sufficiently small radius centered at x, and V defines a sub-
bundle °T"” of CTM, which is called the partially complex structure on M
induced from V, consisting of all tangent vectors of type (0, 1) in CTV)y.
Kuranishi represented an almost partially complex structure on M of finite
distance from °T” by an element of I'(M, T'®(°T")*) and constructed the
above-mentioned family of integrable almoslt partially complex structures
making use of the harmonic theory for ¢,. He tided over the difficulties arising
from the non-ellipticity of d, by making use of Nash-Moser’s inverse mapping
theorem, thereby the family has only a differentiable structure of class C*.
Then the problem as to when the family may have a complex analytic structure
was left open. The first named author answered this problem affirmatively in
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[2] in the case that M is normal, dimg M =7, and H{® =0, depending on the
following ideas: On a compact normal strongly pseudo-convex manifold M
there exists a differential complex,

0 I'(M, °T") 2% I(M, °T"®(°T")*) 2 I'(M, °T"® A2(°T")*) - -+,

and the solutions of integrability condition P(¢)=0 can be looked for in I'(M,
°T"®(°T")*) instead of in I'(M, T'®(°T")*). He avoided the difficulties
coming from the non-ellipticity of ¢, by introducing the norms | |/{,, and
I Wm-

In this paper, following these ideas, we prove Main Theorem by the method
used in [5].

Main Theorem. If M is a compact normal strongly pseudo-convex real
hypersurface of a complex manifold N with dimp M =7, there exists a complex
analytic family {¢(t)|te€ T} of partially complex structures on M of class C?
such that ¢(0)=0, which is versal at o (cf. Definition 1.6), and the linear term
of ¢(t) with respect to the parameter t determines an injective map of the
Zariski tangent space T,T of T at o into H}(T"), where H; (T') denotes
the first cohomelogy group of the complex (I(M, T'® AI(°T")*), 6'9).

In Section 1 we recall some notations and results in [1] and [2] which is
needed in this paper and give the formulation of Main Theorem. The proof of
Main Theorem is given in Sections 2 and 3. In Section 2 we construct a family
of partially complex structures on M. We prove that the family is the versal
family in the sense of M. Kuranishi in Section 3. Throughout this paper, as
a parameter space of a family of partially complex structures, we consider only

a reduced complex analytic space.

§1. Preliminaries

In this section, we recall some formulations, notations and results in [1]
and [2] which will be needed in Sections 2 and 3.
Let M be a differentiable manifold.

Definition 1.1. By an almost partially complex structure on M, we mean
a complex subbundle E of CTM of class C* such that En E={0} where E
denotes the complex conjugate of E.

Further if it satisfies the condition that [X, Y] is in I'(M, E) for any X, Y



ANALYTIC CONSTRUCTION OF THE KURANISHI FAMILY, II 813

in I'(M, E), we call E a partially complex structure on M, where I'(M, E) denotes
the vector space of all sections of E over M of class C*. M with a partially
complex structure E is called a partially complex manifold.

If M is a real hypersurface of a complex manifold N, N defines a partially
complex structure °T” on M by

°T"=T"Ny N CTM

where T”N denotes the complex tangent bundle of N of type (0, 1). We call
the partially complex structure on M the partially complex structure on M
induced from the complex structure of N.

On the partially complex manifold (M, °T"), we have the (tangential)
Cauchy-Riemann operator (cf. [1] § 3)

Op: T(U, N(°T")*) > I'(U, A9+ (°T")y*)
given by

G (X g5eees Xgi =28 (= DX (X 15y Xieoos Xga 1)
+ i (DO Xy X1y Xeers Koo Xy Xgi1)

for ¢ eI'(U, A2(°T")*) and Xi,..., X o1 €I'(U, °T"), where U is an open
domain of M.

We say that a partially complex manifold (M, °T") with dimg M =2n—1is
strongly pseudo-convex if °T” is of rank n—1 and its Levi form is positive
definite at each point of M (cf. [2], (1.2)).

Definition 1.2. A strongly pseudo-convex manifold (M, °T") is called a
normal strongly pseudo-convex manifold if there exists a non-vanishing global
real C®-vector field £ on M such that

(& I'(M, °T")]=I(M, °T")
and {,&Re (°T,@°Ty) for any pe M, where Re(°T;@°T,) denotes the real
part of °T,@°T}.

From now on, we assume that M is a normal strongly pseudo-convex real
hypersurface of a complex manifold N with a fixed real C®-vector field ¢ as
above and dimg M =2n—1.

Then we have the following canonical C*-splitting of CTM as differ-
entiable vector bundles,

CTM="T"®°T"®F
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where F=C¢. We set T'=°T"@F, then there exist the following differential
complexes arising {rom the (tangential) Cauchy-Riemann complex for scalar

valued forms,

(0 5(1)
0 I(M, ) 22 r(M, T'@( Ty 22, I(M, T'® R(°T"y) -,
0TI (M,eT"y 2o, (M, °T"Q(°T")*) 24, (M, °T"® A2(°T")*) -,
5(0) 5(1)
0—I(M, F) 75 T(M, FQ(T")*) Z I(M, F® AX(°T")*)—,
(cf. [17 and [2], for details).

We define operators which will be needed in Sections 2 and 3, and recall a
lemma concerning with them (cf. [2], Lemma 4.2).

For each ¢=0, 1,...,

Ly;: T(M, °T"® A°T")*) > (M, FQ A1*1(°T")*)
is given by
Lq(g)(Xli"" Xq+ 1)=(5'(1"1')0(X17"'s Xq+ 1))F
for e I(M, °T"® AY(°T")*) and X,..., X 4, € (M, °T"), where ( ) denotes
the projection to F according to the splitting T'=°T"@F.

We note that L, are linear over C*(M), the ring of all C*-functions on M,
and L, induces a C®-bundle isomorphism of °T” to F®(°T")*. We denote
L, by L according to [2].

Proposition 1.1. (1) LD,=¢¥L,, (2) L,D,=0¥L.

