On the Diameter of Compact Homogeneous Riemannian Manifolds

By

Kunio Sugahara*

Introduction

Let M be a compact Riemannian manifold. The diameter d(M) of M is defined to be the maximum of d(p, q) p, $q \in M$, where d(,) denotes the distance function on M induced by the Riemannian metric.

The main purpose of this paper is to find a positive constant d such that the diameter $d(M) \ge d$ when the sectional curvature $K \le 1$.

In this paper we consider the case that the manifold M is homogeneous. In [3] the author proved that $d = \pi/2$ if the manifold has a big isotropy subgroup. It has been left to study the case that the isotropy subgroup is finite. Hence we shall mainly study invariant metrics on a Lie group and prove that the number d > 0.23 if the sectional curvature $K \neq 0$ (Theorem 5.1).

§1. Fixed Points of Isometries

Let *M* be a compact C^{∞} manifold with a Riemannian metric *g*. Let $d_g(,)$ denote the distance function on *M* induced by *g*. Let I(M, g) denote the group of isometries of (M, g). Let *p* be a point of *M*. We denote by $I_p(M, g)$ the isotropy subgroup of I(M, g), i.e., $I_p(M, g) = \{a \in I(M, g); ap = p\}$. Let *A* be a connected subgroup of $I_p(M, g)$. Put $F(A) = \{x \in M; Ax = x\}$. Then it is easy to see that F(A) is a disjoint union of closed totally geodesic submanifolds of *M*. For a curve *c*: $[0, 1] \rightarrow M$, we denote by length_g(*c*) the length of *c* with respect to the metric *g*.

Lemma 1.1. Let A be a connected subgroup of $I_p(M, g)$ with dim $A \ge 1$.

Received March 1, 1979.

^{*} Research Institute for Mathematical Sciences, Kyoto University.

Present address: Department of Mathematics, Osaka Kyoiku University, Osaka 543, Japan.

Then $F(A) \cong M$. Let $\gamma : [0, 1] \to M$ be a geodesic starting from a point of F(A)in the normal direction to F(A). Assume that the sectional curvature $K_g \leq k$ (k>0) and $\operatorname{length}_g(\gamma) \leq \pi/2\sqrt{k}$. Then $d_g(F(A), \gamma(1)) = \operatorname{length}_g(\gamma)$, i.e., the injectivity radius of F(A) is not less than $\pi/2\sqrt{k}$.

Proof. In case that k=1 and A is the identity component of $I_p(M, g)$, this is Proposition 4.2 in [3]. The proof in it is still valid for the case that A is a connected subgroup of $I_p(M, g)$ without any change. Hence we obtain

$$\operatorname{length}_{g}(\gamma) = \frac{1}{\sqrt{k}} \operatorname{length}_{kg}(\gamma)$$
$$= \frac{1}{\sqrt{k}} d_{kg}(F(A), \gamma(1))$$
$$= d_{g}(F(A), \gamma(1)),$$

since $K_{kg} = K_g/k \le 1$ and $\operatorname{length}_{kg}(\gamma) = \sqrt{k} \operatorname{length}_{g}(\gamma) \le \pi/2$. Q. E. D.

§2. The Length of a Killing Vector Field

Let (M, g) be a compact Riemannian manifold as in Section 1.

Theorem 2.1. Let ξ be a non-trivial Killing vector field on the Riemannian manifold (M, g). Put $\alpha = \max_{x \in M} g(\xi, \xi)_x$, and $\mathscr{F} = \{x \in M; g(\xi, \xi)_x = \alpha\}$. Assume that the sectional curvature $K_g \leq 1$ and $\beta = \max_{x \in M} d_g(x, \mathscr{F}) < \pi/2$. Then for any point p of M we obtain

- (i) $g(\xi, \xi)_p \ge \alpha \cos^2 \beta$,
- (ii) $\|(\operatorname{grad} g(\xi, \xi))_p\| \leq 2\alpha \sin \beta$,
- where $\parallel \parallel$ denotes $g(,)^{1/2}$.

In order to prove the theorem, we provide the following propositions.

Proposition 2.2. Let f be a positive differentiable function defined in the interval (s_1, s_2) such that $-\pi/2 < s_1 < 0 < s_2 < \pi/2$, $\max f = f(0)$ and $f''(s) \ge -f(s)$. Then $f(s) \ge f(0) \cos s$.

