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On Complete Kahler Domains with C1-Boundary

By

Takeo OHSAWA*

Introduction

In the study of several complex variables the problem of characterizing

Stein manifolds by their geometric properties has been one of the central topics

since Oka showed that every pseudoconvex unramified domain over the com-

plex number space C" is a Stein manifold. In 1956 Grauert [4] showed that

every unramified domain over C" with real analytic boundary and complete

Kahler metric is a Stein manifold. He proved the pseudoconvexity of the do-

main and applied Oka's theorem. The purpose of the present note is to prove

the following theorem.

Theorem: Let X be a domain with C1-boundary and with a complete

Kahler metric in a complex manifold M. Then X is pseudoconvex.

To prove the theorem we apply the method of L2 estimates of d which is

summarized in Section 1.

§ 1, Differential Analysis on Complex Manifolds

Let X be a paracompact complex manifold of (complex) dimension n and

ds2 be a hermitian metric on X. The complex vector space C$*q(X) of infinitely

differentiate (p, q) forms on X with compact support has a structure of a

pre-Hilbert space with respect to the norm P defined by

(1)

where /e Cgs q(X) and * denotes the conjugate of the star operator * associated

to ds2. We define
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(2) (/, 9) : = /A *0 for f,ge CJ-
Jx

We introduce another norm P9 defined by

(3) P.(/):

where /e Cg> 3(JQ and $ denotes a differentia ble real valued function on X.

We define

(4) (/,*)*:=( exp(-*)/A*0, for f,geC

We denote by L?»%Y) the square integrable (p, <?) forms on X, i.e., the com-

pletion of C$>q(X) with respect to the norm P, and denote by L5»*CY) the
completion of C$>q(X) with respect to P&. Note that if $ is bounded on X,

then the completion of Cfyq(X) with respect to the norm P& can be naturally
identified with L?»%X"). A function <£: Jf->R (R = real numbers) is called
strictly plurisubharmonic if 0 is C2, i.e., twice continuously differentiate, and

the Levi form

is positive definite everywhere. Here (z1,..., z") denotes a local coordinate

system of X. Given a strictly plurisubharmonic function <P on X,

(5) da2: =
0

defines a hermitian metric on X. Moreover the associated (1, 1) form

(6) a>:

is d-closed. As usual we say that a hermitian metric is a Kahler metric if the

associated (1, 1) form is ^-closed. Let L%*q(X) be the square integrable (p, q)

forms with respect to da2, i.e., the completion of Cfrq(X) with respect to the
norm

G X l / 2
/A*/) ,

X J

where & is the conjugate of the star operator & associated to do2. Let (al9...,

an) be a moving frame of the holomorphic cotangent bundle of X which is ortho-
normal with respect to da2 in a neighbourhood of x0 e X. We let
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(8) ds2=
j= i

where l.t are positive valued functions in a neighbourhood of x0 such that

AI^- ' -^A,, . Note that Xt are continuous functions and does not depend on

the choice of (o"1?..., crn), therefore Af are well defined on X.

Proposition Id. J/A fg:l for z = l,..., w, then

(9) L5-«(X)cL!'«(X)

and

(10) L5-°(X)=DL?-0(X)

In particular Ln
2>°(X) = Ll>°(X).

Proof. For the proof of L^pQczL^OX) it is sufficient to show that

(11) 2(/)^P(/), for /eC5'«(X).

Let us compute /A #/ at x0. Let (sl5..., sj and (cr1?..., crj be orthonormal

moving frames of the holomorphic cotangent bundle of X around x0 with respect

to ds2 and da2 respectively, such that

(12) s—A^..

Letting

(13) /= Z ./ir-i^^.-A^A^A..^^
i i<-"<i g

we have

(14) /A*/=X Z l / , 1 . . . | , | 2 « T 1 A . . . A f f 1 I A f f 1 A . . . A f f I I >
i i < " - < f g

where

(15) X = ( - l ) " "

On the other hand, since

/=
t

we have

V2-

V I f A '" A a A ^ A "• A

2- . 17 ii—ig
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Hence we obtain Q(f)^P(f). The proof of L^0(X)^L^(X) is similar.

We define a first order differential operator

3:

as follows ;

Bf = (-l)P £
GZJ

Ji<-<jg

dzj A dzjl A ••• A dzj«,

where

/= Z fii-tp 7i"-7qd
zil A •- ^dz1? /\dzjlA ••• /\dzj«.

