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A ^-Adic Theory of Hyperfunctions, I

By

Yasuo MORITA*

Introduction

About 20 years ago, M. Sato constructed the theory of hyperfune-

tions in his papers [19] and [20]. But it is only from 10 years ago

that his theory was used in many problems in mathematics. Anyway it

was shown that the theory of hyperfunctions can be very effectively

used (cf. e.g. Sato-Kawai-Kashiwara [21]). In this paper, we shall apply

his idea to non-archimedean fields and construct a ^>-adic theory of hyper-

functions of one variable. Our main tool is Krasner's theory of p-adic

analytic functions.

In Section 1, we shall axiomatize the results on Krasner's analytic

functions which we need in this paper. The reason why we do so is:

Though we use Krasner's theory in this paper, it seems likely that

Tate's theory of rigid analytic spaces can be also used to construct

hyperfunctions. Since Tate's theory can be applied to a wider class of

spaces than Krasner's theory, we can not disregard this possibility.

In Section 2, we shall construct p-adic hyperfunctions. Let Q be a

locally closed subset of a compact subset K in P1 (k). Let V be a sub-

set of P1 (k) such that (i) V~^Q and (ii) V and V\£ are both completely

regular quasi-connected sets. Let 0 be the presheaf of analytic functions.

Then we shall show that

&(O)=0(V\O)/0(V)

is independent of a special choice of V and defines a flabby sheaf on

any locally closed subset of K. We call an element of IB («fi) a hyper-

function on J2. We note that if L is a locally compact subfield of k,
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then P1 (L) is compact. Hence our theory can be applied to L or P1 (L).

In Section 3, we shall assume that 8 itself is compact, and show

that S$ (8) is the dual space of the space Jl (8) of locally analytic

functions on 8. Of course, to do so, we must define the topologies of

Q (16) and <Jl (8). But we have Tiel's theory of linear topological

spaces over non-archimedean fields (cf. Tiel [25] and [26]). Hence we

can construct a non-archimedean analogue of Komatsu's theory of projec-

tive and injective limits of weakly compact sequences of locally convex

spaces (cf. Komatsu [7]). Hence we can define the topologies of 3$ (8)

and <Jl (8) in a natural manner by making use of a non-archimedean

analogue of Montel's theorem (cf. Lemma 3. 5).

In Section 4, examples of hyperfunctions will be given. In particular,

we shall obtain an integral representation of the ^-adic Z/-function. This

result was also obtained in our former paper [16] and some applications

of it were shown in that paper.

We note that Mazur and Swinnerton-Dyer obtained an integral

representation of the p-adic jL-function in their paper [11]. There they

used the dual of the spaces of continuous functions instead of our spaces

3$ (8). Our integral is more convenient in analytic points but their

integral has a merit of having a close relation to the Iwasawa theory.

It seems very interesting to generalize our results to a more general

case. The author would like to treat it in a following paper.

The author* would like to express his thanks to Professors M. Sato

and T. Kawai for valuable discussions.

Notations and Terminology

Let N9 Z, Q, R, C, Z% and Qp be the set of positive integers, the ring

of rational integers, the rational number field, the real number field, the

complex number field, the group of p-adic units and the ^-adic number

field, respectively. For any two integers a and b, let (a, b) be the

greatest common divisor of a and b.

Let 0 denote the empty set. For any two sets A and B, let A\B be

the set consisting of all elements a of A such that af£B. We sometimes

use the notation Bc if B is a subset of A and A is fixed and obvious
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(e.g. A = P1(k) and B is a subset of it). Let f be a function on *S,

and let Sf be a subset of S. Then the restriction of f to S' is denoted

by f\S'.

Let R be the union of R and two symbols — oo and +00. We

define an order of R by letting — oo <r< + °° for any r^JZ. Of

course, we assume that it is an extension of the natural order of R.

Let { —,0, +} be the set consisting of the three symbols — ,0, +. We

define an order on { — ,0, +} by —<0<-f. Le t JRX{ —, 0, +} be the

product of these two ordered sets, and let <^ be the lexicographic order

on it. Any element of R (resp. RX {—-, 0, +}) is said to be a real

number (resp. a semi-real number). Each element of Bx{ —,0, +}

can be written as (r, —), (r, 0) or (r, +). We denote (r, —), (r, 0)

and (r, +) by r~9 r and r+. We idetify R and the subset {(r, 0) \r^R}

of JRX{-,0, +} by the map r*-»(r, 0).

§ 1. Results on Krasner's Analytic Function

In this section, we shall list all the results on Krasner's analytic

functions which will be needed in the following sections.