Proof. Let ε be a positive number. Put $f_{\varepsilon}(s) = (f(0) + \varepsilon) \cos s/(f(s) + \varepsilon)$. Then we obtain

$$\begin{split} f_{\varepsilon}'(s) &= \frac{-(f(0)+\varepsilon)(f(s)+\varepsilon)\sin s - (f(0)+\varepsilon)f'(s)\cos s}{(f(s)+\varepsilon)^2} \\ f_{\varepsilon}''(s) &= -\frac{(f(0)+\varepsilon)(f(s)+\varepsilon+f''(s))\cos s}{(f(s)+\varepsilon)^2} - \frac{2f_{\varepsilon}'(s)f'(s)}{f(s)+\varepsilon} \,. \end{split}$$

Since $f'_{\epsilon}(0) = 0$ and $f''_{\epsilon}(0) < 0$, f_{ϵ} is maximal at 0. If $f'_{\epsilon}(s_0) = 0$ for some s_0 , then it follows that

$$f_{\varepsilon}''(s_0) = -\frac{(f(0) + \varepsilon)(f(s_0) + \varepsilon + f''(s_0))\cos s_0}{(f(s_0) + \varepsilon)^2} < 0.$$

Hence every critical point of f_{ε} in the interval (s_1, s_2) is maximal, which implies that f_{ε} has no critical points in (s_1, s_2) except at 0. Therefore we obtain $f_{\varepsilon}(s) \leq f_{\varepsilon}(0) = 1$, i.e., $(f(0) + \varepsilon) \cos s \leq f(s) + \varepsilon$. By ε passing to 0, the assertion is implied. Q. E. D.

Proposition 2.3. Let $f: \mathbb{R} \to \mathbb{R}$ be a positive differentiable function such that $f''(s) \ge -f(s) \ge -\alpha$, where α is a positive number. Then $f'(s) \le \sqrt{2\alpha(\alpha - f(s))}$.

Proof. Since $f''(s) \ge -\alpha$, we have for any t > s

$$-\frac{1}{2}(t-s)^2 \alpha \leq \int_s^t \left(\int_s^\tau f''(\sigma) d\sigma\right) d\tau$$
$$= f(t) - f(s) - (t-s)f'(s)$$

It implies

$$f'(s) \leq \frac{1}{2}(t-s)\alpha + \frac{\alpha - f(s)}{t-s}.$$

Putting $t-s=\sqrt{2(\alpha-f(s))/\alpha}$, we obtain

$$f'(s) \leq \sqrt{2\alpha(\alpha - f(s))}$$
. Q. E. D.

Proof of Theorem 2.1. Let $\gamma: \mathbb{R} \to M$ be a geodesic with $\|\dot{\gamma}\| = 1$. Since ξ is a Killing vector field, it satisfies

(2.1)
$$\frac{1}{2}\dot{\gamma}\dot{\gamma} g(\xi, \xi)_{\gamma(t)} = g(\mathcal{P}_{\dot{\gamma}}\xi, \mathcal{P}_{\dot{\gamma}}\xi)_{\gamma(t)} - g(R(\dot{\gamma}, \xi)\xi, \dot{\gamma})_{\gamma(t)},$$

where $\dot{\gamma}$ denotes the velocity vector of γ and R is the curvature tensor of the Riemannian connection of g.

(i) Put $f(s) = ||\xi_{\gamma(s)}||$ and $F = \{s; f(s) = 0\}$. We define $E_{\gamma(s)} = \xi_{\gamma(s)}/f(s)$ for $s \notin F$. Then from (2.1) we obtain

$$f(s)f''(s) = (f(s))^2 g(\mathcal{V}_{\dot{\gamma}}E, \mathcal{V}_{\dot{\gamma}}E) - (f(s))^2 g(R(\dot{\gamma}, E)E, \dot{\gamma}).$$

Since the sectional curvature $K_g \leq 1$, we obtain

(2.2)
$$f''(s) \ge -f(s)$$
 for $s \notin F$.

There is a point q in \mathscr{F} such that $d_g(p, q) = d_g(p, \mathscr{F})$. Let $\gamma: [0, s_0] \to M$ be a minimal geodesic from q to p, i.e., $d_g(q, p) = s_0 < \pi/2$. First we show that $f(s) \neq 0$ ($s \in [0, s_0]$). Suppose that $F \cap [0, s_0] \neq \emptyset$. Put inf $F \cap [0, s_0] = s_1$. Then $s_1 > 0$ and $s_1 \in F$. From (2.2) and Proposition 2.2, we obtain $f(s) \ge f(0) \cos s$ ($s \in [0, s_1]$). Hence it follows that

$$f(s_1) \ge f(0) \cos s_1 \ge f(0) \cos s_0 > 0$$
,

which contradicts $s_1 \in F$. Therefore we obtain $F \cap [0, s_0] = \emptyset$. Hence (i) follows from Proposition 2.2.

(ii) Let
$$\gamma(0) = p$$
. Put $f(s) = \|\xi_{\gamma(s/\sqrt{2})}\|^2$. Then from (i) we obtain
 $f(s) \ge \alpha \cos^2 \beta > 0$.

