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On the Synthesis Problems of the Semimodular
State Chart Theory

II. Semimodular Chart

By

Tsuyoshi NAKAMURA*

Introduction

In the preceding paper [1], we studied in detail the grounds of the distribu-

tive charts in the spaces spanned by cycles and developed a simple synthesis

procedure. However the procedure can not be applied to the synthesis of

semimodular charts. One of the difficulties with semimodular charts was that

we failed to find a theorem which corresponds to Lemma 2.8 in [1]. The present

paper undertakes the synthesis procedure for the semimodular state charts.

Although a synthesis procedure for semimodular charts was first given in [2],

it is indirect and impractical. Thus the purpose of this paper is to give a direct

and clear one for semimodular charts. To help the explanation about the

sequence of steps of the procedures, simple state charts are synthesized with

figurative expressions for some intermediate steps.

Chapter I. Basic Tools and Theorems

§ 1. Minimal Cycles

Lemma 1.1. Lei (V, h) be a finite semimodular chart with at least one

non-zero cycle. Then there exists the set of orthogonal cycles (X(l),..., X(m)}

such that any cycle of(V, /?) is written as a linear combination of them. Here-

after we call them the minimal cycles of (F, /?).

Proof. Since (V, h) is finite, there are at most finite similarity classes T(l),
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..., T(«) in (F, h). Let M* = M(1) v •-• vM(w), where M(fc) is one of the points

of T(k). Let us denote the cycles of M* by {X(l),..., Z(m)}. Then they are

orthogonal by Lemma 1.22 in [1] and any cycle of (F, /?) is written as a linear

combination of them (1.14 in [1]).

Definition 1.2. Let (F, /?) be a finite semimodular chart with nodes J and

(J£(l),..., X(m)} be the minimal cycles of (F, h). Let Q(q) denote the set of nodes

spanned by X(q) for each q e {!,..., m}. Since minimal cycles are orthogonal,

we have Q(q) nQ(p) = (j) for distinct q and p. We define the non-negative

integer w(z') for each / e J as follows:

0 if i £ U Qte),

*(*), if i

We call the integer w(i) as f/ie cyclic number on node i. Since X(q)i'^.2, we

have w(i) ̂  2 whenever w(z) 7^ 0.

Lemma 1.3. Let (F, h) be a finite semimodular chart with nodes J and

{w(i)} be its cyclic numbers. If M, N are points of V such that M~N but

Mt^Nt, then it follows that w(/)^0 and M£ = /Vf (modw(i))for the node i.

Proof. It is no loss of generality that we assume Mt > Nt for that particular

i. We define sequences (M(fc)}, {N(k)} as follows: M(0) = M, N(0) = N, M(k)

= M v N(k -1) and N(k) = M (fc) - M + N for fe ̂  1. Trivially M(fc) > N(fc -1).

We prove that M(fc)~JV(fc), M(k)^M(fe-l), N(k)^N(k-l) and N(k)i>M(k)i

= N(fc-l) f>M(fc-l)£ for fc^l by the inductive method. Since M(1) = M,

N(0) = M, N = M + (MvN)-M and JV(l) = M(l)-M + N = N + (MvJV)-M
and M-N hold, we have Af(l)~JV(l) by 1.9 in [1].

Clearly, M(l) ^ M(0), N(l) ^ JV(0) and JV(1), > M(l\ = N(0)t > M(0)i. There-

fore the statement holds for fc=l. Suppose that it holds for any non-negative

integers not greater than k. Since M(/c + l) = M + (MvJV(/c))-M, JV(/c+l) =

N + (MvJV(/c))-M and M~N, we have M(k+l)-N(k+l) by 1.9 in [1]. It

follows from the inductive assumption of N(k)^N(k—l),N(k)i>Mi that

M(fc+l)^M(fc), N(k+l)^N(k) and N(k+l)i = M(k+l)i-Mi + Ni>M(k+l)i

= (MvJVCfc)), = JV(X)j = M(k\-Mt + Nt>M(k)i. Thus we complete the induc-

tion. Now we shall prove the lemma. Since (V, h) is finite and (M(/c)} is a

sequence of infinite points, there exist two integers kf>k such that M(k')~M(k).

