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The Theory of Vector Valued Fourier
Hyperfunctions of Mixed Type0 II

By

Shigeaki NAGAMACHF

Abstract

The soft resolution G£?'otp), d) of the sheaf Ok,i of rapidly decreasing holomorphic
functions of (k, /) type is constructed. Using the above resolution, we prove ^(V^O^i)

§ I. Introduction

In the first part of the present paper (S. Nagamachi [4] ) ,which

will be referred to as [I], we defined the mixed type Fourier hyper-

functions which take values in a Frechet space E, The purpose of this

second part is to prove that the space H£(V,EOjc,i) of ^-valued Fourier

hyperf unctions with support contained in a compact set K is isomorphic

to the space L ( Oki t (K) , E) of continuous linear mappings of 0&>Z(/C)

into E. We proved this theorem in [I] only for E=C (Theorem 5.13

of [I]).

In Section 2, we study the Fourier transformation for slowly increas-

ing C°° functions and rapidly decreasing distributions. In Section 3, we

prepare the theory of cohomology with bounds in an appropriate form.

In Section 4, we construct a soft resolution of the sheaf Ok.i of

rapidly decreasing holomorphic functions (Theorem 4. 9) ,

where S[0tP) is the sheaf subordinate to the presheaf {S[^P) (•$)} of

(Q,p) -forms whose coefficients are rapidly decreasing distributions in J2

Communicated by M. Sato, October 27, 1978.
* Department of Mathematics, Faculty of Engineering, Tokushima University, Tokushima

770, Japan.



66 SHIGEAKI NAGAMACHI

(Definition 4. 1). To do this, we use the method similar to that devel-

oped in 7. 6 of L. Hormander [1], that is, the duality arguments, using

the property of the Fourier transformation (Propositions in § 2) and the

estimate of the solutions of certain system of linear equations with poly-

nomial coefficients (Proposition 3. 5, which is an extension of Theorem

7.6.11 of L. Hormander [1]).

Using this method, we construct also the following resolution of

OM, on Qk'1:

which is an extension of Theorem 4.11 of [I], where the resolution

has been obtained only on the open subset Q of Qk'1 satisfying a certain

condition.

In Section 5, we prove H£(V,EOk>l) =L(Oklt ( K ) , £) (Theorem 5.7)

using the Serre-Komatsu duality theorem and properties of tensor pro-

ducts of E with nuclear Frechet spaces.

We continue to use the same notions and notations as those in [I].

§ 2. Function Spaces

In this section we study the Fourier transformation for slowly

increasing C°° functions and rapidly decreasing distributions.

Definition 2.1. Let K be the closure of H (A X 5<) in Qk'\
i=i

where A is the strictly convex closed cone in R2ki + li whose vertex is

at the origin and Bt is the closed ball in Rl< whose center is at the

origin.

In this section we always denote by K the compact set defined in

Definition 2. 1.

We identify Cn with R2n and denote by {x, ffy the inner product in
271

R2n, i.e., <*,?> = £>,%.

Definition 2. 2. Let hKts (??) = sup (- <>, '/?> + s Ix |) . Define

\hK.e(if)<oo} and X° = ft (A° X fi1'), where r? =
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for all

Proposition 20 3. K° = U S>QK^ .

Proof. Let ^ - (a,, ft) e T? X JR1'. Then

Ajr f*(tf)= sup (-0,

= S sup (-<>*, ai> + £|^|)+X] sup (-

hK,s(7l)<^°° implies that hr{i£ (at) <oo for all / and this shows that

(xiy a,»0 for Q^xi^Fi because if <X-, a;><SO for some 0=^=^G/T
<,

then — <^f, CKi]>4- e|tefl tends to infinity as £-*oo? this is a contradiction.

Thus we have K0-^K0
£ and K°DU£ > 0K?. Conversely if f]^K°, then

let inf <^i, ai> = ^>0 and choose £>0 satisfying £<<?, for all f.
^eri.i^^i

Then we have — <^, a^ + fiU^i^O for x^P ^ |o;J=l and ^^0, con-

sequently hri,s(<Xi)^Q for all z. Since A5i,e (ft) <C°° for all z", hK.£(y)

= II hr{,s (a,) + 2 /^.. (ft) <oo. Thus we have K° C D fi>02Q.

Proposition 2. 4. If -q= ( (al9 ft) , • • - , (a,-, ft) ) e X|, ^/z^;z ( (*,#!,

for tt~^>l and arbitrary real siy l<,i<zj.

Proof. f)^K°£ is equivalent to &rf , e fe) < °° for l<,i<.j. Since

sup ( — <^, a^)> + £) 5, hFi e((^i) <^°° ig equivalent to
-

inf <^f, af>;>£. inf <^i? ^^>^£ implies inf <*r
jr/e/1^ 1^1=1 ^/erf , 1x^=1 ^i^rit \xt\=i
for ^1. Thus we have ((*i#i, Sift), • • • , (tfaj9 Sjfa)) ^K?.

Corollary 2. 5. L^ Int ^T° be the interior of K°6. Ifr)= ((aly ft),

• • • , (o>, j8/) ) ^ Int 2C°, M^w /br ^^1 ^^^ arbitrary real s{, l^z^j,

Proof. If T^e Int JCJ, then there exists a neighbourhood I7 of zero

such that 7+ VdK°. By Proposition 2. 4 we have y(t, s) + V(*, 1) C^°?

where V(^, 1) = {£ (^, 1) ; f e Y} is a neighbourhood of zero. Thus we
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have 7](t, s) e IntK%.

