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Selfpolar Norms on an Indefinite Inner
Product Space
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Frank HANSEN*

Abstract

A vector space equipped with an indefinite inner product is investigated. Selfpolar norms
on the space are studied and an operator description for quadratic selfpolar norms is developed
when the space allows a Hilbert space topology making the indefinite inner product continuous.
The selfpolar norms corresponding to a quasi-decomposition of the space are characterised
in terms of the operator description and sufficient conditions for topological equivalence are
given.

§ 1. Introduction and Preliminaries

Let Jf be a real or complex vector space equipped with a bilinear respective
sesquilinear form < • | • >. In the latter case we assume < • | • > to be conjugate
linear in the first variable. If the form < • | • > is non-degenerate and hermitian

we call the pair (3?, < • | • » an indefinite inner product space.
A norm p on an indefinite inner product space (3? , < • | - » is said to be

selfpolar if

(1.1) p(x)= sup |<x |y> l ,
p ( y ) ^ i

The concept of a selfpolar norm on an indefinite inner product space is the

analogue to the canonical norm

(1.2) T(x) = <x|*y/2, XE^9

on a pre-Hilbert space. Indeed, if < • | • > is positive definite, the norm i defined

in equation (1.2) is the unique selfpolar norm on (^, < • ! • > ) • When < • | • > is
indefinite, no canonical norm is available but selfpolar norms can still be found.
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However, the uniqueness disappears and selfpolar norms can be non-equivalent.

In this paper we propose an operator description of quadratic selfpolar
norms when 3? allows a Hilbert space topology making < • | • > continuous.
Selfpolar norms inducing a quasi-decomposition of $P are studied and charac-

terized in terms of the operator description and sufficient conditions for topo-
logical equivalence are given. Finally a number of examples are studied in

order to demonstrate the variety of selfpolar norms.
A norm p on an indefinite inner product space (<%? , < • | • » is said to be a

partial majorant if the form < • | • > is separately continuous in the topology
induced by p and a majorant if < • | • > is jointly continuous. It follows from
Banach-Steinhaus' Theorem that a complete partial majorant is a majorant.

If p is a partial majorant, then for each XE3F there is a constant e(x)>0
such that

(1.3) \<x\yy\gc(x)p(y)9

which ensures that the dual norm pr defined by

(1.4) j/(x)= sup

is finite everywhere.
Let pl and p2 be partial majorants and k a positive constant. From the

definition (1.4) it easily follows that

(1.5)

If p is a majorant, there is a constant c>0 such that

(1.6) \<x\y>\£cp(x)p(y), Vx,

and it follows that p'^cp, thus the topology induced by the dual norm p' is

weaker than the topology induced by p.

A partial majorant p is selfpolar if and only if p' =p. If p is selfpolar we

obtain

(1.7) \<x\yy\^p(*)p(y), Vx9ye^9

thus p is a majorant. Furthermore p is minimal among norms satisfying (1.7).

If conversely p is a majorant and therefore satisfies (1.6) for some constant

c>0, Aronszajn has shown [1], that there exists a selfpolar norm ps such that

(1.8) v Ps
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Though ps is minimal under (1.7) it is not unique.
We will briefly mention Aronszajn's procedure. Possibly by multiplying

the majorant p with a constant we can assume that p satisfies (1.7), that is p' ^p.

We put

d.9) ^lW

and observe that

(1.10)

and

(1.11) K*ly>l ̂  p(x}p'(y} +
2

P' (x

where we have used the definition of p', the hermicity of < • | • > and Cauchy-
Schwartz inequality on R2. Iterating this procedure we get a sequence of

norms (pn)neN satisfying

(1.12) Pn+i^pn^p9 VneN,

(1.13) \<x\y>\£pj(x)pn(y), Vx, ye^9 V

Since (pn)nejv is decreasing the definition

(1.14) ps(x) = inf Pn(x) ^ p(x) ,
nzN

gives a seminorm ps satisfying

(1-15) \<x\y>\£pj(x)pjty), Vx,

and since < • | • > is non-degenerate ps is actually a norm. It is not difficult to
verify that ps is selfpolar. For a detailed discussion we refer to Lemma IV. 4.1

in [3].

Suppose finally that the inner product < • | • > is definite. The definition

(1.16) T(x) = |<^|x>| ' /2 ,

makes T a norm which by Cauchy-Schwartz inequality satisfies

(1.17) \<x\y>\£v(xyt(y),

that is T' g T. But for each x e <&, x ^ 0

(1.18) T'(X)= sup
r(y)^l

thus T is selfpolar. If now p also is a selfpolar norm, then
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^p(x), x E J f and by (1.5) p = p'<,i;' = T; thus p = -c.

§ 2. Selfpolar Quadratic Norms

A norm p on a vector space ^ is said to be quadratic if there is a positive

definite inner product ( • | • )p on 3IP such that

(2.1) p(x) = (x\xyp?
2

9 V x E J f .

Lemma 2.1. Let (jf, < • | • » be an indefinite inner product space and p

a quadratic norm on jf satisfying

(2.2) \<x\y>\£p(x)p(y)9 Vx,j;e^.

The self polar norm ps^p constructed in the introduction is quadratic.