* I < — < » Pj i < - - - < j «

The domain of 5 which we denote by Dp>g is defined as the set of/eL?'g(X) such

that the current 5/belongs to L%>q+1(X). We regard 3 as a closed linear operator

from Lf»%T) to Lf>€+1(Z) with dense domain D^*. Since Dp>q is dense in

L^'q(X) the adjoint 5* of 8 is well defined in the following sense, /belongs to

the domain Dp*>q+1 of 3* if and only if feL^q(X) and there exists

such that

(h, u) = (f, Su) for any

Such /i is uniquely determined by /and we define 8*f=h.

Note that Cg'%X)c:DJ.« by the theorem of Stokes.

We define the adjoint of d with respect to the norm P& similarly and denote

it by 5|. The domain of 5 in L|j(Z and the domain of 5| is denoted by D^q and

D|'|, respectively.

We say that a hermitian metric ds2 is complete if for any sequence {xv}5

v = l, 2,... of points in X which does not have an accumulation point, the dis-

tance between x± and xv tends to infinity as v-»oo.

Proposition 1.2. Let ds2 be a complete C2 hermitian metric on X and <$>

be a C2 function on X with values in R. Then C%>q(X) is dense in D§'€5 D|'J,

and DfrqnD%>$, with respect to the graph norms P

P*(3J/), andP»(f) + P*$f) + Pi$tf)9 respectively.

Proof. See Andreotti-Vesentini [1], Proposition 5.

Since d and 3| are closed operators we obtain
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Corollary 1.3. Under the same assumptions as above, D%>'q, D%>£, and

D$>'q nD|'J are the completions of C$>q(X) with respect to the graph norms.

Corollary 1.3 is not used in this paper.

From now on we assume that X has a complete Kahler metric ds2 of

class C2, there exists a bounded strictly plurisubharmonic function $ on X,

and AJ defined above with respect to ds2 and $ are ^ 1. Then P and P0 are

epuivalent norms on C$q(X) so that the completions of Cfrq(X) with respect

to Pand P0 agree.

Proposition 1.4. Let X, ds2, and $ be as above. Then we have the fol-

lowing inequality :

(t) Cf{P*(Bu) + PMu)}^\(f, u)0\
2.

HerefeL'}>*(X), q^l, u£D&>* n £>*'</, and Cf is a continuous function ofQ(f).

Proof. In virtue of Proposition 1.2, it is sufficient to show (f) assuming

/, u e C f r q ( X ) . Let A be the operator defined by

(16) (Q/\u, v) = (u, Av),

where ueC$>q(X), veC%+1>q+1(X) and Q denotes the (1, 1) form associated to

ds2. The following formula is first due to Calabi-Vesentini [2];

(17) (dd$ + 3$d)u-*-l(dd$ + dld)*u = (OA-A0)u for ueCp
0'

q(X)

where 0 denotes the left multiplication by co. From this equality it follows

that

(18) P0(Su) + P0(Slu)^(9Au,u)^ for

So it remains to show that

(19) Cj(0Au9u)0^\(f9u)*\2 for f , u e C f r * ( X )

For this purpose it is enough to show that

(20) q\(f, u)»\*£(A-i0-*f9f)* (0Au, u)»

and

(21) (^0

for /, ueCfrq(X), g^l , where C : = sup exp ( - <P(x)) and we denote by 0~l

and A-I the inverses of 0 : Cn
0-^-\X)^C^(X) and A: C

respectively.
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First we prove (21). Letting

(22) /= £ fi^ <*i A -A °n A &tl A - A
ii< — <i«

we have

(23) 4-10-l/= Z (t A f J / , 1 . . . l f f f 1 A . . . A f f . A
I ' l<-"<iq f t=l

and

1 2
(24) */=* L sgn

Thus we have

(25) exp (- (P)yl~10~1/A */

i A ••• A ffw A (T! A .-. A c

<Jn A dl A ... A 6=n

Therefore

Now we prove (20). In the proof of (21) we showed that

q

( q & \

and

/I 2 n\ j
(28) */=j^^ sgnl _ ^ Iv-ly^- ^I A " ' A *. /—

Hence if we let

/^r\\ 2* X~^ 2* — ~(Zy) / == x /,• i i S l i A " . A » S l , , A S , - A " . A S , ->> / ^ m f—i m J ii'-'iq i n ii ia

we have

(30)
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As for u = Iuil...iqsl A ••• /\snAstl A ••• /\siq we have

q u-
(31) 0Au = £ Z —iS-^-^l A •" A 5 >n A S/ . A ••• AS,

i i < - < i € f c = l ^ffc

Hence if we let

v rjnr A A:= Z<4 VZ jr-^H-i^i^'"^5

we have

(33) (6)>4w, «)«!> = (u, fi)^.

