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The Theory of Vector Valued Fourier
Hyperfunctions of Mixed Type. I

By

Shigeaki NAGAMACHI*

Abstract

The soft resolution (3:<o,i>)» d) of the sheaf Ok,i of slowly increasing holomorphic
functions of (&,/) type is constructed so that the section modules £F(o,p)(£) are Frechet
nuclear spaces. Using the above resolution, we construct the mixed type Fourier hyper-
functions which take their values in Frechet spaces.

§ 0. Introduction

Recently the theory of Fourier hyperfunctions which take their

values in a Hilbert space was developed by Y. Ito and S. Nagamachi

[5], and it was applied to the formulation of the axiomatic quantum field

theory by S. Nagamachi and N. Mugibayashi [9]. On the other hand

P. D. F. Ion and T. Kawai [4] developed the theory of hyperfunctions

which take their values not in a Hilbert space but in a Frechet space.

There exist another kind of Fourier hyperfunctions which were

announced in T. Kawai [6] to be published as modified Fourier hyper-

functions but actually was not published. It turned out that the new

type Fourier hyperfunctions are useful in order to give the equivalent

Euclidean formulation of the quantum field theory. We call this new

Fourier hyperfunction the second type Fourier hyperfunction in distinc-

tion from the old one, the first type Fourier hyperfunction which was

developed in T. Kawai [6], In S. Nagamachi and N. Mugibayashi [10],

the mixed type Fourier hyperfunctions were used for above purpose.

The mixed type Fourier hyperfunctions are those Fourier hyperfunctions

which are of the first type in some variables and of the second type in
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other variables. The space of mixed type Fourier hyperfunctions is a

convenient subspace of the space of the second type Fourier hyperfunc-

tions. Recently, Y. Saburi [13] , [14] completed the theory of the second

type Fourier hyperfunctions which he called modified Fourier hyperfunc-

tions there, whereas in S. Nagamachi and N. Mugibayashi [11], the

theory is developed only to fulfill the minimal needs for the application

of the quantum field theory.

In this paper we construct the theory of mixed type Fourier hyper-

functions which take their values in a Frechet space. Since the unbound-

ed operator algebra, as was developed by A. Inoue [3], has a Frechet

space structure, it will be possible to define operator valued Fourier

hyperfunctions and apply them to the quantum field theory.

In Section 2, we define (Definition 2. 13) the space 3 (.2) of slowly

increasing C°°-f unctions, and prove (Theorem 2. 19) that 3 (S) is a Frechet

nuclear space.

In Section 4, we prove -the first main result, Theorem 4. 11, which

says that the sheaf Ok,i of the slowly increasing holomorphic functions

has a soft resolution,

where 5^,P) are sheaves of slowly increasing C°°- (0, p) form.

In Section 5, we prove the vanishing theorems of cohomology groups

whose coefficients are in a sheaf 0fc,z, in a way similar to T. Kawai [6]

and Y. Saburi [13], [14].

In Section 6, using the resolution of Ok.i (Theorem 4. 11), we transfer

the results in Section 5 (scalar valued case) to the vector valued case

by the tensoring method used in P. D. F. Ion and T. Kawai [4] , where

it is important that E is a Frechet space and 3 (S) is a Frechet nuclear

space. Thus we have the second main result, Definition 6. 9 and Theorem

6.11, where the space E3lktl(Q) of mixed type jE-valued Fourier hyper-

functions is defined and the flabbiness of the sheaf is proved.

§ 1. Notations and Conventions

Let *eCfi, z = x + iy and x^Rn, y^Rn. We follow the standard
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notations of n-tuple of numbers. Thus, let a= (ai9 -~9(Xrd be w-tuple of

nonnegative integers, then Da^d^/dxil-"dxln, where |a|=aH ----- \-an.

The notation \z\p is used to denote |^ip= |^ilpH ----- 1- \zn\
p, in particular

\z\ = |zj| + •*• + \zn\. dX is the Lebesgue measure on Rzn; di

If we consider C" to be the product H (C** X Cl<) , where » = J] »t anc*

li9 we sometimes use the notation that z = (z{, • • • , ̂ ) eCw where

^ = (***> ZiJ^C"* and *fci = (zl9 — , zfc<) eC*S ^€= (^, -, ^) eClf.

For the function /(#) defined in Cw, the notation Daf(x,y) or

simply Daf(z) is used to denote d^f(x,y)/dxil-'dxlndy^'-dylzn for

2^-tuple of nonnegative integers a= (alf ~',a2n).

§ 2. Function Spaces

In this section, we introduce various function spaces which are used

in the theory of Fourier hyperf unctions. To describe the order of the

growth or decay at infinity, it is convenient to introduce points at infinity

and the neighbourhoods of the points at infinity.