Proposition 2. 6. Let 0<$<<£. Then K°s is strictly contained
in KS, that is, the distance between KQ

B and the complement (K$)c

of K°8 is positive. Therefore KQ
6d Int K%.

Proof. Let 7]^K°e and e^Cn with \e\<e-d. Since y^K° is

equivalent to inf (xi9 a^^e for f = l, ••• , . / ,

inf <^, a* + ̂ >^ inf <^, ^>- sup
r{t\Xi\=i xi^ri,\xi\=i xi^rit \xi\

e-J =*.

Thus we have shown that 7] + e<=K% for all 7j<=Ke and * <£ — £. This

shows that j£T° is strictly contained in Kg.

Proposition 2. 7. Let f be a CN function with support contained

in K H jR2n. Suppose there exist positive constants 8 and C such that

\Daf(x) I^C*"*1 /or a/Z \a\<N. Define

f €«*•
JR™

Then /(C) ̂  <2^ analytic function defined in

for any £>5, and satisfies

(2.1)
consta?it C^>>0 ^2^^ Im

Proof. Let ImC^^?. The inequalities

i^(27T)"w f tfC-«*,ImC> + .!*|)g-.|
J-R2n

imply that /(C) is analytic in ImC^Int^TJ and satisfies (2.1) for

Corollary 2.8. Let f^Sc(K) (Definition 2.14 of [1]),

/(C) 25 an analytic function defined in {^ ̂  C2n ; Im^ ^ K°} and satisfies
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in Im ̂ ^Ke for any £>0 and jV>0, -where CN<£ is a positive number

independent of C-

Proof. The corollary follows from Propositions 2. 3, 2. 6 and 2. 7.

Proposition 2,9, Let K be the set defined in Definition 2.1.

For any 0<£^1, there exists an ??£elnt K% satisfying |% <^A£ for

some positive constant A not depending on c.

Proof. Let 7]<=K% and ^ l= |^ l . Define r/e = s7j for 0<e^l, then

l ^ e l = Ac and

&x,2e07e) = sup

This shows that r/£

Proposition 2. 10. Le£ Nl>3n, and let g (C) £<? a;; analytic

function in {CeC2n; Im C^Inl -K"?} which satisfies

(2. 2) g (x) = (27T) - f c '^ -g (C) ̂ C for t] e Lit ̂ ° ,
Jiesft+i??

g(.r) Z5 a C"v~3n function zuitk support contained in K^RZ1\ satisfying

\Dag(x)\<^MeS{x{ for some constant M and 8=Ae, zvhere A is the

constant appeared in Proposition 2. 9.

Proof. The inequalities

\g(x) 1 = \ (270- f e-
JR**
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hold for y&IntKe. x&K implies x&Fi or yk^Bk for some I, k.

Hence there exists ai^r° such that (&i9 (XiXO or yk satisfies (yk, syky

>hBkt£(syk} for large s>0. Since (2.2) is independent of 7] <E Int KG by

the Cauchy-Poincare theorem, we have, for large

(2. 3) \g(

+ E <*«, O 1- 1] <y*, A> + 1]
t=^l i=^=fc i=jtft

where we have used the facts that Ar i l£(^)^0 and ^= ((^i, A), • • • ,

(tai90i)9 •", ( a k j s y k ) 9 •", (aj90j)) ^IntKe for large /, 5 (Proposition
2. 4) . The right hand side of (2. 3) vanishes as t or 5 tends to infinity.

Thus we have g(x) — 0 if x^K.

Let \a\<^N— 3n. The inequalities

(2.4) f e-1^ '̂̂  ( - if + ̂ ) "0 (f +
JJ8»»

hold for -r/ = 7/B<^IntK° such that \^s\^S=As by Proposition 2. 9. Hence

(2.5)

holds for some constant

Proposition 2. II. Let f be a CN function satisfying the condi-
x\

tions in Proposition 2. 7, then f=f.

Proof. Let ^elntJCJ, then e~<y>7S>f(y) is rapidly decreasing. There-

fore we have

» f e-£<^:>( f «'
JRtn + i-il \ jR*n

e-{<x^e<x'^( f
\ J«2»

Proposition 2. 12. Let g(Q ^^ ^^ analytic function satisfying

the condition in Proposition 2. 10. Then g = g.
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Proof. Let C = f + ^ and ^elnt-Kf, then g(x + n?) is integrable
with respect to x. Therefore we have

- (27T)-2* f *'<"•'>( f a-
JB2" \ JB*» + i7

= (27T)-2n f e-<«.*V<«W f
JB2" \ JB21

Proposition 2.13. Let f^tf C ( K ) , we define

(2.6) l/|^e= f o|/(C)|^-2^' lImC)(l-
jRz"-iKs

then there exists a se minor m ||/||^.ff= sup \e~S]x{Daf(x) \ of 3 C(K]

such that \f\N,s<C\\f\\H,s.

Proof. The inequalities

1 f

JB=» '(27T)-

1 f -«,*|

for 0<5<s and ImCeJ^J, show that

Then we have

f oJjfjs" f I.KS

Thus we have, for M=N+3>i and d = s/2
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Proposition 2, 14. Int K°s = U s>,Ke.

Proof. IntKs ID U j>e<K? is dear from Proposition 2. 6. Let

then there exists a positive number f such that for every e^Cn with

:?. Thus we have

Q > s u p
*»erif | jr<|=i, |«j |£r

- sup (-O
xf(Erif |*ij=l

This shows that f]^K°6+Y and Int K^ d U

Proposition 2.15. Int Kg is a convex set and hKt^(jj) is a

convex function in Int K%.