Let k be an algebraically closed field with a non-trivial non-archi-

medean valuation | |. We assume that k is maximally complete with

respect to | |. Namely, we assume that, for any decreasing sequence

&2Ci2C22-'QQ2**' of balls> tne condition nQ¥=0 is satisfied. We
n=l

note that (i) "maximally complete" implies "complete"; (ii) it is known

that, if the field k is not maximally complete, then there exists an alge-

braically closed field k'^k such that k' is maximally complete.

Let k be such a field. Then k has a metric defined by

(1.1) d(x,y)=\x-y\ (x,yek).

Let P1(K) =k(J {00} be one dimensional projective space over k. Then

the topology of k can be naturally extended to a metrizable topology on

P1(k) and the action of the linear fractional transformation

(1.2) zt^>(az + b)/(cz + d)

is continuous with respect to this topology.

In our former paper [17], we defined the class of completely regular
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quasi-connected sets and the presheaf O of analytic functions on them.

Example 1.1. Let

(1.3) D={z<=P>(k)\\Z-Ci\^ri (i = l,-,m)}

with c{&k, ri^\k*\. Then D is a completely regular quasi-connected set.

Furthermore if none of the conditions l^ — ̂ l^r^ can be omitted with-

out changing D, then any element f of 0 (D) can be expressed in the

form

(1. 4) / 0) = *<-> + f] fj a ® O - *,) - .
i=l w=i

Since rt-e|&*|, the right hand side of (1.4) converges uniformly on D

and f(z) is bounded on D. Let

(1.5) CJ={*eP1(*)|z-c<|<r<}.

Then the function f0{ defined by

(1.6) /«,,(*) = S *«U*-*)-"
W = l

is an analytic function on C/ and f(z) —fct (z) is an analytic function on

D\JC{.

Let E be an open subset of P1(k) such that there exists a linear

fractional transformation g : z i-» (az + &) / (c2 + d) such that </CE) has the

form (1. 3) . Then we say that E is a connected open affine subset of

P1 (k) . It is easy to see that a connected open affine subset of P1 (K)

has the form (1. 3) iff it contains oo.

Let D be an open subset of P1(k). Then

Theorem 1.2. D is a completely regular set iff D = Pl(k) or

there exists a sequence {Dn}~=1 such that (i) the Dn are connected

open affine subsets ofPl(k), (ii) A£A£— £A£— and (iii) D= U A*.
»=*!

Furthermore any two such sequences are cofinaL

It is known that (i) the intersection of any finite number of com-

pletely regular quasi-connected sets is also a completely regular quasi-

connected set, and that (ii) the image of a completely regular quasi-
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connected set by a linear fractional transformation is also a completely

regular quasi-connected set. Let S) — {Dc} C(EI be a family of completely

regular quasi-connected sets. Then 3) is a chain iff for any D, D' '€E S) ,

there exist a finite number of elements D1 = D, D2, • • • , Z)n_j, Dn — D' of

5) such that DI 0 Di+1=jt=0 for any f = l, • • • , « — 1. It is known that if

£D is a chain, then £>= (J Dc is a completely regular quasi-connected set.
C<EI

Theorem 1. 3. (i) Let D be a completely regular quasi-con-

nected set, and let Q be a linear fractional transformation of P1 (K) .

Then a k-valued function f on D is an analytic function iff fog is

an analytic function on g~l(D).

(ii) Let $) = {Dc}e€=i be a chain of completely regular quasi-con-

nected sets. Let D=(JDC. Then a k-valued function f on D is an
c^i

analytic function iff the restriction f\Dc is an analytic function for

any C&I.

(iii) Let D be as in (i), and let D— \JDn be as in Theorem 1. 2.
71 = 1

We assume that D contains oo. Then f is an analytic function on

D iff the restriction f\Dn can be expressed in the form (1. 4) for any

Let D be a completely regular quasi-connected set. Then it is an

easy consequence of this theorem that (a) if f ( z ) is an analytic function

on D, then ( - }f(z) is also analytic on D; and (b) any rational func-
\dzt

tion f(z) &k(z) is analytic on D if f(z) has no pole in D.

Theorem B. Let 3) be a chain of a countable number of com-

pletely regular quasi-connected sets. Then the covering cohomology

) satisfies

for any positive integer p.

