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The Theory of Vector Valued Fourier
Hyperfunctions of Mixed Type. 1

By

Shigeaki NAGAMACHI*

Abstract

The soft resolution (F,», 9) of the sheaf O, of slowly increasing holomorphic
functions of (k1) type is constructed so that the section modules %, (2) are Fréchet
nuclear spaces. Using the above resolution, we construct the mixed type Fourier hyper-
functions which take their values in Fréchet spaces.

§ 0. Introduction

Recently the theory of Fourier hyperfunctions which take their
values in a Hilbert space was developed by Y. Ito and S. Nagamachi
[5], and it was applied to the formulation of the axiomatic quantum field
theory by S. Nagamachi and N. Mugibayashi [9]. On the other hand
P.D.F. Ion and T. Kawai [4] developed the theory of hyperfunctions
which take their values not in a Hilbert space but in a Fréchet space.

There exist another kind of Fourier hyperfunctions which were
announced in T. Kawai [6] to be published as modified Fourier hyper-
functions but actually was not published. It turned out that the new
type Fourier hyperfunctions are useful in order to give the equivalent
Euclidean formulation of the quantum field theory. We call this new
Fourier hyperfunction the second type Fourier hyperfunction in distinc-
tion from the old one, the first type Fourier hyperfunction which was
developed in T. Kawai [6]. In S. Nagamachi and N. Mugibayashi [10],
the mixed type Fourier hyperfunctions were used for above purpose.
The mixed type Fourier hyperfunctions are those Fourier hyperfunctions

which are of the first type in some variables and of the second type in
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other variables. The space of mixed type Fourier hyperfunctions is a
convenient subspace of the space of the second type Fourier hyperfunc-
tions. Recently, Y. Saburi [13], [14] completed the theory of the second
type Fourier hyperfunctions which he called modified Fourier hyperfunc-
tions there, whereas in S. Nagamachi and N. Mugibayashi [11], the
theory is developed only to fulfill the minimal needs for the application
of the quantum field theory.

In this paper we construct the theory of mixed type Fourier hyper-
functions which take their values in a Fréchet space. Since the unbound-
ed operator algebra, as was developed by A. Inoue [3], has a Fréchet
space structure, it will be possible to define operator valued Fourier
hyperfunctions and apply them to the quantum field theory.

In Section 2, we define (Definition 2.13) the space & (£) of slowly
increasing C*-functions, and prove (Theorem 2. 19) that & (£) is a Fréchet
nuclear space.

In Section 4, we prove ‘the first main result, Theorem 4. 11, which
says that the sheaf 5“ of the slowly increasing holomorphic functions

has a soft resolution,
. ]
0-0k,1>F 00— —>%0m—0,

where 9., are sheaves of slowly increasing C*-(0, p) form.

In Section 5, we prove the vanishing theorems of cohomology groups
whose coefficients are in a sheaf @k,,, in a way similar to T. Kawai [6]
and Y. Saburi [13], [14].

In Section 6, using the resolution of Oy,; (Theorem 4. 11), we transfer
the results in Section 5 (scalar valued case) to the vector valued case
by the tensoring method used in P.D. F. Ion and T. Kawai [4], where
it is important that E is a Fréchet space and & (£) is a Fréchet nuclear
space. Thus we have the second main result, Definition 6. 9 and Theorem
6.11, where the space *R; ,(2) of mixed type E-valued Fourier hyper-

functions is defined and the flabbiness of the sheaf is proved.

§ 1. Notations and Conventions

Let z€ ", z=x+1iy and x€R", ye R". We follow the standard
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notations of zn-tuple of numbers. Thus, let = (a;, :*, &,) be n-tuple of
nonnegative integers, then D*=0'*/9z%---02%", where |a|=a;+ -+ a,.
The notation |z|? is used to denote |z|?=|2,|®+---+|2,|?, in particular
2] =lz;| + - +12,]. di is the Lebesgue measure on R™; dl=dzdy
=dzx, - dx,dy; - dy,.

If we consider C" to be the product f[ (C* X CY), where n=ié n; and
n;=k;+1,, we sometimes use the notatioir_llthat z= (2], -+, 2}) E(;"I where
2; = (21 21,) EC™ and 2o, = (24, =+, 21,) EC, 21, = (24, -+, 7,) ECH.

For the function f(2) defined in C", the notation D*f (x,y) or
simply D*f (2) is used to denote 98'*!f(x,y)/0xf -0z yTr+:---Gy%e» for
2n-tuple of nonnegative integers o= (&, ***, Asn) -

§ 2. Function Spaces

In this section, we introduce various function spaces which are used
in the theory of Fourier hyperfunctions. To describe the order of the
growth or decay at infinity, it is convenient to introduce points at infinity

and the neighbourhoods of the points at infinity.

Definition 2.1 (T. Kawai [6]). We denote by D" the com-
pactification R"U S%™' of R", where S% ' is the (z—1)-dimensional sphere
at infinity. To each x& R"— {0}, we associate a point x, on Si™' by
identifying S%! with [R*— {0}]/R, where R, = {r=R; x>0}.

A natural topology is given to the space D"

(i) For x&R", a fundamental system of neighbourhoods of x is
the set of open balls containing the point .

(i) For x&S8%', a fundamental system of neighbourhoods of
x (=y,) is given by {(C+a) UC,;C,.>Dy.}, where C is an open cone
generated by some open neighbourhood of y with its vertex at the origin,
a is some vector in R*, so that C+a is a cone with its vertex at a, and

C.. signifies the points at infinity of that cone.

In the theory of Fourier hyperfunctions of the second type or mixed

type, we use the following compactification.

Definition 2.2. Let C*X R, k+1l=n, be identified with R"**. We
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denote its compactification by D*! ie., D®*'=R"** U §%**~!. The topology
of D*! is given by the same way as D" in Definition 2. 1.
It is evident that the closure of R"=R**' in D*' is identical with

D" We write Q¥'=D"'x le and for multiindices k= (%, -, k),
l=(, -, 1), we define Q"'L=H Q%" equipped with the product topology.
sl . ‘

Now we define. the sheaves which are very important in the theory

of Fourier hyperfunctions.

Definition 2. 3. (The sheaf of slowly increasing holomorphic func-
tions.) Let £ be an open set in ' (where %, [ are nonnegative integers
or multiindices). We denote by ék,l the sheaf determined by a presheaf
{5k,l(g)}, where O,,(2) is the set of all holomorphic functions f(2)
(€0®RNC", n=|k|+|I]) such that zesKunpcnIf(z) le®*l < oo for any e>0

and any compact set K in 2.

Definition 2. 4. (The sheaf of rapidly decreasing holomorphic func-
tions.) We denote by Oy, the sheaf determined by a presheaf {Qk,l(!?>},
where £ is an open set in Q%' and (,;(£2) is the set of all holomorphic
functions f(2) (€0 (2N C")) such that for any compact set K in £2 there
exists some positive constant §x and the estimate . Es;r?cﬂlf(z) | %815l << o0
holds.

Definition 2. 5. (Topology of O.(K).) Let K be a compact set
in Q. We give the space Oy, (K) (=I"(K, Q1) ; the space of sections
of the sheaf 0, on K) the inductive limit topology lim O"‘(Vm) where
{V.} is a fundamental system of nelghbourhoods of K in Q%, satlsfymg
VuD Vs (the closure V., of V,,hL1 is contained in the interior V
V,. with respect to the topology of Q"% , and O7 (V,) is the Banach space
of all holomorphic functions f(2) (€0 (V,N C")) that are continuous in
V . N C"and for which | f(z) |<Ce™1*"™ holds for some constant C (depend-
ing on f). The norm of O (V,) is defined by ||f|» =z€s’7ugc’! f(=)|e™,

Let X and Y be locally convex spaces. A linear mapping u: X—Y
is. said to be weakly compact (compact) if there is a neighbourhood V
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of zero in X such that % (V) is relatively weakly compact (relatively

compact).

Definition 2.6 (H. Komatsu [7]). A projective (injective) sequence

of locally convex spaces with (one-one) continuous linear mappings:
Xy Xy vor e Xy emnee
(X=X o> X,—>-++)

is said to be weakly compact or compact if all mappings are weakly
compact or compact respectively. The limit space limX; (limX;) of a
weakly compact or compact projective (injective) sequence is said to be

(FS*) or (FS) ((DFS*) or (DFS)) respectively.

Proposition 2.7. Let K be a compact set in Q*', then Oy, (K)
is a DFS space.