Definition 2.1 (T. Kawai [6]). We denote by Dn the com-

pactification jR^US^T1 of JRn, where S ,̂"1 is the (^ — 1) -dimensional sphere

at infinity. To each x^Rn— {0}, we associate a point x^ on S^T1 by

identifying S^1 with [IT- {0}]/1?+ where R+= {xt=R; x>0}.

A natural topology is given to the space Dn.

(i) For x^Rn, a fundamental system of neighbourhoods of x is

the set of open balls containing the point x.

(ii) For .reS^"1, a fundamental system of neighbourhoods of

x ( = ^oo) is given by {(C-\-a) U CU; C^By*,}, where C is an open cone

generated by some open neighbourhood of y with its vertex at the origin,

a is some vector in JRn, so that C+a is a cone with its vertex at a, and

^ signifies the points at infinity of that cone.

In the theory of Fourier hyperfunctions of the second type or mixed

type, we use the following compactification.

Definition 2. 2. Let C6 X Rl, k + 1 = n, be identified with Rn+k. We
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denote its compactification by Dk'\ i.e., Dk'l = Rn+k(J S^k~l. The topology

of Dk>l is given by the same way as Dn in Definition 2. 1.

D\ We write Qk'l = Dk'lXiRl and for multiindices £=(*„*••,*,),

I— (l\> • • ' » J/)» we define @ fc f I = II (>**'** equipped with the product topology.

Now we define, the sheaves which are very important in the theory

of Fourier hyperf unctions.

Definition 2. 3. (The sheaf of slowly increasing holomorphic func-

tions.) Let Q be an open set in Qk'1 (where k, I are nonnegative integers

or multiindices) . We denote by Ok.i the sheaf determined by a presheaf

9 where Ok,i(S) is the set of all holomorphic functions f(z)

*), n=\k\ + \l\) such that sup l/O^k'^'O foranye>0
2ejrne»

and any compact set K in J2.

Definition 2. 4. (The sheaf of rapidly decreasing holomorphic func-

tions.) We denote by Ok,i the sheaf determined by a presheaf {Q*,i(£)},

where Q is an open set in Qktl and Ok,i(S) is the set of all holomorphic

functions f(z) (e(3(J2D C*)) such that for any compact set K in Q there

exists some positive constant dK and the estimate sup \f(z) \e§K^<^oo
z&Kncn

holds.

Definition 2.5. (Topology of Qkti(K).) Let K be a compact set

in Qkl1. We give the space Qk,i(K) ( = F(K9Oktl) ; the space of sections

of the sheaf Ok,i on K) the inductive limit topology lira Of (Vm)> where

{l/^} is a fundamental system of neighbourhoods of K in Qkrl, satisfying
_ • o

Vm^Vm+1 (the closure Vm+1 of Fm+J is contained in the interior Vm of

Vm with respect to the topology of Qktl), and 0?(Vm) is the Banach space

of all holomorphic functions f(z) (^0(VmClCn)) that are continuous in

Fmfl Cnand for which \f(z) \<,Ce~lz]/m holds for some constant C (depend-

ing on /). The norm of Of (Vm) is defined by ||/|[m= sup )/(«) k|2|/m.
z^vmnc*

Let X and Y be locally convex spaces. A linear mapping u:X—>Y

is said to be weakly compact (compact) if there is a neighbourhood V



FOURIER HYPERFUNCTIONS OF MIXED TYPE. I 29

of zero in X such that u(V) is relatively weakly compact (relatively

compact) .

Definition 2.6 (H. Komatsu [7]). A projective (injective) sequence

of locally convex spaces with (one-one) continuous linear mappings:

is said to be weakly compact or compact if all mappings are weakly

compact or compact respectively. The limit space limX; (limXj) of a

weakly compact or compact projective (injective) sequence is said to be

(FS*) or (FS) ((DFS*) or (DPS)) respectively.

Proposition 2.7. Let K be a compact set in Qk'1, then Okti(K)

is a DFS space.

Proof. We choose the fundamental system of neighbourhoods {Vm}

of K so that K intersects all of the connected components of Vm. Then

the natural mapping from Of (Vm) to 0?+1 (Vm+J is one to one and con-

tinuous. It suffices to show that the mapping is compact. Let {fn} be

a sequence of the elements in Of (Vm) which satisfy ||/n||m£S^ Then

we can extend e}*l/m+1fn(z) to Vm+1 continuously by defining ewm+lfn(z)

= 0 for zeVm+1n (Cn)c, and there holds e^/m+lfn(z) <,M (uniformly

bounded) . By using the Cauchy integral formula, it follows from the

uniformly boundedness that, for any £^>0 and z0£:Vm+1, we can find a

neighbourhood C7(*0) such that, for all /»(*), *eC7(*0) implies \ewm+l

X/n(«) — elz°l/m+1fn(zQ) |<£ (equicontinuous) . Since Vm+1 is compact,

Ascoli's theorem shows that there exists a subsequence {e^/m+1fnk (z) }

which converges uniformly on Vm+1. This implies that {fnk} is the

converging sequence in OT+l(Vm+1). Therefore the mapping from

0?(Vm) to 0?+l(Vm+1) is compact. This completes the proof.