Next, we introduce an hermitian metric on M, then hermitian metrics along
fibers on °T”, F and T’ are introduced naturally, and we can speak of the
harmonic theory on I'(M, °T"® A4(°T")*), I'(M, F® A4(°T")*) and I'(M,
T'® Ani(°T")*) for g=1, 2,..., n—2, by J.J. Kohn (cf. [3] Ch. V and [6] §6).
In particular, if we denote by D (resp. () the adjoint operator of D, with
respect to the above hermitian metric (resp. the Laplacian operator DD,
+D,_,D¥ ;) and by H'%, the vector space of all harmonic elements of I'(M,
°T"® A4(°T")*), H f,"T),, is finite dimensional and there exist the Neumann
operator

N:T(M, °T"® AY°T")*) - T(M, °T"® AI(°T")*¥)
and the harmonic operator

Hir.: T(M, °T"Q A1(°T")*) - HS%.
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with the relations
[=Hi7.+ 0N and ON=NIO,

where I denotes the identity operator of I'(M, °T"® A4(°T")*).

Further, on I'(M, F® A4(°T")*) and I'(M, T'® A4°T")*), we employ
similar notations and obtuin similar results.

For each non-negative integer m and any open domain U of M, we define
the Sobolev norm | ||y and the norms || [(m), | I(my on CP(U) and then on
the spaces T (U, °T"® A1(°T")*), I'(U, T'® AN(°T")*), T(U, F® A1(°T")*),
where CP(U) (resp. I'(U, E)) denotes the vector space of all C®-functions
(resp. all C™-sections of the vector bundle E) with compact supports in U.
(Cf. [2], §3 for details.) We denote by I, (M, °T"® AU°T")¥), I'(m(M,
°T"Q@ A4(°T")*) and TI'(,y(M, °T"® A1(°T")*) the Hilbert spaces obtained by
completing I'(M, °T"® A4(°T")*) with respect to the norms | llgmys I lgmy and
Il I{m) respectively, and so on.

We remark that these norms have the following properties: For any open
set U of M and each m=n+ 1, there exist constants c,, ¢, and d,, such that

[PV | (my S Cmll @l ¥ llmy ~ for any ¢, ¥re CF(U),
QY |l imy S Cull @l |l Gy~ Tor any ¢, ¥ e CF(U),
||5b¢“(m) = dm”¢||2m) for any ¢eCF(U).

Moreover, we have the following results (cf. [2], Proposition 3.13 and
(4.4)).

Proposition 1.2. The following estimates hold.

INDFR (D) (my S 10107 uniformly for ¢eI(M, °T"®(T")*),
IDoL5 ' O * Nl (my S 1911y uniformly for ¢ el(M, F® A2(°T")*),

where R, is a differential operator introduced in Proposition 1.4 below, and
see [2] Section 3 for the meaning of the symbol <.

Further, since L is linear over C*(M), we have
|LO Ny S Pl (my uniformly for ¢el'(M, °T"Q(°T")*).

Now we return to a family of partially complex structures on M.
First, we recall some propositions (cf. [1] Proposition 1.1, Theorem 2.1 and
[2] Proposition 1.7.3).

Proposition 1.3. Let A be the set of all almost partially complex struc-
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tures at a finite distance from °T". Then there is a natural bijection
b: I'(M, T'"Q(°T")*) > A4

such that if we write b(¢)=¢T" for pel (M, T'®(CT")*) then *T"=
{X+¢(X)| X e°T"}. (See [1], for ““at a finite distance from °T"”.)

Proposition 1.4. An almost partially complex structure ¢T" is a partially
complex structure if and only if it satisfies the following integrability condi-

tion;
P(¢)=0 ¢+ R,(¢)+ Rs(¢)=0

where  Ry(@)(X, Y) = [¢(X). ¢(Y)] — ¢([X, ¢(Y)]or- + [¢(X), Y]ops) and
Ry()X, Y)=—d([¢(X), ¢(Y)]or-) for X, YeI'(M, °T"), [, 1¢- (resp. [, Jor~)
denoting the projectionof [, ]1to T' (resp.°T") according to the above splitting
CTM=T'®°T".

Proposition 1.5. For any ¢ e I'(M, °T"®(°T")*), P(¢)=0 if and only if
D¢+ R,(¢)=0 and L$p=0.

Let E be a C®-vector bundle on M, T an analytic subset of a neighbour-
hood of the origin of C".

Definition 1.3. A family {¢(¢)|te T} of elements of I'(M, E) (resp.
C%(M, E)) is of class C* (resp. C?) if for each pe M there exists a neighbour-
hood U of p such that the map

¢:UxT3a(q, )~ ¢p(t)(q) €E

is of class C*® (resp. C?), where ¢(1)(g) denotes the value of ¢(¢) at ¢ in E and
C%(M, E) the vector space of all sections of E over M of class C2.

Definition 1.4. A C®-family (resp. C2-family) {¢(?)|te T} of elements of
(M, E) (resp. C3(M, E)) depends complex analytically on te T if for each
fixed pe M, ¢(¢)(p) is complex analytic in ¢.

Using the notions in Definitions 1.3 and 1.4, we define a complex analytic
family of partially complex structures on M.

Definition 1.5. By a complex analytic family of partially complex struc-
tures on M parametrized by T, we mean a C®-family {¢(¢)|t€ T} of elements
of I'(M, T"®(°T")*) depending complex analytically on te T and satisfying
P(p(t))=0for teT.
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M. Kuranishi treated our family of partiaily complex structures on M as
a family of isolated singularity in [4] and give the definition of the versal family
as follows.