Proof. We choose the fundamental system of neighbourhoods {V,}
of K so that K intersects all of the connected components of V,,. Then
the natural mapping from O (V,) to Or*'(V,.,) is one to one and con-
tinuous. It suffices to show that the mapping is compact. Let {f,} be
a sequence of the elements in O (V,) which satisfy |fu|.=<M. Then
we can extend e*"™*f,(2) to V,., continuously by defining e'*''™*'f, (2)
=0 for 2€V,..N(CY°, and there holds e*'™*f, (2) <M (uniformly
bounded). By using the Cauchy integral formula, it follows from the
uniformly boundedness that, for any >0 and 2,EV ., we can find a
neighbourhood U(z,) such that, for all £,(2), 2€U(z,) implies |e'’™*!
X fu(2) —e™V/™If () |<<e (equicontinuous). Since V,,, is compact,
Ascoli’s theorem shows that there exists a subsequence {e*'™*'f, (2)}
which converges uniformly on V,,,. This implies that {f,} is the
converging sequence in OP*(V,.). Therefore the mapping from
O (V,) to OF**(Vpn4) is compact. This completes the proof.

Next we will show that the space (,;(K) is nuclear. For this
purpose, we introduce a new space . (£) and use the following general

theorems.
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Theorem 2.8. A locally convex space E is nuclear if and only
if some, resp. each, fundamental system Uz (E) of zero neighbour-
hood has the following property:

(P) For each zero neighbourhood U& U s (E) there is a zero
neighbourhood V& U s (E) and a positive Radon measure u defined
on the weakly compact polar V° for which the inequality

Pv(x)§L°|<x, aSldu  for all z€E

is wvalid.

Proof. See Proposition 4.1.5 of A. Pietsch [12].

Theorem 2.9. The inductive limit of countably many nuclear

locally convex spaces is also nuclear.

Proof. See Proposition 5.2.4 of A. Pietsch [12].

Definition 2.10. Let 2 be an open set in Q"' We denote by
O (£2) the set of all holomorphic functions f(2) (€0 (2N C") such that

sup |f(2) | <<oo for any compact set K in £. The seminorms of
zEKNC*

Oc () is defined by P, (f) = sup |f(2)]|e#* V™ where K,C---€ K,C -
EKpNC*

2
is an increasing sequence of compact sets in £ which exhaust 2.

It is clear that the topology is independent of the choice of the

sequence of compact sets.
Proposition 2.11. 0.(2) is nuclear.

Proof. Let p be a positive number such that the polydisc D= {z;
lz;—ay|<<0,j=1, --+, n} is contained in K, ,; whenever a= (a;) €K, N C".

Then the following inequality follows from Cauchy’s integral formula:
/20 I f@IS @0 [ 1f@di,

where dA is the Lebesgue measure on C".
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Then we have for all €K, N C",

f(a) e€(1—1/m)!alg(7t02) -n J lf(z) Idlee(l—-l/(m+1))|a,|
o D
§ (7!02) —ngnép f if(z) Ies(‘_l/(m“m"dl
D

g (71.02) —n nép j\ If(z) 'ee(l—-l/(m+1))|gz|d}~ ,
K on

mt1

where we have used the inequality
lal<|zl+n0 for z€D.
Since the continuous linear forms 0§, with

{F0>=f(2) g1V m D) 2]

lie in the polar set V° of the zero neighbourhood
V=A{f€0:(Q); Pn:.(f) =1},

it is possible to define a positive Radon measure on V° by the equation

J; ¢(u)dﬂ= (Tcpz) —-n enGp j ¢(62) e—8|t|/(m+1)(m+g)dl

Kn+1NC™

for = C(V°) (continuous function on V°) such that the estimate
PaNS [ KAwldu  for all fe0.(9)

holds. Consequently, the locally convex space O.(£) is nuclear by
Theorem 2. 8.

Proposition 2.12. 0,.(K) is nuclear for a compact set K in

Ll

Proof. It is clear that OF (V,,) is included in @, (V,) and Oy m (V)
is included in O™*'(V,.,) and both inclusion mappings are continuous.
This shows that

Ligx_}@;/m(vm) =_1_iﬂ0,’,."(V,,,) (=0:,:(K)).
Consequently, the space Oy, (XK) is nuclear by Theorem 2.9.

Now we introduce a new function space & (£) which will be used
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to give a resolution of the sheaf 5k,l.

Definition 2.13. Let 2 be an open set in Q.. We define the
space F () of slowly increasing C* functions on £ C" to be the set of
all C= functions on 2N C"* which satisfy the “following condition:

For any compact set K in £ and any positive ¢ and positive integer

m,

sup  |D*f(z, ) |e~*"<oo

2€KNC™, [alSm
holds, where z=x+iy.

% (£2) becomes a Fréchet space with the seminorms

Po(f)= _ sup  |D*f(z, y)|e”"™

zEKRNC™, |¢|<m

where {K,} is the increasing sequence of compact sets in £ which ex-
haust £

Definition 2.14. Let K be a compact set in Q*'. We denote by
F.(K) the closed subspace of F(Q"') whose elements are those functions

which have the supports contained in K.
Proposition 2.15. Z(Q"') is a nuclear space.

Proof. Let 7(t) be the modification of |£] near ¢=0 so as to be-
2n
come C*~ and convex, and put %(2) => 79() if = (¢, -+, ts). Then
i=1
the following equality holds

e_sq(p)f(a) (t) _ (i1 5at_[e.sﬂ(t)f‘(“) (t)]dtl
- 1

("L

= -a—[ " —e®) f@ (4 dt]dt
J-~01, —»@tz{e FE@rdn|dn

= f dtg

- j T a(f%V@@)

€T ()

= dtqie-- t"dt [ﬁ<—a__e77., (t )\ f(a) (t)]e—sq(c)
1 . 2n i ati \ 1 ) : .
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Since [¢|<7 (&) Z|¢|+6 and |7’ () |SC’ for some positive ¢ and C’, we

have the estimate

le=¢18l F@ (£) | < C jw jw et ST | fO@)|dey-dis,

181sla)+2n

for some constant C.

Since the continuous linear forms &f*1 with (£, g3 =g~ ltl/mten £l (1)
for |a|<m+2n are in the polar set V° of the zero neighbourhood
V=AFf€ZF Q") ; Pnim(f) X1}, it is possible to define a positive Radon

measure on V° by

fp@an=c x |7 [ sEemmeman. an,

|la|lSm+2n

for 4= C(V°) so that the estimate

Po(NE | KF adldu

is valid. Consequently, the locally convex space & (Q*') is nuclear by
Theorem 2. 8.

In order to show that < (£) is nuclear, we use the following

theorems.

Theorem 2.16. Each linear subspace F of a nuclear locally

convex space E is also nuclear.
Proof. See Proposition 5.1.1 of A. Pietsch [12].

Theorem 2.17. The locally convex kernel of arbitrarily many

nuclear locally convex spaces is also nuclear.
Proof. See Theorem 5.2.3 of A. Pietsch [12].

Theorem 2.18. For a compact set K in Q"*, $,(K) is a nuclear
space.

Proof. Since ¥,(K) is a closed subspace of F(Q*Y, F.(K) is
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nuclear by Proposition 2.15 and Theorem 2, 16.

Theorem 2.19. For an open set £ in Q*', F(2) is a Fréchet

nuclear space.

Proof. Let ¢,(¢) be a C~ function whose support is contained
in K,, N C" where their derivatives are bounded, and ¢, (¥) =1 in K,,_,N C".
Then the topology of F(£) is the kernel topology of the mappings
FQ) Dfo>bufEF.(K,). Since ¥,(K,) are nuclear, F(£) is also
nuclear by Theorem 2.17. It is known that & (£) is a Fréchet space.

Definition 2.20. Let £ be an open set in Q%' If ¢ is a con-
tinuous function in £ N C", we denote by L*(£, ¢) the space of functions in
2N C" which are square integrable with respect to the measure e %di,

where d is the Lebesgue measure in C”.

Definition 2. 21. Let £ be an open set in Q®'. We denote by
L*(Q, §,1oc) the space of functions in £ N C" which are square integrable
on KN C” for all compact set K in £ with respect to the measure e *dA.

Definition 2.22. Let £ be an open set in Q"' We denote by
W*(2,¢) and W*(L, ¢,loc), where s is a nonnegative integer, are the

sets of functions in 2N C" whose derivatives of order <s are in

L*(2,$) and L*(Q, ¢, loc) respectively.

Definition 2.23. Let 2 be an open set in Q*'. We denote by
H’ (2, §) the closure of CZ(2NC™ in W*(£2, d).

Proposition 2.24. W*(£2, ¢,loc) is an FS* space.