Proof. Let (^, p) denote the p-completion of 3? '. The form < • | • >

extends in view of (2.2) to a (possibly degenerate) hermitian, jointly continuous

form on (3?9 p) which implies the existence of a bounded selfadjoint operator Q

on (#e, p) such that

(2.3) <x | yy = (x | Qy\ , Vx, y e (Jf , ̂  .

The dual norm p' satisfies

(2.4) p'(x) = p(Qx) = (x | e2*)*/2 , Vx e JT ,

and is thus quadratic because the form (x \ Q2y)p is positive semi-definite on

(<#% p) and (2.4) implies that it is positive definite on 3? . The norm pl defined

in (1.9) is now easily shown to be quadratic and by iteration we get that each

norm in the sequence (pn)neN is quadratic. It follows that ps defined in (1.14)

satisfies the parallelogram identity and is thus by a standard argument quadratic.

Q.E.D.

Let (c^f, < - | - > ) be an indefinite inner product space and suppose 3? is

equipped with a positive definite inner product ( • | • ) with corresponding norm

(2.5) l l jcHfrlx)1 /2 ,

making 3? a Hilbert space. We furthermore assume that the indefinite inner

product < • | • > is jointly continuous in the Hilbert space topology, that is || • ||

is a majorant. This implies the existence of a bounded selfadjoint operator Y\

on(je, ( • [ • ) ) such that
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(2.6) <x\y)=(x\riy)9 Vx, ye #>.

Since < • | • > is non-degenerate 0 is not an eigenvalue for rj. We will use the

notion of orthogonality relative to the indefinite inner product < • | • > and

write

(2.7) x±y if <x| j ;>=0 5 x9ye^.

Proposition 2.2. Let p be a selfpolar norm on (<#% < • | • )). There is a

constant c>0 such that

Proof. Let (j?% p) denote the p-completion of 3? . Since < • | • > is jointly

p-continuous < • | • > extends to a bilinear (respectively sesquilinear) hermitian

form on (^, p) satisfying

(2.8) |<x | y>| £p(x)pOO , Vx, y e (JP, p) .

The seminorm p' defined by

(2.9) p'(x)= sup

is continuous in the p-topology (p'^p) and since pr coincides with p on the

dense subset 3? we conclude that

(2.10) P'(x) = p(x)9 Vxe(JP,p).

Especially we get that < • | - > is non-degenerate on (JT, p). Let now (xn)mN be

a sequence in JT for which xn->0 and xn-^x e (JP, p), then

(2.11) <x |y> = lim<xj);>=0,

As < • | • > is non-degenerate on (jp, p) and JT is dense we conclude that x = 0.

The injection mapping /: jT-*(Jr, p) is thus a closable linear mapping with a

complete domain, therefore continuous according to Banach's theorem. This

proves the existence of a constant c>0 for which p(x)^c\\x\\, Vxe^ . Using

that p is selfpolar we get

(2.12) p(x)= sup |<x|j»|= sup |(

^ sup | ( i /x |y ) |=- | | f / Jc | | , Vxe^. Q.E.D.
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Since we can always find selfpolar norms on (3?, < • | •» in the above

situation, for example by using the procedure described in Section 1 on the

majorant || • ||, we obtain the following:

Corollary 2.3. // 0 is not in the spectrum of Y\ then there is exactly one

equivalence class of selfpolar norms. This class contains quadratic norms and

the norms in the class are equivalent to || • ||.

A simple and important way of constructing quadratic selfpolar norms is

provided by the following lemma.

Lemma 2.4. Let P+ and P~ be the spectral projections of rj corresponding

to the positive respective negative part of the spectrum and put

(2.13) p(*) = V<p+* | P+x> - <P-x | P~x> ,

Then p is a quadratic selfpolar norm.

Proof. The form

(2.14) (x | y)p = <P+x | P+y> - <P~x | P~j>

= (x \\q\y),

is a positive definite inner product, thus p is a quadratic norm. Furthermore

(2.15) <x | yy = (x | rjy) = (P+x | r,P+y) + (P~

= <p+x | p+
 yy + <p-x | p-yy ,

which by Cauchy-Schwartz inequality first applied on the definite subspaces

P+je and P-je and then on R2 gives

(2.16) |<x | y>\ ̂  |<P+x | P+

^ <P+x | P+x)1/2 • <P+y | P+j;)1/2 + |<P-x | P-x

This shows that p'^p. Now for x^O we put

(2.17) x=-^-(P+x-P-x)

and observe that p(x) = 1 and <x | x> = p(x). Q. E. D.

Taking different Hilbert space majorants || • || and thus varying 77, we can

construct by applying Lemma 2.4 a family of quadratic selfpolar norms, which

are different if < • | • > is indefinite. However, these norms are all equivalent as

will be shown in Proposition 4.1.
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Theorem 2.5. A norm p on ^ is quadratic and selfpolar if and only if

there is a positive, bounded operator Ton (e^f , ( • | • )) sucn that

( i ) 0 is not an eigenvalue for T9

(ii)

(iii)

(iv) P(x)=\\Tli2x\\,

The operator T is unique.

