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On Complete Kihler Domains with C'-Boundary

By

Takeo OHSAWA*

Intreduction

In the study of several complex variables the problem of characterizing
Stein manifolds by their geometric propertics has been one of the central topics
since Oka showed that every pseudoconvex unramified domain over the com-
plex number space C" is a Stein manifold. In 1956 Grauert [4] showed that
every unramified domain over C" with real analytic boundary and complete
Kihler metric is a Stein manifold. He proved the pseudoconvexity of the do-
main and applied Oka’s theorem. The purpose of the present note is to prove
the following theorem.

Theorem: Let X be a domain with C'-boundary and with a complete
Kdhler metric in a coimplex manifold M. Then X is pseudoconvex.

To prove the theorem we apply the method of L2 estimates of & which is
summarized in Section 1.

§1. Differential Analysis on Complex Manifolds

Let X be a paracompact complex manifold of (complex) dimension n and
ds? be a hermitian metric on X. The complex vector space C%%(X) of infinitely
differentiable (p, q) forms on X with compact support has a structure of a
pre-Hilbert space with respect to the norm P defined by

M e =(] ra5r)",

where fe C§%(X) and * denotes the conjugate of the star operator = associated
to ds?. We define
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@ (o= fasg  for figecyin.

We introduce another norm P, defined by
1/2

3 Po): =({ exp (~0)f n51)

where fe C5%X) and & denotes a differentiable real valued function on X.
We define

@ (s @oi={ exp(-®)f a%g, for f,geCEX).

We denote by L% %(X) the square integrable (p, q) forms on X, i.e., the com-
pletion of C%%(X) with respect to the norm P, and denote by L& (X) the
completion of C%-%(X) with respect to P,. Note that if @ is bounded on X,
then the completion of C%-%(X) with respect to the norm P, can be naturally
identified with L%-9(X). A function &: X—>R (R=real numbers) is called
strictly plurisubharmonic if @ is C?, i.e., twice continuously differentiable, and

(s25%7)

is positive definite everywhere. Here (z!,..., z") denotes a local coordinate

the Levi form

system of X. Given a strictly plurisubharmonic function @ on X,

0% =
2. a, 7B
®)] do?: az!ﬂ 527057 dz*-dz

defines a hermitian metric on X. Moreover the associated (1, 1) form
— JTT S PP g n g3k
(6) : —\/ 1 %Wdz A dZ

is d-closed. As usual we say that a hermitian metric is a Kdhler metric if the
associated (1, 1) form is d-closed. Let L% %(X) be the square integrable (p, q)
forms with respect to do?, i.e., the completion of C} % X) with respect to the

norm
™ on:=(] rr%s)",

where ¥ is the conjugate of the star operator ¥ associated to do2. Let (04,...,
¢,) be a moving frame of the holomorphic cotangent bundle of X which is ortho-
normal with respect to do? in a neighbourhood of x,e X. We let
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n
€3] ds?=Y Aido;-dd;,

i=1
where 7, are positive valued functions in a neighbourhood of x, such that
A £---=14,. Note that A; are continuous functions and does not depend on

the choice of (6 4,..., 0,,), therefore 4; are well defined on X.

Proposition 1.1. If A;=1 for i=1,..., n, then

(9) Lypa(X)<=Lp4(X) ¢q=0
and
(10) LBo(X)= LX)  p=0.

In particular L3%(X)=Lp%X).
Proof. For the proof of L3-9(X)< L%49(X) it is sufficient to show that
an 2NHzP(f), for feCpuX).

Let us compute f A % f at xo. Let (s4,..., s,) and (o4,..., 6,) be orthonormal
moving frames of the holomorphic cotangent bundle of X around x, with respect
to ds? and da? respectively, such that

(12) s;=40;.

Letting

(13) f=i1<;<iqfi""i“6‘A“'AG"A Gy A NGy,

we have

(14) fA%f:K.-m-.z-« ioig201 A NG A G A A Gy,
where

(15) K=(=1)y"t=1123-a( /= T)*.