Proof. Let K€ K,€ - be an increasing sequence of compact sets
in £ which exhaust £. Let ¢, (2) be a C* function with bounded deriva-
tives whose support is contained in Io(mﬂ C" and ¢,(2) =1 in K,,_,NC".
For feW?*(£, ¢,loc), ¢,.f belongs obviously to W* (Iof,,,, @), but moreover
¢S belongs to H’(I%,,,, #). In fact, we can choose functions «,(2),
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y=1,2, ---, such that a,(2) =1 if |2|<vy and «,(2) =0 if |z|=v+1
and their derivatives are bounded uniformly in . Then a,¢,f converges
to ¢, f in W* (B, @) as v tends to infinity. Since the support of a,¢,f
is compact, by using the Friedrichs mollifier, we can approximate a,¢,Jf
by functions belonging to C?(K,.NC" in W* (K., @). Thus we have
proved that

W*(8, ¢, loc) =lim H' (K, ¢).

The proof is complete if we show that the mapping H"(I&mﬂ, @) =f
—d.fe H* (Ioim, @) is weakly compact, but it is obvious since the bounded

set in the Hilbert space is relatively weakly compact,
.re s s
Proposition 2.25. (92) -l_n;n__W (2, |z|/m, loc).

Proof. Let $™(2) be a Fréchet space which consists of C™ func-
tions f on 2N C" such that P%(f) are finite for any compact set K in
2, where P%(f)= L Sup |D*f(x,y)|e "™ are the seminorms of
g™ (£2). Then the ziic?gsitl)ﬂsg”‘“(.g) CcW™(%, |z]/m,loc) is clear and
from the well-known Sobolev lemma we have W™ (£, |z|/m, loc)
CY™(2). Moreover, the both inclusion maps are continuous. Therefore
it suffices to show that F(2) =lim G™(D), but it is clear from the defini-

tion of those spaces.
Proposition 2.26. S (2) has an FS* space structure.
Proof. From Proposition 2. 23 and Proposition 2. 24, we have the
following equalities
(D) =lim, W™ (L, |z|/m, loc)
=li_r£m lilli_n H™(K,, |z|/m)
=lim, H™(Kan, |2|/m).

Since the mapping from H™'(K,., |zl/m+1) into H™(K,, |z|/m) is
weakly compact F(£) is an FS* space.
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Remark 2.27. Since ¥(£) is a nuclear Fréchet space, ¥ (£) has

an FS space structure.

From Proposition 2. 25 we have the following equalities
F @) =lim,[W"(L, |z]|/m,loc) ]’
=_1i_n}m lﬂn,n[Hm(Kn, lz|/m)]’
=lim, [H™(Kn, |z|/m)]".

The following theorem shows that (4(£))’ has a DFS* space struc-

ture.

Theorem 2.28. Let {X, u;} be a weakly compact projective
sequence of Banach spaces such that u; (liEX,) is dence in X; for
each j. Then the dual sequence {Xj, u}} is a weakly compact injec-
tive sequence and the strong dual space of the projective limit

lim X; is isomorphic to the injective limit lim X7.
Proof. See Theorem 11 of H. Komatsu [7].

Proposition 2.29. For each bounded set B in (F(2))', there
is an index m such that B is the image u,(B,) of bounded set
B, in [H™ (K., lzl/m)]’, where u, is an inclusion mapping from
[H”‘(I&m, lzl/m)]’ into (F(R))’, and u, is a weak homeomorphism
of B, onto B.

Proof. This proposition is a direct consequence of the following

theorem.

Theorem 2.30. The injective limit X=li_m) X, of a weakly
compact sequence of locally convex spaces is a complete reflexive and
bornologic DF space. For each bounded set B in X there is an
index k such that B is the image u,(B.) of a bounded set B, in X,
and u, is a weak homeomorphism of B, onto B. In particular, a

sequence x, in X converges weakly to zero if and only if there is a
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sequence vy, in X, with x,=u;(y,) which converges weakly to zero
in X,.

Proof. See Theorem 6 of H. Komatsu [7].

Proposition 2. 31. Let [H™ (2, ¢)]’ be the dual space of H™ (2, ¢).
Then T [H™(R,9)]’ has the form

2.1 T= 2 Dfu(x), fulz)E L8, —4).

Conversely the distribution having the above form belongs to

[(H™(@, 8]

Proof. For Té [H™(2,$)]" there exists g H™(£2, §) from the

Riesz theorem such that the following equation holds
KT, £>=0, Naneae =|a§m (D%9, D“f) 100,99 -
In particular if fFeCy (2N C") we have
(T, /= 3 (DD +*DG@), £()>.
Since C7 (2N C") is dense in H™ (2, ¢) and g H™ (L, #), we have

T= 2 D*((-1 le=*@ Doy (2))

and
(=D '*le*@Dg(z) = fo.(x) €L*(2, — ).

Thus we have the required form (2.1) of 7. Conversely, for the distribu-

tion having the form (2.1) we have
(T, fr= 3 DFul@), F@>= T (=D Sfu@), DF @)

for feCy(@NC". Since Cy(2NC™) is dense in H ™ (L2, ¢) we have for
fEH™(2,9)

T, £r= % (—DKfulz), D°f(2)>.

It is obvious that the above linear form on H ™(£, ¢) is continuous.

This completes the proof.
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Remark 2.32. The topology of [H™(£,¢)]’ is given by the norm,

1T 2m, 200, -0= 25 I Fa(®) I2ece,-0)
lelsm

for T of the form (2.1).

§ 3. Approximation Theorem

j j
Theorem 3.1. Let K be a compact set in 1] D™, then Oy, (11 D™)
i=1 i=1
is dense in i (K).

j
Proof. We define U,=]] Uy** where
t=1

Uteh= {2 €™ [Im 2,['< (IRe 2 *+1) /5, |Im z,,*<1/2}

with n;=k;+1; and 2 = (2, 2;,) €Q*Y. The proof goes on in a fashion
similar to that in Theorem 2.2.1 of T. Kawai [6], if we can construct
a sequence of subsets {£,} possessing the following properties:

@ U,28,ODK and £,’s tend decreasingly to K.

(b) For any p and any T (€ £,), there exists an open set V and
a function 0(2) strictly plurisubharmonic in U, such that

(i) TCVCL,;

(ii) 0(x<0 on TNC

(iii) 6(z) >0 near dVNC";

(iv) gr?gnﬁ (&) EMp<oco for any LECL,.

We can also construct {#,} in a way similar to that in Theorem
2.2.1 of T. Kawai [6] or Appendix of S. Nagamachi and N. Mugibayashi
[11]. We shall say that € is of type (E) if 2= N, V?, where V=0
and

Ul={zeC"; /() I<1, di|lm z, '~ IRe [ <1,
&I 2,,:<1, 1<i<j}.

Here f1(2) =c, exp{—2;(z;—aP)*}, ;R and a’R. Then K can be
approximated by a decreasing sequence of £, of type (E). Moreover,
for any T€ £, we can find an open set V of type (E) such that T€ V&€ 2,.

In the construction of V, we may assume d;=d. On setting
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¢ (2) =max;{d|Im z,,|*— [Re 2;[—1}, 0(2) =sup, loglf;(2) |
and

2 (2) =max{#(2),0(2)},

we define

0(2) =1 (2) ¥0c +e[1+3 {log 1 + lze ) + 1Im 2, 1%},

where 0. is a mollifier in R*. Then 60(2) thus defined is strictly
plurisubharmonic and 0(2) <0 on T'NC" and 6(2) >0 near 0VNC" for
sufficiently small e>>0. Thus we have constructed {£,} possessing the
properties (a) and (b).

Lemma 3.2. Let ¥ be one of the spaces S5 of type S of
I M. Gelfand and G. E. Shilov [1] having the indices o= (0, -+, ),

j
B= By =+, Ba) s ay=1/4, B;=3/4 for 1<j<n, and put P,,=0r.. (EDM) )
then SYiC Py, and the original topology of F¥i is stronger than
that induced by P,...

Proof. Let 9™ be a Banach space of those entire functions which

satisfy the condition
lflmafe%g |f(2)|exp{IRe 2|*/m —m|Im 2|} <oo.
|fln is the norm of the Banach space I™, and .#¥; is the inductive limit
of {g™ (see I. M. Gelfand and G. E. Shilov [1] p.220). Let
Ueyn={2€ C"; [Im 2, P< (1 +|Re 2L D) /.,
Im 2, P <1/m, 1<}

j
for zi= (zi,2,,) €Q*" and Q"'=]] Q% then &P,, is the inductive
i=1
limit of @zn (Uk.l;m) .

If z€eU;m (m=2), we have a series of inequalities

IRe 2|*/m — m|Im z[*g@;—%) [Rez]‘—-f;(j+ IRe z|%)

Z(IRe z|+ [Im z]) /m —c=|z|/m—c

for some constant c¢. Hence | f||,<¢€’|f|.. Therefore I"COF (Up;m)
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and consequently #¥iC P, and the topology of #¥; induced by P,

is weaker than its original topology.
Proposition 3.3. Vi is dense in Py,

Proof. See Proposition 2.2 of S. Nagamachi and N. Mugibayashi
[10]. ‘

s
Corollary 3.4. Let n=3 ki+1l, Py=Ponand Pyy= LPno Then
i=1
Py ts densely included in P, and P, is densely included in P,.