On the other hand, from (2.1) and $K_g \leq 1$, we obtain

$$f''(s) \ge -f(s)$$
.

Hence it follows from Proposition 2.3 that

$$\dot{\gamma}g(\xi, \xi)_{\gamma(0)} = \sqrt{2}f'(s)$$

$$\leq 2\sqrt{\alpha(\alpha - f(s))}$$

$$\leq 2\alpha \sin \beta.$$

We note that

$$g(\dot{\gamma}, (\operatorname{grad} g(\xi, \xi))_p) = \dot{\gamma}g(\xi, \xi)_p.$$

Since we can choose the direction of γ at $\gamma(0) = p$ arbitrarily, our assertion is clear. Q. E. D.

§3. The Sectional Curvature of Invariant Metrics on a Lie Group

Let G be a compact connected Lie group with a left-invariant Riemannian metric g. We denote by g the tangent space to G at the identity e. Let X be a tangent vector to G at e. We denote by X^L the left-invariant vector field on G such that the value X_e^L of X^L at e is X. We also define a right-invariant vector field X^R similarly. We denote by g^L the Lie algebra of left-invariant vector fields on G.

A bi-linear form $U(g): g^L \times g^L \rightarrow g^L$ is defined by

$$2g(U(g)(X^{L}, Y^{L}), Z^{L}) = g(X^{L}, [Z^{L}, Y^{L}]) + g(Y^{L}, [Z^{L}, X^{L}])$$

 $(X, Y, Z \in \mathfrak{g})$. We note that the Riemannian connection \mathcal{P} of g has an

838

expression

$$V_{X^L}Y^L = U(g)(X^L, Y^L) + \frac{1}{2}[X^L, Y^L] \qquad (X, Y \in \mathfrak{g})$$

and the curvature tensor R(g) of \overline{V} satisfies

$$g(R(g)(X, Y)Y, X) = ||U(g)(X^{L}, Y^{L})_{e}||^{2} - g(U(g)(X^{L}, X^{L})_{e}, U(g)(Y^{L}, Y^{L})_{e})$$

$$-\frac{3}{4} ||[X^{L}, Y^{L}]_{e}||^{2} - \frac{1}{2}g([X^{L}, [X^{L}, Y^{L}]]_{e}, Y^{L}_{e})$$

$$-\frac{1}{2}g([Y^{L}, [Y^{L}, X^{L}]]_{e}, X^{L}_{e}).$$

Lemma 3.1. $U(g)(X^L, Y^L)_e = -\frac{1}{2}(\text{grad } g(X^R, Y^R))_e \quad (X, Y \in \mathfrak{g}).$

Proof. For a vector $Z \in \mathfrak{g}$, we obtain

$$g(U(g)(X^{L}, Y^{L})_{e}, Z) = \frac{1}{2} \{ g(\mathcal{V}_{X^{L}}Y^{L}, Z^{L})_{e} + g(\mathcal{V}_{Y^{L}}X^{L}, Z^{L})_{e} \}$$

$$= -\frac{1}{2} \{ g(Y^{L}, \mathcal{V}_{X^{L}}Z^{L})_{e} + g(X^{L}, \mathcal{V}_{Y^{L}}Z^{L})_{e} \}$$

$$= -\frac{1}{2} \{ g(Y^{R}, \mathcal{V}_{X^{R}}Z^{L})_{e} + g(X^{R}, \mathcal{V}_{Y^{R}}Z^{L})_{e} \}$$

$$= -\frac{1}{2} \{ g(Y^{R}, \mathcal{V}_{Z^{L}}X^{R})_{e} + g(X^{R}, \mathcal{V}_{Z^{L}}Y^{R})_{e} \}$$

$$= -\frac{1}{2} Z g(Y^{R}, X^{R}).$$
Q. E. D

Let *a* be an element of *G*. We denote by R_a the right translation by *a*. Let *dv* be a bi-invariant volume element on *G* with $\int_G dv = 1$. We define a bi-invariant Riemannian metric \tilde{g} on *G* by

$$\tilde{g} = \int_{a \in G} R_a^* g \, dv \, .$$

Let *H* be a finite subgroup of *G* such that *g* is invariant by the right action of *H*. Then there is a Riemannian metric on G/H such that the projection $(G, g) \rightarrow G/H$ is a Riemannian covering. We denote the metric also by *g*. We also define a Riemannian manifold $(G/H, \tilde{g})$ in like manner. The diameter of (G/H, g) (resp. $(G/H, \tilde{g})$) is denoted by $d_g(G/H)$ (resp. $d_{\tilde{g}}(G/H)$). K_g denotes the sectional curvature of (G, g).