On the other hand, since

(16) f—ix<;<iqfil'"iqAf"lnlil"/l §1 A AS"ASilA ASi

A iq
ig

we have

P 28 A AS ASI A A,
17) fAxf Ki1<;<iq |f;1...;,,| /1‘17'/{%/1%1}'%‘1

ANt AOC,AG{ A+ AG
=K 20-1 n 1 n
i1<;<iqlfl1 lql l,zllf‘q




932 TAKEO OHSAWA

Hence we obtain Q(f)=P(f). The proof of L5:°(X)> L%-°(X) is similar.
We define a first order differential operator
J: CZ4(X) — CB1(X)

as follows;

f=(-1° ¥ 3 -w’dzi‘/\---Adziw\
i1<<ip1=jsn 0z/
Jl<"'<]q

dZiAdZItA - AdZia,
where

f= <Z< Sipip i T B2 N e AdZP AZIUA - A dZT
SIS

The domain of & which we denote by D?-%is defined as the set of fe LE-4(X) such

that the current J f belongs to L2-+1(X). We regard 0 as a closed linear operator

from L}%X) to L%%*(X) with dense domain D?9. Since DP'? is dense in

L2-%X) the adjoint 0* of 0 is well defined in the following sense. f belongs to

the domain D%-%*! of 0* if and only if fe L£:%(X) and there exists h e L% 971(X)

such that
(h, )=(f, ou)  for any ueDra 1,
Such h is uniquely determined by f and we define 0* f=h.

Note that C54(X)< D2 by the theorem of Stokes.

We define the adjoint of ¢ with respect to the norm Pg similarly and denote
it by 0%. The domain of ¢ in L% ? and the domain of 0% is denoted by D2:? and
D24, respectively.

We say that a hermitian metric ds? is complete if for any sequence {x,},

v=1, 2,... of points in X which does not have an accumulation point, the dis-

tance between x, and x, tends to infinity as v— co.

Proposition 1.2. Let ds? be a complete C* hermitian metric on X and @
be a C? function on X with values in R. Then C5%X) is dense in D}%, D4,
and D0 DEZ, with respect to the graph norms Pg(f)+Pg(0f), Po(f)+
Py(0%f), and Po(f)+Py(0f)+ Po(0%f), respectively.

Proof. See Andreotti-Vesentini [17], Proposition 5.

Since 0 and 0% are closed operators we obtain
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Corollary 1.3. Under the same assumptions as above, D5, DiJ, and
D% n DEE are the completions of C¥4X) with respect to the graph norms.

Corollary 1.3 is not used in this paper.

From now on we assume that X has a complete Kdhler metric ds? of
class C2, there exists a bounded strictly plurisubharmonic function @ on X,
and A; defined above with respect to ds? and ¥ are =1. Then P and P, are
epuivalent norms on C¥%?(X) so that the completions of C§ %(X) with respect
to Pand P, agree.

Proposition 1.4. Let X, ds?, and ® be as above. Then we have the fol-
lowing inequality :

) Cf{P¢(5u)+P¢(3$u)} Z|(f, Wl
Here fe L} %(X), q=1, ue Dg1n Dy, and C; is a continuous function of Q(f).

Proof. In virtue of Proposition 1.2, it is sufficient to show () assuming
f, ueC%9(X). Let A be the operator defined by

(16) QAu, v)=(u, Av),

where u € C§4(X), ve C§+1:7*1(X) and Q denotes the (1, 1) form associated to
ds?. The following formula is first due to Calabi-Vesentini [2];

(17)  (30%+030)u—+~1 (004 +050)su=(OA— A@)u  for ueCLi(X)

where @ denotes the left multiplication by w. From this equality it follows
that

(18) Py(0u)+ Pp(0ku)=(OAu, u)g for ueCii(X).
So it remains to show that
(19) C(OAu, w)ozZ|(f, wo|*  for fiueCpiX) q=1.