Proof. Since the inclusion relation is obvious from the definition,

this corollary is the direct consequence of Proposition 3. 3.
L j . -
Proposition 3.5. & Py, is dense in Py,
i=1

j
Proof. B.S. Mityagin [8] has shown that ®5/ Y4 (R™) is dense in
=1
7
SR (n=3n;). By Lemma 3.2, ®y=:;: (R™) C i@@k"l‘ and the

topology of F¥;(R") induced by P, is Weaker than its original topology,
i

and F¥i(R"™ is dense in P, by Proposition 3.3. Therefore Q Py,
=1

is dense in P,
A
Proposition 3.6, X P, = Py...
i=1

Proof. By Proposition 3.5 and Proposition 2. 12, it suffices to show
i

that P, induces on & Py, the topology w=e. Since the multilinear
i=1

mapping (w4, *, #;) ——ﬁél u; of inI Py, into Py, is continuous, the =«
topology is finer than _the indu_ced topology. On the other hand, if {f,}
is a net converging to zero in {, , it converges to zero uniformly on the
equicontinuous subset of (%j,;)’. In particular, sets of the form §§1 Aj,

with equicontinuous sets A; C (Py,,;,)’ are equicontinuous in (Py.)".

i
Thus Py, induces on Q P,,;, a topology which is finer than the ¢ one.
i=1
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j
Remark 3.7. Let D" and |] D™ be closures of R" in Q" and
i=1

j j z
[1 Q"™ where =3 n. Then Oou(D" =0u: (Il D), where (kL)
t=1 i=1 =

= (0,7n;). In fact the fundamental system of neighbourhoods of R" is
given by U, = {z€ C"; |Im 2|<1/m} in both topologies.

8§ 4. The Soft Resolutions of the Sheaf ﬁk,;

In this section we construct a soft resolution of the sheaf O, by
slowly increasing C*= differential forms, which will be used later to
calculate the cohomology groups H’(V, 5k,1).

Let 2 be an open set in C". If ¢ is a continuous function in £,
we denote by LY, ., (82, ¢) the space of forms of type (p,q) with co-
efficients in L*(2, @),

f=3" Y frdZN\dE

1=p {Ji=q

where >} means that the summation is performed only over strictly

increasing multiindices. We set
[FIP=23Y |fral®,
T

and

IFf= {, e,

It is clear that L*(£, @) is a Hilbert space with this norm. Similarly
we define Dy, o (2) where D(£) is a notation for Cy (£2).
If ¢, and ¢, are two continuous functions in £, then the Cauchy-

Riemann operator 8 defines a linear, closed, densely defined operator

T: L, (8, 1) > Lip, ¢4 (2, 62)

whose domain contains Dy, o (£2). Let ¢, be another continuous function
and let S be the operator from Lf, .1 (2, @) to LYy g4 (2, #5) defined
by 0.

Lemma 4.1 (Hérmander). Let 7,,v=1,2, -, be a sequence of
Sunctions in Cy(2) such that 0<%,<1 and 9,=1 on any compact subset
of £ when v is large. Suppose that ¢,=C' () and that
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4. 1) =4 30 100,/07 et j=1,2;9=1,2, -,
k=1

Then D, 41 (2) is dense in Dp0 Ds for the graph norm
S= 1 loe + 1T *Fllo, + 1SS,

Proof. See Lemma 4.1.3 of L. Hérmander [2].

Lemma 4.2. Let ¢ be a C:-plurisubharmonic function on C"
such that 0¢/0z;, 0¢/0%; and 0°¢/02;0%; (0j<n) are bounded. If
Sfe L%p,uz) (C", ¢) and T*fe L%p,q) (€™ @) for fe L%p,an) (C™, @), then
SE Wi (C", 9).

Proof. Choose a function y=C=(C") such that

n

4.2) S 107,/0%, | <e* in C", y=1,2, ..

k=1

If we set ¢,=¢—2¢, ¢,=0¢—, ¢s=¢, the condition (4.1) is satisfied for
any choice of ¢, and the following inequality holds for f& Dy, 441 (C™) :

2 I 2 f1ixf11x0'/02,02,e7*dA+ 3 3] flafI,J/62,|28'¢dl
fx J 55 5 =

<2 TSI, + IS 715+ 2 [ 171091 *an

((4.2.7) in L. Hérmander [2]). Since we can choose 7, satisfying the

condition
Diom/0z<1, v=1,2, -,

we can choose ¢=0 in (4.2). Since ¢ is a C*plurisubharmonic function,

we have for f&€ Dy g4 (C")
5 33 (1030002 et da2| TH 13+ ISS13

If f only satisfies the hypothesis in the lemma, we can choose
J2E D, g4y (C™) such that f,—f, T*f,—»T*f and Sf,—Sf as n—oo by
Lemma 4.1. Then 0f,, 1,/0%; converges in L*(C", ¢) and hence df;,/0%,
eL*(C", ¢). The proof is therefore reduced to the following lemma.
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Lemma 4.3. Let ¢ be a C’-function on C" such that 0¢/0z,
0¢/0%; and 0°¢/0z;0%; (0=j<n) are bounded. If 0w/0Z,=L*(C", @)
k=1,2, -, n for weL*(C", §), then we W' (C", ¢).

Proof. We have only to prove that 0w/dz,€L*(C" ¢). If
we Cy (C™), integrations by parts give the following equality,

ylaw/ﬁz,i’e'¢("d1

- j {1010 /0% | — 0w /02,06 /0% i — w00z w 0Z,

+ (04/0%,;0¢/02,— 0°¢/02,0%;) |w|*} e~ *®dA .
From the assumption, 0¢/0%2;, 0¢/0%; and 0°¢/0z;0%; are bounded. There-
fore we have
10w /02, 5<C (|0w/0%,],+ |l

for some positive constant C. If w only satisfies the hypotheses in
Lemma 4. 3, approximating w by w,& D(C") in the same way as we did

in the proof of the previous lemma, we obtain that 9w/dz;& L*(C", ¢).

Let £ be a pseudoconvex domain in C" and ¢(2) be a plurisubharmon-
ic function in £. We denote by Xj;, Y; and Z; the spaces of differential
forms Lip, g1y (2, 1), Lo (2, ¢2)y Lty qen (2, @) respectively, where

$:(2) =7(2) /i+4log A+ [2[") +¢(2),

$2(2) =7(2) /i+2log A +[2") +¢(2)
and

$:(2) =1(2) /i+¢ ().

Here, we denote by 7(2) the modification of |z| near {z;=0 for some j}
so as to become C*= and convex, which has been used in the proof of

Proposition 2. 15,

Lemma 4.4. Let T and S be the Cauchy-Riemann operator

defined in the distribution sense, then the sequence

T S
X~—Y,—Z, is exact.
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Proof. Since 7(2) /j+2log(1+]2/®) +¢ is a plurisubharmonic func-

tion, this lemma follows from Theorem 4. 4.2 of L. Hérmander [2].

Definition 4. 5. An open set £ in Q%' is said to be a Q%‘pseudo-
convex domain if it satisfies the conditions:

€)) sup _ {2|Im zi,|*— [Re 27 [%, [Im 2|} SM <oo,
2€8NCn, SIS ;

where 2; = (gi, 21,) €Q*** and Q""=I[ Qv

(ii)) There exists a C* strictly p1=ulrisubharmonic function 6(2) on
£ N C" having the properties:

@) {z;0(2) <c}ER for any c¢< oo and gggnfﬁ(z)lﬁML<oo for
any LE L,

) E#gJD"O (2) |I€My,, for any multiindex o and LC 2.

The Q%'pseudoconvex domain is the 5k,l-pseudoconvex domain
(Definition 5.1) satisfying the condition (b). In order to get a C* re-
solution of @, we require the condition.

Let £ be a Q"'-pseudoconvex domain. We denote by A%, Bj and

%, the spaces of differential forms Wi, o 1) (2, ¢y, loc), Wi, o) (2, ¢, loc)

and W2, g1y (2, ¢, loc) respectively, where
¢ (2) =1(2) /j+4log(1+]z]),
¢ (2) =7(2) /i+21og (1 + 2]}
and

s (2) =1(2) /5.

Proposition 4._6. I_Jet 0 be the Cauchy-Riemann operator. Then

9 7 .
the sequence A3'—sB5—C5! is exact.