. Let ?, tfGlnt-Ke, then there exist 5>£ such that f,

For A, /£>0, A + # = l, we have

(2. 7) hx,t(l£ + M) = sup

- sup

This shows that A£ -I- /^ e X? C Int j?C°. Hence Int X? is convex. The

equation (2.7) shows that hKi8(if) is a convex function defined in K$,

hence hKte(7J) is convex in Int K°.

Proposition 2. 16. hKi£(rf) is Lipschitz continuous in K^, that is,

for some constant C.

Proof. Let 7z r .>s (at) = sup (-<xf, ^> + £|x ii) and hBitB(f}t)
^iGTi

= sup (-<y«,A> + e|y i | ) . Then

t=-l

where r/= ( (a',, &) , - • • , (a-(/, /?f) ) and J:= ((jtj, yj, • • • , (a:/, y/) ) . Let
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be the diameter of the ball Bt. We have

l/^,£(&)-/^,£($)l^ sup ICr,,&-#>|;^|B t | !£,-&' |.
Xi^Bi

Since f]^Kl implies that hr.t£(a,i) =Q for all i, we have

w here C= max ( | B,- \ ) .
i

§ 3, Cohomology with Bounds

For the later use, we develope the theory of cohomology with

bounds on the pseudocoiivex domain J2 in Cn, which is an extension of

what is developed in 7.6 of L. Hormander [1], where the case G=C"

is treaded.

Here we use the same notation that is used in 7. 6 of L. Hormander

[1] . We denote by U (v) the covering of Cn which consists of the cubes

UP with side equal to 2-3~y and center at g-3~ v , where g runs through

the set I of points in Cn with integral coordinates. For every v and g

we can find precisely one gr such that UP contains the cube with the

same center as C7Jv"t"1) but twice the side; we set pv,v^g = g'. More

generally if y<C/£, we define

Pv.ftQ = Pv.V-rl Pv-rLv + Z' " P fl -l,fiQ •

Let Q be an open subset of Cn, then <UM fl Q= {C7J*> P J2; ge /} is

an open covering of Q. We also define

fl1" - = U {U™ ; UP c fl f or g' - pv, ,g}

and

^£ = {2; <E fl ; dis t (z, J2C) > £}

where dist (z, J3C) is the distance between the point ^ and the comple-

ment J2C of fl. We use the abbreviation flj-* for (fle)"1'-'.

Let P= (Pjik),j = l, ~-,p,k = l9 ~-,q be the matrix with polynomial

entries, and consider the sheaf homomorphism

(3. 1) P: Oq -> Op

defined by the mapping (/,, .--,/,) ^Oq to {£1 ^W*}?=i. L^ ^P be the



74 SHIGEAKI NAGAMACHI

kernel of the sheaf homomorphism (3. 1) . It is known that 31 P is a

coherent analytic sheaf and finitely generated by the germs of g-tuples

Q— (<2l5 • • • , Q g ) with polynomial components such that

(See Lemma 7. 6. 3 of L. Hormander [1] .)

If 0 is a continuous function, we define Cff (^U M H &, <RP, 0) as the

set of alternating cochains c = fcs}, sfE/^1 where cs^F(U(v)n£, jRP), and

We define pv%: Cff (qj00 P, fl, 51 P, 0) -^Cff (q^* 0 J3, 51P, 0) by setting

(p*ftc)t equal to the restriction of £,„, ,(,„>...,,,,(.,> to U^.

Proposition 3. 1. Let 0 be a plurisubharmonic function in an

open set V in Cn, and Q be a pseudoconvex domain contained in V.

For every cochain reC"(<U ( v ) n V, 0, 0) with 8c = Q, one can find a

cochain c f e C f f - 1 ( < U ' v + ' - " n a v - ' > - f f - 1 , 0 , ( l > ) so that 8cf - p*y+ff^c and

(3.2) |k'

Here K is a constant independent of (j) and c, and 0 is defined by

We prove this in a way similar to Proposition 7. 6. 1 of L. Hormander

[1], so that we need the following lemma.

Lemma 3. 2. Let Q be a pseudoconvex domain and let J2' be a

relatively compact subset of Q. For every plurisubharmonic function

(j) in & and every /eL(0jq+1) (J2, 0) with df=Q, one can find u €E L\Qt a) (Q9

loc) with du=f and

f \u\le-*dl^K f l/l1

Jfl' J^2

-where K is independent of u and (j).

Proof. See Lemma 7. 6. 2 of L. Hormander [1] .
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Proof of Proposition 3.1. We introduce the space Cp ( <U Cv) H V,

>q, 0) of all alternating cochains c = {cs}, s<E P+\ where cs

V, 0) , 0rs = 0 and

Ik III= U f k.|
islt^l J^HF1

We wish to prove that if (Jc = 0 (/>>()), then one can find c'e

C*-l(<U,**-*-»nQv'v^-\ 2q, 0) so that fc' =£*,,.„,__!<: and (3.2) hold.

For g — 0, this assertion is precisely Proposition 3. 1. We shall prove it

assuming, if />>•!, that it has already been proved for smaller values of

p and all q.