Next we will show that the space Ok,i(K) is nuclear. For this

purpose, we introduce a new space Os (S) and use the following general

theorems.
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Theorem 2. 8. A locally convex space E is nuclear if and only
if some, resp. each, fundamental system tfj, 3 (E) of zero neighbour-
hood has the following property:

(P) For each zero neighbourhood U^(U3(E) there is a zero
neighbourhood V€E ̂  3 (E) and a positive Radon measure ju defined
on the 'weakly compact polar V° for which the inequality

Pu(x)<* f \<x,a>\dfji for all x^E
Jr°

is valid.

Proof. See Proposition 4.1.5 of A. Pietsch [12].

Theorem 2. 9. The inductive limit of countably many miclear

locally convex spaces is also nuclear.

Proof. See Proposition 5.2.4 of A. Pietsch [12].

Definition 2. 10. Let Q be an open set in Qk>l. We denote by

Os(£!) the set of all holomorphic functions f(z) (eOCGDC*)) such that

sup \f(z) |£s|2|<oo for any compact set K in Q. The seminorms of
ZGKDC*
0*(O) is defined by Pm(/) = sup \f(z)\e^l~l/m^ where -K,C-C^»C -

«eJ5rmnc»
is an increasing sequence of compact sets in Q which exhaust Q.

It is clear that the topology is independent of the choice of the

sequence of compact sets.

Proposition 2.11. Os(£) is nuclear.

Proof. Let p be a positive number such that the polydisc Z>= {z;

\Zj — %|<Cp,^=l, •••,#} is contained in Km+1 whenever a— (a/) ̂ Kmr\Cn.

Then the following inequality follows from Cauchy's integral formula:

f
JDD

where dk is the Lebesgue measure on Cn.
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Then we have for all a^Km(\(T,

'V-w+Wiw f {ftoldl
JD

nen£p f \ f ( z )
JD

-V^ f |
J^m-unc*

where we have used the inequality

\a\<*\z\+np for

Since the continuous linear forms dz with

</,&> = /(*) eea-I/(m+1>>l"

lie in the polar set V° of the zero neighbourhood

it is possible to define a positive Radon measure on V° by the equation

f #(«)rf/i=(7rpI)-"e11" f $($,,•) e-w^w^dl
JV° JKm+inC*

for 0eC(Vr°) (continuous function on V°) such that the estimate

P»(/)^ f \<f,*>\dfi for all /eOf(fl)
>o

holds. Consequently, the locally convex space 0S(S) is nuclear by

Theorem 2. 8,

Proposition 2.12. Ok,i(K) is nuclear for a compact set K in

Q*'\

Proof. It is clear that Of (Vm) is included in 01/m(Vm) and 01/m(Vm)

is included in Of+1(Vm+1) and both inclusion mappings are continuous.

This shows that

lim 0»m (V.) = lim Of (V.) ( = 0M (K) ) .

Consequently, the space Qk,i(K) is nuclear by Theorem 2.9.

Now we introduce a new function space 3 (&) which will be used
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to give a resolution of the sheaf Ok,i.

Definition 2. 13. Let & be an open set in Qktl. We define the

space S (@) of slowly increasing C°° functions on J?HC n to be the set of

all C°° functions on J2flCw which satisfy the "following condition:

For any compact set K in J2 and any positive £ and positive integer

7/2,

sup |D"/(*,y)k~*|f|<<x>

holds, where z = x-\-iy.

S (&) becomes a Frechet space with the seminorms

pm(/)= sup |Z>«/<Xy)kH"/m
*G*»nc»,|a|£w

where {^m} is the increasing sequence of compact sets in S which ex-

haust Q

Definition 2. 14. Let J?" be a compact set in Qk>l. We denote by
<3e(K) the closed subspace of *$(Qk'1) whose elements are those functions

which have the supports contained in K.

Proposition 2. 15. *3!(Qk'1) is a nuclear space.

