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The Theory of Vector Valued Fourier
Hyperfunctions of Mixed Type. II

By

Shigeaki NAGAMACHI*

Absiract

The soft resolution (Zo,n, ) of the sheaf Ok, of rapidly decreasing holomorphlc

functions of (%,/) type is constructed. Using the above resolution, we prove Hg(V, Ok,z)
=L(Ox1(K), E).

§1. Introduction

In the first part of the present paper (S. Nagamachi [4]),which
will be referred to as [I], we defined the mixed type Fourier hyper-
functions which take values in a Fréchet space E. The purpose of this
second part is to prove that the space Hg(V, E@kl) of E-valued Fourier
hyperfunctions with support contained in a compact set K is isomorphic
to the space L (O (K), E) of continuous linear mappings of O, (X)
into E. We proved this theorem in [I] only for E={ (Theorem 5. 13
of [I]).

In Section 2, we study the Fourier transformation for slowly increas-
ing C® functions and rapidly decreasing distributions. In Section 3, we
prepare the theory of cohomology with bounds in an appropriate form.

In Section 4, we construct a soft resolution of the sheaf (, of

rapidly decreasing holomorphic functions (Theorem 4. 9),

0—)61:; z*”g 0, 0)—> ->g(o n)—>0

where G%,, is the sheaf subordinate to the presheal {G{,, (2)} of

(0, p) -forms whose coefficients are rapidly decreasing distributions in £

Communicated by M. Sato, October 27, 1978.
* Department of Mathematics, Faculty of Engineering, Tokushima University, Tokushima
770, Japan.



66 SHIGEAKI NAGAMACHI

(Definition 4.1). To do this, we use the method similar to that devel-
oped in 7.6 of L. Hérmander [1], that is, the duality arguments, using
the property of the Fourier transformation (Propositions in § 2) and the
estimate of the solutions of certain system of linear equations with poly-
nomial coefficients (Proposition 3.5, which is an extension of Theorem
7.6.11 of L. Hérmander [1]).

Using this method, we construct also the following resolution of
O, on Q¥

O—)@lk,tﬁg(o,mi“'ig(o,n)“"o,

which is an extension of Theorem 4.11 of [I], where the resolution
has been obtained only on the open subset £ of Q*' satisfying a certain
condition.

In Section 5, we prove H2(V, %0, =L (0. (K), E) (Theorem 5.7)
using the Serre-Komatsu duality theorem and properties of tensor pro-
ducts of E with nuclear Fréchet spaces.

We continue to use the same notions and notations as those in [I].

§ 2. Function Spaces

In this section we study the Fourier transformation for slowly

increasing C* functions and rapidly decreasing distributions.

;
Definition 2. 1. Let K be the closure of [[(/;XB) in Q%
£=1
where I'; is the strictly convex closed cone in R*!*! whose vertex is
at the origin and B; is the closed ball in RY“ whose center is at the

origin.

In this section we always denote by K the compact set defined in
Definition 2. 1.
We identify €™ with R* and denote by <{x,7) the inner product in

2n
RM, i.e., <l‘, 77> = Zl xﬂ?i.

Definition 2.2. Let /Ax.(3) = sup (—<x,7>+elz|). Define
reKNR2?

Ko={1€R™; hyo () <oo} and K°= [[ (I'¢xR%), where I%=

i=1
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{pe R**%; Lz, 9> >0 for all 0z£x<T}.
Proposition 2.3. K°= U K;.

Proof. Let 7,= (& 8;) €Y X RY. Then

hre(m) = sup (—<z,1>+elz|)

zEKNR2"

=33 sup (e adelal) + 3 sup (= Coo B +elmi)

i=1z;€T;

J J
ZE hre(a:) +§ hs,e(B:).

hge () <oco implies that hp,.(a;) <oo for all i and this shows that
{xiyy ;>0 for 0%z, E1"; because if {x;, @, >0 for some 0z, =T,
then —{¢xy, a;>+eltx;| tends to infinity as £—>oo, this is a contradiction.
Thus we have K°DKZ and K°D U .,K?. Conversely if 7€ K°, then
let inf {xi, ;> =0,>0 and choose £>0 satisfying e<(0; for all 4.
Thegevl;é[zﬁ;;e —<txy, ) +eltx; 1 <0 for x; €77, |x;l=1 and £2>0, con-
sequently /ir, . (a;) <0 for all 7. Since hgp,:(B:) oo for all 7, hg(7)

3 J
=3 hrye (@) + z=]1 Ba,e (8) <oo. Thus we have K°C U o K2,

Proposition 2.4. If 7= ((a, B, -, (4, 8)) €Ki, then ((t,a,
siBy), o, By, i8)) €KE for .21 and arbitrary real s;, 1<i<j.

Proof. 7Kg is equivalent to Ar, . (a;) <oco for 1<i<j. Since

hr,e (o) = sup (=L, a>+8)s, hr,:(a;) <oo is equivalent to
r, &l |zl=1,520
inf <{x, a;y=e. inf  <{x;, a;>=¢ implies inf  {x, L y=¢
2;&T 4, | 25| =1 zi€l, |254=1 i€l |zii=1

for #;z21. Thus we have ((t;ay, 80, -+, (G, s;8;)) €KZ.

Corollary 2.5. Let Int K{ be the interior of K;. If 7= ((au, By,
-, (o, By)) € Int K2, then for £,2=1 and arbitrary real s, 1=i<j,
7(t, 5) = (L, 8, -, (Hay, siBy)) € Int K3,

Proof. If ne Int K¢, then there exists a neighbourhood 1 of zero
such that 7+ VCKj;. By Proposition 2. 4 we have 7(¢, s) + V (¢, 1) CK§,
where V(¢ 1) ={£(z,1); £V} is a neighbourhood of zero. Thus we
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have 7(¢, s) € Int K§.

Propositien 2.6. Let 0<0<le. Then K7 is strictly contained
in K5, that is, the distance between K and the complement (K7)°
of K§ is positive. Therefore K2C Int K5.