Proof. Let p be a quadratic selfpolar norm on 3? . By assumption p is

of the form p(x) = (x\x)l
p
12, xe^f where ( - | - ) P is a positive definite inner

product on 3? '. In view of Proposition 2.2 there is a constant c>0 such that
p£c\\ - i|, hence

(2.18)

where we have used Cauchy-Schwartz inequality on ( • | • )p. We conclude that

( • | • )p is of the form

(2.19) ( x \ y ) p = ( x \ T y ) , Vx5

where T is a positive, bounded operator on (3? , ( • | • )). Consequently

(2.20) p(x)=||T1/2x|i5

Since p is a norm T does not have 0 as an eigenvalue. The unicity of a positive
T satisfying (2.20) follows from the polarisation identity. The mapping

(2.21)

= \\y\\P(x)9

is continuous which shows that rjje c: D^T"1/2)*) = D(T~1/2). Furthermore

(2.22) ||r/2Jc||=Xx)= sup |<x|j,>|
p(y)^i

= sup \(T-ll2r\x\Tli2y)\
||Tl/2y[|^l

where we have used that R(T1/2) is dense in 3? .

If conversely T is a positive, bounded operator satisfying (i), (ii), (iii) and

(iv), then p is quadratic and since the range R(Tll2) is dense in 3? we have
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(2.23) p'(x)= sup |<x|y>| = sup \(x\fiy)\
p(y)^i pOO^i

= sup KT-1/2!/* | T^2y)\ = ||
||n/2y||gl

= p(x), Vxee^f. Q.E.D.

Proposition 2.6. Let p be a quadratic selfpolar norm on Jf and T

operator of Theorem 2.5. TTzen

( i ) T-WqjP is dense in sf,

(ii) //iere is a unique selfadjoint unitary S on ( « # % ( • ! • ) ) SMC/I

(iii) f/jP is a core for T"1/2.

Proof. According to Theorem 2.5, (iii) there is an isometry S: R(T~1/2rj)

= ^T such that

(2.24)

We extend S to a co-isometry on (jf, (• | •)) with support R(T~1/2rj) and

observe that

(2.25) T-1/2^ = S*ST-1/2*? = S* T1/2.

We have S*x = T~1'2riT-if2x for xeD(T"1/2) which shows that S* is sym-

metric, thus selfadjoint. In particular R(T~ll2r\) is dense in ^ and 5 is a

unitary. Let xeD(T~1/2) and choose a sequence (yw)m=2v m ^ sucn *nat

T~1/2rjyn->T~1/2x. Since T1/2 is continuous r\yn-*x which proves (iii).

Q.E.D.

Lemma 2.7. Lef Tj and T2 be positive, bounded operators on (3f, ( • ! • ) )

which do not have 0 as an eigenvalue and let p1 and p2 be the norms defined by

(2.26) pfc)=\\TlX\\, xe^T, i = l ,2.

Then pi and p2 are equivalent if and only if R(T1)=R(T2).

Proof. Let T be a positive, bounded operator on («#% ( • | •)) which does

not have 0 as an eigenvalue and let p be the norm defined by p(x)= \\Tx\\, x

We first show that x e R(T) if and only if there is a constant c ̂  0 such that

(2.27) \(x\y)\£cp(y)9

Indeed, since T"1 is selfadjoint, xeD(T~1)=R(T) if and only if the map D(T~l)

az^(T~1z|x) is continuous. Putting z=Ty, yeje we get that xeDOF'1) if

and only if the map Ty, y e jf->(y \ x) is continuous.
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This applied on p1 and p2 shows that R(T1) = R(T2) if PI and p2 are equiva-

lent. Suppose now JR(T1) = JR(T2) and define

(2.28) V12 = T-^T2.

Let xn->0 and assume Vl2xn^>y. Since T2xn-»0 and TV is closed we get y = 0,

thus V12 is closable. The assumption yields that the domain of V12 is the whole

space Jf, thus V12 is bounded. Since T^1 and T2 are selfadjoint we get that

(2.29)

Furthermore

(2-30)

Similarly we get that F21 = T2
1T1 is bounded and that Pi(y)£\\v2l\\p2(y),

Q.E.D.

Corollary 2.8. Let pl and p2 be quadratic and selfpolar norms on 3?

and let 1\ and T2 be the corresponding operators on (3? ', ( • | • )) defined in

Theorem 2.5. Then pl and p2 are equivalent if and only if R(T\/2) = R(T2/
2).

Example 2.9. Let (^ < • | • » be the real Hilbert space R2 equipped with

the indefinite inner product

(2.31) <x \yy = x1y1- x2y2 , x,yejP,

and let p be the norm on 3? with its unit ball as described in Figure 1 . It is not

Figure 1

difficult to verify that p is selfpolar, but p is not quadratic.

Example 2.10. Let tf be the real Hilbert space 12(N, p), where \JL is the

measure defined by /z(n) = n2, neN. It follows from Cauchy-Schwartz in-

equality that 34? is a subspace of l*(N) and that
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(2.32) \\x\\ ̂  CM, ,

oo

where the best possible constant c=( Z n~2)l/2 = n
n = l

Let for each j e N, (j)m = 0, 1, be the coefficients in the binary expansion

(2.33) J=ZOX,2'«
m=0

of j and define

(2.34) elV = (-!)<•»', for i£j, and

e0- = £;i, for

We put

(2.35) <x | y> = . Z ̂ -x^- ,

and observe either directly or by passing to equation (2.40) that < • | • > is a

non-degenerate hermitian bilinear form on 3? such that

(2.36) ^lyyi^llxhlyh^lxl.lyl,, Vx,

Hence (3F, < • | • » is an indefinite inner product space which allows a Hilbert

space majorant || • ||M. We will prove that || • 1^ is selfpolar on (3F, < • ! • » .