Since M(fc')^M(k), M(k')^N(k) and M(k')~M(k)~N(k) hold, it follows from

1.13 in [1] that there exist a(q\ b(q) of PFsuch that M(k')=±
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= N(k) + ̂ b(q)Z(q) where Z(g)'s are cycles of M(k). Because

>M(k)i and the Z(g)'s are orthogonal (1.22 in [1]), there exists q such that

= M(k)i + a(q)Z(q)i = N(k)i + b(q)Z(q)i and a(q)>b(q). Hence we have

Mi = N(k)i-M(k)i = (a(q)-b(q))Z(q)i. Since N£-M^O, we have Z(q\

and so w(i)^0 and Nt = Mt (mod w(i)).

The condition of finiteness of (V, ft) is essential in the previous lemma.

Corollary 1.4. Let (V, ft) be a finite semimodular chart and let {w(i)} be

its cyclic numbers then it follows that F|{i} = {03 1,..., k} for some integer k

or V\ {i} = W according as w(f) = 0 or

§ 2. Four Kinds of Extensions

Definition 1.5. (Type-1 extension.) Let (F, ft) be a finite semimodular

chart with nodes J, and let w(0 = 0 for a node ieJ. By 1.4 there exists /ce W

such that V\ {z} = {0, 1,..., k] for the node ieJ. Let r be an integer such that

0<r</c. Here we assume /c^2, and the other case will be considered later.

We define an extension (V, h') with nodes {/, £}, £^ J, of (V, h) \ {i} as follows:

F' = {Q, 0); O^jrgr} U (0, 1); r^j^k} .

For each point M'e F', we define h'(M'}^ = M'^ and h^M'^^M^, where M

is any point of F such that Mf = M}. Since (F, fe)|{0 = (^'j fr')|{i}, we can
make an amalgamation (F, /?)®(F', ft') with nodes {<!;, J}. We call the amal-

gamation the type-l extension with nodes {£, J} of (F, ft) wiff t respect to {/, r}.

When /c= 1, let (F, ft) itself be the type-l extension with nodes J.

Lemma 1.6. Lef (F, ft) foe a finite semimodular chart with nodes J and

F|{/} = {0, 13..., k} for a node /eJ . Let (Ve, he) be a type-l extension with

nodes {£, J} of (F, ft) with respect to (/, r) where 0<r</c. // Me, Ne are

points ofVe such that he(Mc) = he(Ne) and Me\J~Ne\J then Me~Ne.

Proof. Since Me \ J~Ne \ J in (F, ft) and w(i) = 0, we have Mf = JVf from

1.3. Then Me = Nc also holds because of he(Me) = he(Ne). Hence we have

Me |{f, %} = Ne\{i, £} andsoM e-]V eby 1.26 in [1].

Definition 1.7. (Type-2 extension.) Let (F, ft) be a finite semimodular

chart with nodes J, and w(f)^0 for a node ieJ. By 1.4 F|{f} = FFfor the

node i. Let a be an integer such that 0 ̂  a < w(i), b be any non-negative integer.
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Let a(/c)'s denote integers a + kw(f) for fc=l,...9 b, and G be the Gray mapping

for 2b + 2 with nodes £ = {£(!),..., {(/)} (see 2.11 in [1]). Let V1 be the subset

of W{i>1} defined as follows:

V = F'(0) U F'(l) U • • • U V'(2b + 1)

) = {(j, G(2/c)); fl(fc-

for ft^fc^l, and

For the point M' of F', we define ft'(M') as follows:

hf(M')j = M'j (mod 2) for jeT and ft'(M')^ = ft(M)f for M of F such that

M{ = M,.
Since (F', ft')| {i}=(V, h)\ {i}, we can make an amalgamation (F, ft)®

(F', ft') with nodes {!", J}. We call the amalgamation the type-2 extension with

nodes {I, J} of(V, h) with respect to (i, a, b). (Refer to Fig. 3a.)