Proof. Let 7€K? and ec=C" with |ej]<e—0. Since 7€K? is

equivalent to inf {xyy ;=€ for =1, -+, j,
€, |24)=1

inf <z, a;+er= inf <x,a>— sup {x e
2 €0, |24} =1 z;€T, |25]=1 zi€0, |24]=1
=e—(e—0) =0,

Thus we have shown that 7+e=Kj for all 7€ K¢ and |e|<e—0. This

shows that K¢ is strictly contained in Kj.

Proposition 2.7. Let f be a C¥ function with support contained
in KNR™ Suppose there exist positive constants 0 and C such that
| Df(x) |<C for all |«]/<<N. Define

j"(c) — (271.) —-n j ei(x, C>f(x> dx .
Rlﬁ

Then f(§) is an analytic function defined in {{€C®, Im {&Int K}
Sfor any ¢>0, and satisfies

@D | Q) |=Clehxs™ /(14 €)Y

Sfor some constant C,>0 and Im € K..
Proof. Let Im¢eK?. The inequalities

TSR [ ecemomnme D (s [d

<C”e’”‘"(lmc)

imply that f(&) is analytic in Im¢eInt KO and satisfies (2.1) for
Im ek,

Corollary 2.8. Let fe %.(K) (Definition 2.14 of [I]), then
J (&) is an analytic function defined in {£ < C*; ImEc K° and satisfies
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| (O I=Cr,ee™me@m0 /(1 4+ [C)Y

in Im € K¢ for any ¢>0 and N >0, where Cy. is a positive number

independent of .

Proof. The corollary follows from Propositions 2.3, 2.6 and 2. 7.

Proposition 2.9. Let K be the set defined in Decfinition 2.1.
For any 0<e<1, there exists an 7.€Int K? satisfying |7./<Ae for

some positive constani A notl depending on e.

Proof. Let €K and A=|yl. Define 7,=27 for 0<e<1, then
[7:] = Ae and

hgee () = sup  (—<x, e>+2elx|) =chg. () <oo.

z=EKNRI"

This shows that 7, € Ke.C Int K¢.
Proposition 2. 10. Let NZ=3n, and let ¢($) be an analytic

Junction in {{&C™; Im {cInt K2} which satisfies

1 .
Igc,_._j hg.c(Im?)
1O I=C e ¢

Jor ImZeK:. If we define
2.2) g = -ﬂj ¢ ©g@)dE for qeInt KO,
R +iy

§(x) is a C"™ function with support contained in KN\ R®, satisfying
| D% (x) | <D™ for some constant M and 0= .As, where A is the

constant appeared in Proposition 2.9.

Proof. The inequalities

lg(x)|=]2m)~" LM e e g (E41) dE|

<cre= (19 +in |z

/\Ce<-b,rl) e"-l(,e(//)
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hold for 7€Int K. x&K implies z, &I, or y,&B, for some [, k.
Hence there exists o, €777 such that {z;,, a;><<0 or y; satisfies {yi, sy;>
>hg, e (syr) for large s>0. Since (2.2) is independent of 7&Int K2 by

the Cauchy-Poincaré theorem, we have, for large s>0,
2.3 1§ (x) |=Cexp Kz, ta) +< Y&, — Y&+ b5, e(—58)
+i\;.:: {zi, A 'T'i;: yi, B +.§ FIICHIR

where we have used the facts that Ap () <0 and 7= ((a, ),
(ta, B1), ++y (s, sYK) > s (a4, B5)) €Int K? for large ¢, s (Proposition
2.4). The right hand side of (2.3) vanishes as # or s tends to infinity.
Thus we have g(x) =0 if x&£K.

Let !a|<<N—3n. The inequalities

@4  ID9@|=@7| [ eeveo (—ign)g @ +inds

< Ce®m ghmem
< Ce!'*"" 1l ghmic
hold for 7=7.€Int K7 such that |7.|<d= Ae by Proposition 2. 9. Hence
@9 DG (x) =M ™!

holds for some constant M >0.

Proposition 2.11. Let f be a C" function satisfying the condi-
tions in Proposition 2.7, then f=f.

Proof. Let y<Int K2, then e “”f(y) is rapidly decreasing. There-

fore we have

f@ =en= |

RZ""F':’]e o <>< JRZ" ei(y’ {>f(y) dy> dc
=en |

oK <o, q>< J‘ iU Pe=®M £(y) dy) 43
RBn Ran
=f(x).

Proposition 2.12. Let g({) be an analytic function satisfying
the condition in Proposition 2.10. Then §=g.
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Proof. Let £=¢&+41i7 and 7€Int Kg, then ¢(xr+77) is integrable

with respect to x. Therefore we have

1O =@ [ o[ eng(az)du

n iy

= (2m) ~* j e ™™ ”>e“"’5>< J e P g (2 4-17) dx) du
R

Ron

=g(E+in) =9().

Proposition 2.13. Let feF.(K), we define

(2.6) L l,e= LB JF@) [Pemtmedmnd (1 1 2D ¥d

K]
then there exists a seminorm |fllus= sup |e*'D*f(x)] of F.(K)
zER™, |la!SM

such that | f|y.e<C|fllus.

Proof. The inequalities

| e—hx,a(lm:)ca]?(c) !

= 1 | [ etk (dmd) Hiz, :>Daf(x) dr

(27‘:)" I JRren

< __l_ | e(eImD—eiz| yica, ODYf (x) dx l
2m)" | Jgen

< 1 [ jeDef(a)lda

- (271')" JR2®

=Gl flws,

for 0<<0<e and Im { €Kg, show that
e~ (14 [ FO IPSC | Flzs .

Then we have

Flhoame= j ePsAmE (1 4+ |C D) V=0 F(C) 'dA

Re" +iK;
=<C|fl¥.s.
Thus we have, for M=N+3n and 0d=¢/2
NAry-<eovi
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Proposition 2.14. Int K= U;..K5.

Proof. IntK7D U ;K5 is clear from Proposition 2.6. Let 7€ Int K2,
then there exists a positive number 7 such that for every e=C" with

ie|<7,7+ecs K. Thus we have
0= sup (=<, s +epy+e)

T & |z =1, le;|=r

= sup (—<x,ap+e+71).

el |74 =1

This shows that 7€Kg,, and Int K2C U;..K5.