Equation (2.36) tells that || • ||i<£|| • ||lB Take now xe^ and e>0. There is

an n0 e N such that

(2.37) Z \xn\<±
n>tiQ &

and a j0 ^ n0 such that

(2.38) 6y0 = signxl-, whenever x f ^0 , for / = !,.. . ,n0 .

We take y=(yn)neN with

(2.39) yn

and observe that y e Jf7, ibll i = 1 and

(2.40) <x\y>= StjXtyj = ; sijoxt

«>MO

thus | ||x|| ! — <x | y>| <e which shows that || • || 1 is selfpolar. It may thus happen
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that a selfpolar norm is not equivalent to any quadratic norm.

That /*(!¥) admits an indefinite inner product making || • ̂  selfpolar was

first shown by Lance in [4]. The inner product defined in equation (2.35) was

pointed out to the author by H. Araki.

§ 3. Qiiasi-Decomposition Norms

Let (^ ', < • ] • > ) be an indefinite inner product space allowing a Hilbert

space topology which makes < • | • > jointly continuous and let ( • | • ) be a choice

of a Hilbert space structure implementing the topology.

Lemma 3.1. Let p be a quadratic selfpolar norm on 3? and let T and S

be the operators of Theorem 2.5 and Proposition 2.6.

There is a linear involution F with domain R(T1/2) such that

(3.1) rr1/2x=T1/2Sx,

Proof. Equation (3.1) gives a well-defined linear mapping jf: R(T1/2)

-^(T1/2). For X G ^ T we have r2T1?2x = rT1/2Sx=T1l2SSx=T1/2x.

Q.E.D.

The auxiliary operators T, S and F depend on the choice of the positive

definite inner product ( • | • ) which although not unique will be kept fixed through-

out this section unless otherwise stated.

Let p be a quadratic selfpolar norm on 3?. We set

(3.2) 2 = {x e

Lemma 3.2. D(F*) = T"1/2^ .

Proof. For y E ̂ (T1/2) we have

(3.3) (ST^2x I T-V2y

=(x I rr1/2r-1/2j;)=(x | /» , Vx e #>,
which proves that x e D(F*) if and only if ST^x e ̂ (T1/2), that is if and only

ifT^xe^. Q.E.D.

Proposition 3.3. Let p be a quadratic selfpolar norm on (3!F, < • | • » and

put

(3.4) tf± = {x e jf | ± <x | x> =p(x)2}

Then J^+ and 3?~ are closed subspaces satisfying
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( i )

(ii)

(iii)

Proof. Let x = T~ll2y where y e 2 and Sy = ±y. Using Theorem 2.5 (ii)

and Proposition 2.6 (ii) we get

<x | x> = (

= (y\Sy)=±(y\y)=±\\T^2x\\2=±p(x)2.

Suppose conversely that x e Jf and <x | x> = ±p(x)2, that is (x \qx)=± || T1/2x||2

or

(3.5) (T1/2* I STl*2x) = +(r!/2x | T1/2*) .

Since 5 is a unitary we obtain ST1/2x= ±T1/2x, thus T1/2xe& which proves

(i). It follows from (3.4) that Jf+ and je~ are closed and from (i) that *e+ and

3? ~ are subspaces of 3? .

Let x ± E J f ± ; x± = T~l!2y± where y±e@ and Sj* = ±j;±. Using that S

is selfadjoint we get

We notice that S leaves ^ invariant, indeed if ze^ then SzeR(T1/2) and

= zeR(T1/2). Consequently

(3.6) 0 = {

This shows that j^+ + j>^~ = T~1/2^. Since p is a norm the sum is direct.

Q.E.D.

Note that the subspaces 3f+ and 3? ~ are independent of the choice of the

Hilbert space structure ( • | • ).

Theorem 3.4. Lei p be a quadratic selfpolar norm and 3F± the sub-

spaces of Proposition 3.3. We define a linear operator J with domain D(J)

= 3?+®3e~ by setting

(3.7) J(x+ + x~) = x+-x~, x

We have that

( i ) J is a closed involution,

(ii) j=r*,
(iii) J = T-1ri,
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(iv) p(x) = <x|Jxy/2 , for x

Proof. According to Lemma 3.2 and (iii) in Proposition 3.3 we have

Let xejf+©jr~, x = x+ + x~, x+ejr\ x~ejf" and yeD(r) = R(T^2\ Now

x± = T-i/22± where z± e ̂  and Sz ± =±z ± , and j^T1/2.^, }'0eJf. We have

(3.8)

This proves that J = T*, hence J is closed. Furthermore

(3.9) X^)2

= ||r1/2x+||2+||T1/2x-||2

which shows (iv). In order to prove (iii) we note that

Since Ti/2S is bounded we obtain

(3.10) J = r*==T-l

2n = J-l^ m Q> R D>

Definition 3.5. A semidefinite subspace JT of (3? ', < • | • >) is said to be
regular if for each x e 3P there is a constant c(x)>0 such that

(3.11) l

Proposition 3.6. Let Jf be a semidefinite regular subspace. Then

( i ) Jf 75 definite,

(ii) J^ is regular,

(iii) ^ /"s definite.