Definition 1.6. A complex analytic family {¢(t)|1eT} of partially
complex structures on M with ¢(0)=0 is versal at oe T if the family satisfies
the following condition; For any neighbourhood N of M in N and any complex
analytic family n: 4" —S of deformations of N with #,=N for o€ S, there are
a neighbourhood S’ of o in S, an analytic map 7: S’> T and a differentiable
embedding F: M x S'— 5. of class C* depending complex analytically on
se S’ (i.e. the map S’ 3s—F(p, s)e 4" is complex analytic for each fixed pe M)
such that

(1) t(0)=o,

(2) meF=p, where p, denotes the projection of M xS’ onto the second
factor,

(3 Fiuxo=idy,

(4) for any se€S’, F|yx, induces an isomorphism of the partially com-
plex structure ¢(z(s)) on M to that induced on M from A} via Fyxs.

If {¢(¢)|te T} is a complex analytic family of partially complex structures
on M,

IR P(1)+Ro(p(1)) +R3(¢(1))=0 for teT,
by Proposition 1.5. Then for each d/0te T,T,

Mo [01(0)=0,

hence 0¢)/0t(0) determines an element of H: (T’). Then we have a linear map
of T,Tto Hj,(T’) similar to the case of a family of compact complex manifolds
(what is called the Kodaira-Spencer map).

Our purpose is to construct a complex analytic family {¢(¢)|te T} of
partially complex structures on M with ¢(0)=0 for o € T which is versal at oe T
in the sense of M. Kuranishi and has the property that the linear map as
above is an injective map of T,T into H}(T’). In this paper, we construct
only a complex analytic family of C2-partially complex structures on M
having the same properties as above. In fact, we can define a CZ-partially
complex structure on M in the same way as Definition 1.1, see that it is
represented by an element of C*(M, T'®(°T")*) satisfying P(¢)=0 similarly
to Propositions 1.3 and 1.4, and get the same result as Proposition 1.5. Then
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we define a complex analytic family of C2?-partially complex structures on M
and the versality of a family in the same way as Definitions 1.5 and 1.6, and
the linear map of T, T into Hj,(T") as above is also defined for this family.

§2. Construction of a Versal Family

Let M be a compact normal strongly pseudo-convex real hypersurface of
a complex manifold N of complex dimeunsion n=4.

In this section, we construct a family ¢(1) of C2-sections of *T"®(°T")*
over M depending complex analytically on t in a neighbourhood V of the origin
of H{Y, and a finite number of holomorphic functions h,(¢),..., h(t) on V satis-
fying the following relations:

(2.0) ¢(0)=0 and h(0)=0 for z=1,...,1,
.1) P(¢()=0 for teT,
(2.2) the linear term of ¢(f) is cohomologous to > 2_, f,t,, where ¢
=dim¢; H®, (By,..., B,) is a base of H{Y, (1y,..., t,) is the system of coordinates
of H{ associated with the base, and T is an analytic subset of V defined by
h@®)=---=h(t)=0.

For the proof, we first introduce some notations.

For each yy e (M, T'®(°T")*), we set Ly =y — 10, where 0,, is a unique
element of I'(M, °T") such that

[X, 0,1r =¥ (X)r forany XelI(M, °T").

Then it is easily seen that 2y is in I'(M, °T"®(°T")*).

Proposition 2.1 ([2] Proposition 5.1). The map &£ gz is injective.

Then if we set o# = 2(HY)), # also represents the first cohomology group
H}(T).

Let (y3,..., yp) be an orthonormal base of HZL(H (1) with respect to the
L2?-inner product (,) on I'(M, F® A*(°T)*) introduced in Section 1 and
(V15-++» V) €lements of H. such that H3L(y,) =y} for i=1,..., p.

For neI'(M, F® ~A*(°T")*), we set p(n)= 311 (1, y):.
Then we have the following lemma.

Lemma 2.2. (1) HiLpH}LH!;.=H}LH!;.,
(@ (LpH})*=LpH%.
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Proof. (1) LetneHSY.. Then

H:LpH}L(n)=HEL(X:-, (HEL(), D7)
=201 (HEL(n), )7
=H}L(n).
(2) LetyeH®. Then

LoH:Lp(Y)=LpHEL(3XE-; (1, ¥1)7)
=Lp(Xt=y (4, ¥ 7))
=20=1 (4, YL =Lp(). Q.E.D.
In view of Proposition 1.5 and Proposition 2.1, we shall construct ¢(f) and
hy(1),..., h(?) satisfying the following:

2.00 ¢0)=0 and hr0)=0 for z=1,...,1,

(2.1.1) D)+ R, (p(1)=0 for teT,

(2.1.2) L¢(t)=0 for teT,

(2.2)  the linear term of ¢(f) is equal to X 2., (£ B,)t,-

Before beginning the proof, it is convenient to introduce the following
notation: Let U and D be open sets in M and €7 respectively, hy(2),..., h(?)
holomorphic functions on D, and E a vector bundle on U. For two families
¢(t) and Y(r) of C®-sections (resp. C2-sections) of E on U which depend com-
plex analytically on ¢ in D, by

d()=y(1) mod (hy(®),..., (D), ),

we mean that there exist families a,(?),..., a,(t) of C®-sections (resp. C2-sections)
of E on U which depend complex analytically on t in D such that ¢(f)—y(t)
—>L_ a(h(t) contains no term of total degree less than u as a power series
in (t4,..., ).

(I) Construction of Formal Solution

In this paragraph, we shall construct formal power series ¢(t), hy(2),...,
h(t) in t=(t,,..., t,) satisfying the formal versions of (2.0), (2.1.1), (2.1.2) and
(2.2) below. To do this, we construct, for each u=0, a I'(M, °T"®(°T")*)-
valued polynomial ¢*(f) in ¢ of degree u and an H'{?-valued polynomial h#(t) in
t of the same degree, satisfying the following:

(2.0) ¢°=0 and h°=0,
@.1.1), D, ¢4(H) +Ry(¢*()=0 mod (h(r), t++1),
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(2.1.2), Lo*()=0 mod (h*(t), t#*1),
(2.2 P (=271 (LB,
(2.3), P*H (O =¢4(1) mod (1),
and

Y ()=h*(t) mod (t*),

where h#(f)=h¥(t)e, +---+h¥(t)e, for some fixed base (e,,..., ¢) of H? and
mod (h*(?), t**)=mod (h{(2),..., h{(t), t**1).