On the other hand we have

(34) exp(-0)wA*/

i- w ir--i J ii'--i Ji A ••• A JB A Sj A ••• A :

where

(35) /;r..,g =x^lt7^ir/ii-'. •

By (29), (32) and (35) we have

(36) K.--*,,7UJ

I ~ f\uil-iqJil-iq

fc=i ^ fe=i
\ , n, V .

= ~^\Uil-igJil-iq\ '

Therefore by Cauchy-Schwarz inequality we have

(37) exp (-*)« A*/ '

where 17 is a sufficiently small neighbourhood of *0. Since x0 was arbitrary

we obtain

(38) q\(u,f

Thus we obtain (20). Q. E. D,

Combining Propositon 1.4 with a well known theorem (cf. e.g. [5,

Theorem 1.1.4]) we obtain the following theorem (see also [6]).
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Theorem 1.5. Let X, ds2 and $ be as above. LetfeL%>q(X),q^l. Then

there exists a g e D{ > q~ 1 (X) satisfying 3y =f if and only if df= 0.

Since Ll>*(X)=L%"(X)9 we have

Corollary 1.6. Let X, ds2, and 0 be as above and letfeL^l(X), then there

exists a geL%>°(X) such that 5g =f if and only ifdf=0.

Corollary 1.7. Let X be a complex manifold of dimension n with a C2 com-

plete Kdhler metric, and <P a bounded strictly plurisubharmonic function on X.

Assume that $ is of class C4. Then, for any feL^1(X) with 3f=Q, there exists

a gEL%>°(X) such that/=%.

Proof. Let ds2 be the given complete Kahler metric on X. We set

Then the eigenvalues of ds2 with respect to da2 is larger than 1 . Thus the

hypothesis of Theorem 1.5 is satisfied.

§ 2. Complete Kahler Domains with C ^Boundary

Let M be a complex manifold of dimension n. Let X be a domain, i.e., a
connected open set in M. X is called a domain with C1 -boundary if there exists

a real valued continuously differentiable function p defined on a neighbourhood

F of the boundary dX of X such that V fl X = {xe F; p(x)<0} and gradp is
nonzero everywhere on dX. We call p a defining function of dX. X is called
a complete Kahler domain if there exists a complete Kahler metric on X .

Example. Let C" be the complex number space of dimension n. We let

(40) B(r) = {(x1,...,jc l l)eC»; £ \xt\
2<r}, r>0.

i = l

Then B(r) is a complete Kahler domain with C1 -boundary (in C'1)- As a com-
plete Kahler metric on B(r) we may choose

where z = (z1,..., z") and

(42) . !,(*) = ±
/•-£
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More generally holomorphically convex domains in Stein manifolds are com-

plete Kahler domains. The following lemma is obvious.

Lemma 2.L Let X1 and X2 be complete Kahler domains with C^-bounda-

ry in M. Then X} n X2 is a complete Kahler domain with Cl-boundary in

X,.

Definition 2.2. A domain X in a complex manifold M is called pseudo-

convex if for every x0 e dX there exists a neighbourhood U of x0 in M such

that U fl X is a Stein manifold.

The following theorem is the main theorem of this section.

Theorem 2.3, Let X be a complete Kahler domain with ^-boundary in

a complex manifold M. Then X is pseudoconvex.

Proof. Let X be a complete Kahler domain with C1-boundary in M and

x0 e dX. Let FFbe a coordinate neighbourhood of x0 with coordinate (z1,..., z")

such that 2i are holomorphic on a neighbourhood of the closure of W and

(43) W={xeM; t \zl(x)\2<i}.
i=l

After a linear change of coordinates we may assume that if we let Wy: = {x e W;

zn(x) = y} (\y\<l/2)9 X n Wy is a domain with C^-boundary in Wr By Lemma

2.1, X n W and X n Wy are complete Kahler domains with C1-boundary in W

and Wr respectively. We let

(44) B(x0, r) = {xEW; ± |z'(x)|2<r} for r<!8
i = l

Let p be a defining function of dX. We choose ((^1
J...J ^"5 f/1 , . . . , rjn), £*, rjl eR,

i = l, 2,..., n satisfying

(45) t |^|2 + Z |iy'|2 = l
i=l i=l

and

+*>Q at *-
where we set zi = ui + v

/ — I vl. Choosing W smaller if necessary we may assume

that p is defined on W. For r < 1 and e < 1 — r we define

(47) X' = {xeB(x09 r); p(ii(x)-fi& i<jc) - w/) < 0} ,

where W(X) = M = (MI
J..., u

n), v(x) = v = (v1,...9v
tl) and so on, X* is the domain
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in B(xQ9 r) obtained by shifting dX by e in the direction of (£, rj). It is clear

that for sufficiently small r there exists e0>0 such that for any e<e0 and |y|<r,