Proof. Let j; e JT and assume <}; | j> =0. We have

(3.12) K
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hence y = 0 which proves (i). The joint continuity of < • | •> ensures (ii) and

(iii) follows from (i) and (ii). Q. E. D.

Lemma 3.7. Let JT be a definite regular subspace of(^9 < • | • ». There

is a continuous linear mapping P from 3? into the intrinsic completion (jjT,

K-|->l 1 / 2 )0 / -*" such that

(3.13) <x | j;> = <Px | j> , Vx e ̂  Vj e JT,

Px = x, VxeJT.

Proof. Let x e 3? . Since Jf* is regular the linear form

is continuous in the intrinsic topology on Jf '. Hence there is a unique vector

Px in the intrinsic completion of JT such that <x | y> = <Px | y> VyeJf*. The

uniqueness of the vector Px ensures that the mapping P: JF '->(jJT, |< • | • >|1/2)

is well-defined and linear. Let now (xwX62V be a sequence in ^f tending to 0 in

the underlying Hilbert space topology on 3? and assume Pxn-» a e (jT , |< • I • > 1 1/2)

in the intrinsic topology. Then

(3.14) <a |y> = lim<PxII|j;>

hence a = 0. This shows that P is closable. Since the domain of P is ^f we

conclude that P is closed and continuous. The second statement of the lemma

follows from the first. Q. E. D.

Theorem 3.8. Let Jf74", jf ~ be a pair of subspaces of 3? such that

( i ) < • | • > is positive (negative) definite on

(iii) e^+©e*f is dense in jf,

(iv) 3F+ and 3t?~ are regular.

There is a unique selfpolar quadratic norm p on ̂  such that

C\ 1S^ ndc}— //v+ I Y+N — /v~ I Y~\^j.ijj P\x)—-\\x I x / \x \x /

for xe«^+©c^~5 x = x+ + x~? x
+e^f+ , x" e^f". Furthermore

(3.16) ^± = 1x6^1 ±<x|x>=p(x)2}.

Proof. Applying Lemma 3.7 to the subspaces J^+ and ^f ~ we get continu-

ous linear mappings P±: je-^(J^±, |< • | • >|1/2) such that
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(3.17)

We define

(3.18) X*) = V<p+x I p+x> ~ <p~x

and using the continuity of P+ and P~ we get

(3.19) pto^WVll^llg+II^

where |]P± ||0 denotes the norm of P± as a linear operator from jj? into the intrinsic

completion (JP1, K • I • M1/2)- Applying the techniques of the proof of Lemma
2.4 we can easily prove that the restriction of p to Jf+©^f ~ is selfpolar. Now

in view of (3.19) and condition (iii) we can carry out arguments similar to the

statements in equations (2.8), (2.9) and (2.10) and conclude that p is selfpolar on

jf . The formula (3.15) follows from (3.17) and the definition of p. The

uniqueness of p follows from (iii) and the continuity of a selfpolar norm given

by Proposition 2.2. By equation (3.15) we have

(3.20) tf ± s {x e 3? \ ± <x | x> = p(x)2} .

Let T and S be the auxiliary operators corresponding to the quadratic selfpolar

norm p. Using (i) in Proposition 3.3 we get

(3.21) JP* g T~3/2{z e 2 | Sz = ± z} .

Let now z 6 @> and suppose Sz= ±z. It follows from (iii) in Theorem 3.4 that

rjx = TJx for x e D(J). Consequently

(3.22) O|T-1/2z> = (^|iyT-1/2z)

The last equation follows because S is selfadjoint and ST1/2y= + T1/2y, This

shows that T~^2ze(jei:)1- = je±
9 thus

(3.23) JT ± = T~1/2{z e&\Sz=±z}

which together with (i) in Proposition 3.3 proves equation (3.16). Q. E. D.

Comparison of equation (3.16) and equation (3.4) shows that the given

subspaces ^+ and 3F~ in Theorem 3.8 coincide with the definite subspaces

occuring in Proposition 3.3 corresponding to the quadratic selfpolar norm p

given by equation (3.15). We can therefore rewrite equation (3.15) as

(3.24)
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where J is the closed involution defined in equation (3.7).

Definition 3.9. The quadratic selfpolar norm p constructed in Theorem

3.8 is said to be a quasi-decomposition norm and the pair (3? +, ^~) is called

the quasi-decomposition of 3? corresponding to p.

If J^+@^f~ = J^ we say that p is a (genuine) decomposition norm and the

pair (J^+, J4?~) is referred to as the (genuine) decomposition of Jti? corresponding

to p. In this case condition (iv) of Theorem 3.8 becomes redundant.

We conclude from (i) in Theorem 3.4 that a quasi-decomposition norm p

is a decomposition norm if and only if the involution J is continuous in the

underlying Hilbert space topology.