Lemma 1.8. Let (F9 ft) be a finite semimodular chart with nodes J and

w(i)^Qfor a node i e J. Let (Ve, he) be a type-2 extension with nodes {I9 J}

°/(F, ft) with respect to (i, a, b) where 0^a<w(f) and b^O. Then (Ve, he) is

a semimodular chart, and if Me and Ne are points of Ve such that he(Me) =

he(Ne} andMe\J~Ne\J, then Me~Ne.

Proof. Since (F7, ft') is a finite semimodular chart, (Fe, fte) is also finite

semimodular chart (1.27 in [1]). Suppose that Me, Ne are points in F such

that Me | J - Ne | J. Since he(Me) = he(Ne\ Me\I = Ne\Z. If Mf = JVf then

M*\{i9I} = N*\{i,I} and so Me-^eby 1.26 in [1]. If Af f^ATf then |Aff

- A^f | S>w(0 by 1.3 and so Me\{i, Z} and ̂ e|{i, 1} should belong to V'(2b+\)

becase Me\I = Ne\I. Then clearly, Me| {/, 1} ~Ne\{i, !} in (F7, h1) and

soMe-A^eby 1.26 in [1].

Definition 1.9. (Type-3 extension?) Let (F, ft) be a finite semimodular

chart with nodes J and let w(i) ̂  3 for a node f e J. Let a be an integer such

that Oga<w(i) and b be integer ^2. Let a(/c)'s denote integers a + fcw(z) for

fee FF, and C be the periodical Gray mapping for b with nodes I" = {£(!),..., <

(see 2.11 in [1]). Let V be a subset of W{i>1} defined as follows:

F ; = F'(0)U F ; ( 1 ) U - - - U F7(fc)U •••
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where

7'(2k-l) = (0, C(2fc-l)); a(k-l)^j^a(k)-

V'(2K)=((j, C(2fc)); fl(fe)-2^j^«(fc)} for

For each point M' of V, we define h'(M') as follows:

h'(M')j = M'j (mod 2) for 7 el, and h'(M')i = h(M)i where M is any point

of F such that Mf = MJ. Since (F', /i')| [i} = (V, h)\ {i}, we can make an

amalgamation (F, /?)®(F/, h') called as the type-3 extension with nodes {Z, J}

of (F, li) with respect to (i, a, b). (See Fig. 3b.)

Lemma 1.10. Let V be the subset of PF<'.*> defined in 1.9. // M', N'

are points of V such that M; = NJ (mod w(0) and h'(M') = h'(N'), then V'M,

= V'N,, and hence M'~N'.

Proof. This directly follows from the definition.

Lemma 1.11. Let (F, li) be a finite semimodular chart with nodes J and

w(i)^3 for a node ieJ. Let (Ve, he) be the type-3 extension with nodes

{I, J} of (F, h) with respect to (i, a, b) where Q^a<w(i) and b^2. Then

(Ve
9 he) is a finite semimodular chart, and if Me and Ne are points in Ve such

that he(Me) = he(Ne) and Me \ J~Ne \ J thenMe~Ne.

Proof. It follows from the similar argument as in 1.8 that (Fe, he) is a

finite semimodular chart. Suppose that Me, Ne are points of Ve such that

he(Me) = he(Ne) and Me\J~Ne\ J. In the first place, we show Me \ {i, Z}~

Ne | {f, I}. For the sake of brevity, we denote Me \ {i, I}9 Ne \ {i, 1} by M',

N' respectively. Since Mc | J~Ne \ J and w(0^0, we have Mf =JVf (mod w(i)).
Then M'-N' by 1.10. Thus Me \J~Ne \ J and Me \ {i, Z}~Ne \ {i, I}, there-

fore Me~Ne by 1.26 in [1].

Definition 1.12. (Type-4 extension.) Let (F, h) be a finite semimodular

chart with nodes J and w(z) = 2 for a node i e J. Let b ̂  2 and C be the periodi-

cal Gray mapping for b with nodes Z = {£(!),..., £(/)}. Let F' be the subset of

WV-v defined as follows:

v = {(0, o)} u {( j, co - 1)), o, COO) ; j^ 1} -
For each point M' of F', we define h'(Mf) as follows:

h'(M') = M'j (mod 2) for j el, and h'(M'\ = h(M\ for M of F such that Mf

= MJ. Since (F, /Ol {0 = (^'5 '7/)Kz '}j we can make an amalgamation (F, h)
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®(F', /?') with nodes {£",./}. We call the amalgamation the type-4 extension

with nodes {Z, J} of(V, /?) with respect to (i, b).