Lemma 3.2. Assume that $K_g \leq 1$ and $d_g(G/H) < \pi/2$. Then for any X $(\in g, \neq 0)$

$$\cos^2 d_g(G/H) \leq \frac{\tilde{g}(X, X)}{g(X, X)} \leq (\cos d_g(G/H))^{-2}$$

Proof. By definition we obtain

$$\tilde{g}(X, X) = \int_{a \in G} g(X^{R}, X^{R})_{a} dv.$$

Since X^R is a Killing vector field on (G, g) and $g(X^R, X^R)$ is constant on each right orbit aH of H, it follows from Theorem 2.1 that

$$g(X, X) \cos^2 d_g(G/H) = g(X^R, X^R)_e \cos^2 d_g(G/H)$$

$$\leq \max_{x \in G} g(X^R, X^R)_x \cos^2 d_g(G/H)$$

$$\leq g(X^R, X^R)_a \quad (\forall a \in G)$$

$$\leq \max_{x \in G} g(X^R, X^R)_x$$

$$\leq g(X^R, X^R)_e (\cos d_g(G/H))^{-2}$$

$$= g(X, X) (\cos d_g(G/H))^{-2}.$$

Hence the assertion is clear.

Since both metrics g and \tilde{g} on G are left-invariant, from Lemma 3.2 we obtain

Lemma 3.3. If $K_g \leq 1$ and $d_g(G/H) < \pi/2$, then $\cos d_g(G/H) \leq \frac{d_{\bar{g}}(G/H)}{d_g(G/H)} \leq (\cos d_g(G/H))^{-1}$.

Lemma 3.4. Let a be an element of G. Let X, $Y (\in g)$ be linearly independent vectors such that $\tilde{g}(X, X) = \tilde{g}(Y, Y) = 1$. Assume that $K_g \leq 1$ and $d_g(G/H) < \pi/2$. Then

(i)
$$(R_a^*g)(U(R_a^*g)(X^L, X^L)_e, U(R_a^*g)(X^L, X^L)_e)^{1/2}$$

 $\leq (\cos d_q (G/H))^{-2} \sin d_q (G/H),$

(ii)
$$(R_a^*g)(R(R_a^*g)(X, Y)Y, X) \leq (\cos d_g(G/H))^{-4}$$
.

Proof. Since we have

$$\tilde{g}(X, X) = \int_{x \in G} g(X^R, X^R)_x \, dv = 1 \, ,$$

there is a point p in G such that $g(X^R, X^R)_p = 1$. Since X^R is a Killing vector field on (G, g) such that $g(X^R, X^R)$ is constant on each right orbit xH of $H(x \in G)$, it follows from Theorem 2.1 that

$$\max_{x \in G} g(X^R, X^R)_x \leq g(X^R, X^R)_p (\cos d_g(G/H))^{-2} = (\cos d_g(G/H))^{-2}.$$

Similarly we obtain

840

Q. E. D.

 $\max_{x \in G} g(Y^{R}, Y^{R})_{x} \leq (\cos d_{g}(G/H))^{-2}.$

(i) Since (G/H, g) and $(G/aHa^{-1}, R_a^*g)$ are isometric, $K_{R_a^*g} \leq 1$ and $d_{R_a^*g}(G/aHa^{-1}) = d_g(G/H) < \pi/2$. Since X^R is a Killing vector field also on (G, R_a^*g) such that $(R_a^*g)(X^R, X^R)$ is constant on each right orbit of aHa^{-1} , it follows from Lemma 3.1 and Theorem 2.1 that

$$\begin{aligned} &(R_a^*g)(U(R_a^*g)(X^L, X^L)_e, \ U(R_a^*g)(X^L, X^L)_e)^{1/2} \\ &= \frac{1}{2}(R_a^*g)((\operatorname{grad}_{R_a^*g}(R_a^*g)(X^R, X^R))_e, (\operatorname{grad}_{R_a^*g}(R_a^*g)(X^R, X^R))_e)^{1/2} \\ &\leq \max_{x \in G} (R_a^*g)(X^R, X^R)_x \sin d_g(G/H) \\ &= \max_{x \in G} g(X^R, X^R)_x \sin d_g(G/H) \\ &\leq (\cos d_g(G/H))^{-2} \sin d_g(G/H) . \end{aligned}$$

(ii) Since g and R_a^*g are isometric, we obtain

$$1 \ge K_{R_a^*g}(X, Y) = \frac{(R_a^*g)(R(R_a^*g)(X, Y)Y, X)}{(R_a^*g)(X, X)(R_a^*g)(Y, Y) - (R_a^*g)(X, Y)^2}$$

Hence

$$\begin{aligned} (R^*_a g)(R(R^*_a g)(X, Y)Y, X) &\leq (R^*_a g)(X, X)(R^*_a g)(Y, Y) \\ &= g(X^R, X^R)_a g(Y^R, Y^R)_a \\ &\leq (\cos d_g (G/H))^{-4} \,. \end{aligned}$$
Q. E. D.