We construct such ¢#(t) and h*(f) by induction on g, while from technical
reasons, we impose on them the following additional conditions for the induc-

tion:

(24), DY(P(¢*(1))or)=0 mod (t++1),
(2.5), OP*LeH(1)=0,

(2.6), LpH%LoH*1t)=0.

In view of (2.0) and (2.2), we set
¢°=0, h°=0,
and

P(O)=27-1(ZLBIt,, h()=0.

Then ¢1(t) is I'(M, °T"®(°T")*)-valued, (2.3); is clearly satisfied, and
since M p1(H)=0, (2.1.1),, (2.1.2);, (2.5);, and (2.6); are satisfied. Moreover
we have P(¢!())=0 mod (£2), so (2.4), is also satisfied.

Suppose then that, for some p=2, ¢¥(t) and h(¢) are already determined
for all v<p in such a way that (2.1.1),, (2.1.2),, (2.3),~(2.6), are all satisfied.

Then we set

¢u(8) = — ! {(I = Do L5 0% * N L) (I — pH}L)D} N(P(¢*~(£))o7-)}
and
PO =" (1) + (D),

where «! is the operator taking the homogeneous term of total degree u

in (t4,...,t). Since N and Ny are C%®-operators, and ¢*~1(f) is I'(M,

°T"®(°T")*)-valued by induction, ¢*(¢) also is I'(M, °T"@(°T")*)-valued.
Next, we define h#(t) by the following congruence:

h*()=H%.(P(¢*~(1))) mod (¢*1).
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Then we shall show that these ¢#(¢) and h#(t) satisfy the desired equalities.
(We set ¢,(t)= ¢ () in the below.)

(2.4),:  DY(P(H(1)or~)
=D{(P(¢* 1 (1)or-+ D1 ¢,(1)) mod (1#71)
=D¥(P(¢*~1(1))or-) — DD et {NDF(P(¢*~*(£))or-)}
=D¥(P(¢*~1(1)or) — K DF(P(P*1(1))or~)
=0 mod (t*#*1), (by (2.4),-1).
(2.5),:  IB*LPH(t)
= — KM{BW*(L— LDoLg 3 * N ¢L) (I — pHAL)DF N(P(§*~ (1))or-)} »
(by (2.5),-1),
= — k{0 (I — 0PI * N p) L(I — pHEL) DY N(P(¢*~1(£))or-)} »
(by Proposition 1.1),
= — k{0 *(OP*0P N+ HE) LI — pHEL)DF N(P(¢#~1(2))or-)}
=0.

(2.6),: LpH%Lp*(1)
= — i {LpH}(I — 3P 0P *Np)L(I — pHEFL)DFN(P(¢*~ (1)) o)} »
(by (2.6),-, and Proposition 1.1),
= —x}{LpH}(0i?*0{” N+ HF)L(I — pHEFL)DF N(P(¢*~1())or-)}
= —x{{(LpH% — (LpH})?)LDFN(P(¢*~(1))or-)}
=0, (by Lemma 2.2, (2)).
(2.3),: Itis clear that
P (1)=¢H(1) mod (*),
h(t)=H%.(P(¢*~'(1))) mod (#*+')
=H3.(P(¢* () + 0¥ ¢, 1(1)) mod (1)
=h*"1(t) mod (t*).

To prove (2.1.1),, we first show the following lemma.

Lemma 2.3.
2.7, 0P P(¢+~1(1))=0 mod (hH(2), t++1),
(2.8), Hr.(P(¢* 1 ())er)=0 mod (h*(1), t+*1),
(2.9), D,(P(¢* 1 (1))or-)=0 mod (h*(t), t+*1).

Proof. (2.7),: By Proposition 4.5 in [4], we have
O OP(¢r1(1))=0.
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Since P(¢*~1(¢))=0 mod (h*~1(¢), t*), we infer that 0% P(¢*1(t))=0 mod
(th==1(t), t#+1).  Since th*=1(f)=0 mod (h*(t), #*1), by (2.3),, (2.7), follows.
(2.8), and (2.9),: If we set Y(r)= —0V*N.P(¢*~1(1),

BPY(D) = — BPI*N 1 P(* (1)

= — P(¢* () + 3P "I N1 P(# () + H3-P(4* (1)
— P($~(0)+ N O3 P($#~(0)-+ Hj- P(* (1)
= —P(¢*"'() mod (h¥(t), ),

(by (2.7), and the definition of h*(t)). Hence, by the definition of %, we have
OPLY(t)+P(¢*~1(£))=0 mod (h*(z), t++1)
and
D, 2Y(t)+ P(¢* 1(1))op-=0 mod (hA(2), t++1).
From these, we infer (2.8), and (2.9),.
(2.1.1),: By the definition of ¢,(%),
D;¢()= —ki{DND(P(¢*~}(1)or)}
= —ND,D¥(P(¢*'(t))or») mod (#**1), (by (2.4),-1).
Then
D ¢*(1)+ Ry(¢4(1))
=D;¢,(t)+P(¢* " (H))or» mod (#*1)

= ND3D,(P(¢*~1())or) + Hip(P(¢*"1(1))or-) mod (t#*1)
=0 mod (h*(t), #*1), (by (2.8), and (2.9),).