The following two lemmas are proved like 1.10 and 1.11.

Lemma 1.13. Let V be the subset of W^^ defined in 1.12. // M', N'

are points of V such that MJ = JVJ (mod 2) and hf(M') = h'(N'\ then V'M, = V'N>

holds.

Lemma 1.14. Let (V, h) be a finite semimodular chart with nodes J and

w(i) = 2 for a node f e J . Let (Fe, he) be the type-4 extension of (F, h) with

nodes {I, J} with respect to (i, b) where b^2. Then (Ve, he) is a semimodular

chart and if Me and Neare points in Ve such that he(Me) = he(Ne) and Me\J

~Ne\J then Me~Ne.

§ 3. Construction of ^-Extension

Lemma 1.15. Let (V, h) be a finite semimodular chart with nodes J, and

let T(a) and T(fS) be v-similarity classes such that T(P)fT(u), i.e., N^M for

any M e T(a), N e T(/?). Then there exists a set Q of nodes satisfying the

following:

(a) For each NeT(f})9 there exists a node ieQ such that JV.>M^ holds

for any M e T(a).

(b) M\Q is a constant vector for any M e T(a).

Proof. Take points N E T(f}), L e T(a) arbitrarily. Q(0) denotes the set

of nodes not spanned by any cycle of Z(T(a)). If N \ Q(0) <; L | Q(0) holds, then

we can find the point L' of T(a) which satisfies L' ^ N by adding some cycles of

Z(T(a)) to L. This is a contradiction. Hence there exists some node / E g(0)

such that Ni>Lt. Since Mt = Li hold for all M of T(a) by (3) of 1.30 in [1],

Nt>Mt hold for all ME T(a). Since we can find such a node i for each N E

T(0), we denote it by i(N) for each NeT(0). We define a set Q as Q = {i(N)i

N E T(JI)} c g(0). Then evidently Q satisfies the conditions (a) and (b).

Definition 1.16. Let (F, /?) be a finite semimodular chart with nodes J,

and let K be its synthetic class. We divide the set K into "case-1" and "case-2"

knots as follows:

(1) K = (T(a), TGff)) is a case-l knot if either r(a)^T()8) or T(P)&T(u)

holds.
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(2) K = (T(a), T(0)) is a case-2 knot if both T(a)jFT(jS) and T(#>jFT(a)

hold.

Lemma 1.17. Let (V, h) be a finite semimodular chart with nodes J, and

let K be its synthetic class. Then there exists K-extension for each case-\

knot.

Proof. Let fc = (jT(a), T(fi)) be a case-l knot, and assume with no loss of

generality that T(fi)& T(a). Let Q be a set of nodes in 1 .15 for these T(a), T(j8).

Taking a node i e Q, we define a set T(K, f) by r(jc, 0 = {# e T(j8); Nt>Mt hold

for all MeT(a) for the /}. Then we have T(0)= U T(j8, i), ieQ. Now we

shall construct a (T(a), T(J}9 /))-extension (K< j ) , /z (£)) for each f e Q . Then by

1.35 in [1] we get a K-extension by forming the amalgamation ®(F(i), h(i)),

i eQ. Consider a node i of Q. Since Mf is a constant integer for any M e T(a),

we denote the integer Mf + l by r. Let w(f) be the cyclic number on node i.