Proposition 2.15. Int K7 is a convex set and hg.(7) is a

convex function in Int K¢,

Proof. Let & yp&Int K2, then there exist ¢>>¢ such that & 7€ K5.
For A, u=0,A4+ =1, we have

2.7 hxsAE+un) = LS (—<Lx, A&+ uyy+0|x])

= sup (—Xz, & —ulz, 1>+0@A+n) x|

z€KNR™
SAhis () + thi (1) oo,
This shows that Ad+uneK§CInt K. Hence Int Kf is convex. The

equation (2.7) shows that Ag;(7) is a convex function defined in K3,

hence A (%) is convex in Int Kg.

Propositien 2. 16. Ay (1) is Lipschitz continuous in K¢, that is,

ke (1) —he (7)) ISClyp—7']

Sor some constant C.

Proof. Let  Ihp, e (a;) = sup (=< ap+elel)  and  hp,.(8)
zi&l;
= sup (—<¥i, A +¢€ly:]). Then
yi€B;

e = 3 hre(@) + 3 b8

where 7= ((a;, 8)), -, (@, 8;)) and 2= ((x;, ¥, == (x5, ). Let |B]
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be the diameter of the ball B;, We have

IhB,-.a(Bi) ’_]LBi,E(B;.) {g sup |<JCL BL—B:/\Ig*BLI;BY-—B:J .

;&8

Since 7€ K¢ implies that fAr, () =0 for all 7, we have
g () —hye (1) |ISClyp—7']

where C=max ({B;).

§ 3. Cohomology with Bounds

For the later use, we develope the theory of cohomology with
bounds on the pseudoconvex domain £ in C", which is an extension of
what is developed in 7.6 of L. Hérmander [1], where the case £=C"
is treaded.

Here we use the same notation that is used in 7. 6 of L. Hérmander
[1]. We denote by QI “ the covering of €* which consists of the cubes
U® with side equal to 2-37 and center at g-37*, where ¢ runs through
the set I of points in €" with integral coordinates. For every v and ¢
we can find precisely one ¢’ such that U’ contains the cube with the
same center as UZ™ but twice the side: we set p,,.,¢g=¢’. More

generally if y<y1, we define
O, 00 = Opyv+10vr1,v22" " Ou-1.24 -
Let 2 be an open subset of C", then YUY NL={UPNR;g1} is
an open covering of 2. We also define
2= u{UP, UPCR  for ¢ =0,.9)
and
.= {8, dist (g, £°) >¢}
where dist (2, £ is the distance between the point = and the comple-
ment £2° of 2. We use the abbreviation 2% for (£.)”"
Let P=(P;y),j=1, -, p, k=1, -+, q be the matrix with polynomial
entries, and consider the sheaf homomorphism
(3.1) P:0% - O

defined by the mapping (fi. -, f) €0%to {3 Pjufitb-. Let Rp be the
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kernel of the sheaf homomorphism (3.1). It is known that R, is a
coherent analytic sheaf and finitely generated by the germs of g-tuples

Q= (Q,, -, Q,) with polynomial components such that
a
]Z_le,kQ;.-=0, J=1,, p.

(See Lemma 7.6. 3 of L. Hérmander [1].)
If ¢ is a continuous function, we define C° (U Y N2, Rp, §) as the
set of alternating cochains ¢ = {c,}, s&€I°"" where ¢, I"'(U”N 2, Rp), and

lele=, % euftetda<oo

+1 JUPne

We define of,:C(UY N, Rp, $) >C (U NL, Rp, ¢) by setting

(0 4c)s equal to the restriction of ¢, o, 60 t0 U,

Proposition 3.1. Let ¢ be a plurisubharmonic function in an
open set V in C", and £ be a pseudoconvex domain contained in V.
For every cochain ¢c€C(UYNV,0,d) with 0c=0, one can find a
cochain CIECJ—I(CLL(H—G - ngv.y—o‘—l’ @, (p) S0 that 66":0;:':»4.6_16‘ and
(3.2) e’ ly=Kllell, .

Here K is a constant independent of ¢ and c, and ¢ is defined by
$(2) =¢(2) +21log(1+|2[).

We prove this in a way similar to Proposition 7. 6. 1 of L. Hormander

[1], so that we need the following lemma.

Lemma 3.2. Let £ be a pseudoconvex domain and let 2’ be a
relatively compact subset of L. For every plurisubharmonic function
¢ in @ and every fE Ly 4.1y (8, ¢) with 8f=0, one can find uc Ly, ,, (2,
loc) with Qu=f and

f Iulze“"dngj | f|%e-*dA
2/ 2

where K is independent of u and ¢.

Proof. See Lemma 7.6.2 of L. Hérmander [1].
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Proof of Proposition 3.1. We introduce the space C?(QU NV,
%, P) of all alternating cochains ¢ = {c,}, s€ I*™', where ¢,& Ly, o (UY
NV, 4), ;=0 and

leli= T fyny lelie tdd<oo.

lsl=p

We wish to prove that if 0c=0(p>0). then one can find c¢'&
crr et N @ttt Zo, ) so that O’ =0F,.,_,c and (3.2) hold.
For ¢g=0, this assertion is precisely Proposition 3.1. We shall prove it
assuming, if p>>1, that it has already been proved {or smaller values of
P and all q.

Choose a non-negative function y<Cy(U{) such that > ,7(z—¢)
=1. Now set b;=> % (z—9)c,s sE 17, then we have §b=c and

ibslzgz X (Z—g) Icg.slz 5
hence
lels=lells.
Let 86 be the cochain belonging to C*"'(UY NV, Z,.,, ¢) defined by
(0b)y=0b,=>" 0% (=—g) /\¢;;. Then we obtain with a constant K
1961, =Klcl, .

Now 006=006=0c=0. If p>1, we can by the inductive hypothesis
find a cochain &' eCP*(QUY 2PN P2 Z..,) such that 06

zpj‘pr_ggb and for some constant K,
1671, <K:|08],=KKi|cl|,.