In the following sections, we need only the facts that (i) 0 (D) is

defined if D is a completely regular quasi-connected set and that (ii) 0

satisfies Theorem 1. 3 and Theorem B.
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Example 1. 4. Let

(1.7) D={z^Pl(k)\\z-ci\^ri (* = !,-, m)}9

where c^k but the rf are semi-real numbers. Then D is a completely

regular quasi-connected set. Furthermore if none of the conditions

k — Cil^Ti can be omitted without changing D, then any analytic func-

tion f on D has the form (1. 4) . But, since some of the r^ may not

belong to |&x|, f may not converge uniformly and /may not be bounded.

Of course, if we restrict f to

(1.8)

(ri^ri9 rt ^ |£x l)» then these conditions are satisfied.

Example 1. 5. Let K be a compact subset of P1 (k) . Then we see

easily that D = P1(k)\K is a completely regular quasi-connected set.

Example 1. 6. Let D be as in Example 1. 4. Let

(1.9) Zy={zeP'(£)ll*-<;i^o U=l,-,m)}

be another such set containing D. Let

(1.10)

and

(1. 11)

We define /a< (feO(D)) and g^ (greO(Px)) as in Example 1. 1. Then

(1.12) (ff|Z>)*,(*)= 2 ffoj(*)

holds for any element gf of O(D') .

§ 2. P-Adic Hyperf unctions

In this section, we shall define p-adic hyperfunctions of one variable

and study fundamental properties of them. The arguments of this sec-

tion will proceed essentially parallel to them of the archimedean case

(cf. Sato [19] or Komatsu [8]).

Let k be as in Section 1, and let K be a compact subset of Pl(k).
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For example, let K — Pl(L} =LU {00} for any locally compact subfield

L of *.

Let Q be a locally closed subset of K. Hence

(2.1) £=[/nF

with an open subset U of K and a closed subset F of K. We note that

F and K\U are compact. Lej: V be a subset of P1(K) such that (i)

yZ)1^ and (ii) V and V\fl are completely regular quasi-connected sets.

For example,

(2.2) Vi = I»(k)\(K\ir)

satisfies such conditions, because K\U and (K\U) U F are compact sets

(cf. Example 1.5). Let

(2. 3) &(O)=0 (V\O) 10 (V)

and let

(2.4) [0]v = 0 modulo 0(V)

for any element 5 of 0(F\<S).

Let Vj and V2 be subsets of Pl(k) such that (i) V^Q and (ii)

Vt and Vi\.fi are completely regular quasi-connected sets for z = l, 2.

Then we claim that 0 (V,\S) /O (V,) and 0(V2\J2)/C)(T7
2) are canonically

isomorphic.

Since Vl H V^Q, Vl 0 V"8=^0. Hence Vl 0 F2 is a completely regu-

lar quasi-connected set containing Q. In particular, T^ fl V2 is an open

subset of P1 (K) . Since the residue field of k is infinite and discrete,

does not contain any open subset of P1(k). Hence

(2. 5) (v, n v2) \fi= (Vi\fl) n

is not empty, and hence a completely regular quasi-connected set. There-

fore, to prove the above claim, we may assume V2=2Vi.

In this case, the restriction map

(2. 6) p : 0 (Vt\O) -

induces the following commutative diagram:
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0 - >0 (F.) - >0 (F.Vff) - >0<yt\0) 10 (V.) - »0

(2.7) p| O p| a Ji?

o — »0(r,) — >o<Yi\a) — *o<yi\a)/o v,) — »o

Here the horizontal two sequences are exact. Let i) be the map

T.O ( V,\J3) /O ( V2) ̂ 0 ( V,\fl) /O ( V,) induced by p. Let 9 be an element

of CKV.XfljnOCV,). Since (Vt\fl) n V.ID (V,\0) =£0, 0 is an analytic

function on (V,\j2) U V1=V2. Hence 0e(9(Vj) and hence i? is injective.

Let <p be an element of (?(V,\J3). Then, by Theorem B, there

exist an element 6 of 0 (Vt\S) and an element ^ of 0 (Vi) such that

(2.8)

for any «e (Vt\Q) H V,= y,\^- Then

(2. 9)

Hence 97 is surjective. Therefore we have proved that the restriction

map p:0(F2\£)-»e>(V1\5) induces an isomorphism y:0(Vt\Q) /O (Vt)

Let Q' be an open subset of 8. Then there exists an open subset

V of U such that

(2. 10) ar = UT\F.

Let V0 = Pi(k)\ (K\U) and V, =P1(k)\ (K\Uf) be as (2.2). Then V$

CF0 and

(2. 11) Vf \J3' = F1(A)\(2s:\C7')\(/i:\JFie)

CP1 (k) \ (K\U) \ (K\Fe) = V»\8 .