If w(Q = 0 then (F(0, /? ( f )) denote the type-1 extension with nodes {<!;, J} of

(7, /i) with respect to (/, r). Otherwise let (F(i), /?^£)) denote the type-2 exten-

sion with nodes {I", J} of (V, /?) with respect to (/, a, fc), where a, b are the

integers defined as r = bw(i) + a, 0^a<w(i). We now show that (V(i\ /i(0) is

(T(a), T(j8, i))-extension. The condition (1) of 1.32 in [1] has been already

proved in 1.6 or 1.8 depending on the type of (V(i\ /?(i)). To verify the con-

dition (2) of 1.32 in [1], we note that Nt^Mt + 2 for any JVe T(& i), Me T(a),

because h(T(a)) = h(T(p)) and JV,>M£.

First let us consider the case where (V^\ /i ( f )) is a type-1 extension with

respect to (i, r). Let Me, Ne be points of F(i) such that Me \ J e T(a) and IVe | J

eTOS, 0- Since Mf = (Me | J). = r-l, we have M| = 0. On the other hand,

since Nf^Mf + 2 = r+l, JV| = 1 follows from the definition of (V^\ h<'>).

Therefore /|(0(]Ve)^=1^0 = /i^>(Me)^. Finally, let Me and JVe be points of

F^> such that M e] j£T(a) and Ne\JeT(P, i). Since N f > r = 0 + 6w(0, we

have ]Ve|I = G(2^ + l). On the other hand, Me\I equals either G(2b) or

G(2b-l) because a + (h-l)w(i) + l = r-w(i)+ 1 <r-l = Mf <r = a+6w(f).

Hence we have h^(Me)j^h^(Ne)j for some jel ((2) of 2.12 in [1]), and so

Lemma 1.18. Let (K, /i) be a finite semimodular chart with nodes J, and

let K be its synthetic class. Then there exists a K-extension for each case-2

knot K of K.
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Proof. Let K = (T(ot), T(/3J) be a case-2 knot. Since both T

and T(#)jF7(a) hold, they have the same cycles (Z(l),..., Z(m)} by 1.15 in [1].

Let Q(q) denote the nodes spanned by the cycle Z(q) for each g e {!,..., m}, and

let Q(0) denote the unspanned nodes i.e., g(0) = J- U Q(q). Since M^N for

some M e T(a), N e T(j3), we have M| Q(0)g]V| g(0). Similarly we have

L|0(0)gP|Q(0) for some L e T(0), P e T(a). On the other hand M|Q(0)

= P|Q(0) and L\Q(Q) = N\Q(Q) by (3) of 1.30 in [1] and so M | Q(0) = N \ Q(0)

holds for any M e T(a), N e T(/?). Hence also by (3) of 1.30 in [1], there exists

a cycle Ze{Z(l),..., Z(m)} such that M\ Q = N\ Q (modZ| Q) for points Me

T(a), Ne T(f}) where Q denotes the nodes spanned by the cycle Z. Then it

follows from (2) of 1.30 in [1] that

where P«(a) and P«(j8) are the minimum points of T(a) | Q and T(j8) | g respec-

tively, and so P«(a)^P*C?) (modZ|Q). Now denote Z|g, T(a)|g, T(jS)|G,

V\Q and ft|Q by Z«, T«(a), T«G8), 7* and A« respectively. By 1.35 in [1]

there exists an integer k as follows : represent T«(a) and Tq(f>) as

T«(a) = T«(a, 0) U - U T«(a, fe-1)

r«G8)= r«G8, o) u - u T«OS, fe- 1)
where

r*(a, 0 = (P€(a) + rZ« + r fcZ« ; r e PF}
T«(^? s) = (P«(jJ) + sZ« + r/cZ« ; r e Pf }

for our /c. Then for each pair (T«(a, 0? ^€(jS, s)), there exists a node i e Q such

that M?^ JVf (mod /cZf) for all M« e T«(«, 0, ^ e T«08, s).
Define new symbols ?c(r, s) to be K(t9 s) = (T(a, t), T(jS5 s)) for each (r, 5),

where T(a, 0 and T(j8, s) are subsets of T(a) and T(j8) such that T(a, 0|Q =

7*(a, r) and r()S, s) \Q=Tq(p, s) respectively. Since T(a)= T(a, 0) U ••• U T(a,

/c- 1) and T(P)=T(0, 0) U ••• U T(& /c- 1), we complete the proof by 1.34 in [1]

if K(t9 s)-extension is constructed for each ;c(f, s). From now we shall construct