XE
r and Xe

r n Wy are complete Kahler domains with C1-boundary in B(xQ, r)

and B(x0, r) n Wy9 respectively. Moreover by (46) we may assume that for any

e<s0 the closures of X n B(xQ, r) and X nB(x0, r) n Wy in B(x0, r) are con-

tained in XB
r and Xf. n Wy, respectively. We fix such r and e0.

Now we prove the theorem by induction on the dimension n of X. The

case n = l being well known we assume that ng:2 and the theorem is valid for

k<n. We are going to prove that X n B(xQ, r/2) is a Stein manifold. For this

purpose it suffices to prove the following assertion (see [6] Theorem 2.6.5 and

Theorem 5.4.6).

Assertion: There exists no x1 ed(X n B(xQ9 r/2)) satisfying the property

that there is a neighbourhood Vof x1 such that for any holomorphic function/

on X n B(xQ, r/2) there is a holomorphic function/on V which coincides with/

on V n X n B(x0, r/2).

We prove this assertion by contradiction. Suppose that there exists such

xled(Xr\B(x09 r/2)) and V. Since B(x0, r/2) is a Stein manifold xledXn

B(x0, r/2). We fix y in such a way that Wy n F-^0. There exists e^O

such that £0
>ei anci d(XEs t\Wy)f\V^0. Since by the induction hypothesis

X]> n PFy is pseudoconvex in B(x0, r) n Wr it follows that J^1 n Wy is Stein (see

[6] Theorem 5.4.6). Hence there exists a holomorphic function / on Xc
r
L fl Wy

such that

(48) sup |/(*)| = 00.
xeVnXB

rif\Wv

We define a holomorphic map n: B(x0, r/2)->FF7 by

(49) 7r(z1,...,z») = (z1
J...,z«-1,7).

Since the closure of X n fi(x0, r) in B(x0, r) is contained in X?9 we can define a

positive number 60 as follows. If

(50) x n B(XO, y)c=7r W n w;)

we let <50: = 1. Otherwise we let

(51) V.= inf |z»(jc)-y|>0.

We fix (5 >0 so that
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(52) 5<5Q.

Let i be an infinitely diflferentiable function from C to R such that #(w) = 0 if

|w|2>3, x(w) = l if |w|^5/2 and 0<ix(w)gl. We define a function ft on X D

B(x0, r/2) by

(53) ft(jc) = x(z»(x)-y)./(7c(z1(x),...,z»(jc))) if |z»(x)-y|«50

and

(54) ft(jc) = 0 otherwise.

Then

(55) 3h*dzl *;-*dz"v ' z" — y

is a 5 closed (n, l)-form on X n B(x0, r/2) which is square integrable with re-

spect to the metric

(56)

Since X n B(x0, r/2) is a relatively compact complete Kahler domain in W9 by

Corollary 1.7 there exists a square integrable (n, 0) form 0 on X n B(x0, r/2)

such that

(57)

Hence letting g=g1dz1 A ••• A dzn we get

(58) 3(ft-(z»-y)^1) = 0.

Therefore h — (zn—y)gl is a holomorphic function on X n B(x0, r/2) and it coin-

cides with /on FFy n X n jB(x0, r/2). Note that by the hypothesis xt is a point
through which every holomorphic function on X n B(x0, r/2) can be continued

analytically to a holomorphic function on V. But this contradicts the fact that

h~(zn — y)gl is holomorphic on X n B(x0> r/2) and, by (48) combined with the

theorem of identity, cannot be continued analytically across d(X*1 n Wy) n V.

Q.E.D.

By the theorem of Docquier-Grauert [3] we have

Corollary 2A Let M be a Stein manifold and X be a domain with C1-

boundary in M. Then X is a Stein manifold if and only if X has a complete

Kahler metric.
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The corollary generalizes Satz C of Grauert [4].
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Added in proof-. The author has obtained in a forthcoming paper 'Analyticity of com-
plements of complete Kahler domains' that if X is a domain in a complex manifold M and
M-X is a regular C^submanifold of real codimension 2, then X is pseudoconvex (equivalent-
ly, M-X is a complex submanifold of M).