2.1.2),: L$H(t)
=Lor () — {(I - 00 *Np)(I — LpHZ)LDT N(P(¢*~*(1))or)} mod (2+1),
(by (2.4),-, and Proposition 1.1). Now, if we set ()= — 0 *N.P(¢p*~1(1),
as in the proof of (2.8), and (2.9),, we have
D, 2y(1) + P(¢*~H())or»=0(D)or~
and
L&y(t)+ L~ (H)=o0(D)r
where o(t) =02*0% N1.P(¢*~1(t)) + H2.P(¢*~1(t)). Then
LDEN(P(¢*~1(1)or-)
= — LD¥ND, 2Y(t)+ LD*N(o(t)er-)
= —LZY(t)+ LD DEN L Y(t)+ LH 7.LY(t) + LD¥ N(o(t)oq)
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= Lp*1(t)+ LD,D¥N 2(t) + LHL 7. LY (t) + LD¥N(0(t)og-) — 0(t) -
Hence, since

L~ 1(t) = (I = 0P * N ) (I — LpHEF) L~ (1) =0
by (2.5),-, and (2.6),_;, we have

Ler(fy= —(I - 00 *Np) (I — LpH%E) {LD DEN £ (1) + LH 1 LY(1)}

mod (hi(f), ##+1), (since o()=0 mod (h#(r), #*1) by (2.7), and
the definition of h*(t)),

= —(I 03 * N )3 LoDEN 2 (1)

—(0P*0P N+ H2)(I — LoH2)LH 7. #Y(t), (by Proposition 1.1),

= —0\2*0 PN (I — LoH?)LH .. 2Y(t), (by Lemma 2.2, (1)),

= — N 3@*3DL(I — pH2L)H 1 2 (f)

= — Np0@*L,D,(I — pH}:L)H} 7. 2Y(t), (by Proposition 1.1),

=0.

Thus (2.1.2), is proved.

This completes the inductive constructions of ¢#(t) and h*(1).

(II) Proof of Convergence

In this paragraph, we shall prove that the formal power series ¢(f)=
lim,_,,, ¢*(t) and h(f)=lim,_, h*(?) in (¢,,..., t;) are convergent with respect to
I I{my-norm and | |-norm respectively where | | denotes the euclidean norm on
the finite dimensional vector space H?. To prove this, we first show the
existence of a convergent power series A(f) in (ty,..., t,) with real non-negative
coefficients and with the following property:

(2.10), 1)y < A()  forall pz1.

(Cf. [2], for the meaning of the symbol «.)
First we fix m=>n+2, and set

A()=b/16c Ty (c*[p?) (ty+ - +1,)*
where b and c are positive numbers to be determined later.
Then A(?) satisfies the inequality A(t)2 <« (b/c)A(?).
Now it is clear that (2.10), is satisfied, if we choose b sufficiently large.

Suppose that (2.10),_, is satisfied for some b and c. By the definition of
¢.(0),

16Dl omy < 1T = Do L5 0 *N pL) (I — pHFL)DFN R (¢*~ () Gy -
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By Proposition 1.2,
IuOlltm <1l (D)l my

where ¢, is a constant independent of p.
By our assumption (2.10),-,, we have

6, (Dl Gy < €1 A(D)?> < (bey [e)A(D) .
Hence, if we choose b and c in such a way that (bc,/c)<1 and (2.10), are satis-
fied, we see that
|0 fmy<A@)  forall px1,

by induction on pu.

Thus ¢(t)=lim,_, ¢*(t) is convergent for ¢t with |t|<e, for some >0,
and it determines an element of I'(,y(M, °T"®(°T")*){t,..., t,}. By Sobolev’s
lemma, ¢(?) is of class C? because m=n+2.

Then if we set h(f)=H3.(P(¢(0)), h(?) is in HP{t,,..., t,} and it satisfies

h(t)y=H%.(P(¢*~'(1))) mod (#*1)
=h*(t) mod (t**1).
Hence lim,_, , h*(t) coincides with h(f).
From (2.1.1), and (2.1.2),, we have

(2.1.1), D;¢(1)+Ry($(1))=0 mod (h(t), t**1),
(2.1.2), Lo(H)=0 mod (k(2), t*+*1),
for any p=>1.

Let T be the analytic subset of a smaller neighbourhood V of 0 in D={t|
|t| <&} defined by h()=0. Let t: T—T be a resolution of the singularity of T
and (t},..., t,-) a system of local coordinates of T at 0’ for any 0" € t1(0).
From (2.1.1), and (2.1.2),, we have, for any p =0,

@.L.1; D g((t) + Ro($(x(t) =0 mod (¢++1),
2.1.2), Lé(x(t)=0 mod (£'**1).

Since the left hand sides of these equations are holomorphic in ¢, we infer
that they all vanish. Hence (2.1.1) and (2.1.2) follow if we replace T by a
smaller neighbourhood of 0 in T.
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§3. Proof of Versality

The purpose of this section is to prove that the complex analytic family of
C2-partially complex structures on M constructed in Section 2 is the versal family.

Let (47, =, S) be an arbitrary family of deformations of a neighbourhood
N of M such that 4,=N for o€eS.

We may assume the following:

(3.1) o is the origin of Cr and S is an analytic subspace of a neighbourhood
D of o0 in Cr defined by b,(s)="---=b,(s)=0.

(3.ii) We find a finite system of open sets of A", {%;};.4, such that there
exists an analytic embedding

ni:%;—>W;xD with pyon;=n foreach jed,
and M c\U; 4 %;, where W, is a neighbourhood of 0 in &" and p, denotes the
projection of W;xD onto the second factor. We denote by (;=({},..., (%)
and s=(sy,..., 5,) the coordinates of W; and D respectively, and set z}={}on; .,
for A=1,...,nand U;=%; n M where we regard (% as a function on W;x D.
(3.iii) njomi! is represented by
{ C;‘=f§k(Clu S) for A'=1:"'s n,
Se=S5, for a=1,...,r,

and we set f4(z) =f%(z;, 0) for 1=1,..., n.
From (3.iii), we infer that

Giv) fH([ile 9), )= il s) mod(b(s)) for A=1,..,n.

To prove the versality of the family constructed in Section 2, it suffices
to show the existence of a neighbourhood D’ of 0 in D, of a C2-family g(s) of
sections of T’ over U; which depends complex analytically on s in D’ for each
ie A, and of a s#-valued holomorphic function (s) on D’ satisfying;

(3.0 (g{0)) =z} for A=1,...,n and 7(0)=0,

3.1 (gi(sN*—f1(g (s), )=0 for seS’ and A=l,..,n,
3.2) G+ (T()))(g(s)*=0  for seS and Ai=1,...,n,
3.3) h(z(s))=0 for seS’,

where S'=D’'n S, g{s) has the expression g,(s)=>%_, (9:5))*0/0z} regarded as
an element of I'(U;, T'N ) since T’ is isomorphic to T'N)y as a C®-vector
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bundle, and (3, + @(1(s))) (g:(s))* denotes the element of I'(U,, (°T”)*) defined
by the congruence

(0 + A((s))) ((SNHX) =049 (N *(X) + ((x(5)) (X)) (g:(s))*
for X eI'(U,, (°T")).