Theorem 3.5. Assume that the sectional curvature $K_g \leq 1$ and the diameter $d_g(G/H) < \pi/2$. Then the sectional curvature $K_{\tilde{g}}$ of \tilde{g} satisfies

$$K_{\tilde{g}} \leq (\cos d_g(G/H))^{-4}(1 + \sin^2 d_g(G/H)).$$

Proof. Since \tilde{g} is bi-invariant, $U(\tilde{g}) \equiv 0$ (cf. Lemma 3.1). We take vectors $X, Y \in \mathfrak{g}$ such that $\tilde{g}(X, X) = \tilde{g}(Y, Y) = 1$ and $\tilde{g}(X, Y) = 0$. Then from Lemma 3.4 we obtain

$$\begin{split} K_{\tilde{g}}(X, Y) &= \frac{\tilde{g}(R(\tilde{g})(X, Y)Y, X)}{\tilde{g}(X, X)\tilde{g}(Y, Y) - \tilde{g}(X, Y)^2} \\ &= -\frac{3}{4}\tilde{g}([X^L, Y^L]_e, [X^L, Y^L]_e) \\ &- \frac{1}{2}\tilde{g}([X^L, [X^L, Y^L]]_e, Y^L_e) - \frac{1}{2}\tilde{g}([Y^L, [Y^L, X^L]]_e, X^L_e) \\ &= \int_{a \in G} \left\{ -\frac{3}{4}(R^*_a g)([X^L, Y^L]_e, [X^L, Y^L]_e) \\ &- \frac{1}{2}(R^*_a g)([X^L, [X^L, Y^L]]_e, Y^L_e) \right] \end{split}$$

KUNIO SUGAHARA

$$\begin{split} &-\frac{1}{2}(R_a^*g)([Y^L, [Y^L, X^L]]_e, X_e^L)\Big\}dv\\ =& \int_{a\in G} \Big\{(R_a^*g)(R(R_a^*g)(X, Y)Y, X)\\ &-(R_a^*g)(U(R_a^*g)(X^L, Y^L)_e, U(R_a^*g)(X^L, Y^L)_e)\\ &+(R_a^*g)(U(R_a^*g)(X^L, X^L)_e, U(R_a^*g)(Y^L, Y^L)_e)\Big\}dv\\ &\leq (\cos d_g(G/H))^{-4} + \sin^2 d_g(G/H)(\cos d_g(G/H))^{-4}. \quad \text{Q.E.D.} \end{split}$$

§ 4. Bi-invariant Metrics and Finite Subgroups of a Lie Group

Let G be a compact connected Lie group as in Section 3. Let exp denote the usual exponential mapping from g to G, i.e., for a tangent vector $X \in g \ \gamma(t) = \exp tX$ ($t \in \mathbf{R}$) is a one-parameter subgroup of G such that $\dot{\gamma}(0) = X$. The usual bracket operation is defined by

$$[X, Y] = \frac{d}{dt} (\operatorname{Ad} (\exp tX)Y)|_{t=0}$$

X, $Y \in \mathfrak{g}$. Let \tilde{g} be a bi-invariant Riemannian metric on G with sectional curvature $K_{\tilde{g}} \leq k$ (k > 0). We note the mapping $\exp: \mathfrak{g} \rightarrow G$ coincides with the usual exponential mapping of the Riemannian manifold (G, \tilde{g}) because the metric \tilde{g} is bi-invariant. For non-zero vectors X and Y of \mathfrak{g} we denote by $\chi(X, Y)$ the angle which X and Y make. $\|\|$ denotes $\tilde{g}(,)^{1/2}$.

Lemma 4.1. Let X and Y be non-zero vectors of g. We have

$$\measuredangle(\operatorname{Ad}(\exp Y)X, X) \leq \frac{\|[Y, X]\|}{\|X\|}$$

Proof. Since the metric \tilde{g} is bi-invariant and $\frac{d}{dt} \operatorname{Ad} (\exp tY)X|_{t=0}$ = [Y, X], we see $||\operatorname{Ad} (\exp tY)X|| = ||X||$ and $\left\|\frac{d}{dt} \operatorname{Ad} (\exp tY)X\right\| = ||[Y, X]||$. Hence it follows that

$$\not 4 (\operatorname{Ad}(\exp Y)X, X) \leq \frac{1}{\|X\|} \int_0^1 \left\| \frac{d}{dt} \operatorname{Ad}(\exp tY)X \right\| dt$$
$$= \frac{\|[Y, X]\|}{\|X\|} . \qquad Q. E. D.$$

Lemma 4.2. Let X and Y be non-zero vectors of g such that $\exp tX$ $(0 \le t \le 1)$ and $\exp tY(0 \le t \le 1)$ are minimal geodesics. Suppose that $||X|| = d_{\overline{g}}(e, \exp X) < \pi/\sqrt{k}$ and $||[X, Y]||/||X|| < \pi/3$. Then

842

 $d_{\tilde{a}}(e, \exp X) > d_{\tilde{a}}(\exp X, \exp Y \exp X \exp Y^{-1}).$

Remark. The similar estimate is found in [1].