Since 06, =0 and ¢ is plurisubharmonic, by Lemma 3.2 we can choose
bl €Ly, (UL, §) for every seIP™' satisfying U&P2CQ'*7% s

=0y p-2.v-p-15 SO that 86y =5} in UL and with a constant K,,

fe=0d2 .

AT ES o W
Now set
I
Then 0c¢’ =pF,,,_106=0F,, p_1c, and
0’ =0F 4 p-10b—00b" = 0F, 15106 — 00F, 53,1 p-1b’
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= pjjl’-f—p—lﬁb_ pj‘-}-p-—?,u-‘—p—] pfy-'.p_ng =0.

Summing up the estimates for &, b’ and b” given above, we obtain
cecr et n gttt Z o, ) and the estimate (3. 2).

It remains to consider the case p=1. The fact that §06=0 then
means that 06 defines uniquely a form f of type (0,¢+1) in V with
9f=0 and

[1Fpear<iperi<Kicls.

By Theorem 4.4.2 of L.Hérmander [1], we can find a form uz<
L% o (2,¢) so that du=f and

j u|te—tdA< j | flte—*da. .
2 2

Setting ¢; =b,—u, we obtain ¢/€C"(UYNL, %, ) and the estimate
(3.2).

Proposition 3.3. Let P be a matrix with polynomial entries
and & be a neighbourhood of 0. Then there exists a neighbourhood
2" of 0 such that for every uc(Q (2+2)" one can find vl (2 +2)°
satisfying Pv= Pu, and

(3. 3) sup [wI<CA+12))? sup |Pul,
2+z 24z

where the constants C and N are independent of u and z< C".
Proof. See Proposition 7.6.5 of L. Hérmander [1].

Proposition 3.4. Let a matrix P and an integer v be given.
Then there exist integers it and N such that, if ¢ is plurisubharmonic
in a pseudoconvex domain £ and for some constant C>0
(3. 4) i(z) —¢ (") I<C, lz—2'|<1,

then for every c€C* (UY NZ*, Rp, ¢) with dc=0,¢>0, A<y, one can
find ¢ €CTH U N Qe 1106, Rp, by) so that 0c’ =pf,c and for some

constant K

(3.5 e lev=Klcl, -
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Here ¢y(2) =¢(2) + Nlog(1+121?), c=2" and ¢=>+2n 37

Proof. We can also prove the proposition in a way similar to the
proof of Theorem 7.6.10 of L. Hérmander [1]. We shall prove it by
induction for decreasing ¢, noting that it is valid when ¢>>2%, since
there are no non-zero c€C° (U Y NY*’, Rp, ¢). Thus assume that the
theorem has been proved for all P when ¢ is replaced by ¢+1. By
Lemma 7.6.4 of L. Hormander [1], we have ¢,=Qd, for d=€C(UY
Ng*, 0" . By Proposition 3.3 and the condition (3.4), il s is large
we can choose d; € (U)" so that Qd; =Qd, =c, in U and

jUf”’ id: ]2(1 + izlg) _Ne—qs(z)dlgc J‘Ug)!cs,izg“‘f'(z)d]\
for s'=0p,,s and U¥C@**. Thus we have &/ €C° (U NLZ"* O, dw),
p)?j/xc:Qd/ and
“d, I'¢N§CII‘C‘[¢, .

Since dc=0, it follows that 6Qd’=Q0d’=0. Thus 6d'=d"C"* ' (UU®
NQ** Rq, by). and since 0d” =0 and ¢y is plurisubharmonic, it follows
by the inductive hypothesis that for suitable N’ and #'>>#x we can find
d"eC’ (U™ N24u" e, Ro, dv) so that 0d” =p¥ ,.d” and

12" oy, =Csll@” |9y -

Setting 7=} od' —d"€C (U N Q" 0e, OF, du), we have 07=pF .d”
—0d" =0 and

Irlen=Cisliel, .

Hence Proposition 3.1 shows that {for some #” >u’ and N” >N’ one can
fined v €C7H (U N QLY 11ye, O, ) so that ok ,.y=07" and

(3.6) I o =Cill7 | 85.=Cslic]ls .

Here we used the fact that £._,,, is a pseudoconvex domain contained

in 244, as e= Von 3% If we set ¢’ =Qy, it follows that
(’)\C, = QaT’ = Qp/?’ wl = Qpﬁ’,ﬂ"p/a:' /c’d, - p?f’, /:"Qd”/
= pf, ,,»Qd' = p/r /'”pjf/tc = pf/z”c .

Since (3.6) implies (3.5) for suitable x# and N, the proposition is
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proved.

Proposition 3.5. Let ' be an open set which is strictly con-
tained in a pseudoconvex domain £ of C* (dist(£’, £°)=6>0).
Given the system P there is a constant N such that, if ¢ is a pluri-
subharmonic function satisfying (3.4), then for all us(O(£2)? one
can find ve® (2')* with Pv=Pu and

(3.7) j |o]%e=* (1 + |2]) ~YdA<C j |Pulte=tdA
2 2
where C is a constant independent of u.
Proof. First, choose v so that 0>te=22"v/2r3'". By Proposition
3.3 we can shoose y<z# so that there exists an element z,& (O (U§*)*

such that Pu,=Pu in U{® cUPC L, and for some constants C and N

independent of # and g1
(3.8) jU;ﬂ)[uglze"b(l—}— 2D -*di<C Jw |Pul’e~*d2

where ¢’ =0,,9. Let ¢,4,=u, —u,. This defines a cocycle cC' (U*
N2 Rp, dy) and by (3.8) we obtain

3.9) lels=C” [ 1Pultevai.
2
Proposition 3.4 asserts that for some A>x# and N’>N there exists a
cochain ¢’'eC*(UPNL’, Rp, ¢y) such that dc’=pk,c|Q’ and
(3.10) e’ ey <C”llc]s, -

Here we used the fact that £’ is contained in £%% as 0>>re. This means
that if we set v=u,, ,+c;, in UP N, we define uniquely an element
ve(£2)% Since Pc;=0, it follows that Pv=Pu, and from the esti-
mates (3.8), (3.9) and (3.10) we obtain (3.7) with N replaced by N’.