Hence the restriction map of 0 (V9\S) to 0 (V't\G') induces the follow-

ing commutative diagram:

0 - »C>(Vo) - »0(Y0\,0) - »5(fl) - »0 (exact)
(2.12) | a I a |

0 - »0(PO - >0(V{\fl/) - >^ (^2') - *0 (exact) .

Let fla' be the map &(&)-*<$(&) in this diagram. It is obvious that

(OJj = id. Furthermore it follows that psa- = pa''°ps' holds if ,G"C.G'Cj2.

Therefore
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Proposition 2. 1. j2 = (^ ($') , pf») gives a presheaf on any

locally closed subset Q of the comapct set K.

Furthermore we obtain the following theorem:

Theorem 2. 2. 2 is a flabby sheaf for any locally closed subset

Q of the compact set K.

Proof. Since K is a compact metric space, K satisfies the second

countability axiom. Hence any open covering of any open subset Qf of

Q has a refinement by a countable number of open subset of Q' '. There-

fore, to prove that jB is a sheaf, it is sufficient to show that, for any

open subset Q' of Q and for any open covering

(2.13) Q'=\jQt
i

of Qf by a countable number of the Q^ 3$ satisfies the conditions for

the localization with respect to Qr = U ,0*.
i

Let S=Ur\F be as before. Let Ut be open subsets of U such that

^ = Ui 0 F. Let C/' = U C/i- Then £' = tT 0 F. Let F' = F1 (k) \ (^\f/0

and y^P^^XCXXC/,)*. Then F^U^.

Let /= [0]F, €=.#(£')• Then /=0 iff ^eOCV7), and pg;(/) =0 iff

0eO(Vi). Since {V^} is a chain of completely regular quasi-connected

sets, d<E.O(V) iff 6^0 (Vt) for any f. Therefore /=0 iff pg;(/)=0

for any z.

Let ^ = [0J F< e ^ (fl) . We assume that

(2.14) PS<W/0=^W.//)

holds for any t and j such that Q^Q^Q. Since ^(StC\Qj) =0((V{

(2.15) ^ = ̂ -0

holds for any z and j Furthermore {6y} satisfies the cocycle condition.

Hence it follows from Theorem B that there exists an element fa of

O (Vt) for any z such that

(2.16) 0tJ = fa-fa



10 YASUO MORITA

for any i and j. Then

(2.17) 0<-0< = 0/-&

on (Vi\£i) H (FyX.2,-) for any i and j. Therefore there exists an ele-

ment 6 of C>(U (V«\fl,)) = <9(V'\fl') such thati

(2.18) 0(*)=0i (*)-&(*)

for any zeVt\,0«. Then

(2.19) /=[0]F,€EJ3(£')
t
satisfies

(2. 20) <# (/) = [0] r, = [0, - <Ai] n = [0«] n =/« .

Therefore 3$ satisfies the conditions for the localization. Hence 3$ is a

sheaf on *G.

Let Qf be an open subset of Q. Let U' be as before and let

V=P>(K)\(K\U) and V = F1(*)\(15:\(7). Then

(2. 21) Y7 n (F\J2) = (P1 (k) \K)\J (U'nun FC)
u (uf n FC) = y

Let \ff\v be any element of £ (£') = 0(V'\Q')/0 (V) . Then it fol-

lows from Theorem B that there exist an element </> of 0(V\G) and an

element ^ of O(V) such that

(2.22) 5 = 0-%

on (V\£) nV^V'Xfl. Then [0]Fe^(fl) satisfies

(2.23)

Hence the restriction map p|/ is surjective. Therefore 3$ is flabby.

Hence the theorem is proved.

Definition 2. 3. Let & be a locally closed subset of the compact

set K. Then the sheaf j3 is called the sheaf of hyp erf unctions and an

element of j3 (S) is called a hyperf unction on Q.
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§ 3. Kothe's Theorem

In this section, we shall show that the space 3) (&) of hyper-

functions on Q is the dual space of the space (_Jl (.£?) of locally analytic

functions on & if Q is compact. The corresponding fact for the archi-

medean case is well-known and due to Kothe.

3-1. Let k be a field with a1 non-trivial non-archimedean valuation.