The norm p constructed in Lemma 2.4 is a decomposition norm. If con-

versely p is an arbitrary decomposition norm and ( • | • ) is a choice of Hilbert

space structure, we put P± = (1 + J)/2 and

(3.25) (x | y)l =(P+* I P+y) + (P~x I P~y) , x, y e jr.

It is easily verified that ( • | • )i defines a Hilbert space structure on 3? equivalent

to ( • | • ) and that p is the norm constructed in Lemma 2.4 relative to this

structure.

Corollary 3.10. A complete quadratic selfpolar norm p on (<%?, < • | • »

is a decomposition norm.

Proof. We can use p as Hilbert space norm on 3? . It follows chat T= 1

and 0 = 3^, hence

(3.26) ^f+®^f- = T-^2^ = ̂ . Q.E.D.

Corollary 3.11. Let p be a quadratic selfpolar norm on (3>F, < • | • » and

let (JT, < • | • » denote the p-completion of (jf, < • | • ». Then p is a decom-

position norm on (Jf, < • | • >) and

(3.27) 3e±=3?[\$r±

where ^+ and 3?~ are the subspaces defined in equation (3.4) and 3F± is

the decomposition of ^f corresponding to p.

Proof. It follows from the proof of Proposition 2.2 that (JT, < • | • » is an

indefinite inner product space and that the extension of p to (jf , < • | - » is

quadratic and selfpolar. Thus p is a decomposition norm on (jf* , < • | • »

according to Corollary 3.10. Equation (3.27) follows by applying equation
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(3.4) to p on both (jf, < • | • » and (JT, < -1 • ». Q. E. D.

Theorem 3.12, Let p be a quadratic selfpolar norm on 3F and F the

involution defined in Lemma 3.1. Then we have

(i) p is a quasi-decomposition norm if and only i/F is closable,

(ii) p is a decomposition norm if and only i/F is continuous.

Proof. Let «^f+ and jf ~ be the subspaces defined in equation (3.4) and J

the involution of Theorem 3.4. If p is a quasi-decomposition norm we obtain

from equation (3.16) and (ii) in Theorem 3.4 that F* is densely defined, thus

r is closable.

Suppose now that F is closable. We will verify that 3?+ and 3F~ satisfy

conditions (i), (ii), (iii) and (iv) of Theorem 3.8 and equation (3.15) with respect

to p. Condition (i) follows because p is a norm. Since F is closable 3? +©^~

— D(J) ~ D(F*) is dense in Jf giving condition (iii). It is already shown in (ii)

of Proposition 3.3 that 3?* L3?~~. We obtain from (iii) in the same proposition

that F~1/2S=jf +®je~ and conclude that ^ is dense in Jf.

We first show that {ZE@ | Sz = z} is dense in the nullspace N(S — 1). Let

::0 e N(S— 1) and assume

(3.28) (z0 |z) = 0, Vze^, Sz = z.

Since S is selfadjoint (z0 |z) = 0, Vze^, Sz=—z. In view of (3.6) we have

(z0 | z) = 0, Vz e ̂  which implies z0 = Q as & is dense in Jf.

Take now xe(^f"r)1. Using (ii) in Theorem 2.5 and (i) in Proposition 3.3

we obtain

(3.29) (T-1/VU)-<^|T'-1/2z>=0, V Z G ^ , Sz = z.

From the vanishing of z0eN(S-l) satisfying (3.28) it follows that T'1'2^

eN(S + l), hence

(3.30) F1/2x = 5'T-1/2f|x==-^~1/VeiV(S:+l).

Consequently SF1/2x= - T1/2* and xe^' which proves that (^+}L = je~.

A similar argument shows that (^f ~)1 = jf+, hence condition (ii) is satisfied.

To verify condition (iv) take x e Jf and j; e «^?±. Then

(3.31) |<x | y>\^p(x)p(y) = p(x) \<y | yy\^2.

Finally (iv) in Theorem 3.4 shows that 3?+ and 3?~ satisfy equation (3.15)

with respect to p, hence p is a quasi-decomposition norm with (^^ 3?~) as
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quasi-decomposition. This proves (i).

Let p be a decomposition norm, then J is continuous and F is closable. In

particular

(3.32) f = J*

which shows that F is continuous.

If on the other hand F is continuous, then so is J = T*. Furthermore F is

closable such that p is a quasi-decomposition norm according to (i). We

recall that a quasi-decomposition norm p for which J is continuous is a decom-

position norm. Q. E. D.

It can happen that the involution J corresponding to a quadratic selfpolar

norm p is continuous without being densely defined.

Example 3.13, Let Z0 =Z\{0} and take je = /2(Z0). We define

(3.33) <x| yy= E (signn^-Nx^, x,
neZo

and observe that (jf, < • | • » is an indefinite inner product space allowing a

Hilbert space topology which makes < • | • > jointly continuous. For Ae[l, 2]

and x e 3? we define

(3.34)

A straightforward computation shows that pA is a quasi-decomposition norm

with corresponding quasi-decomposition

(3.35) jr} = {xejr\x-H = tfxn VneZ0}

where

, ±signn — A1"' ^
^= ^2|n|-i ' °'

The involution JA is given by

(3.36) (J^^sign^l^l^ + VI^WrrTx.J, Mezo,

for xejf \®3F J. This shows that pA is a decomposition norm while pk for

Ae]l, 2] is not.