Proof. (a) First assume that g=1. For every fEBj, we can
find a plurisubharmonic function ¢(2z) such that feL%, (2, #) where
61 (2) =1 (2) +¢(2), by the assumption of the existence of plurisubhar-
monic function 6(2) in Definition 4.5. Therefore the equation du=f has
a solution u=Y " wdz'€ L}, (8, o, loc) for every fe& BS such that df=0
by Lemma 4. 4. The equation §u=f means that 0u;/0%;=f;,.€ W* (2, e, loC)
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for all I and 7. Suppose that & A% for a certain ¢ with 0<0<s; we
know that this is true if 6=0. Let y be a bounded C* function whose
all derivatives are bounded and whose support is contained in XN C™ for
some compact set K in £. Then we have 0yu;/0%;=1yf1;+u0%/0%;
eW(C" ). If v is a derivative of order ¢ of yu; then 03v/0%;
eL*(C", ) for every j. Hence ve W!'(C" ¢,) by Lemma 4.3, that is
all derivatives of yu; of order 6+1 are in L*(C", ¢). This means that
wE W (8, Jy, loc) = Aj. Repeating the argument, we conclude that
e A

(b) Next assume that ¢>1, and define for (p,q) form f
ﬁf=§(' g}:@f['m/azjdzt/\dflf. Then we have T#f= (—1)?"'¢"d (e *f),
where ¢;(2) =¢;(2) +¢(2) (j=1,2) for the plurisubharmonic function
¢ (2) used in the part (a), and T** is the adjoint operator of 7" in Lemma
4.4, The solution of the equation Tu=f given by Lemma 4.4 can be
chosen orthogonal to the null space of T, that is, in (the closure of)
the range of T*. Since #*=0, we have ¥ (e *%) =0 or du=au where a
is a differential operator of order 0 with C* coefficients. Moreover it
follows from the property of 0(2) that the coefficients a;; of a satisfy

the following condition:

sup
zELNC"

|D%ay,;(2) €O <M 1,00

for any multiindex « and any LE. Assume that we have already
proved that z& AY for a certain finite ¢ with 0<X0<s. Choose the same

% as we did in part (a), then we have

0 (xut) € Wig, 11y (€™, 1)

and
P (qu) € Wig -1 (C", ).

We apply Lemma 4.2 to the above facts. ILet D be a differentiation of
order 0. Then

S(D(qw) =0 (D (qu)) € Lig, 045 (C", $1)

and
T*(D(xw)) = (=1 * "9 (e™* (Dyuw))
= (=10 (D () +bD(yu) € Lip,¢-1y (C", 1)
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where & is a differential oprator of order 0 with bounded C= coefficients,
and T* is the adjoint operator of T in Lemma 4.2. Since ¢, satisfies
the condition in Lemma 4. 2, it follows that D (gu) € Wiy, 4 (C", ¢;). Hence
s Wia (C", ¢y), that is, ue Wiy (82, i, loc) = A3, By induction we
have u= Aj. This completes the proof.

The following theorem due to H. Komatsu is very useful in the

later argument.

Theorem 4.7. Let X,, X, and X, be Fréchet spaces and let
u: X,—X, and wu,: X,—X, be densely defined closed linear mappings
such that w,ou,=0. Denote by X; and ), the strong dual spaces of
X, and the dual mappings of u; respectively:

XX, X,

, ,
U U
Xi—X;—Xj5.

Then:

(i) The image imu; is closed in X;., if and only if the image
imu) is (weakly*) closed in Xj.

(i) Suppose that both im u, and im u, are closed. Let Z=Xker u,,
B=imw,, Z¥*=ker uf and B*=imu,. Then the quotient space H=Z/B
is Fréchet and its dual space H’ is identified with the quotient space
H*=Z7Z*/B* as a set. If X,is (FS*) then His (FS*) and the strong
dual space H' is isomorphic to H* equipped with the bornologic or
the Mackey topology associated with the quotient topology in H*. If
X, is (FS), then so is H and H' is isomorphic to H*.

Proof. See Theorem 19 of H. Komatsu [7].

Theorem 4.8. Let 2 be a Q"'-pseudoconvexr domain in Q%' and
0 be the Cauchy-Riemann operator. Then the sequence

4.3) F g0 (D 5F .00 (@) 3F 011 (@)

is exact.
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Proof. Let A5, Bj, and C5 ' be spaces of differential forms which
appeared in Proposition 4.6. We denote by (A5™"’, (B%)’, (C5Y)’ and
¥ the dual spaces of A%, B}, C5' and the dual operator of d respectively.

It follows from Proposition 4.6 that the sequence
A‘“—>B‘ cit
is exact. Therefore the sequence
’ 19 S\ /7 0 $—. ’
(A7)« (By) '« (C7
is exact and the ranges of ¥ are closed by Theorem 4.7. Note
that G40 (.Q))’=li_1}‘1>(3§)’ etc., since & (£2) =li_m_W'"‘(.9, |z|/m, loc) by

Proposition 2.25. Since the inductive limit preserves the exactness, we

have the exact sequence

Fnan @) G0 (D) Foprasn (D).

Therefore the theorem is trivially true if ¢=2 by Theorem 4. 7.

We consider the case g=1. By the well-known Krein-Shmulian
theorem Fréchet space is fully complete, so we need to prove only
imdNV?° is closed, where V is a neighbourhood of 0 in F, .-y (2)
and V° is the polar set of V. Now by Proposition 2.29, there exists
some 7 such that im 9N V°=u,(B,), where B, is a bounded set in
[Hp sy (K 8u) 17 (B (2) =7(2) /m+4log 1+ |2[9) and u, is a weak
homeomorphism. If we assume du,—f< V°, then du, converges weakly

to f in some [HgH 1 (K, ¢m)]’. Here we need the following lemma.

Lemma 4.9. If u€ [HYy, o(Ki )17 (9(2)=1(2)/k+21og(1 + |2[)
and Suc [HE (I&m, )]’ (B>m), then there exists some v in (B%)’
and Yu="9v holds.

Proof of the lemma. If we represent [HE, (I%,,,(/;,,)]’ etc., by the
set of (p,q) forms with distribution coefficients [H* (K,,¢x) 10,4, then &
is represented by

Hf=(—1)** ;{’ ; Of 1.5/ 0%;dz" \ dz™ .

Let ¢,(2) =exp(—2*/n) and pg* be the Friedrichs mollifier. It is easily
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seen that for ue [H™ (K4, Oe) 16p.0p Oe*2 is a (P, q) form with C coefficients
whose supports are contained in I%kﬂ NC"™ and ¢@,0.%u belongs to

[H™ (I&kﬂ,(/)m)]zp,q) since we have assumed

sup {2|Im 2,]*— |Re 27 |*, |Im 2,,|%} <oo .
2E2NC*, 1SIS T

¢

Thus ¢,0.xu belongs to
(B =[W 0 (@, ¢m, 100) ] =limi [H™ (K4, bn) 10,0 -

Note that d@,0.%u= @, 0kt =P,0e% (Yu) and @,0.% (H%) converges to Ju
in [Wghiy (@, @n,loc)] = (An*Y)’ as n—oo and e—0. Since ¥ is a
closed range operator from (BZ)’ to (A%*!)’, there exists some v in (Bp)’

such that dv=1duw.

We return to the prooof of Theorem 4.8. By Lemma 4.9 we may
assume not only du,& (A%*")’ but also u,& (Br)’. Since du, converges

weakly to f in [H"‘“(I{’m, B) 1ip.a—ry» Y%, converges weakly to f in
(Az™) =lim, [ (R 1, 6a) Top

Since 9 (Bp)’ is closed in (AR*Y)’, 9(Br)’ is weakly closed because
#(B2)’ is convex. Therefore there exists some v in (Bk)’ such that
f=30v. This proves that im ¢ N V° is closed, hence im ¥ is closed. Then
it follows from Theorem 4.7 that the sequence (4. 3) is exact.

For the later use, we prepare the following proposition.

Proposition 4.10. Let £ be a pseudoconvex domain in C" and
O(2) be a plurisubharmonic function in £. We define X=li£1~X,,
Y=£_i£Y, and Z =1i£ Z; where X;, Y; and Z; are those spaces which

appeared in Lemma 4. 4. Then we have the following exact sequence:
x%v%z.
Proof. See Lemma 2.1.1 of T. Kawai [6].