Let £ be a linear topological Hausdorff ^-vector space. We say that a

subset S of E is k-convex if x, y^S and A, /JL^k such that U|<^1, |/i|<Cl

implies hx + yy^S. If a filter on E has a base of the form x + A with

xtEE and ^-convex sets A, then the filter is said to be a k-convex

filter. If any ^-convex filter on S has at least one adherent point in S,

we say that S is c-compact. It is known (cf. Springer [23]) that (i)

a closed subset of a c-compact set is c-compact; (ii) a ^-convex c-compact

subset of E is closed in E\ (iii) if f is a continuous linear map of

locally ^-convex Hausdorff linear topological spaces, then the image of a

c-compact set is also c-compact; and (iv) the product of c-compact sets

is c-compact. Furthermore it is known that the field k is c-compact if

and only if k is maximally complete. Hereafter in 3-1, we assume that

k is maximally complete.

In his papers [25] and [26], J. Van Tiel constructed a theory of

linear topological ^-vector spaces over such a field k. In particular, he

showed that the notion of c-compact sets for ^-vector spaces plays the

role of the notion of compact sets for R or C-vector spaces. Using this

result of Tiel, we obtain the following analogue of H. Komatsu [7](1).

Since the proof of [7] can be translated in our case in the obvious man

ner, we state only the results.

Let u:X—>Y be a linear map of Banach ^-vector spaces. Then we

say that u is weakly c-compact if the image by u of the unit ball of X

is relatively weakly c-compact.

(1) The possibility of using the methods of Komatsu [7] in our case was pointed out by
T. Kawai.
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Lemma 3. 1. Let u:X-^Y be a continuous linear map of Banach
spaces. Let X', Y'9 # ' ,••• be the dual objects of X, Y,u, • • • . Then the

following statements are equivalent:
(i) u is weakly c-compact\
(ii) uf is weakly c-compact',
(iii) u" maps X" into Y.

A projective (resp. injective) sequence {-X ,̂ tiy} of Banach ^-vector

spaces is said to be weakly c-compact if for each i there exists some

j such that Uy (resp. Ujt) is weakly c-compact. Furthermore if the

image by Ui-i $ (resp. Ui ̂ -j) of the unit ball is weakly c-compact for

each z, then we say that {Xi9 Uy} is strictly weakly c-compact.

Lemma 3. 2. Any weakly c-compact projective (resp. injective)
sequence of Banach k-vector spaces is equivalent to a strictly weakly
c-compact projective (resp. injective) sequence of Banach k-vector

spaces.

Theorem 3. 3. (i) The projective limit proj lim Xt of a 'weakly
c-compact sequence of Banach k-vector spaces is a reflexive Frechet
space.

(ii) The injective limit Y"=injlim Y* of a weakly c-compact
sequence of Banach k-vector spaces is a Hausdorff complete reflexive
and bornologic space. Furthermore the strong dual Y' is a Frechet
space, and for each bounded set B in Y there exists an index i such
that B is the image ut (Bt) of a bounded set Bt in Xt.

Theorem 3.4. (i) Let {Xit u^} be a weakly c-compact projec-
tive sequence of Banach k-vector spaces such that HI (proj lim Xj)
is dense in X{ for each i. Then the dual sequence {Xt,t4j} is a
weakly c-compact injective system^ and the strong dual space of

the projective limit proj lim Xt is isomorphic to the injective limit
injlim X\.

(ii) Let {Yi9Uji} be a weakly c-compact injective sequence of
Banach k-vector spaces. Then the dual sequence {Y'i, u^} is a
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'weakly c-compact projective sequence of Banach k-vector spaces, and

the strong dual of the injective limit injlim YI is isomorphic to the

projective limit projlim Y'it

3-2. Let k be as in Section 1, r a positive real number, a an ele-

ment of k,

Let Oi)(Va>r) be the space of bounded analytic functions on Va,r. It is

obvious that Ob(Va>r) <^0(VatT) and any element /e0(Va,r) has the

form

/Q ON ff<r\ — \~* /r IV rv\ m f/r cr ^\°- ^/ 7 V'2'/ — / . ̂ m V2' — H) V^m ^ ^/ •

Then it is known (cf. e.g. Krasner [9]) that

(3.3) 11/11 F..r=^P |/(*)|

= sup \am\rm

holds. Since

(3.4) Ob(Vatr) = \f(z) = S am(z — &)m\ SUP |«mkm< + 00},

it follows that GfrC^,,.) is a Banach ^-vector space with the norm || \\var»

Lemma 3. 5. Let r, r' be real numbers such that O^r^r'. Let

a be an element of k, let

p:0,(VB.r,) -> 0,(Va,r)

be the restriction map. Then the image by p of the unit ball B of

Ob(Va>r^ is c-compact.