Choose a non-negative function %eCS°(£7oy)) such that X jg%(^~~0)

= 1. Now set bs = ][] % (z — g) cUtS, s^Ip, then we have db = c and

hence

Let db be the cochain belonging to Cp~l (<U^ H V, S^i, 0) defined by

dbs = > d % ( z — g)/\ctS. Then we obtain with a constant K

Now ddb = d8b = dc~Q. If />>!, we can by the inductive hypothesis

find a cochain V (=CP~2(U ( v 4 p"2 ) 0 tiv'v~p~\ 2^l5 (/;) such that <?*'

= P*v+P-2db and for some constant J^

Since 9^=0 and 0 is plurisubharmonic, by Lemma 3.2 we can choose

b';<=L\M(U?+p-1\$ for every ^eP"1 satisfying U^p~^ cfl"1" '^2, 57

= |Ov-rp-2.v-rp-i-5 so that db" =b's, in [7J"+P"1) and with a constant ^25

Now set

<:' = #,+,->-

Then Sc' = Q*^v^db — p*^p_-[c, and
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Summing up the estimates for b, bf and 6" given above, we obtain

c'^C?-l(CU^*-"r\Qv'v+*-\3>v(l>) and the estimate (3.2).

It remains to consider the case p = I. The fact that Sdb = 0 then

means that db defines uniquely a form / of type (0, g + 1) in V with

9/=0 and

Jl
By Theorem 4.4.2 of L. Hormander [1], we can find a form

jL(o,9) (&, </>) so that du=f and

f M2e~^A^ f
Jfi JS

Setting c,=bt — u, we obtain c' eC°(^U (v ) 0 J2, 2«, 0) and the estimate

(3.2).

Proposition 3. 3. Let P be a matrix "with polynomial entries

and Q be a neighbourhood of 0. Then there exists a neighbourhood

& 0/0 such that for every z* (E 0 (£-f 2)e one can find v

satisfying Pv — Pu, and

(3.3) sup M<;C(l-H2:|Vvsup \Pu\,
S'+z Q+z

where the constants C and N are independent of u and

Proof. See Proposition 7. 6. 5 of L. Hormander [1].

Proposition 3. 4e Let a matrix P and an integer v be given.

Then there exist integers JLI and N such that, if $ is plurisubharmonic

in a pseudoconvex domain Q and for some constant (7>0

(3.4) \4(*)-$(*') <C9 \z-z'\<l,

then for every cSECff(<UM n ^y, &P, 0) with dc = 0, (T>0, A^v, one can

find c'eC^C^^nfiJ^+i)., 5ip,0^) so that 8c' = pfiflc and for some

constant K

(3.5) lk-'IU '̂̂ lkll,.
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Here (j)N(z) =<j)(z) + ATlog(l + \z\2) , r = 22n and e^2n 3^.

Proof. We can also prove the proposition in a way similar to the

proof of Theorem 7.6.10 of L. Hormander [1]. We shall prove it by

induction for decreasing ff, noting that it is valid when ff^>22'\ since

there are no non-zero c eCff (QJi (v) ft QL\ £RP, (fr) . Thus assume that the

theorem has been proved for all P when (7 is replaced by (7 + 1. By

Lemma 7.6.4 of L. Hormander [1], we have cs = Qds for d^C((H(v}

n@*'v70
r). By Proposition 3.3 and the condition (3.4), if /( is large

we can choose d',^0(U™y so that Qd',=Qd,, = c,, in t/s
(/0 and

J^Jtfl^i+MVV-*^

for s' = pvilts and UpaS*'". Thus we have d' €=C* (<U™ n&'*9 Or, <j>d ,

Since 5<7 = 0, it follows that dQd' = Q8d' = 0. Thus Sd' = d" eC f f + 1

fl ^Al/', 5iQ, 0A-) , and since W = 0 and 0^ is plurisubharmonic, it follows

by the inductive hypothesis that for suitable N' and jitf^>]Lt we can find

"''̂ !'.,., 5i«,^) so that dd" = p*,,d" and

Setting r = P^ ,'d' -d^C^U *'' n flj-r*'^ 0 r, <fiN,) , we have dr = pj /(^/"
-W' = 0 and

Hence Proposition 3. 1 shows that for some ,«">#' and N"^>N' one can

fined r /eC'-I(qZ( '")nfl&*;+1)ft0
r,^) so that p*.,ll.r=Sf and

(3.6) l l r ' l l
Here we used the fact that J 2 ( r _ ( f f l ) £ is a pseudoconvex domain contained

in fi(t-ff)e as £^V2n31"'1. If we set c/ = Qr/, it follows that

Since (3. 6) implies (3. 5) for suitable /JL and N, the proposition is



78 SHIGEAKI NAGAMACHI

proved.

Proposition 3. 5. Let Q' be an open set -which is strictly con-

tained in a pseudoconvex domain Q of Cn (dist (Q* ', &c) ̂ (J>0) .

Given the system P there is a constant N such that, if $ is a pluri-

subharmonic function satisfying (3.4), then for all u^0(@)q one

can find v^0(fi')q -with Pv = Pu and

(3.7) f \v\*e-+(\+\z\*)
js'

where C is a constant independent of u.

Proof. First, choose v so that d>re = 22nv2n 31 ". By Proposition

3.3 we can shoose V<C^ so that there exists an element ug^O(Ug^}q

such that Pug — Pu in [7J*0 CC7^}CJ2, and for some constants C and N

independent of u and g GE I

(3.8)

where Q/ = pVtfiQ. Let cgigz = tigi — ugz. This defines a cocycle

H J2"'*, &p, &0 and by (3.8) we obtain

(3.9)

Proposition 3. 4 asserts that for some A^>jU and N'^>N there exists a

cochain c'&C°(qj,w ftG', &P, $N,') such that ffc/ = pjfiic|iS/ and

Here we used the fact that J2' is contained in Sj'/ as $>r£. This means

that if we set t; = wp/{>ijg + Cg in U^ f! J?', we define uniquely an element

v^O(S'}q. Since P^^O, it follows that Pv = Pu, and from the esti-

mates (3. 8), (3. 9) and (3. 10) we obtain (3. 7) with N replaced by N'.