(I) Construction of a Formal Solution
In this paragraph, we shall construct {g,(s)};,, and (s) formally in s, that
is to say, we construct sequences {g#(s)};c, and t#(s) for u=0, 1,..., satisfying
the following:
(3.0 @Hr=z} for A=1,...,n and 1°=0,
for any p=0,
(3.1), (giG6N*—f1i(g(s), )=0 mod (b(s), s***)  for A=L,..n,
(3.2), (Gp+d(r#(s5))) (g4(s))*=0 mod (b(s), s**1) for A=1,...,n,
(3.3), h(z#(s))=0 mod (b(s), s**1),
(3.4), g%4(s) is a I'(U, T')-valued polynomial in s of degree yu and 7%(s) is

a s#-valued polynomial in s of the same degree such that
gi(s)=g{~'(s) mod(s"),

and
T#(s)=1*"1(s) mod (s*).

We shall construct these {g4(s)};4 and 7#(s) by induction on u.
For p=0, because of (3.0), we set

(gN*=z} for A=1,...,n, and 19=0.

Suppose that {g¥~1(s)};c, and t#~1(s) are determined for some u=1. First
we define a I'(U; n U}, T")-valued polynomial in s of degree u, o¥,(s), by

ati(8)= 241 {(gF 1D —fH(g47(s), $)}0/0z} mod (s#1).
Then we set
g ;| ()= X kea Prx5(0%(5))

where {p;}r4 15 @ partition of unity subordinate to {U,};.,. Next we define
(U, T'®(°T")*)-valued polynomials w#(s) and &%(s) of degree u by

- 0H(9)= = Tl GG 6 + (G0
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+ 9D {(gt ()}~ (994}10/0zf mod (1),

and

¢He)=f(s) = p(*71(s))jy, mod (s4).
Then we set

7u(8)=23=1 TU) (L Bo) = LHL(Lics pirci(EH(s)))
and

guls)= = O* Ny Lies pirc(EH(s) —1,(9)) -
Then we infer that g,(s) is I'(M, T')-valued, since N is a C®-operator. Finally

we set

gi(9)=g71(5)+ gi () +g,(s)
and

TH(s)=T471(5) +T,(5) .
It is clear that (3.0) and (3.4), are satisfied for all u=1J.
Proposition 3.1. For any u=0,

(D, (GiE) =f1(g(s), 5)=0 mod (b(s), s*+*')  for i=1,...,n,
@), 04(s)—=d(e(5))y,=0 mod (b(s), s**)
where 04(s) is a ['(U;, T'®(°T")*)-valued polynomial in s of degree u defined
by
(0p+04(s) (9#(s))*=0 mod (s**1)  for 2A=1,...,n,
and (3,4 0%(s)) (g%(s))* is defined by the same congruence of (0,+ d((s)))
x (gi(s)*.
(3), h(r*(s))=0 mod (b(s), s#*1),
By Liea Pi{okF () =0k ()} =0 mod (s#*1),
() OWIP*Np{ T ies o+ —p(74(5)} =0 mod (s#*1),
(6), Hi{Xica poi™(s)—(#(s))} =0 mod (s**1).
Proof. For u=0, it is clear that (1), —(3), are satisfied. Since
o}(s)=0 mod (s),
w}!(s)=0 mod (s),

and
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#(z%(s))=0,
(4)o —(6), are also satisfied.
We suppose that (1),-;—(6),_, are satisfied for some p=1. To prove
(1),, we show the following lemma.
Lemma 3.2. 0}(s)—0%;(s)+0%;(s)=0 mod (b(s), s**).
Proof. Omitting the index subordinate to the local base (0/0z},..., 0/0z%)
of T,

oki() =gk 1(5) —fulgi™'(s), s) mod (s4*1)
=i () —ful(fif(g57 (), 9, 8)
= 24=1 (0l 0D (fi(g571()s 5), ) (04(s))*  mod (s#*1, (a%(s))?)
=0}4;(8)— X1=1(0fs/02}) (z) (04(s))*  mod (s+*, (a¥;(5))%, s0%;(s), b(s)).
From (1),_,, 6%;(s)=0 mod (b(s), s#). Then Lemma 3.2 follows.
Proof of (1),:  g(s)—fii(4%(s), 5)
=g{71(5) +9115) +9,(8) — fi (9577 (5), )
= X 4=1(0fi;/02%) () {(g}1,(sD* +(g,(s))*}  mod (s#*")
=011(5) — Lkea Puis(0%1(5) — o%(s)) mod (s#*1),

(by the definition of g;;,(s) and g,(s)),

=04(5) — Zkea POk () —0%(s)) mod (s#*1), (by (4),-1),
=0 mod (b(s), s#*1), (by Lemma 3.2).

Proof of (4),: As we have proved above,
ok 1 () =0k () — Xiea Pilotj(s)—oli(s)) mod (s#*1).

Hence

ki) — ok (s) = ok (8) — 0%i(8) — iea pit(s) — 0lii(s)) mod (s+77)
Then,

ke POKTI(8)— 0k 1(5))=0 mod (s+*1).

To prove (2),, (3),, we prove some lemmas.

Lemma 3.3. 04(s)=w!(s)—05¥g,(s),y, mod (b(s), s**1).