Now we will show that every point z in the open subset £in Q%!
which satisfies the condition (i) of Definition 4.5, has a fundamental

system of Q!pseudoconvex domains. If z belongs to C", it is evident that
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z has a fundamental system of Q"'-pseudoconvex domains, since the re-
latively compact convex open set in C" is a pseudoconvex domain, hence
it is a Q"’pseudoconvex domain. Then we consider the case that z.
belongs to i]ZII(SZ;“’L“‘1>< w/-—lR’.’). First, let 2®= (e, -, &) +vV/—10,
where ¢;= (f, 0, .-+, 0) €8%t+1~1 and 2L be the point at infinity correspond-
ing to 2. We define p%,, (2) =7%,: (?) +j k;illlm 2;|* for z& C™ and positive

integers %, I, where

k+1l
7%,1(2) = (|Im 21|’+12=2 121" /IRe 2, —1/¢]*,

and

s
#@) = 1] phun &)
j 3
for 2= (21, ---, 2%) Ezﬂ @*HNC™) =Q"'NC" (ki+li=n4, Y ni=n).
=1 =1

Let U= {z€ C"; 1" (=) <¢} and Ve=Us, then {Vi}ocecrn is a funda-
mental system of neighbourhoods of 2 which consists of QF’-pseudo-
convex domains. To show this, it is sufficient to prove that g¢°(2)
=1/(p°(2) —¢) satisfies the condition (ii) of Definition 4. 5. In fact, it
can be easily seen that ¢®(2) is C* strictly plurisubharmonic in U, and
the derivatives of »°(2) are all bounded on K[ C" for any compact set
K in V.. Thus we see that ¢°(2) satisfies the required condition. For
the general z., =27, +iy€IjI (S*i+l-1% /1 R%), we choose a transforma-
tion 7T which is a tensor t;;oduct of unitary operators 7T; in C™, that is

J
T=QT; satisfying T (27,) =2¥. Let
i=1

J
pE(z) =i§{r;t,lt (Ti (Z;)) + |Im Zu"l}’t;lz},

o
then V.=U, for U,= {z€C"; p*(2) <&}, 0<e<p,, is a Q"'-pseudo-
convex neighbourhood of 2., where g, is an upper bound of ¢ in order

that U, satisfies the condition (i) of Definition 4. 5.

Now, let % ,» be the sheaf subordinated to the presheaf {F ,(2)},

then it is easy to see that the sheaf is soft. From Theorem 4.8, we
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have the following theorem, which is the key theorem to construct vector

valued Fourier hyperfunctions.

Theorem 4.11. Let 2 be an open set in Q%' satisfying the
condition (i) of Definition 4.5. We have the following soft resolu-
tion of the sheaf O, on 2:

L 5 5 5
4.4 0-0s,>F0,0>F0n—> " >Fan—0.

Therefore the cohomology group H?(R,0.,,) is isomorphic to the

p-th cohomology group of the following complex:

b ? 9
0—F 0,00 (£) >F 0,1y (B) =+ >F 0,y (£) 0.

§ 5. Vanishing Theorems and Duality Theorems
of Cohomology Groups

In this section, we use the resolution of &, by the projective limit
of L*? spaces which is convenient to give duality theorems. This resolu-
tion was used by T. Kawai [6] in type I case and by Y. Saburi [13],
[14] in type II case. In the case of mixed type, we can also obtain the
L* resolution of 6k,1 and calculate the cohomology groups in the same
way.

In this section we use the following definition of ¥ . i-bseudoconvexity
which was used in T. Kawai [6] and Y. Saburi [13], [14], and is
weaker than Definition 4. 5.

Definition 5.1. We call an open set £ in Q%' an gk,z-Pseudo—

convex domain if it satisfies the following conditions:

) zemgﬂ)ﬁsj {2|Im 2¢,|°— |Re 2; %, |Im 2;,|} <M <oo, where =z;

j
= (zno 1) €Q** and Q=11 Q"".
i=1
(i) There exists a C~ strictly plurisubharmonic function 6(2) on
20 C" which satisfies {z;0(2) <<c}C® for any real ¢ and sup |0()]|

zELNC™
<M, for any LE K, where M, is some constant.
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Remark 5.2. In the case of L? resolution of &, it is not nec-
cessary to assume that the derivative of 0(2) are bounded, which is

assumed in Definition 4. 5.

J
Theorem 5.3. Let S be an open set in || D% and U be an
) i=1
open neighbourhood of S in Q%, then there exists an Oy, ,-pseudoconvex

j
domain V which satisfies the condition: VCU and S=VN (I] D%).
i=1

Proof. For the type I and type Il cases, this theorem has been
proved by T. Kawai [6] and Y. Saburi [13] respectively. For the mixed
type we can prove it in a way similar to T. Kawai [6] and Y. Saburi
[13]. We have only to mix their methods.

First, choose 7(2) €C~(UN C™ which satisfies

(i) {=z€UNC*; 1) <c}€U for any c,

(i) iggﬂﬂ?’(z)l, A+1=DIPr@ 1, A+l1=DPr () <M <oco for
LEU,
where ¥V means any of 3/0x; or 8/0y; and F® means any of 0°/0x;0x;,
0%/0x,0y, or 0°/0ydy;, Next choose a(x) €C~(SNR"™ which grows
sufficiently rapidly as z tends to the boundary of (D"—S) from the
interior of SN R" but sup“{la(x) [, A+ x]) Palzx) |, A+ |xD)EP%a(x) |}
<Nx<oo for any KCKg'fc Define #(2) =a(Re 2) |Im 2|/ (1 + |Re 2x/?)
+7r(®@) (= (2 21)). Then we can fined a neighbourhood W(cCU) of
S in Q"' such that p(z) is strictly plurisubharmonic in W. For the
construction of 7(2) and a(x) and the detailed proof of the plurisub-
harmonicity of p(z), see Y. Saburi [13].

Now, let us define
g:(2) =max {0, [2/Im z[*— [Re (z—=*)[]/|Im = |}

and g (x) €C~(R) to be a convex monotone increasing function such that
¥ (x) =0 if <0 and %(x) >0 if x>0. By a suitable choice of 2%
€ (@W—-D") NC", we may assume that the sum ¢(2) =2]%(9:(2)) is
locally finite in €C” and ¢(2) >1if z€ @W—-D") N C". Th;n the domain
V=WnN{ze C";;(z) <1} is an O+ -pseudoconvex domain with a pluri-
subharmonic function 0(2) =p(2) +1/1—q(2)).
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Definition 5.4. Let £ be an open set in Q"'. We define X;(£2)
to be the set of all (0, ) forms # on 2N C" which satisfy the following

conditions: For any compact set K in £ and any positive g,

j ulte"®di< oo and f B |fe- 1 g < 0o
KNC KNCr

n

hold. We denote by ¥, the sheaf subordinate to the presheaf {X¥;(2)}.

Definition 5.5. Let 2 be an open set in Q%' We define U, (2)
to be the set of all (0,7) forms # on £NC" which satisfy the following
conditions: For any compact set K in £, there exists some positive 0

such that
j [t @ di< oo and f |5 29 43 < oo
KNC* KNC»

hold. We denote by 4J; the sheaf subordinate to the presheaf {U,(2)}.

It is easily seen that the sheaves X; and @J; are soft sheaves. By
the definition of 5,,,, and (i, and the existence theorem for du=f with
bounds (Proposition 4.10) we obtain the soft resolutions of 6“ and O,

respectively
O——)@vkll-—)%oa~ o ¥,.—0

0- Q41— Yo+ > Y ,—0
Therefore we obtain the following Dolbeault isomorphism:
H*(2,0,)={uc¥X,(Q);0u=0}/0%,,(2)
H2 (@, 01,) = {# €Y, (D) ;00 =0} f0Y, 1 (D .

Here we denote by HZ (£, Ox,.) the p-th cohomology groups with com-
pact support. In order to compute the above cohomology groups we

introduce the following spaces.

Definition 5.6. Let £ be an open set in Q. We denote by X;(2)
the set of all (0,7) forms u on £ C" satisfying the following condition:

For any compact set K in &£ and any positive ¢,

J |u|e®d A< 0
knes
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holds.

Definition 5.7. Let £ be an open set in Q% We denote by
Y, (£) the set of (0,7) forms z with compact support in £ satisfying the

condition: For some positive 0,

L |2 O < oo

holds.

From the above definition X; (&) and Y;(£) are given natural FS*
and DFS* space structures respectively, that is,

X ;(2) =lim, L, j (K, 1(2) /m),
Y (@) =limn Ly, 5 (K, —7(2) /m)

and using the natural identification of (0,j) form with (0,72—j ) form,
we have Y, ; (@) =[X;(2)]” where K;€ K,€ -+ is the increasing sequence
of compact sets in £ which exhaust £2.

Then H? (%, 5;:,:) is isomorphic to the p-th cohomology group of
the complex

X, (@) X, (@ 5 X, (@)

and H&(8, Ow.:) is isomorphic to the g-th cohomology group of the com-
plex

-3 _7
Y (@) 2Y (@) LY 1 (2).
Therefore we obtain the following theorem from Theorem 4. 7, since —@

is the dual operator of @.

Theorem 5.8. If H?(2,0.) =0 (p=1) then [H'(2,0.)]
=H;7 (8, Q).

Concerning to the hypothesis of the above theorem, we have the

following theorem.
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Theorem 5.9. For any 5k,l-pseudoconvex domain £, we have
H?(2,0.0) =0 (p=1).