For this purpose it is enough to show that

(20) ql(f; We? (47107, o (OAu, u)g
and
(21) (A0 f, e =qCO(f)?

for f, ue C31X), g=1, where C: —sup exp (—@(x)) and we denote by ©1!
and A~! the inverses of ©: C4~ 1 ‘1‘1(X)—>C" 9(X) and A: CBUX)—->Cp~1971(X),
respectively.
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First we prove (21). Letting

(22) f= 3 fatgO1 A AOAGL A NG
i1<...<iq q

we have

(23) A~1@—lf_ 2 (Z A‘lk)fll lq ‘"Aa.n/\ahl\'”/\&iq
1<iT<ig k=

and
B 1 Deeneenenenne n 7
(24) *f=Ki <;<i sgn| M‘f-:}; Gj A NG e
' S 1t lgJ1 " Jn—q it ta
Thus we have
(25) exp (—P)A1O Y A%Sf
z 2
=KCXP("¢) Z )Lz 2 lfu qu [ERAN '/\0‘"/\6'-1/\'-'/\5"

1<-<ig

<quxP( 45) Z 'fn quzo-l CAOLAT A AT,

=qexp (- ‘P)f/\ i‘zf-

Therefore
(26) (41071 f, Po=ac faTf=acO(N?.
Now we prove (20). In the proof of (21) we showed that
(27) A-l@—lf__ Z (Z A )fn ig0 'AanAEilA"'A6iq
ig<-- <lq k=
> (3, ) ; ;
= A “ A AS: Aee .
.~1<...<,-.,(k=1 Ty M Sn Sy AT A St
and
1 2 ------------ n f' )
(28) # =K Y sgn S5 A A
Jj1<<jn-g iyl in-g 11""1"'111"'%4 ’ ’
Hence if we let
(29) f= = fiy--iqsl/\"'Asn/\gh/\"'/\giq
i1<--'<iq
= X Z 22 —f“—ﬂ—————s A A 5 5
= lk A’ l}' i ses Sn/\sil/\--./\siq

i1<-<ig

we have

(30) (A72071f, o=}, Pa-
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As for u=Zu;..; Sy A - AS, A5 Ao A§; we have

[

I U - .
(3D OAu= Y Y Ez’q SN AS NS N AS,
1< <ig k=1 ix

Hence if we let

(32) = X i SN AS, A A AT,

we have
(33) OAu, u)e=(il, i)g-
On the other hand we have

(34) exp(—Pl)unxf

=Kexp(P) > i fii,S1N T ASZASIA A,
i1<--<ig

where
(35) Fiyeis =m Fireig-
By (29), (32) and (35) we have
(36) |41, vt
- 73 /I%kl«/f o A -
=YV
g% |5y Tty -

Therefore by Cauchy-Schwarz inequality we have

2

(37) |{, exp (—@)unzs

<o exp(~dyanzal exp(-@) 757,
where U is a sufficiently small neighbourhood of x,. Since x, was arbitrary
we obtain
(38) al(, ol 2@, Da(f, No=(04u, W)o(A71071, f)o.
Thus we obtain (20). Q.E.D.

Combining Propositon 1.4 with a well known theorem (cf.e.g. [5,
Theorem 1.1.4]) we obtain the following theorem (see also [6]).
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Theorem 1.5. Let X, ds? and @ be as above. Let fe L3%X),q=1. Then
there exists a g € L9 1(X) satisfying 0y =f if and only if 0f=0.

Since L#°(X)=L%°(X), we have

Corollary 1.6. Let X, ds?, and ® be as above and let fe L% (X), then there
exists a g € L3°(X) such that 0g =f if and only if 0f =0.