§ 4. Soft Resolution of Qhil

In this section, we define the space Qr (S) of rapidly decreasing

distributions, and using this space we make a resolution of Okti9 that is,
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Definition 4. 1. Let @ be an open set in Qk'1. We denote by

Q (&) the inductive limit limK<-^3 C(K) of 3 C(K) , where K is a com-

pact set in j?. We denote by Q' (J2) the dual space of Q (8) .

Since the injection of S (8) into 3(8) (Definition 2.13 of [I]) is

continuous and of dense range, 3' (8) is a linear subspace of Q' (8) .

Moreover, we have the following proposition.

Proposition 4. 2. An element of Q' (Q) belongs to 3 ' (Q) if

and only if it has a compact support.

Proof. Let T&3' (8) . By the definition of the topology of 2" (8)

(see Definition 2. 13 of [I]), there are a compact set K in $, an integer

, and a constant C>0 such that for all (f>^3(&),

sup ID^Cr) |*-"i'<*+1>.

This implies immediately that (T, 0)> = 0 whenever the support of (f) is

contained in the complement of K, which means that supp Tc K.

Conversely if T is an element of S' (Q} with the compact support

K. Let a(x)^3c(@) be equal to one in some neighbourhood of K.

Then < T, 0> = <(T, a^)> and if 0V converges to zero in 9" (J2) , a^ con-

verges to zero in S (8) . Therefore 3 (8) B0-^<(T, 0) is continuous,

hence TCE 3 ' (Q) .

Proposition 4. 3. I/7 J2 fs a bounded open set in Cn then Q' (8)

Proof. It is obvious, since S (8) — 3) (8) .

Proposition 4.4. Let K be a compact subset of Qk>l defined in

Definition 2. 1, and 8 be a neighbourhood of K. For f^ 3 ' (8) , define

(4.1)
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then /(C) is analytic in {^^Czn\ |Im Ci<£} for some £>0 and there

exists an N satisfying \f (Q |^C(1 + ICD lY /or |Im Cl<e.

(4.2) </,*>= f
JJ«

holds for v&3e(K) and ~fj<^K° with

Proof. By the definition of the topology of 2" ($) , there exists a

seminorm || • || if #, e satisfying |</, ^>l^C||t;||L,,v,£ for some constant C,

where ||v||i,^,e= sup \Daf(x) \e~s]xl for the compact set L in j?
^eini?271, i«i<2v

and £>0, N>Q. If |ImCl<£, then

ll*-**'0!!*.*,^ sup |c^-f^c>itf-e|"
J?einl22n, \a\<N

^ sup {K1}^(i

Hence /(C) =</, e- i<ai 'c>>/(2ff)" is analytic in ]Im C!<£ and satisfies

|Cl)-Y . Since

W(^) = 7~^r f e-
(2r:Y J««(27T)'

by Proposition 2. 11, and the Riemann sum converges with respect to the

seminorm || • || £,#,£> then

</; v> = <f>

Remark 4.5. The equality (4.2) holds when v satisfies \Dav(x)

for \a\<:N+3n and £>0 such that Kg has an element y satis

fying

Let d be the Cauchy-Riemann operator defined by

(duili...tip/dzj)dzJ-/\dzii/\--/\dzip.
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If we identify forms u and tv with vector functions u and iv having

j and ( . , -i) components respectively, dp can be represented by

PP(D) where PP(C) is a f ^ ) ~ ~ ( ^ , -j) matrix with polynomial entries,

and D — id/dx. It is known as the Koszul resolution that the following

sequence is exact:

where A is the polynomial ring of the variable C — (Ci> ""> CETI) and tPp(£)

is the transpose of Pp( — C) (see Example 4 in §7 of Chapter VII of

V. P. Palamodov [5]). It is known that £R,*pp is generated by the

germs of the lows of the matrix Pp^ 1 (C) (see Lemma 7. 6. 3 of L. Hor-

mander [1]). Since Sl*pv is a coherent analytic sheaf, we have the fol-

lowing proposition.

Proposition 4.6. Let S be a pseudoconvex domain.

satisfies the equation tPp(Qf(Q= 0, then there exists a

sa tisfying f(0=lPP+i (C) Q (C) , where r = (^ * J ^;zj s

Proof. See Theorem 7. 2. 9 of L. Hormander [1] .

Definition 4. 7. (The sheaf of rapidly decreasing distributions.)

We denote by Qf the sheaf determined by a presheaf {£"($)}, where

*£? is an open set in Qk>l.

For any locally finite covering {Ua} of J2, there exists a partition

of unity {0a} subordinate to the covering {Ua^Cn} such that all deriva-

tives of 0a are bounded. Then Qf (fi) is the section module of the

sheaf Q' and Qf is a soft sheaf.

Theorem 4. 8. L^£ J2 be a neighbourhood of a point z^ at

infinity in Qk'1. If /e S[Qi p) (S) satisfies df—Q, then there exists a

neighbourhood co of z^ -with toCJ2 and z/e5(0,p_i) (a)) such that du—f

in co.
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Proof. First we choose a neighbourhood a) of z^ having the form

u) = aJrIntK, where K is the compact set in Qk'1 defined in Definition

2. 1 and a^R2n.