Proof. From Lemma 4.1, we obtain $\not\prec$ (Ad (exp Y)X, X) $< \pi/3$. It implies $||X|| > ||X - \text{Ad}(\exp Y)X||$. Let us define a curve $\gamma: [0, 1] \rightarrow g$ by $\gamma(t) = tX + (1-t) \text{Ad}(\exp Y)X$. We have the sectional curvature $K_{\tilde{g}} \ge 0$ since the metric \tilde{g} is bi-invariant. From Rauch's comparison theorem we easily see that

$$d_{\hat{g}}(e, \exp X) = ||X||$$

$$\geq ||X - \operatorname{Ad} (\exp Y)X||$$

$$= \operatorname{length} (\gamma)$$

$$\geq \operatorname{length} (\exp \circ \gamma)$$

$$\geq d_{\hat{g}}(\exp X, \exp Y \exp X \exp Y^{-1}). \qquad Q. E. D.$$

Lemma 4.3. Let $c \neq e$ be an element of the center of G. If G is semisimple, then $d_{\bar{a}}(e, c) \geq \pi / \sqrt{k}$.

Proof. Let $\gamma: [0, 1] \rightarrow G$ be a minimal geodesic from e to c. Then γ is expressed as $\gamma(t) = \exp tX$ for some $X \in g$. Since G is semi-simple, the orbit Ad (G)X ($\subset g$) of X by the adjoint action of G is at least of one dimension. Since $\exp \operatorname{Ad}(G)X = c$, c is conjugate to e along γ . Hence the assertion follows from the Morse-Shoenberg theorem. Q. E. D.

Let x be a point of G. C(x) denotes the cut locus of x with respect to the metric \tilde{g} .

Lemma 4.4. If G is semi-simple, then $d_{\tilde{a}}(e, C(e)) \ge \pi/2\sqrt{k}$.

Proof. Since the metric \tilde{g} is bi-invariant, the isotropy subgroup $I_e(G, \tilde{g})$ at *e* contains the inner automorphisms Ad(G) of G. Since the fixed points F(Ad(G)) is the center of G and since the center consists of finite points, the assertion follows from Lemma 1.1. Q.E.D.

Let *H* be a finite subgroup of *G*. Let *h* be an element of $H \setminus \{e\}$ which is the closest to *e*. Put $Z(h) = \{x \in G; xh = hx\}$.

Lemma 4.5. If G is semi-simple and $d_{\tilde{g}}(e, h) < \pi/2\sqrt{k}$, then $Z(h) \cong G$ and $\max_{x \in G} d_{\tilde{g}}(x, Z(h)) \ge \pi/2\sqrt{k}$.

Proof. From Lemma 4.4, we see that the minimal geodesic from e to h is unique. We denote the geodesic by $\exp tX$ ($0 \le t \le 1$), where $X \in g$. Since for any $x \in Z(h)$ the inner automorphism by x fixes the endpoints of the geodesic and

since the minimal geodesic connecting e and h is unique, we obtain $x(\exp tX)x^{-1} = \exp tX$ ($0 \le t \le 1$), which implies that

$$Z(h) = \{x \in G; (\exp tX)x(\exp tX)^{-1} = x \quad (t \in \mathbf{R})\}$$

= $F(\{L_{\exp tX}(R_{\exp tX})^{-1}; t \in \mathbf{R}\}).$

Since G is semi-simple, the assertion follows from Lemma 1.1. Q.E.D.

Lemma 4.6. Suppose that $H \not\equiv Z(h)$. Then for any $a \in H \setminus Z(h)$ $d_{\tilde{g}}(e, a) \geq \pi/6\sqrt{k}$.