Corollary 1.7. Let X be a complex manifold of dimension n with a C? com-
plete Kihler metric, and @ a bounded strictly plurisubharmonic function on X.
Assume that P is of class C*. Then, for any fe L31(X) with 0f =0, there exists
a ge L%°(X) such that f=0g.

Proof. Let ds? be the given complete Kéhler metric on X. We set
d§?*:=ds?>+ do?.

Then the eigenvalues of d§? with respect to do? is larger than 1. Thus the
hypothesis of Theorem 1.5 is satisfied.

§2. Complete Kihler Domains with C'-Boundary

Let M be a complex manifold of dimension n. Let X be a domain, i.e., a
connected open set in M. X is called a domain with C!-boundary if there exists
a real valued continuously differentiable function p defined on a neighbourhood
V of the boundary 6X of X such that ¥ n X={xeV; p(x)<0} and grad p is
nonzero everywhere on 0X. We call p a defining function of 0X. X is called
a complete Kihler domain if there exists a complete Kihler metric on X.

Example. Let C* be the complex number space of dimension n. We let

(40) B ={(x1,..., x,)€C"; 3" |x;2<r),  r>0.
i=1

Then B(r) is a complete Kéhler domain with C!-boundary (in C*). As a com-

plete Kihler metric on B(r) we may choose

2
(41) dsi=3, 1) dze-az,

where z=(z!,..., z") and

42) . B (O] —
. ] r—-g,l |z#|2



ON CoMPLETE KAHLER DOMAINS WITH C!-BOUNDARY 937

More generally holomcrphically convex domains in Stein manifolds are com-
plete Kidhler domains. The following lemma is obvious.

Lemma 2.1. Let X, and X, be complete Kdhler domains with C*-bounda-
ry in M. Then X, N X, is a complete Kidhler domain with C'-boundary in
X,.

Definition 2.2. A domain X in a complex manifold M is called pseudo-
convex if for every x,€0X there exists a neighbourhood U of x, in M such
that U n X is a Stein manifold.

The following theorem is the main theorem of this section.

Theorem 2.3. Let X be a complete Kihler domain with C'-boundary in
a complex manifold M. Then X is pseudoconvex.

Proof. Let X be a complete Kihler domain with C!-boundary in M and
xo€0X. Let Whbea coordinate neighbourhood of x, with coordinate (z!,..., z")
such that z*' are holomorphic on a neighbourhood of the closure of W and

(43) W={xeM; gl IZi(x)|2 <1} .

After a linear change of coordinates we may assume that if we let W,: ={xe W;
z"(x)=v} (Iy|<1/2), X n W, is a domain with C!-boundary in W,. By Lemma
2.1, X nW and X n W, are complete Kéhler domains with C'-boundary in W
and W, respectively. We let

(44) B(xq, r)={xe W, i} |z{(x)|2<r} for r<1.

Let p be a defining function of 6X. We choose (¢1,..., &7, nt,..., 1", &, n'eR,
i=1, 2,..., n satisfying

(45) > IR+ =1

and

(46) > Wi 30 pisg gt x
=1 0ut =1 00t 0

where we set zi=u’+.,/—1v!. Choosing W smaller if necessary we may assume
that p is defined on W. For r<1 and e<1—r we define

(47 X;={x e B(xo, r); p(u(x) —&&, v(x)—en) <0},

where u(x)=u=(ul,..., u"), v(x)=v=(vl,..., v") and so on. X is the domain
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in B(x,, ) obtained by shifting X by ¢ in the direction of (&, #). It is clear
that for sufficiently small r there exists ¢, >0 such that for any e<eg, and |y| <,
X and X¢n W, are complete Kéhler domains with C!-boundary in B(x,, )
and B(x,, r) N W,, respectively. Moreover by (46) we may assume that for any
e<ég the closures of X nB(x,, r) and X n B(xo, r) N W, in B(x,, r) are con-
tained in X¢ and X n W,, respectively. We fix such r and &,.