If (x | y) = X ^n>'» is chosen as Hilbert space structure on 3? the auxiliary
neZo

operators 7^, T}'2, SA and /\ take the form

(3.37)
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,+v^*-.

for n e Z0 and x e J^,

forneZ 0 and x e R(T\/2).

Let for r e [1, 2] and N e ]V the vector x(r, N)eJf be given by

, 0, 7i<0,

(3.38) x(r, N)«=| ^n/2 , 0<n^N,

^ 0, 7t>JV.

It follows that
N+k / ; ™ \ w \ l / 2

(3.39) , - ,
\n=jv+i \ 2

for N, /c e ]¥, hence the sequence (x(r, N))NeN is convergent to an element in the

pA-completion of e^f if and only if r<2/A. We conclude that the norms pA,

Ae [1, 2] are mutually non-equivalent.

Example 3.14. Let ̂  = /2(IV) and set

(3-40)

for x, y e 3? . It is easily verified that < • | • > is an indefinite inner product which

is jointly continuous in the Hilbert space topology on 3? . We will prove that

the norm

(3.41) X*) = (: 2-"|x
n = l

is a quadratic selfpolar norm on (3? ^ < • | • )) but not a quasi-decomposition

norm.
00

We choose (x \ y) = £ xnyn as Hilbert space structure on 3P and observe
n = l

that <x | j;> =(x | f]y)9 x, y e 3? , where

19.?-«/2 oo v

(3.42) (r,x)tt = 2-»Xn-
 l22 E ^2~kl2

7i mn fe— i K

for n G N and x e Jf . Furthermore p(x) = \\ T1/2x || , x e J>^ , where

(3.43) (Tx)rt = 2-w
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Let £ be the vector in 3? with components

(3.44) £n = J*L,
nn

We have that

thus the operator P defined by

(3.46) Px = (f |*K,

is a (• | • )-orthogonal projection and hence S=l— 2P is a selfadjoint unitary.

We calculate

(3.47) (T~1/277x),I = 2"/2(;?x)n

n OO Y

~/ » / - Y — - V k ?~ f e/2

It follows from Theorem 2.5 that p is quadratic and selfpolar, furthermore S is

the selfadjoint unitary introduced in Proposition 2.6.

The set Of defined in equation (3.2) is dense in 3? if p is a quasi-decom-

position norm as remarked in the proof of Theorem 3.12. Suppose X E & ,

then xetfCF1/2) and Sx = x-2PxeJR(T1/2), hence Pxe^T1/2). However

^R(r^2) = l2(N, p) where n(n) = 2n. We conclude that Px = 0 and conse-

quently (£ | x) = 0. This shows that ^ is not dense in Jif and therefore p is not

a quasi-decomposition norm.

§ 4. Decomposition Equivalence

Let (3F, < • | •» be an indefinite inner product space allowing a Hilbert

space majorant. If p is a quasi-decomposition norm on (3?, < • | •» with

corresponding quasi-decomposition (J^+, ^f~) and (• | •) is a choice of Hilbert

space structure on 3?, we introduce a norm pj on <#?+®3tf}~~ by setting

(4.1) pj(*)=||Jx||,

We note that by (iii) in Theorem 3.4 we have
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(4.2)

thus the dual norm

(4.3) P'j(x)

= \\Tx\\,

can be defined everywhere in ^f . It is easily shown that the topology on Jf

induced by the norm p'j is independent of the choice of Hilbert space structure

on Jf and we will denote this topology by i(p).

Proposition 4.1. AH decomposition norms on (Jf , < • | • » are equivalent.

Proof. Let p1 and p2 be decomposition norms on (<*f , < • | • )) and let

( • | • ) be a choice of Hilbert space structure on Jf . The involutions J^ and J2

corresponding to pi and p2 are bounded, hence

(4.4) Pj2M=\\J2x\\ = \\J2JiJiX\\

£ Il-Vi II • \\JiX\\ = \\J2Ji l lP/ t (*) , Vx e ^.

From equations (1.5) and (4.3) it follows that

(4.5) IIT^H = p f j l ( x ^ \ \ J 2 J l \ \ p f
j 2 ( x ) = \ \ J 2 J 1 \ \ - \ \ T 2 x \ \

which translates into the operator inequality

(4.6) Tl£\\J2Jim.

Since the square root is operator monotone [2], we obtain

(4.7) T^IJ.J.IT,
and consequently

(4.8)

Q.E.D.

The notion of a decomposition norm can be defined on any indefinite

inner product space (,#% < • | • » and has been studied for some time. Prop-

osition 4.1 is due to G. Wittstock [5], who obtains the result under the weaker

condition that 3? allows a Banach space topology making < • | • > jointly con-

tinuous. The proof presented here is an adaptation to the language of this

article of a proof given in a non-published work of H. Araki, J. Woods and the

author,
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Definition 4.2. Let pl and p2 be quasi-decomposition norms on («#%

< • | • » with corresponding quasi-decompositions (^f J, Jf7) and (e^f J, ^fj)

We say that p1 and p2 are decomposition equivalent if

(4.9) Jft©^r = ̂ 2©^2-

If in this case the densely defined operators J1J2 and J2^i are continuous in the
underlying Hilbert space topology, we further say that p1 and p2 are strongly

decomposition equivalent.