K(/, 5)-extension for a given K(t9 s) = (T(ct9 t), T(fi, 5)). Since T(a, 016 =

T«(a, 0 and T(jS, s)|6 = T«(j8, s), there exists a node ieg such that Mi^Nl

(mod /cZf) for any choice of M e T(a, t) and JV e r()8, s). Let u and t; be the

minima of T(a, f) | {/} and T(j8, s) | {i} respectively, and with no loss of generality

assume that u ̂  v. Since u = v (mod /cZf), there exists an integer c such that

u + ckZi<v<u + (c + l)kZh and furthermore from the hypothesis /i(T(a)) =



SEMIMODULAR STATE CHART THEORY II 883

/z(T(j8))9 we may strengthen the inequality to

Hence we have kZ^4. We divide the case into two subcases as follows:

(1) Case 2.1; w(f) = 2

(2) Case 2.2; w(i)^3.

(1) Case 2.1: Let b be the integer defined as kZi = bw(i) = 2b. Since

kZt^4, we have 6^2. Let (Fe, he) be the type-4 extension with nodes {2, J}

of (F, h) with respect to (i, b). Now, we prove (Fe, he) is a ?c(r, s)-extension for

the R'O, s). The condition (1) of 1.32 in [1] has been already proved in 1.14.

Let Me, Ne be points of Ve such that Me \ J e T(a, 0, Ne \J e T(p, s). There

exist non-negative integers x9 y such that Mf = u+xkZi9 Nf = v + ykZ^ Then

Me |I is either C(u + xkZi-l') or C(w + xfrZ;), here note that u + xkZt = u + 2bx

= u (mod 25). On the other hand, since u + ckZi + 2^v^u + (c + l)kZi — 2, we

have u + (c + y)kZi + 2<LNe
i<^u + (c + y+l.)kZi-2 and hence C(w + 2(c + y)6 + 1)

<^Ne\Z^C(u + 2(c + y)b + 2b- 2), utilizing the fact that u + 2(c + y)b + 1 = u + 1

(mod 26) and w + 2(c + y)b + 2b - 2 = u + 2b - 2 (mod 2). Then Mj ̂  NJ (mod 2)

for some j el ((5) of 2.12 in [1]) because b^2. Therefore he(Me)^he(Ne).

(2) Case 2.2: Let a, b and q be the integers determined by iH-l = gw(i)

+ 0, 0^a<w(i), and kZt = bw(i). Let (Fe, /ie) be the type-3 extension with

nodes {I, j} of (F, K) with respect to (i, a, b). Now we shall prove that (Ve, he)

is a ?c(£, s)-extension for the K(t, s). The condition (1) of 1.32 in [1] has already

been proved in 1.11. Let Me, Ne be points in Ve such that Me\ JeT(a, t\

Ne\jET([t,s). There exist non-negative integers x and y such that Mf =

u+xkZt and Nf = v + ykZ^ Since M + x/cZ; = a + gw(/)— l + xfrw(i) = « + (<? +

xb)w(0 - 1, we have Me 1 1 = C(2(q + xb)) from 1.9, using 2(g + xb) = 2q (mod 26).

On the other hand, since Nf = v + ykZi^u + ckZi + 2 + ykZi = a + qw(i)—l +

and Nf = u + 3;fcZ^tt+(c + l)feZi-

a + (q + (c+l + y)b)w(i)-3, we

have cf + (^ + (c + j)6)w(0 + l ^ N f ^ a + (g + (c+l + 306)w(0-3. Since ftw(i)

^4, we have C(2(^ + (c + j;)b + !)-!) ^ JVe|i:^ C(2(^ + (c+j + l)b)-l) from

1 .9, because 2(q + (c + y)b + 1) = 2g + 1 (mod 26) and 2(q + (c + y + 1)6) - 1 = 2q

+ 26-1 (mod 26). Then since 6^2, we have MJ^NJ (mod 2) for some jel

((5) of 2.12 in [1]). Therefore he(Me)^he(Ne).