Proof. From Proposition 4.10 and the existence of the plurisub-
harmonic function 0 (2) satisfying the condition (i) and (ii) of Definition

5.1, follows the theorem.

Corollary 5.10. Let K be a compact set in Q“' which has a
fundamental system of neighbourhoods composed of 5k,;-pseudocon'oex

domains £, then

H* (K, Qe) =0 (p=1).

Proof. It is sufficient to show that

_1_'_11_1in” 25, Or1) =0 (p=1).

Let #(2) be arbitrary cocycle in H? (&, Q). Then u(z)coshez belongs
to H?(&;.1, Or,) for sufficiently small ¢>0. By Theorem 5.9 u(2)
X coshez is a coboundary in H?(£2;,,, @k,l), that is, u(2)coshez=0v(2)
for some v(2) € X,-1(2;+,). Define w(z) =v(2) /cosh ez. For sufficiently
small >0, w(z) belongs to Y,-;(2;+,) and dw(z) =u(2), hence the
image of H? (£, Or1) in H? (2441, Ox,1) is zero. Therefore lig,H”(.Q,, (V)
=H(K, Q1) =0.

Theorem 5.11. Let 2 be any open set in Q' satisfying

sup  {2|Im g,,)°— |Re 2{ %, |Im 2;,| <M <oo, then H"(2, Os.1) =0.
2€9NC™ 1SS )

Proof. We can prove the theorem in the same way as Theorem
3.1.8 in T. Kawai [6].

Using above theorems, we have the following theorem.

Theorem 5.12. Let K be a compact set in Q%' and V be an
@k,,-pseudocon-vex domain containing K. Suppose H? (K, Q1) =0 for
p=>1. Then we have HE(V, 0,,)=0(p=#n) and HEXV, O4) =[O (K)]'-
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Proof. We have only to replace O by O, and O by O, in the
proof of Theorem 3.2.1 of T. Kawai [6].

i
If K is a compact set in J] D%, K has a fundamental system of
i=1
neighbourhoods composed of Oy, ,-pseudoconvex domains by Theorem 5. 3.

Thus we have the following theorem.

i
Theorem 5.13. Let K be a compact set in || D" and V be
i=1
an open neighbourhood of K in Q%'. Then we have HE(V,(O;,;) =0
(p#n) and H(V,0c:) =[0n: (K)]".

As is well known, this theorem combined with Theorem 5. 11,
~ i

concludes the pure-codimentionality of (), with respect to [[ D™, or the
=1

following theorem holds.

j .
Theorem 5.14. Let 2 be an open set in || D™. Then H3(V, O,.)
i=1

=0 (p~n), where V is an open set in Q"' containing 2 as a rela-

tively closed set.

§ 6. Vector Valued Fourier Hyperfunctions

In this section, we define Fourier hyperfunctions which take their
values in a Fréchet space E, and we call them E-valued Fourier hyper-
functions. In the case where E is the one dimensional space of complex
numbers, E-valued Fourier hyperfunctions are ordinary Fourier hyperfunc-

tions.

Definition 6. 1. Let £ be an open set in Q*' and E be a Fréchet
space. We denote by $ (£, E) the set of E-valued C* functions on
£ N C" which satisfy the following condition:

For any compact set K in £, any positive ¢ and integer m and any

continuous seminorm p on E,

sup  p(D*f(z, y)) e~ <eo

zEKNC®, lajsm

where z=x+1iy.
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Proposition 6.2. Let 2 be an open set in Q¥'. Cy(2NC")RE
is dense in (2, E).

Proof. Let f&€4 (2, E). Consider an increasing sequence K,€ K,
€+ of compact sets in £ which exhaust £ and C* functions ¢, (2) on
C" whose support are contained in K, C" and ¢, (2) =1 if z€X,,_,NC",
then ¢,f€%.(K,, E) and ¢, f—f in F (2, E) as m tends to infinity. Let
7,(2) be C~ functions with compact support in C" such that 7,(2) =1 if
|2|<y and their derivatives are bounded uniformaly in v, then 7,¢,f—>@nf
in $(2,E) as p tends to infinity. Thus 7,9,/ —f in (L, E) and
InpufECS (2N C, E).

Let g€C (2N C™ E) and p be a continuous seminorm of E. For
any positive &€ we can find a finite covering U, -+, U, of the support of
g by relatively compact open subsets of £ N C” such that p(g(2) —g(¥))
<e for y,z€U; (j=1,-,7). Let {h} be a C partition of unity on
the support of g, subordinated to the above covering, and in each set Uj,

pick up a point y;. Then we have for any positive integer m,

PR -2 R (2)g(y,))e ™
=2k (@DpOR) —g))e T m<le.

This shows that geCy(ZNC™ E) is a limit of ¢;€Cy (2N C")QRE in
the topology defined by the seminorms

pK,m (f) = Sup P(f(z))e_l”/m ’
zeKNC»

where K is a compact set in £ and m is a positive integer. Let p.* be
the usual Friedrichs mollifier. Then it is not difficult to see that for a
sufficiently small >0, p.*g is the limit of p.*g; in (R, E), since we
may assume that the supports of g; are contained in an arbitrary neigh-
bourhood U of the support of g¢.

Finally we see that @xg;€Cy(2NC" QE converges to (g*g
(eCe(RNC™" E)) in S (2, E) and p.xg converges to g(€Cy (2N C™, E))
in (2, E), but there is a sequence f;&Cy (2N C", E) which converges
to fES (2, E) in the topology in (2, E). This completes the proof.

Proposition 6.3. (2, E) is complete.
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Proof. Let {f;} be a Cauchy sequence in ¥ (£, E). As E is com-
plete, f; converges pointwise to a function f, moreover f; converges to

f in the topology defined by the seminorms
e, (f) = sup p(f(=))e /™,
zEKNC™

Therefore f(2) is continuous function in £ N C" satisfying pg. . (f) <oo.
In the same way D%f; converges to a continuous function f, satisfying
Prm(fo) <<oco. Then we have only to show that D*f=f, Let
a= (a, ***, Uap) With dpr1=®pis="""=0a2,=0. Then we have

f1() =) = le L:” (xlzasil—)_“l';((z:ﬁ)'ag—l

X Dafj (yl, Yoy Tpsy, o0, xzn) dyl"'dyp ’
where we put 2= (x;, ***, Tan), E= (&, -+, &) and x;=8&; for p+1<;
<2n. Since f; and Df; converge uniformly to f and f, respectively on
every compact set L in £N C", we have

CF@ = [T [P (@ v
7 f(C)-J;l j;” (=11 (@ —1)!

XFa(¥1y s Yy Tpity ***y T2n) Y1+ dYyp .
Thus we have D*f=f,.

Proposition 6.4. (2, E) =9 (Q) @eE.

Proof. By Propositions 6. 2 and 6. 3, it suffices to show that & (2, E)
induces on ¥ (2) ®E the topology e.

We observe, first, that (£, E) can be canonically injected in
L(E.;9(f2)) the space of continuous linear mapping from E. to F(2),
where the index 7 means Mackey’s topology on E, ie., the topology
of uniform convergence on the convex balanced weakly compact subset
of E. Indeed, let f€4 (2, E) and consider the complex valued function,
defined in 2N C", z—<¢’, f(2)> where €’ is an arbitrary element in E’.
It is easy to see that the function <{e’, f(2)> belongs to F(£2). Now
let « be arbitrary 2a-tuple such that |a|<m, and K is a compact set in
2. Then (D% (z))e '™ stays in a compact subset K of E as z varies
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in KN C" and the closed convex balanced hull I"'(KX) of K is weakly
compact. If ¢’ belongs to the polar of (1/¢)I'(K) which is a neigh-

bourhood of zero in E., we have
sup [D%e’, £(z)>|e "™
z€KNC*
= sup [{e/,D*f(2)>]e """ <e.
z:EKNC™

This shows that the mapping ¢ — (z—<¢’, f(2))) is continuous from E;
into & (£2).

The proof will be complete if we show that the topology of
F (2, E) is equal to the topology induced by L. (E;,(2)), the space
L(E.%(2)) equipped with the topology of uniform convergence on
the equicontinuous subset of E’, since & topology on & (£) QR.E is the
induced topology from B(E;, F (2);) which is isomorphic to L. (E;, F(2)).
(See Proposition 42.2 of F. Treves [15].) Let U be a closed convex
balanced neighbourhood of zero in E, U° its polar, K a compact set in
2, and a€N® such that |@|<m. Then it is equivalent to say that
(D*f(2))e "™ U for all z& KN C", or to say that |D*e’, f(2) e "™
<1 for all 2 € KNC" and all ¢=U°. This completes the proof, since
a subset of E’ is equicontinuous if and only if it is contained in the polar

of some neighbourhood of zero in E.