§4. Soft Resolution of (.,

In this section, we define the space &’ (2) of rapidly decreasing

distributions, and using this space we make a resolution of (,,, that is,
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, 0o 00,
004> G0 >G> —>G0n—0.
Definition 4. 1. Let 2 be an open set in @*'. We denote by

G(2) the inductive limit lEn’KCQSCc(K) of 4¥,.(K), where K is a com-
pact set in £. We denote by &’ (2) the dual space of G(2).

Since the injection of G(2) into F (£) (Definition 2. 13 of [I]) is
continuous and of dense range, F’(£) is a linear subspace of G’ ().

Moreover, we have the following proposition.

Proposition 4. 2. An element of G'(R) belongs to F'(2) if

and onlv if it has a compact suppori.

Proof. Let TS ’(2). By the definition of the topology of & (£2)
(see Definition 2.13 of [I]), there are a compact set K in £, an integer
m=0, and a constant C>0 such that for all g F (2),

KT, ¢p|<C sup I D% (x) |e=1=1/m+D)

lai<m,zEKNC™

This implies immediately that {7, $>=0 whenever the support of ¢ is
contained in the complement of K, which means that supp 7TC K.

Conversely if T is an element of &’ (2) with the compact support
K. Let a(x) e4.(£2) be equal to one in some neighbourhood of K.
Then (T, ¢>=<T, ap> and if ¢, converges to zero in & (£), agp, con-
verges to zero in G(£). Therefore & (2) 24—<T, ¢> is continuous,
hence Te S’/ (92).

Proposition 4. 3. If 2 is a bounded open set in C" then G’ ()
=9 (2.

Proof. Tt is obvious, since G (2) =9 (2).

Proposition 4.4. Lei K be a compact subsel of Q"' defined in
Definition 2.1, and £ be a neighbourhood of K. For f& %' (), define

4.1 F© ={f e =05/ 2mn
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then (&) is analytic in {{€C™; |Im &|<e} for some >0 and there
exists an N satisfying |F(©)IKCA+1EDY for |ImZ|<e. The

equality
4.2) Soy= [ Fe+invE-inas

holds for ve % .(K) and 1€K° with |7]<e.

Proof. By the definition of the topology of & (£), there exists a
seminorm ||z satisfying |{(f, vD|<C|v|r 5 for some constant C,
where [|v]|z,ye= sup |D*f(x) |e 1" for the compact set L in £

rELNR2™, 1a\ SN

and ¢>0, N>0. If [Im&|<e, then

e~ O 1y e= sup |gap=ta. O gelx]
TELNRn, (2| SN

< sup (CH S+ [E) " <oo,

Hence f(&) =<{f, e *®>/(2n)™ is analytic in !Im&|<e and satisfies
FOISCA+eh™.  Since

v(z) = (2712)" [ eesvv@rina

by Proposition 2. 11, and the Riemann sum converges with respect to the

seminorm | - |z »e then

—_ 1 — iz, E4+1i) oy .
R L [CRDED

= LW FE+in T (E+in)dé .

Remark 4.5. The equality (4.2) holds when v satisfies | D% (x) |
<Ce™ for |¢j<N+3n and 0>>0 such that K§ has an element 7 satis-

fying |7]<le.

Let 8 be the Cauchy-Riemann operator defined by

51,:21"‘ 2 ui,,...,ipd—z-il/\"'/\dgip—)

0 <ip

w= 3 (0uy,..,/02,)dz,\dz, \ - \d%:, .

<, <dp, J
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If we identify forms # and w with vector functions # and w having

<Z> and (1011) components respectively, 5,, can be represented by

P,(D) where P,({) is a @)_(1511) matrix with polynomial entries,
and D=1i0/0x. It is known as the Koszul resolution that the following

sequence is exact:

0 AT O g, 4G B

PO, A Coker tPy(8) -0,

where A is the polynomial ring of the variable &= (&, -+, &) and ‘P,(&)
is the transpose of P,(—{) (see Example 4 in §7 of Chapter VII of
V. P. Palamodov [5]). It is known that QR:p, is generated by the
germs of the lows of the matrix P,.;({) (see Lemma 7.6.3 of L. Hér-
mander [1]). Since QR:p, is a coherent analytic sheaf, we have the fol-

lowing proposition.

Proposition 4. 6. Let @ be a pseudoconvex domain. If f&0'(2)
satisfies the equation 'P,(0)f (&) =0, then there exists a g<0O°(2)

satisfying (&) ='Pp,1 (L) g (&), where r= (pil) and s=<p:l_2>.

Proof. See Theorem 7.2.9 of L. Hérmander [1].

Delinition 4. 7. (The sheal of rapidly decreasing distributions.)
We dencte by &’ the sheaf determined by a presheaf {G’(2)}, where

£ is an open set in Q"L

For any locally finite covering {U,} of £, there exists a partition
of unity {@.} subordinate to the covering {U,N C"} such that all deriva-
tives of ¢, are bounded. Then ¢’ (£) is the section module of the
sheaf &’ and &’ is a soft sheaf.

Theorem 4.8. Let £ be a neighbourhood of a point z, at
infinity in Q8L If £E Gy (R) satisfies 0f=0, then there exists a
neighbourhood w of =. with 0C8Q and uec Gy, 1y (0) such that du=f

n w.
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Proof. First we choose a neighbourhood w of z, having the form
w=a-+Int K, where K is the compact set in Q"' defined in Definition
2.1 and a= R™

Let L be a compact set in £ containing w. Then f& %, (L)” and
satisfies, for some m>0, ¢>0, [{f, DI<C|Yllme for all e F. (L),

where J= <Z> Hence

(4.3) K IZClglme  for ¢pel(w)’,

J
where |@|lnc=2>. sup |D%;(x)|e ¥, If we can show that there
j=1 zeR, lajsm

exist M >0 and 0>0 satisfying

(4.4) I<f, ISCl 90w, for all veEGoap(0),

by the Hahn-Banach theorem there exists a w& G, ,_y (w) satisfying
{f, v>={u, dv), that is, du=f in w, where & is the dual operator of 9.
Let ve G (w)?, then suppvCa+ K. By the coordinate transformation
(translation) we may assume supp vC K. Then, by Corollary 2. 8, % (§)
is analytic for Im £ K° and satisfies, for any ¢>0 and >0,

1
() |<C,,— @m0 for Im&eK?,
vOI= (1+1n” )

Let 5,, be represented by P,(D), then by Proposition 3.5 there

exists an N such that for any v there exists a function V({) analytic

for Im £&1Int K3, and satisfying

Ppa(O)V(E) =P ()T ()

and

.fREn+iIntK§eIV (©) FemnetmO(1+ L[ ""dA

['Ppa (T (L) om0 (14 L)) " d A< 00,

=
= JRemiixg

where we have used the fact that Az .(Im &) is a convex (hence pluri-
subharmonic) function satisfying the condition (3.4) and R*-+iInt K2
is a pseudoconvex domain strictly contained in R*+iInt K (see Pro-

positions 2.15 and 2.16). From the above inequality, we have

ehxedm®  for Im e K.