Proof. From the definition of 64(s) and w#(s),

Op{(gE™ () + (9319} + On(gu()) o, + (05(5))*
+0() {(gi 71 ()* —(99)*} =0 mod (s**1)
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and
(g1 ())* + (g1} + (@h(s))*
+ (v () {(gF () = (99"} =0 mod (s+*1),
for A=1,...,n. From (2),_,, we infer that
(04(5))* = (¥(s))* — 0p(g(8)p,)* mod (b(s), s#*1) for 2=1,...,n.
This yields Lemma 3.3.
Corollary 3.4. P(w%(s))=0 mod (b(s), s**1).

Proof. Let 0(s) be a complex analytic family of elements of I'(U,,
T'®(°T")*) parametrized by s in a sufficiently small neighbourhood of 0 in
D, defined by

(3, +0,5) (g“(s)*=0  for A=1,...,n,

where (C,+0(5)) (g%(s))* is defined by the same congruence of (d,+ ¢(t(s)))
X (g(s)*.

Since, for each s, 0,(s) represents the partially complex structure on U,
induced from the complex structure on €" via a C®-embedding g4(s), it is
clear that

P(0s))=0.
Since 6%(s)=0,(s) mod (s#*1), (by the definition of 64(s)), and w#(s)=64(s)
+0%9g,(8)|v, mod (b(s), s#*1), (by Lemma 3.3),

P(0!(5))=P(04(s)+ 0g;(s),y,) mod (b(s), s**1)
=P(0%(s)) mod (s**1)
=P(0(s)) mod (s**1)
=0. Q.E.D.

Lemma 3.5. 0/(s)=0%s) mod (b(s), s**') on U;nU;.

Proof. (0, + 04(5)) (g4(s))
=211 (@100 (g%(s), 5) (G, +04(5)) (9%(s))*  mod (b(s), s**1),

(from (1),),
=0 mod (b(s), s**1), (from the definition of 8%(s)).

Since 64(s) is determined uniquely by

(0, + 64(s)) (g4(s))*=0 mod (s**1) for A=1,...,n,
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Lemma 3.5 follows.

From Lemma 3.3 and Lemma 3.5, we have the following corollary.

Corollary 3.6. w/(s)=w/(s) mod (b(s), s**!) on U;nUj;.

Lemma 3.7. h(*7(s))=0 mod (b(s), s**1).

Proof. By the definition of h(t) in Section 2 (II), we have
h(z*=1(s)) =H% P(¢(#~1(5))) -

Since
P(p(471(s))) = Ziea piP(D(T*71(9))y0))
= Yiea PiP(@(s)—&¥(s)) mod (s#¥1),
P(f(5)— EH(s)) = P(w}(5) — 07 &4(s)  mod (b(s), s*1),
(by Lemma 3.3 and (2),_,), and
P(w4(5))=0 mod (b(s), s**!), (by Corollary 3.4),
(e~ 1(s) = — H3A0(Ziea pL4())}  mod (b(s), s**1)
=0. Q.E.D.
Lemma 3.8. 0%(X ;.4 p:€4(5))=0 mod (b(s), s4*1).
Proof. By the definition of &(s), we have
BPEHS)= P HE) ~ B (s, mod (7).
Since
P(w#(s))=0 mod (b(s), s**1)
and
P(¢(z*'(s))=0 mod (h(z#~!(s)), s#*1),

B Es) = P(wH(s)) — P(0A(5)— EXs))  mod (b(s), **)

= P(}(s) — P(@(e*($))u, mod (b(s), s*71), (by the definition of £(s),
=0 mod (b(s), s**1, h(z*~1(s))

=0 mod (b(s), s#*!), (by Lemma 3.7).
Hence, taking account of Corollary 3.6,
0P (Zica PLESN = Liea pOPEH(s) mod (b(s), 5+1)
=0 mod (b(s), s**!). Q.E.D.
Lemma 3.9. Y, , p;04(s)— ¢(t*(s))=0 mod (b(s), s**1).
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Proof. By Lemma 3.3, we have
2iea PiO(5) — P(7#(5))
=3 jea PiOY() + 052 ,(5) — Pt () — Py 7(s) mod (b(s), s#+1)
=3 iea PiCH() — OV OREN 1 { X 1 pircti(E4(s))
— LHL (X ica Piri(EH(9))) — LHY(Xicq pirc5(EH(S))
mod (b(s), s**!), (from the definition of gu(s) and 7,(s)),
=2 iea PiCE(s) — OV OP*N (X iea pikcH(E4(S)))
‘”3(10‘)550')*NT'E(TO')HH‘Tr(zie,ipin:f(:‘,f(s)))
~H}(Ziea pirct(EEON) + 02011 (5, ap 1))
(where 0, denotes the element of I'(M,°T") introduced in
Section 2 for yeI'(M, T'®(°T")*)),
=3 iea PiSE() — O V*N (L ien pili(8) — HE (T i piC4(5))
mod (s**'), (by (5),-, and (6),-1),
=0 *OP N1 (X iea PiEH(S))
=0 mod (b(s), s#™!), (by Lemma 3.8). Q.E.D.
Proof of (2),: From Lemma 3.5, we infer that

{2 jea Pi5()} 1y, =0i(s) mod (b(s), s**1).

Then from Lemma 3.9, we have

0i(s)= p(z#(s))jy, mod (b(s), s**1).

Proof of (3),: Since the linear term of h(t) is null, we have h(t#(s))
= h(t*~1(s)) mod (s**1)=0 mod (b(s), s**1), (by Lemma 3.7).

Proof of (5),: O OR*Np{ X eq it '(s)— p(z(s))}
=00 * N g (X ica piet(s) + 082G, (s) — p(7* () — 1 7,(S))
mod (s#*1), (by the definition of w#*(s)),
=00 *N 1 X i piC4(5)) — OV OL*N {3 14 pikchi(E4(s)) — $17,(8)}
— 00 *Nr.dpyt,(s) mod(s#*1), (by the definition of g;(s)),
=0 mod (s**1), (by (5),-1)-

Proof of (6),: HEA{ZX s poi™'(s)— P(t*(s))}
SHE AT 14 pi8H(S) — OR O *N 1 1 pich(EH(S)) — $17(5))
— LHE (X s pit(E(s)))}  mod (sF1)
=H7 (X iea pili(8) —HE (X icq pixi(84(5))), (since Hi. £ =H}.),
=0 mod (s**!), (by (6),-1)- Q.E.D.