Proof. By the definition,

(3.5) B= {/(«)= E«m(*-«0m I kmk'W<l>
m^O

and the induced topology on p(B) is given by

(3.6) H/ll r a , r= sup Kir".
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Since r'^gr,

(3.7) kJrw^(r/r')m -> 0

for w—»oo. Let

(3.8) &"=:{(ao,tfi> .-,tfm, -)l«m€*}

be the direct product of a countable number of copies of k. Then the

product topology of k0" can be defined by

for any a— (a0, "s^m? •••) and b = (&0, --^b^ • • • ) . Since & is maximally

complete, £°° is a c-compact set. Since || ||ra,r and d(a,b) are equivalent

on p (jB),

is a ^-linear (injective) homeomorphism. Since the image

(3.11) {(a* ..-,am, —) e^°°||ami^(l/rOw}

is a closed subset of the c-compact space &°°, p(-B) is a c-compact subset

of

3-3. For any quasi-connected set D, let Ob(D) be the set of all

bounded analytic functions on D. Let r be a finite positive real number,

o: an element of k,

(3.12)

Let V^Pl(k)90(V)^k. Then, by Theorem 1.3 and Example 1.4,

(3.13)

Hence we define on 0(V\C) the projective limit topology of the Banach
spaces Ob({z(=V\\z~a\^>p+}). Let

(3.14)
^P

be the injective limit of the Banach spaces 0^({z^k\\z — a\^p~}) . By

Theorem 3.3 and Lemma 3.5, (?(TAC) is a reflexive Frechet space and

0* (O) is a complete Hausdorif bornologic space and the strong dual of
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a reflexive Frechet space. Furthermore we observe that 0 (V} is a

closed subspace of O^({z^ V\\z — a|^>p+}) and

(3.15) 0(F\C)/0(F)=projlim06({^eF||2;~a|^
r£p

is a reflexive Frechet space.

Let

(3.16) /(*)= f]*m(*-a) —
m=0

be an element of 0(V\C) and let

(3.17) g(*)=f]6.(*-a)"
n=0

be an element of Ob(iz<=k\\z-~a\<>p~}) (r<!p). Let

(3.18) </(*),? (*)>*= Res f(z)g(z)dz

Since

(3. 19) 2 a,*. = £ On+iP'"-1) (*»P") P ,
— w-f-»=— 1 w^O

< , >c is a continuous bilinear form on 0(V\C) xOb({z^k\\z — a\<*p~}) .

Hence <( , yc is a continuous bilinear form on 0 (V\C) X 0* (C) . Since

</(*)> (7 (*0 >0 = 0 if /(«) e(9(V), < , ><? is a continuous bilinear form on

(0(V\C)/0(V)) XO*(C). If am^0 for m^l, then g(z) = (z-a)*-1

^0*(C) satisfies <f(z)9g(z)y0=a»^0. Similarly if bn^=Q for n^>Q,

then /(*) = (^-^-^eOCVXC) satisfies <f(z)9g(z)yc=bn^0.

Therefore < ( , ) > < ? is a non-degenerate continuous bilinear form on

Now we have

Theorem 3. 6. Le£ ^Ae notation and assumptions be as above.

Then 0(V\C)/0(V) and 0*(C) are mutually dtial linear topological

k-vector spaces with respect to ( , )>c.

Proof. Since 0* (C) is reflexive, it is sufficient to prove that
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(3.20) 0(V\Q/0(V)^f(z) modulo 0(V)-></(*)» >C€E0*(C)'

is an isomorphism. Since < , yc is a continuous non-degenerate bilinear

form, this map is continuous and injective.

Let (0 be an element of 0* (C)'. Let

(3.21) 0(*)=*

for any element z of V\C. Since e0*(C) as a rational function
2 — £

in t, this is well-defined. Furthermore, since

(3.22) -J— = f] (*-aOm

z —£ m=o (z-a)'**1

is an expansion in 0*(C) for any fixed

(3.23) «(*) =
' '(*-«)-+'•

Since this expansion converges for any seVAC, 6(z) is an element of

0 (VAC). Let g (z) = f] £n («~ a) m be as before. Then

(3.24)

Therefore (3.20) is surjective. Since 0(V\Q/0(V) and 0* (C) ' are

both Frechet spaces, it follows from the open mapping theorem (cf.

Bourbaki [3]) that this continuous bijective linear map is an isomorphism.

Hence the theorem is proved.