1
V <C_— -
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Propositions 2. 10, 2.12 and the above inequality imply that V() =%,({)
for a C’ 7% function w, with support contained in K satisfying
loills-v-sn,34e<o0. From Propositions 3.5 and 4. 6, there exists a func-
tion @(§) analytic in {{e C*;Im¢<Int K5} and satisfying V() —% ()
—*P,()®() and

jRZH-riK;C }@(C) l‘a’e-mx,e(lmn (1 4+ }Clz) H_N/dl<oo ,

for some constant N’ depending only on P,({) and P,_,(£). This implies
that there exists a C*™¥ ¥ function ¢ with support contained in K,
satisfying (%) =¢ (£) and ||¢]l,—x s s4e<<00.

Considering the inequality (4. 3), if we take sufficiently large y>0

and small ¢>0, we have
ooy —Lf, vy =LF,"Py(D) ¢p =< P, (D) f, > =<0f, $>=0.

Let «€% (L) with a(x) =1 on a neighbourhood of w" R*. Define
v=af, then f,&%’(£) by Proposition 4.2, and {f, v>={f,, v)> for any
C" function v with support contained in @ and satisfying |v|,,.< co.

By Remark 4.5 if we take sufficiently large v¥>0 and small >0,

we have

IS, it =KF, v = <o, v0i*

=( [y Ve rmaice i iae)
< [ i Qe s
X _f !V($+iﬂ)]2(1+'§'z)v_zvd$
R2n

gclj

Ren+iKy,

|V (©) [Pem540m0 (14 [¢2) =¥

=C I"Ppes (©) T (C) [Pe~m0m0 (14 [C]%)"d A

R +iK
<C['Pps (D) 2|a,=C[FV a5 .

The last inequality follows from Proposition 2.13. Thus we have shown

(4. 4), and completed the proof.
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Theorem 4.9. We have the following soft resolution of the
sheaf Q.
74 5 4 5 5 4
4.5) 0—0k,i>G0,0 >G> =G0, —0.
Proof. Since the restriction of Q. or G’ to €C"is O or 9, re-

spectively, and it is well known that the following sequence is exact:

0 0
0—)@—)@20,0)—»- -—)e@fo,n)—»o .

In order to obtain the resolution (4.5), we have only to make it at

points at infinity. It is done in Theorem 4. 8.

Definition 4.10. Let K be the compact set in Q*' defined in
Definition 2.1. Define Ix.(7)= sup (x,7>—e¢lx}) and K= {n€ R*;
zeKNRn

Iy.e (1) <oo}.

Proposition 4.11. Let @ be an open set in Q"' containing K.

If feG’'(Q) satisfies the inequality |{f,vD|<C|v|xwye Sfor all

vEF (2), where |v|gwe= sup |Df(x) le 8!, then F(&) =
TEKNR®, |a| <N

(e ¥R/ (2n)™ is analytic in {{€C™; Im{cInt K} and satisfies,

for some constant C>0,

(4.6) IFOISCA+[E) e for ImleKy,.

Proof. Let {=¢&+iy and 7Kg, Then we have

e gme= _ sup _[CoeP e
zeKNR2", |a|SN

S+ [EDTerne,

Since (e7%™f e ¥=DY /p converges to —ize “®% as h—0 with respect

to ||k we for Im {&Int K, F(® is analytic.

Proposition 4. 12. Let F({) be an analytic function in {{€C™;
Im{eInt K¢} satisfying the inequality (4.6). Then F({) defines an
element f€ G’ (Q%Y) with support contained in K satisfying

fdy= LGmF(C)qT(C)dC for ¢eCy(R™).
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Proof. If ¢=Cg (R™), then ¢ (¢) is an entire function satisfying
for any y>0
16 (0 |<C e ™™/ (1+]E])",

where B is the support of ¢ and Az(7) = sup (—<{x,7)). Hence the
rEB

linear form

[ FOF@Qd=<f 8>

defines a distribution f. Let B be convex and BN K=¢, then therc
exists a vector 7€ (—K°) CKy, such that for some §>0

sup (z, D=Ly, —0l7|  for all yeB,

r=KNR

hence Ix.(7) +hz(n) <—0ln|. Thus we have

lim . FO)F©dt

t—oo Ren 4

<lim C /%t Jim C e~ ®¥"'=0 .

t—oo t—>o0

Hence the support of f is contained in K. Let L be a uneighbourhood
of K having the form of Definition 2. 1. If & F,(L) then ¢ (&) is
analytic in {{€ C*™;Im { & L°} and satisfies for any >0 and &>0

|J () |<C ehee™O /(14 [C1)*  for ImCeLl.

Hence it follows from the formula

[ Fosox
Rer+iy

that the distribution /" can be extended to ¥ .(L). Let a€ %.(L) such
that @(x)=1 in a neighbourhood of K, then ave F (L) for v F(Q*Y).
Since the support of S is contained in K, we have {f, v>={f, av).
This shows that f& 7 (@Y.

Let £ be an open set in Q%' which has the form «-Int K, wherc
K is the convex set defined in Definition 2.1 and e C"

Theorem 4.13. I/ 0,v=0 for vE5F 4, (2). then there exists
UEF -0 () salisfying 0, ,u=wv.