By Proposition 3.1, we have (3.1), and (3.3), for any =0. From (2), in
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Proposition 3.1, we infer that, for any x>0,
(3.2), (Cp+P(r#(s))) (g%(s))*=0 mod (b(s), s**1) for A=1,...,n.

This completes the inductive construction of g#(s) and 7#(s).

(II) Preof of Convergence

In this paragraph, we prove that the formal power series g(s)=Ilim,_,o, g5(s)
and 1(s)=lim,.,.,7#(s) are convergent with respect to || [/(,,-norm and | |-norm
respectively where m=n+2 and | | denotes the euclidean norm on the finite
dimensional vector space .

To prove that {g%(s)};cx and t*(s) are convergent, it suffices to show the
following estimates: for all u=1,

(3.5, 1g5() = 92| tmy < A(5) ,
(3.6), [t(s)| < A(s),

for some convergent power series A(s).
Similarly to Section 2 (II), we set

A(s)=(b/16¢) 2=y (c*[p?) (s 4+,
and show that (3.5), and (3.6), are satisfied for suitable b and c.

Since ¢() is holomorphic in t and f;({;, s) is holomorphic in ({;, s), we
may assume the following:

(3v) 119Dl my<(bo/co) X =y co(ty + - +1)*,
(3.vi) ”ff'j(zj'f‘x, s) "fflj(zj) 2= (@f_{'j/az}) (z))x?
— 2 5h=1 (0f4i/052) (25, 0)5all ()
K (bofco) L=z (X! 4o+ X" 45y 4+ 45, ) for A=1,...,n.

For u=1, we can choose b so large that (3.5), and (3.6), are satisfied.
We suppose that (3.5),_, and (3.6),_; are both satisfied for some u=2.
Under this situation we claim the following lemma.

Lemma 3.10. For sufficiently large c, the following estimates are
satisfied.

(D) x50 (N oy < (b/)K1 A(5),
@ 191, my < (b/)K2A(s),
) Nxs(@i(Dl my < (b/)KZA(s),
@) [Ig(EESDlmy < (b/)K4A(S),
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where K,~K, are constants independent of u.
Proof. (1) By the definition of a%;(s),
15 (ot (s)=Zh=1 —wb{f1(g57 (), $)—fiz))
— 2821 (0F4:1023) () (957 (5))" = (@9")
—24=1(0f 1105, (2> 0)s,}0/0z} .
From (3.vi) and (3.5),_,, we have
g (0% 1 (Nl imy < (bo/ o) Xz €§(cm)*(n + 1) A(s)"
Kboer(n+ )22 {coc(n+1)bjc}> A(s)

where c,, is the constant introduced in Section 1. Hence if cqc,(n+r)bjc<1/2
is satisfied,

boc(n+1r) X =y {cotm(n+r)blc} A(s) < 2boco(cn)*(n+r)*(blc)A(s).
(2) From the definition of g;,(s) and (1), we infer (2).
(3) From the definition of w#(s),

0(g51u(N* + Kb (s)* — ki {p(z* () (g4 () —g9)*} =0.
Then, from (3.5),_,, (3.6),-; and (2), we have
Ire§(@f (Dl my < (mbocmlco) {2 5=1 €8qen  A() Y A(s) + (dmb/ )KL A(s)

where ¢, and d,, are constants introduced in Section 1. Hence, if coqc,,b/c<1/2,
we have

“ K.‘sl(w‘:(s)) ” (m) < (b/C) (2"bocmq + deZ)A(S) .
(4)  Since k(P(r* () =i (Pt (5) — Py 17 (s))
g (A (e (Nl omy < (Bo/co) X 72 89> Als)*,  (by (3.v) and (3.6),,—4),
«boqX 7=y (coqb/c)* A(s).
Hence, if gqcob/c<1/2 is satisfied, we have
l[e§ (@ (T (| omy < 2bocog®(b/)A(s) -
Since &4(s)=!(s)— p(t*7*(5)),y, mod (s**'), we infer (4) from (3) and this
estimate. Q.E.D.

Using this lemma we shall show (3.5), and (3.6),,.

[Tu() =L H} (X ieq pirc§(EE(S)))]
KC2Cm Liea 1Pill amy 15K (my
«(b/c)ercnKy 2ica lpillmA(s), (by Lemma 3.10 (4)),
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where ¢, is a constant satisfying |ZH}.¢| < c,| )l for any ¢el'(M,
T'®CT")*).

19ty = 1OX* N (X se 4 pircti(EH(S) — D1 T ()l iy
Ke3)| Xien pirc5(EEG) wmt 0304I7u(5)|
«(ble)(1+cye)e36mKa Zica ll0ill (myACs)

where c¢; and ¢, are constants satisfying
10*NrpllimScslllom — for ¢el(M, T'®CT")*)
(cf. [2], Proposition 3.11) and
Inllmy=calnl  forany nes#

(since ## is finite dimensional), respectively.

Hence if we choose b and ¢ in such a way that (3.5);, (3.6);, (1)-(4) in
Lemma 3.10, (b/c)c,cnKa Zica llpillmy<1l, (b/0)K;<1/2, (bfe)(1+ cacs)esc, Ky
X X iea il my<1/2 are all satisfied, (3.5), and (3.6), follow.

From these arguments, we infer that g,(s) and (s) are a I'(,,(U;, T')-
valued and a s#-valued holomorphic functions on some neighbourhood D’ of
0 in D, respectively. Since m=n+2, by the Sobolev’s lemma, {g,(s)};4 are of
class C2.

From (3.1),~(3.3),, using the same argument at the end of Section 2, we infer
that F=({g(s)};cs, t(s)) satisfies (3.1), (3.2) and (3.3) for some neighbourhood
D’ of 0 in D.
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