Proof. Let γ , δ : $[0, 1] \rightarrow G$ be minimal geodesics from e to h and a respectively. Then there are X and Y in g such that $\gamma(t) = \exp tX$ and $\delta(t) = \exp tY$. If $||[X, Y]||/||X|| < \pi/3$, Lemma 4.2 implies that

$$d_{\tilde{q}}(e, h) > d_{\tilde{q}}(h, aha^{-1}) = d_{\tilde{q}}(e, aha^{-1}h^{-1}),$$

which contradicts the choice of h. Hence we obtain $||[X, Y]||/||X|| \ge \pi/3$ On the other hand, we have

$$k \ge K_{\tilde{g}}(X, Y) = \frac{\frac{1}{4} \| [X, Y] \|^2}{\| X \|^2 \| Y \|^2 - \tilde{g}(X, Y)^2}.$$

Hence it follows that

$$k \ge \frac{\frac{1}{4} \| [X, Y] \|^2}{\| X \|^2 \| Y \|^2} \ge \frac{\pi^2}{36 \| Y \|^2},$$

which implies

$$d_{\tilde{g}}(e, a) = ||Y|| \ge \frac{\pi}{6\sqrt{k}}$$
. Q. E. D.

Theorem 4.7. Assume that the group G is not abelian. Then the following (i), (ii) and (iii) hold.

- (i) $d_{\tilde{g}}(G) \ge \frac{\pi}{2\sqrt{k}}$.
- (ii) If G is simply connected, then $d_{\tilde{g}}(G) \ge \frac{\pi}{\sqrt{k}}$.
- (iii) $\max_{x \in G} d_{\tilde{g}}(x, H) = d_{\tilde{g}}(G/H) \ge \frac{\pi}{12\sqrt{k}}.$

Proof. Let Z be the identity component of the center of G. We put G' = G/Z. Then G' is semi-simple and if G is simply connected, so is G'. The metric \tilde{g} on G induces a Riemannian metric \tilde{g}' on G' so that the projection

844

 $\pi: G \to G'$ is a Riemannian submersion. Let 3 denote the tangent space to Z at e. We take orthonormal vectors X and Y in g such that X, $Y \perp_3$. Then from O'Neil's theorem for Riemannian submersion we obtain

$$K_{\tilde{g}'}(\pi_*X, \, \pi_*Y) = K_{\tilde{g}}(X, \, Y) + \frac{3}{4} \| [X, \, Y]_{\mathfrak{z}} \|^2,$$

where $[X, Y]_{\delta}$ denotes the orthogonal projection of [X, Y] to δ . Since $[X, Y] \perp \delta$, we obtain $K_{\tilde{g}'} \leq k$. On the other hand it is clear that, for any point x and y of G, $d_{\tilde{g}}(x, y) \geq d_{\tilde{g}'}(\pi(x), \pi(y))$. Hence we have only to prove the theorem with the assumption that G is semi-simple. So we suppose G is semi-simple.

(i) From Lemma 4.4, we obtain

$$d_{\tilde{g}}(G) \ge d_{\tilde{g}}(e, C(e)) \ge \frac{\pi}{2\sqrt{k}}$$

(ii) Corollary 5.12 in [2] states that the cut locus and first conjugate locus coincide. The assertion follows easily from the Morse-Shoenberg theorem.

(iii) If $H = \{e\}$, the inequality follows from (i). Hence we assume that $H \supseteq \{e\}$. Let *h* be an element of $H \setminus \{e\}$ which is the closest to *e*. Let *m* be the middle point of a minimal geodesic from *e* to *h*. Then it is easy to see that $d_{\hat{g}}(m, H) = d_{\hat{g}}(m, e) = \frac{1}{2} d_{\hat{g}}(e, h)$. If $d_{\hat{g}}(e, h) \ge \pi/2 \sqrt{k}$, then $\max_{x \in G} d_{\hat{g}}(x, H) \ge d_{\hat{g}}(m, H) \ge \pi/4\sqrt{k}$. Hence we may assume that $d_{\hat{g}}(e, h) < \pi/2\sqrt{k}$. If $H \subset Z(h)$, the inequality follows from Lemma 4.5. Therefore we suppose that $H \not\equiv Z(h)$. Let *a* be an element of $H \setminus Z(h)$ which is the closest to *e*. Let *m'* be the middle point of a minimal geodesic from *e* to *a*. Then we have $d_{\hat{g}}(m', H) = d_{\hat{g}}(m', e)$. (In fact, suppose that there is an element $b \in H$ with $d_{\hat{g}}(m', b) < d_{\hat{g}}(m', e)$. Then it follows from $d_{\hat{g}}(e, b) \le d_{\hat{g}}(e, m') + d_{\hat{g}}(m', b) < d_{\hat{g}}(e, a)$ that $b \in Z(h)$. Hence we obtain $ab^{-1} \in H \setminus Z(h)$ and $d_{\hat{g}}(e, ab^{-1}) = d_{\hat{g}}(b, a) \le d_{\hat{g}}(b, m') + d_{\hat{g}}(m', a) < d_{\hat{g}}(e, a)$, which means that *a* is not the closest to *e* of $H \setminus Z(h)$. Therefore the inequality follows from Lemma 4.6.