Let V be as before. Let Cl9 •••>& be mutually disjoint closed balls

Let e>*(Q and Res f(z)g(z)dz be as before. Let

(3.25) 0*(C1U-"UC t)= 00*(
i=i
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Namely, we take small open balls Vl9 • • • , Vt such that V^d and

••• , Vt are mutually disjoint, and define

(3. 26) 0* (d U • • • U CO = inj lim © Ob (F*) .
F€ i-1

On the other hand, it follows from Example 1, 4 that

(3.27) OCVAdV-ACO/OOOs © 0(T\d)/0(7)<=i
(a canonical topological isomorphism) . Hence

(3.28) 0(Y \d\-\C«) xe>*(dU-Ud)->*

(/(*), 0(*)) -»</(*),?(*)> = S Res /(*)flr (*)«**
€=1 C'i

induces

Corollary 3. 7. 0(y\d\-\d)/(?(V) <ww* 0*(dU - Ud)

muttuilly dual linear topological spaces.

3-4. Let J£ be a compact set in P1 (k) . For the sake of simplic-

ity we assume that J^j&oo. Let <Jl(K) be the set consisting of all

^-valued functions g on K such that, for any a^K, there exists a

neighbourhood Ua of a in K such that Q\Ua is given by a convergent

power series. Let V=P1(k). Then V and V\K are completely regular

quasi-connected sets. Hence

(3. 29) &(K)=0 (V\K) /0(V).

Let {r̂ } !̂ be a strictly decreasing sequence of real numbers satis-

fying ?~ne \k | and limrn = 0. For any positive integer ;/ and for any

element a of J^, let C4W) be the closed ball in V containing a of

diameter rw. Since K is compact, K is covered by a finite number of

them. Let C{n), • • • , CJ^ be closed balls of diameter rn such that

(i) UCfQ^, (") Cf>n^0 and (iii) Cf>nCf = 0 (*^). Let

(3.30) Kn=C?>(J-

Then {Kn}*-i is a strictly decreasing sequence and
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(3.31) *=fi*..
n=l

CO

Furthermore V\K= \J (V\Kn) is a completely regular quasi-connected
»=i

set. Similarly, let C£n)0 be the open ball in V containing a of diameter

rn, and let

(3. 32) Kl = Cf*)0 U • • • U Cg)0

be the corresponding covering of K. Let

(3.33) 0>(K°)= 0 0,(C$»>°).

Then {K%}»=i satisfies similar conditions. Furthermore, by Example 1.4,

(3.34) Jl(K)=\jOt(K*),
»=1

(3. 35) Q (K) = n 0, (V\Kn-) fO (TO ,
n=l

Hence we define topologies on Jl (-K) and j3 (J£) by

(3. 36) Jl (K) = in j lim Ob (K°n}

and

(3. 37) & (K) = proj lim 0,(V\Kn) /O (V) .

Here the injective sequence and the projective sequence are constructed

by the natural restriction maps. Hence, by Theorem 3. 3 and Lemma 3. 5,

(Jl(K) is a Hausdorff complete bornologic space and the strong dual of a

reflexive Frechet space, and j3 (K) is a reflexive Frechet space.

It is obvious that

(3. 38)

(3. 39)

Since all inclusion maps in (3. 38) and (3. 39) are continuous, we obtain

(3. 40) Jl (K) = inj lim 0* (Kn)

and

(3. 41) # (^) = proj lim 0 (F\^n) /0(V).

For any /(*) e0(F\.K:) and for any g(z) <=0*(Kn), let
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(3.42) </(*), ?(*)>*. = £ Resf(z)g(z)dz9
i=l Cf>

where we define Res /(*) g (z) dz = </(*) , g (*) >0<w by (3. 18) . Then
(7f > *

this bilinear form is continuous on (0 (V\K) /O (V)) X0*(Kn). Since

this pairing does not depend on a choice of 0*(X"n) ^g(z) by Example

1. 6, it induces a continuous bilinear form <( , yK on j® (X) X <^ (K) .

Moreover, by Example 1. 6, the restriction of <( , yK to a closed subset

X7 of -K^ coinsides with •( , )#,. Furthermore it follows from the proof

of the non-degeneracy of < , >c that < , ># is non-degenerate (because

(z — a)~n~1^0(V\K) if a^K). Hence we have a continuous injection

(3.43) 0(V\K)/0(V) -> JL(R)9

IIJ UJ
/(«) modulo 0(F) ,-></(*), >jr.

Now we have

Theorem 3. 7. o>? (-K^) and 9$ (K) are mutually dual linear

topological k-vector spaces with respect to the bilinear form <( , )>x.

Proof. Since the both sides of (3. 43) are reflexive Frechet space,

it is sufficient to prove the map (3. 43) is surjective. But the surjectivity

follows from

(3.44)

= projlimO*(J:B)/

Remark 3.8. Theorem 3.7 can be generalized to the case K=>oo

by checking that Jl (K) , 3$ (K) , < , ># are invariant by the action of

linear fractional transformations (i.e., they are transformed by a linear

fractional transformation to the corresponding objects of the image of K) .