Let L be a compact set in J2 containing a). Then f^3c(L)J and

satisfies, for some m>Q, S>0, |</, 0>|^C||0||w,e for all 0eEff c(L) J ,

where .7= f ) . Hence
\/V

(4.3) i</,£>I^C||0]|m,£ for

j
where ||0||m,e=Z! SUP 1^% (•*) k"6'*1. If we can show that there

y=i jcejR«», |a|S»»
exist .M>0 and #>0 satisfying

(4.4) l<y»I^C||#t>|kS for all Wstfw ._«(fl)) ,

by the Hahn-Banach theorem there exists a w^-^o.p-i) (&>) satisfying

(f, vy = <X #r>X that is, du=f in a), where $ is the dual operator of 0.

Let v&£(u))J, then supp t;Ca4-^. By the coordinate transformation

(translation) we may assume supp^C^T. Then, by Corollary 2.8, v (C)

is analytic for Im ^&K° and satisfies, for any £>0 and

e»*"<to» for I

Let §p be represented by Pp (Z>) , then by Proposition 3. 5 there

exists an N such that for any v there exists a function V(£) analytic

for Im C ̂  Int ^?£ and satisfying

and

where we have used the fact that hKiS(ImQ is a convex (hence pluri-

subharmonic) function satisfying the condition (3.4) and R2n-\-i Int K%6

is a pseudoconvex domain strictly contained in R*n + iIntKe (see Pro-

positions 2. 15 and 2. 16). From the above inequality, we have

* e*«..C»o for L
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Propositions 2. 10, 2. 12 and the above inequality imply that V(C) =^i(0

for a C""^"817 function T^ with support contained in K satisfying

\\Vi\\v- tf-zn.zAs^00- From Propositions 3. 5 and 4. 6, there exists a func-

tion 0(O analytic in {C^ €2n; ImC^Int K$E} and satisfying

= 'P,(O0(0 and

f o
Ji£27l-r*-Ksc

for some constant jV depending only on PP(C) and Pp-i(0- This implies

that there exists a Cy~AT '~37J function 0 with support contained in K,

satisfying 0(O=?(0 and ll0ll"-AT'-sn,4,ie<00.

Considering the inequality (4. 3) , if we take sufficiently large V>0

and small £^>0, we have

</, *i> - </, ̂ > = </, ̂ p ( J3) 0> = <PP (D)f, 0> - <9/, 0> - 0.

Let aeEFcW with a(x)=l on a neighbourhood of a) f! JR2rl. Define

fo = &f, then fQ^*S' (&) by Proposition 4.2, and (f,vy = (fQ,vy for any

CF function T; with support contained in to and satisfying ||t;||mi£<^oo.

By Remark 4. 5 if we take sufficiently large y>0 and small

we have

^( f
\ J««

fj««

, f
JJJ2

f
JJtz

The last inequality follows from Proposition 2. 13. Thus we have shown

(4. 4) , and completed the proof.
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Theorem 4. 9. We have the following soft resolution of the

sheaf Ok,i'

(4. 5) O^Ofcfl->^0io)^/(oli)-
?>-"^(o,.)->0 •

Proof. Since the restriction of Qk,i or Q' to Cn is 0 or .2)', re-

spectively, and it is well known that the following sequence is exact:

In order to obtain the resolution (4. 5) , we have only to make it at

points at infinity. It is done in Theorem 4. 8.

Definition 4. 10. Let K be the compact set in @ktl defined in

Definition 2. 1. Define IKiB(if) = sup ((x, ??>-£|.r|) and J£°£)

Proposition 4. 11. Let Q be an open set in Qk'1 containing K.

If f^.^' (S) satisfies the inequality |</> tOHsSCINU^e for all

veSCfl) , where \\v\\K,N,s= sup \Daf(x)\e~^, then f(® =
xGKnR*n,\a\<N

</, 6T^>>/(27r)n is analytic in KGE C2MmCeInt K^} and satisfies,

for some constant

(4.6) |/(C)|^C(l + |C|)V^<Ini« for

Proof. Let C = ? + z'V and T?eX°f). Then we have

lk-<<-'e>||*,Jrl.= sup lev*-* !«-'«'

Since (e~i<x>^ rfiy — e~i<x'^) /h converges to —ixe~i<x'~> as A— »0 with respect

to U - U j f ^ . e for ImCelnt^, /(C) is analytic.

Proposition 4,12. Let F(Q be an analytic function in {C^C2*;

X"°£)} satisfying the inequality (4.6). Then F(£) defines an

element /e 3' (Qk>l) with support contained in K satisfying

for
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Proof. If (j) €E Cj° (H2") , then (j> (Q is an entire function satisfying

for

where 5 is the support of 0 and hB(rj) = sup ( — <j;, "/?». Hence the
.res

linear form

f
JjR">

defines a distribution f. Let .B be convex and I3r\K=<f), then there

exists a vector ^e ( — .K0) <^K°$ such that for some

sup <x, ??><;<;y, ??>-<?|??| for all
*^Kr\MZn

hence J#,£ (77) +/z jB(^) <^ — (Jl^| . Thus we have

lim f
£-*oo JRzn + it

g-"i'i =0 .
t-»oo t-*oo

Hence the support of / is contained in K. Let L be a neighbourhood

of K having the form of Definition 2.1. If ^e^cC-^) then 0(0 is

analytic in {C^ C271; Im C^L0} and satisfies for any y>0 and £>0

l C ! ) v fo r

Hence it follows from the formula

f
JR

that the distribution f can be extended to 3C(L). Let a^£?c(L) such

that a(x) = \ in a neighbourhood of K, then a^e ff C(L) for v^(S(Qk'1}.