86 SHIGEAKI NAGAMACHI

Proof. We represent 8, by P,(D). Since all the spaces of the

sequence

F (@) F (@) F ()

are FS spaces (see Remark 2.27 in [I]), we have only to show that

the dual sequence

g/(g)qs‘l’p-l(m g/(g)r ¢Pp(D) g/(g)s

is exact and the range of ‘P,_,(D) is closed.
Let g 47 (£2)7, then there exist a convex set of the form &5+ L
contained in £ and constants N >0, ¢>0 such that the estimate

Kg’ v>I§C"7}“b+L,N.e

holds for all ve & (£)". We may assume that L is also a convex set
of the type in Definition 2.1. By coordinate transformation (translation)
we may also assume 6=0. Then, by Proposition 4.11, §({) is analytic
in {{€C*;Im {<Int L} and satisfies

GO ISCA+ (LN for ImCeLs,.

The equation ‘P,_;(D)g=0 implies ‘P,_;(—{)§ () =0 in {{C*";Im
&Int Lg,}. Then by Propositions 3.5 and 4. 6, there exists an analytic
function F({) such that ‘P,(—{) F() =§() for Im{<Int Ly, and

satisfying for some y>0
[FOISCQA+|E] ez for Im{& Ly .

Here we used the fact that I (%) is convex and Lipschitz continuous,
and L, is a convex set contained strictly in Lg,. This shows that
there exists f& %’ (£)° such that

r

S Pe(D)o)= LT OPOT©dL

JR?2
= ;m,,-:Pk(—C)F(C)'TJ(C)dC

r

= | .. 00v©d=C, v

for all ve ¥ ,(K), that is, *P, (D) f=g.
Next we prove the closedness of the range of ‘P,(D). Assume
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F;—Fin 4’ (2) with F;='P,(D)G; for GG& 4’ (£)". Since the sequence
{F;} is a bounded set in the DFS space &’ (&), there exist a compact
set L in £ (we may assume that L is a convex set of the type in

Definition 2.1) and constants C>0, ¢>0 satisfying

|F; () |<SCA+[E])Yeleedmo for Im{eLy,.
By Proposition 3.5 we can choose ¥, (&) satisfying
(4.8) 7,0 |<C (A + )Y eleemd for Im{eLlfy,,.

Since {¥;({)} forms a normal family, there exists a subsequence which
converges to ¥ (£) which also satisfies (4.8). Thus there exists
Ge9’' (2" satisfying

(G, Py(D) vy = Lm FOP@TOL

=1lim 'Po(—O)¥,;,, T ()dC

ks JR2n+iy

=lm{F;, vy=LF, v).
k—>co

This shows that F='P,(D)G, that is, the range of ‘P,(D) is closed.

At the end of this section, we give an extension of Theorem .11

of [I].

Theorem 4.14. We have the following soft resolution of the
sheaf O, on "t

4.7 0—>@k,r‘>g(o,o)é"'ﬁg(ﬂ,n)”)o-

Proof. Since the restriction of @, or F to €" is () or & respec-

tively, and it is well known that the following sequence is exact:

0
0'_)@_)8(0,0)%""")6(0,11)*0 .

In order to obtain the resolution (4.7) of (5“, we have only to make
the resolution at points at infinity. Since the point 2. at infinity has a
fundamental system of mneighbourhoods whose member has the form

a+Int K, Theorem 4. 13 gives the resolution at points at infinity.
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Remark 4.15. In the above theorem the resolution is obtained on
the whole Q"', while in Theorem 4.11 of [I], it is obtained on the
open subset £ which satisfies the condition (i) of Definition 4.5 of [I].

§ 5. Fourier Hyperfunctions with Compact Supports

In this section, we show that the space Hx(V, E@Vm) of E-valued
Fourier hyperfunctions is isomorphic to the space L (O, (K), E) of con-
tinuous linear mappings from (. ;(K) to a Fréchet space E.

Let K be a compact set in é[IJID"" and V be an @, -pseudoconvex
neighbourhood of K in Q"% From Theorem 5.8 and Corollary 5.10
of [I], we have HZ2(V, Q) =0 for 0Zp<n—1 and H*(K, Ok, =0
for p=1. Therefore from the long exact sequence of cohomology

groups with compact supports,
0->H;(V—K, Q) >H(V, Q) >H" (K, Oi,1)
LH\V =K, 000 SHAV, 0,0 ~H'(K, On)
—H;(V—-K, Qu)) >H:(V, Ox,) >+,

follows that 0:H°(K, Ow) =H;(V—K, Qi) and Hi(V—K, Q1) =0,
for n=2.
Since by Theorem 4.9 we have the soft resolution
0 01> Gloy> Gy 2+ 25 Gy 10 |

Hi(V—K, Ok,) can be represented by the first cohomology group of
the complex (& ., (V—K), 8). Then 0 can be represented as the
following continuous mapping. Let U be an open neighbourhood of K and
a€ G, (U) such that =1 in W N R*, where W is some neighbourhood
of K in U. The map

0v.a 3H0(Ua Qk.L) —{ue 520,1) (V—-K) ;5u:O}

defined by 0y..(f) =0 (af) is continuous and induces a continuous map
of H'(U, Qk,) into Hy(V—K, Q). These maps define the map § on
the inductive limit H°(XK, Q1) =E1_1>H°(U, Or) of H°(U, Q) and

USK
therefore ¢ is continuous. Moreover we can show that § is an open

mapping.
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Proposition 5.1. Let n=>2. Consider the dual complex,

_n—z 5n—x >
.1 = 0,09 (V“K)g—’ F 0ty (V—=K) —>Y g,0 (V—=K)—0
¢ _ J _ 0

’ —04 ’ —0o -,
Ty (V—-K) «— Jun(V—-K) ~—F (0 (V-K)<0.

Then the ranges of the operators are all closed.

Proof. Hi(V—K, O;) =0 shows that the range of —0, is closed,
and from Theorem 5.11 of [I], it follows that the range of 8, , is
closed. The closedness of ranges of other operators is a consequence of

the so-called Serre-Komatsu duality theorem (see Theorem 4.7 of [I]).

Proposition 5.2. Let n=2, then H' (K, Qi) and Hy(V—K, Ok.1)
are DFS spaces.