Due to J?=l, f = l, 2 we obtain that both decomposition equivalence and

strong decomposition equivalence are equivalence relations in the set of quasi-

decomposition norms on (^, < • ! • » .

Theorem 4.3. Let p1 and p2 be quasi-decomposition norms on (3? ,

< • | • ». The following implications are valid:

( i ) j?! and p2 are strongly decomposition equivalent.

(ii) p1 and p2 are decomposition equivalent.

(iii) p1 and p2 are topologically equivalent.

Proof. That (i) implies (ii) is contained in the definition of strong de-

composition equivalence. Suppose now pi and p2 are decomposition equiva-

lent. We set

(4.10) JT

If ( • I • ) is a choice of Hilbert space structure on 3? we put

Since J1 is closed with domain jf* we conclude that JT equipped with the positive

definite inner product ( • | • )i i§ a Hilbert space. Furthermore

(4.12) \<x\y>\^\W\' \\x\\- \\y\\

By Definition 3.9 we have that pl and p2 are decomposition norms on (jT,

< • ! • > ) • Since JT allows a Hilbert space majorant || • || 1 we can apply Prop-
osition 4.1 and obtain the desired result. Q. E. D.

It will be shown in Example 4.6 that neither of the implications in Theorem

4.3 can be reversed.

Proposition 4.4. Let pi and p2 be quasi-decomposition norms on
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(c/f , < • ! • > ) and (jt?i9 3 f i ) respectively (<%?%, j f 2 ) the corresponding quasi-

decompositions of <%?. We define the < • | • ̂ -orthogonal projections

(4.13)

The norms pl and p2 are decomposition equivalent if and only if the restricted

mappings

(4.14) P}: JPf - > JfJ and Pf:^} - > JPf

are everywhere defined and continuous in the underlying Hilbert space topology

on ,/r.

Proof. We note that the < - 1 • >-orthogonal projections Pf, z = !5 2, are
closed with domains D(Pf) = D(Jt), i = l, 2. If pt and p2 are decomposition

equivalent the restricted mappings in equation (4.14) are everywhere defined.

Since J ^ f , / = !, 2 are closed it follows that the restricted mappings are continu-

ous. If conversely the mappings of equation (4.14) are everywhere defined (and

therefore continuous) we get

(4.15)

and symmetrically D(J2) c D(JJ. Q. E. D.

Theorem 4.5. Two quasi-decomposition norms p1 and p2 on (3? ', < • | • »

are strongly decomposition equivalent if and only if the topologies T:(PI) and

1(^2) coincide.

Proof. Let ( • | • ) be a choice of Hilbert space structure on 3f and assume

pl and p2 are strongly decomposition equivalent. We have

(4.16) Pj2(x)= || J2x|| = || J2J1J1x\\ ^ \\J2J,\\ • \\JiX\\

and hence according to equation (4.3)

(4.17) HT1x||g||J2J1M|r2x||,

Similarly we prove that

(4.18) I IT iXl l ^ l l J ^ l l . l i r ^H ,

thus the topologies t(pi) and r(p2) coincide.

If conversely the topologies I(PI) and T(p2) coincide we have
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(4.19) J- l i r^l l^l l^jcl lgcl i

for some constant c>0. It follows from Lemma 2.7 that R(TJ = R(T2). Ap-

plying (iii) in Theorem 3.4 we get

(4.20)

hence p1 and p2 are decomposition equivalent. From equations (4.3) and

(4.19) we now conclude that

(4.21) ±\\J2x\\£\\JlX\\£c\\J2x\\, ^X

Consequently

\\JlJ2X\\^C\\J2J2X\\=C\\X\\

and

for x e D(J1) = D(J2). Q. E. D.

Example 4.6. Let Z0 = Z\{0} and set tf = 12(Z0, /*) where

(4.22)

We define <x | j;> = £ (sign n)xnyn, x, y E 3? and note that < • | • > is an
neZo

indefinite inner product on 3? which is jointly continuous in the Hilbert space

topology on 3?. The norms

(4.23)

neZo

are quasi-decomposition norms on (3F, < • I •» with corresponding involutions

(4.24) (•/!*)„ = (sign n)xn, n e Z0,

(^2*)» = (sign ») (V2 xn + x - n) > neZ0,

(J3x)n = (sign n)(2xn + V^-»)» n e Z0.

We observe that Jx is continuous while J2 is not, hence p± and p2
 are not de-

composition equivalent. However, if we extend < • | • >, p± and p2 to the Hilbert
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space 12(Z0) the involutions Jl and J2 become both continuous. It is easily

verified that Proposition 4.1 can be applied and it follows that p1 and p2 are

topologically equivalent. The quasi-decompositions corresponding to p2 and p3

are given by

(4.25)

where

V" = 7/

Either by directly showing that

(4.26) ^®je2=^®je^=l2(Z0, v)

where v(ri) = \n\, n eZ0 or by applying Proposition 4.4 we get that p2 and p3 are

decomposition equivalent. The operator J2Ji is given by

(4.27) (J2J3x)n = (2v/r-V3"K + (v/^-2)x_n5 neZ0,

and is not continuous in the Hilbert space topology on 3? . Thus p2 and p3 are

not strongly decomposition equivalent.
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