The following theorem due to P.D.F. Ion and T. Kawai is very

useful to go to the vector valued theory from the scalar valued theory.

Theorem 6.5. Consider the category of Fréchet nuclear spaces
where the morphisms are continuous linear maps, and also the category
of projectively completed tensor products of Fréchet spaces with
metrizable locally convex spaces, where the morphisms are tensor
products of some continuous linear map on the Fréchet factor and
the identity on the second factor. Let E be a metrizable locally

convex space. Then

F>FQE

and
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L(F, F,) su—u®1€ L(F,QE, F,YE)

defines a covariant functor from the first mentioned category to the

second. This functor is exact.
Proof. See P.D.F. Ion and T. Kawai [4].

Let 2 be an O, ,-pseudoconvex domain. From the resolution (4. 4)

of the sheaf O, and Theorem 5.9 follows the exact sequence

6. 1) F o (D) >F 01y (@) 2T (2) 0 .

Therefore from Proposition 2. 19, Proposition 6.4 and Theorem 6.5, we

have the exact sequence
- By B
(6.2) 00,8, E) %0 (2, E)—F (2, E)—
-
"“—a’g(o,m (2, E)—0,

where %3 =5®1E is the Cauchy-Riemann operator for the vector valued
functions, and @k,l(ﬁ, E) is the space of E-valued slowly increasing
holomorphic functions, that is, the kernel of the Cauchy-Riemann operator.
By localizing the above sequence, we have the following soft resolutions

of the sheaf %0, of the E-valued slowly increasing functions

~ £y £ £y
(6.3) 0-%04,1—"%, o F 0,y F g, my—0 .

Theorem 6.6. If 2 is an 5k,l-pseudocon'vex domain and E is
a Fréchet space, then for p=>1, H?(2,%0,, =0.

Proof. This is a direct consequence of the exact sequence (6.2).

Theorem 6.7. Let 2 be an open set in Q"' satisfying the con-
dition;

sup {2|Im 2 |*— [Re 2; %, |Im 2|} <M <oo

zEQNC»

i

where 2i = (zx,, 21,) €Q*" and Q"' =11 Q**", and E be a Fréchet space.
~ i=1
Then H®(R,%0:,,) =0 for p=n.
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Proof. Theorem 5.11 shows that H"(2, 0., =0. This shows
that the complex (.., (2),0) is exact at F o (2). Therefore it follows
from Theorem 6.5 that the complex

Ex Ea‘
0-F 0 (@, E)—>—F oy (@, E) >0->0--
is exact at Fom (2, E). Thus we have H?(®,%0,,) =0 for p=>n.

J
Theorem 6.8. Let £ be an open set in 1] D™ and E be a

i=1

Fréchet space, then H%(V, E’ka,l) =0 (p#<n) where V is an open set in

Q"' containing £ as a relatively closed set.

Proof. It is enough to show HZany(V,*0,,) =0 for p7n and V
j
an open set in Q%! where D" is an abbreviation of [] D“. By the
i=1
excision theorem for relative cohomology groups and Theorem 5.3, we
may choose V to be an @vk‘,-pseudoconvex domain. Let £=D"NYV, then
we have the following exact sequence of cohomology groups:
6.4) > HY(V,20,,) > H*(V,50,,) > H?(V —2,%0 1)
~HE(V, %00 >

If Vis Oy -pseudoconvex, H?(V,%0,,) =0 for p=1 by Theorem 6.6,
so that for p=>2, H3(V,*0,,)=H"'(V—2,%0,,). By Theorem 6.7,
we have for p=>n+1, H3(V,%0,,) =0.

For n—1>p>0, we have H?(V-4, @k,l) =0 from the exact
sequence

—H}(V, 000 ~H?*(V,00) >H? (V- 8, 04,)
~HE"(V, 00—

and the fact that H2(V,0,,) =0 for 0<p<n (Theorem 5.14). Since
H* (V-4 ’OVM) is the p-th cohomology group of the complex
(Fo,o(V—£2),0) and tensoring by ®E is an exact functor, H?(V—2,
5@, vanishes whenever H?(V—2,0,,) does. Thus for 0<p<n—1,
H*(V—2,%0,,) =0.

Lastly we deal with the sequence

0—>HY(V,%0,,) »H(V,20,,) »H (V-2,%0,.)
~H5(V, %),
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Since H3(V,0.1) =0 for p=0,1 if n+#1, the sequence 0—0.(V)
-0, (V=) —0 is exact. Since O, (W) for an open set W in Q™' is
a closed subspace of a nuclear Fréchet space & (W), @VM(W) is also a

nuclear Fréchet space. By Theorem 6.5 we have the exact sequence
(6.5) 000 (NRE—-F,,(V-2RE—0.
Since ker (3®1) = (ker 3) E, we have
(6.6) O W)RE=0,,(W, E).
Thus we have the exact sequence
00, (V,E)y—0,,(V-2,E)—0,
that is, H3(V,%0,,) =0 for p=0,1. The proof is complete if ns1.

The case n=1 follows at once from Theorem 6.6 and Theorem 6. 7.

Now we define the space of Fourier hyperfunctions as the only non-

vanishing relative cohomology group.

Definition 6.9. Let E be a Fréchet space. The space *QR, ,(2)

of E-valued Fourier hyperfunctions of (%) type on an open set £ in
j ~

1I D™ is defined to be “R,,,(2) =H3(V,%0,, where V is an open set
i=1

in Q"' containing £ as a closed subset.

Proposition 6.10. *R,,(2) =H3(V,%0,,,) /H% (V, 0, where 2
is the closure of £ in Q%' and 02 is boundary of 2, i.e., 8 —8.

Proof. Consider the following exact sequence:
—Hg™(V—-04, Egk,l) —Hj3,(V, Egk,l) —H(V, E@”‘")
—>H3(V ~08,%0,,) > H2* (V,%0,) -,

where V is an open neighbourhood of £ in Q*'. By Theorem 6. 8, we
have HZ ' (V—02, E@;c,z) =0, and from the exact sequence

—H"(V—092,%0,) > H3'(V,%0,,) ~H"™*'(V,%0,,) -,

and Theorem 6.7, we have Hj3'(V, E@k,,) =0. Therefore we have the

required isomorphism.



62 SHIGEAKI NAGAMACHI

Theorem 6.11. The presheaf {ER..(2)} constitutes a flabby
j

sheaf ER,,, over 1] D™, whose restriction to R coincides with the
i=1

sheaf of E-valued hyperfunctions over R".

Proof. The flabbiness of ¥R, , is the direct consequence of Theorem
6. 8. Since the restriction of the sheaf E@v“ to C" coincides with the
sheaf of E-valued holomorphic functions ¥Q,*R, ,|R" coincides with the

sheaf of E-valued hyperfunctions defined in P. D. F. Ion and T. Kawai [4].

We represent the E-valued Fourier hyperfunctions as boundary
values of E-valued slowly increasing holomorphic functions. From
Theorem 5.3 there exists an 6k,l—pseudoconvex neighbourhood V of £
such that (;H1 D"yNV=4 Let V;={2cV;Im 2,50}, j=1,2, :--, n, then
V; is Oy, -pseudoconvex. In fact, let 6(2) be a plurisubharmonic function
which satisfies the conditions of Definition 5.1 for the @vk,l-pseudoconvex
domain V, then the plurisubharmonic function p; (2) +6(2) satisfies the con-
ditions of Definition 5.1 for V;, where p;(2) =log(1/|Im 2;|*) or p,;(2)
=log ((1+1271®) /|Im 2;|%) if 2; is a component of some g;, or g, respective-
ly, where % = (zs, 2:,) € Q"% and Q"'= :1_11 Qb Let V,=V, Q' ={V,
e, Vi}, QU ={Vy} UCY’ then (Y, V) is a B...-pseudoconvex relative
covering of (V, V—&). Since the finite intersection of O, ;-pseudocon-
vex domains is also O -pseudoconvex, we have H*(V,N---NV,, 23,
=0 (p=1) for any j, -+, ji from Theorem 6.6. Then we have the

following isomorphism from a theorem of Leray,
ER e (@) =H™"(Y, Y’ ,50,,) =E5n,z(V#9)/; 2041 (V ),

where V#2={2€V;Im 2,0, for all j} and V,={z&€V;Im 2,540, if
k=~j}. Thus the element f of %0, ,(V#8) defines the E-valued Fourier
hyperfunction [f] and we call f the defining function of [f]. This
function f(2) can be considered as 2" tuple of E-valued slowly increasing
holomorphic functions f,(2) defined in VN (R"+:iI",) where I',={yER";
0;59;,>0} and ¢:j—0; is a mapping from {1, ---, n} to {1, —1}. Intuitively
speaking, the hyperfunction [f] is the sum of boundary values

(1@ =3 (I 6) f@+il0).
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