Proof. Proposition 2.7 of [I] shows that H*(K, Qi) = O (K) is
a DFS space. S (V—K) is a DFS space as the dual space of an FS
space & . (V—K) (see Remark 2.27 of [I]). Since a closed subspace
and a quotient space (by its closed subspace) of a DFS space are also

DFS spaces, it follows from the fact that the range of —@, is closed,
that Hy(V—K, Ok,) is a DFS space.

Theorem 5.3. Let E be a fully complete space, and let F be
a barrelled space. Let f be a linear mapping of a subspace E,CE
onto F. Suppose that the graph of f is closed in EXF. Then f is

open.
Proof. See Theorem 4.10 of V. Ptak [6].

Propositon 5.4. Let n=>2, then §:H'(K, Q) >HH(V—K, Q1)

is a homeomorphism.

Proof. It is known that DFS spaces are fully complete and bar-
relled spaces (see Theorems 4. 3.28 and 4.3.40 of H. Komatsu [3]).

Since (' is a one-to-one onto continuous mapping, it follows from Theorem
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5.3 that § is a homeomorphism.

Proposition 5.5. Let n=2, then H"'(V—K, O =0 (K)]".

Proof. H"'(V—K, (O, is represented by the (72—1)-th cohomo-
logy group of the complex (& . (V—K),®). It follows from Proposi-
tion 5.1 and the so-called Serre-Komatsu duality theorem (Theorem 4.7
of [I]) that

H" ' (V—K, Q) =[H:(V-K, Qe 1" =[0:.(K)]".

Let E be a Fréchet space. From the exact sequence,
(5.2) o HE (V, 20, ) > H?(V, %04,)
—H?(V—K,®0,,) >H¥*(V,50,,) >
and the fact that if Vis O, ,-pseudoconvex, H?(V,20,,) =0 for p>>0 (see

Theorem 6. 6 of [I]), it follows that H%(V,0,,) =H"*(V—K, %0,.),
for n=2.

Proposition 5.6. Let n>2, then H" ' (V—K, ®0, ) = H* (V—K,
e ®E for a Fréchet space E.

Proof. We represent H" Y(V—K, @k,z) by the (7—1)-th coho-

mology group of the complex,

Ones On1
> F ety V—=K)=> F 00y (V—=K)——>F (o, (V—-K) 0.

Since the range of 8,_, is closed by Proposition 5.1 and & .-y (V—K)
is a Frécet nuclear space, we have the exact sequence

(5.3) 0—im 0,_,—ker 8,_,—ker 8,_,/im 8,_,—0

where all the spaces are Fréchet nuclear spaces. Since the tensoring
by ®E is a exact functor (see Theorem 6.5 of [I]), we have the fol-

lowing exact sequence:
(5. 4) 0— (im 8,_g) X E— (ker 8,_) QE—>H"(V—K, 0, ) RQE—0.

If we denote the closed linear hull by [ ], we have
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ker Gni®1p) =[f R e F quy(V—K)RE;5,_f=0]
= (ker 51;—1) ®E .

By Proposition 43.9 of F. Treves [7], we also have im(5"_2®lg)
=(im5,,_2)®E. Since H"'(V—K,*0,,) can be represented by the
(n—1)-th cohomology group of the complex (F¢,.,(V—K, E), %9) and
F 0 (V=K, E) = F(V—K)RE and %3 =3R1;, we have H" (V—K,
50, = H'" W(V=K, 0,.) QE.

Theorem 5.7. Let E be a Fréchet space and K be a compact
i ~
set in 1] D". Then Hyx(V,?04) =L (O, (K), E).
i=1

Proof. By Proposition 50.5 of F. Treves [7], we have L(Q,,(K),
E);[Qk,L(K)]’G?)E. Propositions 5.5 and 5.6 show that [ .(K)]’
RE=H"'(V—K,*0.,), for n=>2. Thus we have Hx(V,*0,))
=L(Ov:i(K), E), for n=2.

If n=1, H (W, O,,) =0 for any open set W in Q"' satisfying the
condition (i) of Definition 5.1 of [I] (Theorem 5.11 of [I]). Consider

the dual complex,

_ )
0= g0 (W) 4,y (W) —0
) )

’ —0 ’
0c=Flo,y W)= (0 (W) <0,

Then the range of 0 (=% o, (W)) is closed, therefore the range of
(—0) is closed and

O (W) = [HY (W, Qu) 1.
The mapping 0 of the exact sequence
0
0—>H(K, On) >Hi(V =K, 01,) SHL(V, Or) =0

is continuous since it is induced by the continuous injection of ¢’ (V—K)

into ¢’(V). Therefore the dual sequence
- % &%
0=, (V) 204, (V = K) > [, (K) 1" -0

is exact. Since all the spaces of the above sequence are Fréchet nu-

clear, we have the exact sequence
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0-04,(V, E) =041 (V—K, E) >[04 (K) ]’ QE—0,

where we used the fact that O, (W, E) =0, (W) @E for an open set
W in Q%' ((6.6) of [I]) and the tensoring ®E is an exact functor
(Theorem 6.5 of [I]). Thus we have

H3(V, 50,0 =0,.(V =K, E) /0, (V, E) = [ 04, (K) ]’ RE
=L (,@lc,l (K) ) E) >

for n=1.

Corollary 5.8. Let 2 be an open set in ﬁ D", Then *QR, (2
i=1
=L (0 (2), E)/L(Qr:(02), E).

Proof. The corollary follows from Proposition 6.10 of [I] and
Theorem 5. 7.

Without changing the proof of Theorem 5.7, we can prove the
following theorem, which corresponds to Theorem 5.12 of [I] in the

scalar valued case,

Theorem 5.9. Let K be a compact set in Q%' and V be an
O, ,-pseudoconvex domain containing K. Suppose HP (K, Or) =0 for
p=1. Then we have

Hi(V,%0,,) =L(Qw.(K), E).

Remark 5.10. We can also prove H%(V,%0,,) =0 for p=#n, for
a compact set K satisfying the condition of the above theorem, in the

same way as Theorem 6.8 of [I].
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