This completes the specification of the synthesis procedure for binary

finite semimodular charts. The sequence of steps in this procedure goes as

follows :
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(1) Find the synthetic class K of (7, h).

(2) Construct a K-extension (VK, hK) for each K e K.

(3) Make an amalgamation ®(FK, /IK), KeK.

Then ®(FK, ftK), TC e K, is a digital extension.

Chapter II. Examples of Synthesis

We shall synthesize a simple distributive chart by using the procedure de-

scribed in [1]. Figure la shows our distributive chart (F, h) with nodes J = {1, 2,

3}. This chart has one cycle Z(l) = (220) which spans the nodes Q(1) = {1, 2},

and whose minimum point L(l) = (001). Hence 2(0) = {3}. Z1 = Z(1)|Q(1)

= (22), L1=L(l)|e(l) = (00). Since {M| Q(l); M^L(l) and MeF} = {(001),

(000)}, £* = (001)| Q(l) = (00). We first construct V*®V. Since ^ = {M1e
F| 6(1); L1 g M1 £ L1 + Z1} = {(00), (01), (10), (11), (12), (20), (21)}, the syn-

thetic number e = 2. Thus, (eZ1)3/2 = 2 and 14 + 1 = 1, therefore the periodical

(W i

Figure 1. (a): A simple state chart (F, h) with V= {(000)} {(*, y, 1); «^
jc,^/i+l, w e ^ j u t f c ^ l ) ; jc=2(«+l)f y=2n, »e^},
h(M)i=Mi (mod 2) for M of K and i of /. (b): The extension
of (V, h) with respect to the node 1.
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1234567

(0000000)

(0010000)

(1010000) (0110000)

(1011000) (1110000) (0110010)

(2011000) (1111000) (1110010)

(2011l8o) (2111000) (1111010) (1210010)

(2111100) (2111010) (1211010) (1210011)

(2111110) (2211010) (1211011)
N, S \, ^
(2211110) (2211011)

(2211111)

(3211111) (2311111)

(3212111) (3311111) (2311121)

(4212111) (3312111) (3311121)

(4212211) (4312111) (3312121) (3411121)

(4312211) (4312121) (3412121) (3411122)

( 4 3 1 2 2 2 1 ) (4412121) (3412122)

(4412221) (4412122)

( 4 4 1 2 2 2 2 )

Figure 2. The binary digital extension of the (V, h) of Figure 3(a).

G(9)-

G(7V

G(5)

G(3)

1 3 7 11 15 19
a(0) a('i) a(2) a(3) aU)

C(9)

C(7)-

C(5}«

C(3)>

1? 21
a(2) a(3)

Figure 3. (a): The (V, h') of the type-2 extension in the case of w(i)=4,
a=3> and b=4. (b): The (V, h') of the type-3 extension in the
case of w(i) = 6, a = 3 .
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Gray mapping C2 with nodes I"1 = {4, 5} is used to construct the simple exten-

sion V of F11 {!}. Then the extension F^> = 7'® F1 of V1 with respect to the

node 1 is as shown in Figure Ib. Similarly we have F(2) with new nodes

£2 = {6, 7}. Then the amalgamation P1 = V^®VW is the 1-extension of F1.

On the other hand, F° = F| Q(0) = {(0), (1)} is itself 6-extension. Thus

the digital extension Fe = (F 1®F)®(f°®F) = (f 1®F)®(F°®F) = (f*® F)

is as shown in Figure 2.

u
X

!00!

123

(£00)
X -,- | -2

3

(300) (210)

(301) (310) (211)

i4U\ x^21>

(.421)

Figure 4. The state chart (V, h) to be synthesized.

123 45
( O O O G ( O ) )

(100G(0))

(100 C(l»

(200G(1))

( 2 0 0 G ( 2 ) > (210G(1))
-x" \ ^^ I

(3000(2)) (2100(2))(2110(1))

(300G(3))(301G(2))(310G(2))(2110(2))><r ^>< i -^"
(30 l 'G(3) ) (310G(3) ) (311G(2) )

(401G(3)) (311G(3) ) (3210(2))

3)) (411G(3) ) (321G(3»

( 4 2 1 G ( 3 ) >

(521G(3)) G(0)- (00)

Figure 5. (T(21 1), T(41 l))-extension ( F1,



SEMIMODULAR STATE CHART THEORY II 887

(3010) (3100) (2110)

> I
(4010) (3110) (3101) (2111)

^ \ ̂  \(£010) (4110) J^

(5110) (4111) P211)

^ (5111) (4211)

Figure 6. (T(301), T(321))-extension (F2, /z2).