§5. Diameter Estimate

Theorem 5.1. Let (M, g) be a compact homogeneous Riemannian manifold with the sectional curvature $K_g \leq 1$ and $K_g \neq 0$. Then the diameter $d_g(M)$ of (M, g) is not less than a positive constant d (>0.23).

Proof. Let p be a point of M. If dim $I_p(M, g) \ge 1$, then from Lemma 1.1 we obtain

KUNIO SUGAHARA

$$d_g(M) \ge \max_{x \in M} d_g(x, F(I_p^{\circ}(M, g))) \ge \frac{\pi}{2},$$

where $I_p^{\circ}(M, g)$ denotes the identity component of $I_p(M, g)$ (see also [3]).

Hence we assume that dim $I_p(M, g) = 0$. We denote by G the identity component of I(M, g) and put $H = G \cap I_p(M, g)$. Since the projection $G \rightarrow G/H = M$ is a covering, g induces a left-invariant Riemannian metric on G such that the projection is a Riemannian covering. We denote the metric also by g. It is invariant by the inner automorphism by H. We define a Riemannian metric \tilde{g} as in Section 3. Suppose that $d_g(G/H) < \pi/2$. Then from Theorem 3.5 we obtain

$$K_{\tilde{g}} \leq (\cos d_g(G/H))^{-4} (1 + \sin^2 d_g(G/H)).$$

Since $K_g \neq 0$, it is easily seen that G is not abelian. Hence it follows from Lemma 3.3 and Theorem 4.7 that

(5.1)
$$\frac{\pi}{12\sqrt{(\cos d_g(G/H))^{-4}(1+\sin^2 d_g(G/H))}} \leq d_{\tilde{g}}(G/H) \leq d_g(G/H)(\cos d_g(G/H))^{-1}.$$

We put

$$d = \inf \left\{ t \ge 0; \frac{\pi}{12} \le t(\cos t)^{-3}(1 + \sin^2 t)^{1/2} \right\}.$$

Q. E. D.

Then $\pi/2 > d > 0.23$ and $d_g(M) \ge d$.

Theorem 5.2. Let (M, g) be a simply connected compact homogeneous Riemannian manifold with sectional curvature $K_g \leq 1$ and $K_g \neq 0$. Then the diameter $d_q(M)$ of (M, g) is not less than a positive constant d_0 (>0.81).

Proof. As in the proof of Theorem 5.1, we may assume that dim $I_p(M, g) = 0$. We define G and H as in the proof of Theorem 5.1. Since M is simply connected, $H = \{e\}$ and G = M. Hence it follows from Lemma 3.3 and (i) of Theorem 4.7 that we can replace (5.1) by

(5.2)
$$\frac{\pi}{\sqrt{(\cos d_g(G))^{-4}(1+\sin^2 d_g(G))}} \leq d_g(G)(\cos d_g(G))^{-1}.$$

We put

$$d_0 = \inf \{t \ge 0; \pi \le t(\cos t)^{-3}(1 + \sin^2 t)^{1/2}\}$$

Then $\pi/2 > d_0 > 0.81$ and $d_q(M) = d_q(G) \ge d_0$. Q.E.D.

Theorem 5.3. Let G be a compact connected Lie group with a left-

invariant metric g. Assume that the sectional curvature $K_g \leq 1$ and G is not abelian. Then the diameter $d_g(G)$ of (G, g) is not less than a positive constant d_1 (>0.66).

Proof. We define a metric \tilde{g} as in Section 3. We may assume that $d_q(G) < \pi/2$. From Theorem 3.5, we obtain

$$K_{\tilde{g}} \leq (\cos d_g(G))^{-4} (1 + \sin^2 d_g(G)).$$

Hence it follows from Lemma 3.3 and Theorem 4.7 that

(5.3)
$$\frac{\pi}{2\sqrt{(\cos d_g(G))^{-4}(1+\sin^2 d_g(G))}} \leq d_{\tilde{g}}(G)$$
$$\leq d_g(G)(\cos d_g(G))^{-1}.$$

We put

$$d_1 = \inf\left\{t > 0; \, \frac{\pi}{2} \leq t(\cos t)^{-3}(1 + \sin^2 t)^{1/2}\right\}$$

Then

$$\frac{\pi}{2} > d_1 > 0.66$$
 and $d_g(G) \ge d_1$. Q. E. D.

References

- Boothby, W. M. and Wang, H.-C., On the finite subgroups of connected Lie groups, Comm. Math. Helv., 39 (1964), 281–294.
- [2] Cheeger, J. and Ebin, D. G., *Comparison Theorems in Riemannian Geometry*, North-Holland, Amsterdam, 1975.
- [3] Sugahara, K., On the diameter of certain Riemannian manifolds, *Publ. RIMS, Kyoto Univ.*, 11 (1976), 835–847.