3-5. Let /(*) be an element of 0 (V\K) . Then (—} f(z) also
\dzl
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belongs to 0 (V\K}. Hence we define the derivation on 3$ (K) by
dz

(3. 45) & (K) B /(*) modulo 0 (V)

d
dz

f(z) modulo

Since (—}0(V)C:0(V)9 this definition is well-defined.
\dz/

Proposition 3.9. Let f(z) and g(z) be an element of 0 (V\K)

and an element of <Jl (K) . Then

Proof. Since <J (K) = inj lira 0* (Kn} , 0* (7Q = ©C4
(B) and

i=l

(3. 46) </(*) , g («» = g </(*) , 17 O) >^»,

for any element <7 («) of 0* (Kn) , it is sufficient to prove the correspond-

ing formula for { , >ff<»>. Let

(3.47) C-Cf^.^eVJIje

Let /(*)= am(z-a)-ms=0(V\C), g(z)= j *.(*-a)«sO*(C).
m— 0 n— 0

Then

(3.48) (A)/(2)== fj (_«)«.(,_«)—>
\CIZ ' m—O

and

(3. 49) (-f-) g (*) = fj »ftrf(* - a) -1 .
\^ / n-O

Hence

(3.50) .
' 1C

= E «,(-»)*.
m— n

= (/(*), -\
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3-6. Let 0 be an element of Jl(K)'. Let z be a parameter that

moves over V\K. Then

(3.51) -1_= -f; ( * ~ ; i
* 1

converges for \t — a <^\z — a\. Hence — is a locally analytic function

on K as a function of t. Let

(3.52) 0(*) =

Then 6(z) is a function on V\K. Since

(3.53) V\X=U(VVK.),
n=l

any element « of V\j^ belongs to some V\Kn. Since

(3.54)

z belongs to any y\C|B). By Theorem 3. 7, (3. 41) and the proof of

Corollary 3. 7,

(3.55) 6(z~)
t — z

Hence, by the proof of Theorem 3. 6 (cf . (3. 23) ) ,

(3.56) e(z)~~%

for any zE^V\Kn. Hecne 6(z) ^0(V\Kn) . Furthermore it follows

from (3. 24) that

(3.57) 0(0 (*))=<« (*),?(*)>*.

for any element g(z) of 0*(KJ. Therefore it follows from (3.53)

that d(z)^0(V\K) and

(3.58)

holds for any element g of ^ (J^) . We note
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(3.59) 0(oo)=0.

§ 4. Examples

4-1. Let k, V be as in 3-4. Let a be an element of k. Then

(4.1) /(*)=-^S-O-oO

is an element of 0(V\{a}). Let

(4.2) <?(*)= X! bn(z-aY
n=0

be an element of <^? ( {a:} ) . Then

(4 3) </(*),'? (*)><«> = (-l)mm!^m .

Hence /(*) modulo 0(F)eS({a» is the w-th derivative dg*> of the

delta function 8a at a.

4-2. Now we assume that k contains the £-adic number field Qp.

For simplicity, we assume that p=^=2. Let 5j be an element of k such

that kKI/ry^-^l. Let 52 be an element of Z/(/>-l)Z, s=(sl9sj.

If 2: is an element of

(4 4) {*

then

(4.5) a)(z)=limzpn

n->oo

is well-defined and gives a (^>— l)th root of unity such that |z — o)(z) |<1.

Let

(4.6) <2;> = a)(2;)-
1

Z,

(4.7) <*>" = «?{* log <*>},

(4.8) 2s = a)(2)s'<2>8'.

Then 2s is an analytic function on

(4.9) {*e£||*-C|<min(|siV<*-»|, l^^i)}

for each (p — l)th root C of unity. In particular z* is a locally analytic
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function on Z£.

Let x be a &-valued Dirichlet character modulo f. Then we proved

in [14] that the right hand side of

(4.10) 0gr^(
\dzl

converges in the topology of 0 (V\Z$) . Hence

which is equal to (sj — 1) L3)(51:^o)~S2+1) by the definition of the

L-i unction Lp(s\y) (cf. Kubota-Leopoldt [10]). Hence we have obtained

the following theorem.

Theorem 4. 1. Let the notation and assumptions be as above.

Then

Remark 4. 2. This theorem exactly implies the result stated in the

introduction of Morita [16]. But it does not cover the main theorem

of that paper.
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