Since the support of / is contained in K, we have <(/, ?/> — <(/, a^>.

This shows that /e 5X (^A"'?) -

Let <G be an open set in Qk'L which has the form a + IntK, where

K is the convex set defined in Definition 2.1 and af=Cn.

Theorem 4.13. If 9*^ = 0 for v&3{Qip)(&), then there exists

"^ 2 (o.p-D 00) satisfying dp-lu = v.
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Proof. We represent dp by PP(D) . Since all the spaces of the

sequence

are F5 spaces (see Remark 2.27 in [I]), we have only to show that

the dual sequence

is exact and the range of 'Pp-j (-D) is closed.

Let g^S' (&) r, then there exist a convex set of the form b + L

contained in J2 and constants AT>0, £>0 such that the estimate

holds for all v^2(@)r. We may assume that L is also a convex set

of the type in Definition 2. 1. By coordinate transformation (translation)

we may also assume & — 0. Then, by Proposition 4.11, g (Q is analytic

in {Ce€2n;ImCeIntL(°e)} and satisfies

lCj^^^ 0 for I

The equation tPp.1(D)g = 0 implies tP^l(~^g(Q=Q in

G Int L°e)} . Then by Propositions 3. 5 and 4. 6, there exists an analytic

function F(C) such that 1PP(-Q F(Q =g(Q for ImCeIntL^ /2) and

satisfying for some V>0

l^(OI^C(l-f|Ci)V^- ( Im« for LnCeL^.

Here we used the fact that /L,£0?) is convex and Lipschitz continuous,

and L°£/2) is a convex set contained strictly in L°€). This shows that

there exists /<E2"'(J2)S such that

V f

' .)*•.+<

for all v<ESc(K), that is, lPk(D)f=g,

Next we prove the closedness of the range of 2P0(Z)). Assume
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Fj-»F in T (Q) with Fj = {PQ (D) Gj for G, GE T (£) n. Since the sequence

{jF}} is a bounded set in the DPS space 2"' ($) , there exist a compact

set L in & (we may assume that L is a convex set of the type in

Definition 2, 1) and constants C>0, £>0 satisfying

I^-(C) ^C(l+iC|)^7i '£(ImC) for I

By Proposition 3. 5 we can choose ¥j (C) satisfying

(4.8) |r,(Q|^C'Cl + !CirV^<Im» for

Since {^ (C) } forms a normal family, there exists a subsequence which

converges to ?T(C) which also satisfies (4.8). Thus there exists

tiyi satisfying

t;>^ f
JlZZTI+i7

= lim f
&->oo JjSS»

This shows that F = 1P0(D)G, that is, the range of LP0(D) is closed.

At the end of this section, we give an extension of Theorem 4. 11

of [I].

Theorem 4. 14. We have the folloxving soft resolution of the

sheaf 0*.i on Qk'1:

(4.7) 0->0,,r->5(o>oA---^2"(o,n)->0.

Proof. Since the restriction of Ok,i or 3 to €" is 0 or £ respec-

tively, and it is well known that the following sequence is exact:

In order to obtain the resolution (4. 7) of Ok.i, we have only to make

the resolution at points at infinity. Since the point z^ at infinity has a

fundamental system of neighbourhoods whose member has the form

^4-Int^, Theorem 4.13 gives the resolution at points at infinity.
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Remark 4. 15. In the above theorem the resolution is obtained on

the whole Qk'\ while in Theorem 4. 11 of [I], it is obtained on the

open subset J? which satisfies the condition (i) of Definition 4.5 of [I] .

§ 5» Fourier Hyperfunctions with Compact Supports

In this section, we show that the space H& (V, E0k,i) of jE-valued

Fourier hyperf unctions is isomorphic to the space L(Qkii(K} , E) of con-

tinuous linear mappings from Ok,i(K) to a Frechet space E.
~ 3 ~

Let K be a compact set in H Dnt and V be an Ok rpseudoconvex
i = l

neighbourhood of K in Qktl. From Theorem 5. 8 and Corollary 5. 10

of [I], we have HI ( V, Ok, i) = 0 for 0<p<,n-l and Hp (K, Qkt ,) - 0

for ^2jl. Therefore from the long exact sequence of cohomology

groups with compact supports,

KV, £>,,,) -*#*(.£, £..,)

^Hl (V - K, Qk, ,) -^Hl (V, Ok, 0 -» • • • ,

follows that d:H°(K, Q^) =H\(V-K, 0*^ and H*(V-K, 0,,,) =0,

for n:>2.

Since by Theorem 4. 9 we have the soft resolution

Hl(V—K7Ok,i) can be represented by the first cohomolog}^ group of

the complex (3 \0, .) (V — K) , 0) . Then <J can be represented as the

following continuous mapping. Let U be an open neighbourhood of K and

a^3c(U) such that a = l in 1/F fl Jl271, where W is some neighbourhood

of K in Z7. The map

defined by 8Uia(f)=d(af) is continuous and induces a continuous map

of H°(U,Ok,i) into ^(y-^CVO- These maps define the map d on

the inductive limit H° (K, Okrl) = lirn^H0 (U, Okll) of HQ(U,0^ and
U-^K

therefore d is continuous. Moreover we can show that rT is an open

mapping.
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Proposition 5. 1. Let n^>2. Consider the dual complex,

$ 1 $

Then the ranges of the operators are all closed.

Proof. Hl(V—K,Ok,i) =0 shows that the range of -d1 is closed,

and from Theorem 5.11 of [I], it follows that the range of dn-i is

closed. The closedness of ranges of other operators is a consequence of

the so-called Serre-Komatsu duality theorem (see Theorem 4.7 of [I]).