123456

(000000)

(100000)

1,4.5 I 2,6

100)

/ (210100)

(300110) (210110) (2^1100) (210101)

/ I \ / I /\ Xv I
(300210) (301110) (310110) (211110) (210111) (211101)

I X\ x^N I xX /\ I X^
(301210) (310210) (311110) (310111) (21111U

(4pl210) (311210) (310211H311111)

(501210) (411210) (311211) (321111)

(511210) (411211) (321211)

^ (511211) (421211)

(521211)

Figure 7. The binary digital extension (Ve, he)=(V\ hl)®(V\ hz) of the (F, K) of Figure 6.

123456

(000000)

(100000)

,00)

(000100)

(000110) (010100)

feT \ ,/ I N
10) (oioiio) (Oinoo) (p:

)10)(101110)(1

(100110)

(100010) (101110) (110110) (Ollll̂ f) (010111) (OlllOl1,

\f *** ^/^ i iX ^ i- >S
(101010) (110010) flllllO) £110111} (011111)

# \ I X XI X
(001010) (111010) £110011) (111111)

101111)
\ f \ IX \

(011010) (111011) (10

\ /^ \ X
(011011) (101011)

\ ss
(001011)

Figure 8. The binary digital graph obtained from the digital extension (Ve
} h

e).
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Secondly, let us synthesize a semimodular state chart (F, h) with nodes J =

{1,2, 3} by using the procedure described in Chapter I where V= {(Ml9 M2, M3);

M2 = M3 = 0 and O^M^S} U {(Ml5 M2, M3); M2 = 0, M3 = l and Mj^4}

U {(Mlf M2, M3); M2 = l, M3 = 0 and 2£M1£3} U {(Mlf M2, M3); M2 = M3

= 1 and M1^2}u{(M1,M2,M3);M2 = 2,M3 = landM1^3} and h(M)i = Mi

(mod 2) for a point M of F and z of J. (See Fig. 4.) The state chart (F, h)

has one cycle Z = (200). Taking minimum point from each similarity class of

(F,/z) as its representative, F/~ ={T(000), T(100), T(200), T(300), T(210),

T(310), T(310), T(301), T(211), T(311), T(401), T(411), T(321), T(421)}. In

this state chart ~ and ~ are equal to each other. We have the synthetic class

K = {(T(000), T(200)), (T(100), T(300)), (T(211), T(411)), (T(301), T(321)),

(T(401), T(421))}. Let us first construct a (T(211), T(411))-extension. Since

r(211)#r(411), this is a case-1 knot. To find a (T(211), T(411, l))-extension,

we construct the type-2 extension (F1, /z1) with respect to (1, 1, 1) because

F| {\} = Wand (2+l) = l x2 + l. (Refer to Fig. 5.) Fortunately, this (F1, /z1)

is also (T(OOO), T(200)), (T(100), 7(300)), (T(211), r(411))-extension. Secondly

let us construct a (T(301), T(321, 2)-extension. Since F| {2} = {0, 1, 2}, we

construct the type-1 extension (F2, h2} with respect to (2, 2). (Refer to Fig. 6.)

Also in this case (F2, /z2) is (T(401), T(421)), (T(301), T(321))-extension. Thus

the amalgamation (Fg, /ze) = (F1, /z1)®(F2, /z2) is a digital extension of (F, /z)

(see Fig. 7). The graph of Figure 8 is the so-called "digital graph", or "state

transition graph", obtained from (Fc, /ze), whose set of vertices is {he(Me);

Mee Ve}. Though Ve is a set of infinite points and the digital graph has only

finite points, both demonstrate the same ordering of changes of the nodes.
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