Now we prove the theorem by induction on the dimension n of X. The
case n=1 being well known we assume that n=2 and the theorem is valid for
k<n. We are going to prove that X n B(x,, r/2) is a Stein manifold. For this
purpose it suffices to prove the following assertion (see [6] Theorem 2.6.5 and
Theorem 5.4.6).

Assertion: There exists no x; € d(X n B(x,, r/2)) satisfying the property
that there is a neighbourhood V of x; such that for any holomorphic function f
on X n B(x,, /2) there is a holomorphic function f on ¥ which coincides with f
on ¥V n X n B(xy, /2).

We prove this assertion by contradiction. Suppose that there exists such
x, €0(X N B(xy, /2)) and V. Since B(x,, r/2) is a Stein manifold x, €dX n
B(xo, r/2). We fix y in such a way that W,nV—X#g. There exists & >0
such that g,>¢; and o(X:*n W,)nV#g. Since by the induction hypothesis
Xitn W, is pseudoconvex in B(xy, r) N W,, it follows that X&tn W, is Stein (see
[6] Theorem 5.4.6). Hence there exists a holomorphic function f on Xin W,
such that
(48) sup  |f(x)|=c0.

xeVaXiinw,
We define a holomorphic map n: B(x,, r/2)—W, by
(49) n(z,..., z")=(z%,..., z"" L, ).
Since the closure of X n B(x,, ) in B(x,, ¥) is contained in X&:, we can define a
positive number J, as follows. If

(50) Xn B(xo, —%)cn"(Xﬁl nw,)

we let 6y: =1. Otherwise we let

(51) Sy = inf [zn(x)—9]>0.

xeXNB(xo,r/2)—n~L(XplNW 5)

We fix 6 >0 so that
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(52) 5<d,.

Let x be an infinitely differentiable function from C to R such that y(w)=0 if
[w| =90, y(w)y=1 if |w|<6/2 and 0=Zy(w)<1. We define a function & on X n
B(xo, r/2) by

(53) h(x)=x(z"(x)—7) - f((z'(x),..., 2"(x))) if [2"(x)—7|<do

and

(54) h(x)=0 otherwise.

Then

(55) gh/\dzlx\---/\dz"
z"—y

is a 0 closed (n, 1)-form on X n B(x,, r/2) which is square integrable with re-
spect to the metric
(3 |24

2 i=1 a. J78
(56) do ;ﬂ 272557 dz®-dzf .

Since X n B(xg, r/2) is a relatively compact complete Kéhler domain in W, by
Corollary 1.7 there exists a square integrable (n, 0) form g on X n B(xq, /2)
such that

1A... n
(57) 8g =08h A iz__’\T_Aiz_ .

zm=7

Hence letting g =g'dz' A --- Adz" we get
(58) o(h—(z"—7y)g1)=0.

Therefore h—(z" —y)g! is a holomorphic function on X n B(x,, #/2) and it coin-
cides with f on W, n X n B(x,, r/2). Note that by the hypothesis x, is a point
through which every holomorphic function on X n B(x,, r/2) can be continued
analytically to a holomorphic function on V. But this contradicts the fact that
h—(z"—y)g*' is holomorphic on X n B(x,, r/2) and, by (48) combined with the
theorem of identity, cannot be continued analytically across d(X&n W,)n V.
Q.E.D.

By the theorem of Docquier-Grauert [3] we have

Corollary 2.4. Let M be a Stein manifold and X be a domain with C'-
boundary in M. Then X is a Stein manifold if and only if X has a complete
Kdhler metric.
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The corollary generalizes Satz C of Grauert [4].
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Added in proof: The author has obtained in a forthcoming paper ‘Analyticity of com-

plements of complete Kihler domains’ that if X is a domain in a complex manifold M and
M-X is a regular C*-submanifold of real codimension 2, then X is pseudoconvex (equivalent-
ly, M-X is a complex submanifold of ).