Proposition 5. 2. Let n^2, then H°(K, Okll) and Hl
c(V-K, Qktl)

are DFS spaces.

Proof. Proposition 2.7 of [I] shows that H° (K, Ok,d = Qkll (K) is

a DFS space. 2'(Q,i)(V—K) is a DFS space as the dual space of an FS

space S <o,i-)(V—K) (see Remark 2. 27 of [I]). Since a closed subspace

and a quotient space (by its closed subspace) of a DFS space are also

DFS spaces, it follows from the fact that the range of — 0*0 is closed,

that Hl
e(V-K,Ok.,) is a DFS space.

Theorem 5. 3, Let E be a fully complete space, and let F be

a barrelled space. Let f be a linear mapping of a subspace EQdE

on to F. Suppose thai the graph off is closed in ExF. Then f is

open.

Proof. See Theorem 4. 10 of V. Ptak [6].

Propositon 5. 4* Let n:>2, then d :H°(K, 0*.i) -^H^V-K, Q k l l )

is a homeomorphism.

Proof. It is known that DFS spaces are fully complete and bar-

relled spaces (see Theorems 4.3.28 and 4.3.40 of H. Komatsu [3]).

Since d is a one-to-one onto continuous mapping, it follows from Theorem
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5. 3 that S is a homeomorphisra.

Proposition 5.5. Let ;̂ 2, then H^^V-K, O k l l ) = [Ok,t (X)] '.

Proof. PIn~l(V-K,dk,i) is represented by the (;z-l)-th cohomo-

logy group of the complex (2\o,.> (V—K) , 9) . It follows from Proposi-

tion 5. 1 and the so-called Serre-Komatsu duality theorem (Theorem 4. 7

of [I]) that

Let E be a Frechet space. From the exact sequence,

(5. 2) ..-

and the fact that if Fis Ofc.rpseudoconvex, Hp(V,EOk,i) =0 for £>0 (see

Theorem 6. 6 of [I]), it follows that Hn
K (V, E0k,l} ^Hn~l(V~K, E0,,d ,

for

Proposition 5. 6. Let n>2, then Hn~l(V-K, E5k,d =Hn~\V-K,

for a Frechet space E.

Proof. We represent H^^V-K, O k ) l ) by the (w-l)-th coho-

mology group of the complex,

Since the range of 9re_2 is closed by Proposition 5. 1 and 3 <o,n-n (V~~

is a Frecet nuclear space, we have the exact sequence

(5. 3) 0->im 9n_2

where all the spaces are Frechet nuclear spaces. Since the tensoring
^^

by (&E is a exact functor (see Theorem 6. 5 of [I]), we have the fol-

lowing exact sequence:

(5. 4) 0-» (im &n_2) <§)£-> (ker 9n_,) ®E-^Hn~l (V-K, g,,,

If we denote the closed linear hull by [ ], we have
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= (ker9._,)<8)-E.

By Proposition 43.9 of F. Treves [7], we also have im (9n_2(X)l£)

= (im &„_,,) (g)E. Since If'^V- K, E0k,l) can be represented by the

(n — l)-th cohomology group of the complex (SF<0,.> (V— K, E) , Ed) and

3ttt..,(V-K, £) £5<0,.,(y- .£)(§)£ and Bfl = 9(g)lB, we have Hn~\V-K,

Theorem 5. 7. Let E be a Frechet space and K be a compact

set in fjIF'. Then Hn
K (V, E0k>l} =L (0M (K) , E) .

t=i "

Proo/. By Proposition 50.5 of F. Treves [7], we have L(Ok>l(K),

£) = [0iM CK) ] '(8>£- Propositions 5.5 and 5.6 show that [0^(^)1'

-K^O^), for ;z>2. Thus we have H^(V9
sSktl)

E), for n^2.

If ;z = l, jfif^W, O k f Z ) =0 for any open set W in (f'1 satisfying the

condition (i) of Definition 5.1 of [I] (Theorem 5. 11 of [I]). Consider

the dual complex,

Then the range of d (= S-CO.D (W) ) is closed, therefore the range of

( — 9) is closed and

s[HJ(W, £>..,)]'.

The mapping p of the exact sequence

is continuous since it is induced by the continuous injection of S' (V—K)

into 3'(V). Therefore the dual sequence

is exact. Since all the spaces of the above sequence are Frechel nu-

clear, we have the exact sequence
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where we used the fact that OkJ (W, E) =0k,i (W) ®E for an open set

IT7" in Qk>l ((6.6) of [I]) and the tensoring (g)J5 is an exact functor

(Theorem 6. 5 of [I] ) . Thus we have

for «==!.

Corollary 5.8. Le£ £ &e a^ opw 50* in Jl Dni. Then ESlk,i(Q'}

= L (Qk, t (fl) , E) /L (Qk i (dS) ,E).

Proof. The corollary follows from Proposition 6. 10 of [I] and

Theorem 5. 7.

Without changing the proof of Theorem 5. 7, we can prove the

following theorem, which corresponds to Theorem 5. 12 of [I] in the

scalar valued case.

Theorem 5. 9. Let K be a compact set in Qk>l, and V be an

Ok,rpseudoconvex domain containing K. Suppose Hp(K,Ok,i) =0 for

^^1. Then -we have

Remark 5.10. We can also prove H\(V9
Edkti) =0 for p=£n, for

a compact set K satisfying the condition of the above theorem, in the

same way as Theorem 6. 8 of [I] .
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