Proof. Let y(f) be the modification of \t\ near £ = 0 so as to be-
2»

come C°° and convex, and put y(t) =T}y(tt) if t= (tl9 • •• , t2n) . Then
i=i

the following equality holds
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Since \t\<,y(t)<*\t\ + 8 and \rf ((){<£' for some positive 8 and C", we

have the estimate

p
J-o

for some constant C.
Since the continuous linear forms #o with </? gjM> = e-m/«H-*ny.(«> (/)

for \(X\<Lm + 2n are in the polar set V° of the zero neighbourhood

V= {f^3(Qk>l) ;Pw+2n(/)^l}, it is possible to define a positive Radon

measure on V° by

for ^eC(y°) so that the estimate

^m(/)^ fJr°

is valid. Consequently, the locally convex space *S(Qktl) is nuclear by

Theorem 2. 8.

In order to show that 5(J2) is nuclear, we use the following

theorems.

Theorem 2. 16. Each linear subspace F of a nuclear locally

convex space E is also nuclear.

Proof. See Proposition 5.1.1 of A. Pietsch [12].

Theorem 2. 17. The locally convex kernel of arbitrarily many

nuclear locally convex spaces is also nuclear.

Proof. See Theorem 5.2.3 of A. Pietsch [12].

Theorem 2. 18. For a compact set K in Qk>l, 2C(K) is a nuclear

space.

Proof. Since 3C(K) is a closed subspace of 3(Qk'1), <3C(K) is
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nuclear by Proposition 2. 15 and Theorem 2. 16.

Theorem 2.19. For an open set Q in Qk'\ %(Q) is a Frechet

nuclear space.

Proof. Let <f>m(t) be a C°° function whose support is contained

in Km fl Cn where their derivatives are bounded, and $m (t) = 1 in Km-! 0 C".

Then the topology of *3:(Q) is the kernel topology of the mappings

ff(fl)B/->0m/e£eGKm). Since 3c(Km) are nuclear, 5(5) is also

nuclear by Theorem 2. 17. It is known that 3 (S) is a Frechet space.

Definition 2.20. Let Q be an open set in Qktl. If $ is a con-

tinuous function in £ fl Cn, we denote by L2 (J2, <f) the space of functions in

Sr\Cn which are square integrable with respect to the measure e~*dk,

where dk is the Lebesgue measure in Cn.

Definition 2. 21. Let Q be an open set in Qk>l. We denote by

L2 ($, <f>9 loc) the space of functions in S 0 Cn which are square integrable

on KCi Cn for all compact set K in Q with respect to the measure e~*dL

Definition 2.22. Let Q be an open set in Qk>l. We denote by

Ws (fi, 0) and Ws ($, 0, loc) , where 5 is a nonnegative integer, are the

sets of functions in Q 0 Cn whose derivatives of order <5 are in

L2 (Q, (f>) and L2 (Q, (f>, loc) respectively.

Definition 2.23. Let Q be an open set in Qk'1. We denote by

H*(Q,<p) the closure of C?(£r\C») in W'(Q9$).

Proposition 2.24. W(fl,0,loc) fs aw F5*

Proof. Let J^C -^C • • • be an increasing sequence of compact sets

in Q which exhaust Q. Let $m (z) be a C°° function with bounded deriva-

tives whose support is contained in Km 0 C1 and 0m (s) = 1 in Km^ 0 Cn.

For /e T7S (J2, 0, loc) , <j)mf belongs obviously to Ws (Km, (f) , but moreover

$mf belongs to Hs (Km9 <f>) . In fact, we can choose functions av (z) ,
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y = l,2, ••• , such that ay(z) =1 if \z\<^i> and av(z) = 0 if |s|j>v

and their derivatives are bounded uniformly in v. Then cty<j)mf converges

to (f>mf in Ws (Kmy 0) as v tends to infinity. Since the support of Qtv<j)mf

is compact, by using the Friedrichs mollifier, we can approximate OC^nf

by functions belonging to C~ (Km H Cn) in Ws (Km, <p) . Thus we have

proved that

W (.0, <t>, loc) = lim H ' (m, <t>) .

The proof is complete if we show that the mapping H s (Km+l9

Km9 <(>) is weakly compact, but it is obvious since the bounded

set in the Hilbert space is relatively weakly compact.

Proposition 2. 25. 5(fi) = lim W* (Q, \z\/m, loc) .

Proof. Let £P(i£) be a Frechet space which consists of Cm func-

tions f on SC\Cn such that jPJ (/*) are finite for any compact set K in

J2, where Pf(/) = sup |JDa/(^y) |e"|2|/m are the seminorms of
zexnc* i«i^m

ffm(fi). Then the inclusion £Fm+1(^) CW"1^, |z|/m, loc) is clear and

from the well-known Sobolev lemma we have Wm+2n(£, \z\/m, loc)

C5m(5). Moreover, the both inclusion maps are continuous. Therefore

it suffices to show that 3(Q) =limSm(S), but it is clear from the defini-

tion of those spaces.

Proposition 2. 26. 3 (S) has an FS* space structure.

Proof. From Proposition 2. 23 and Proposition 2. 24, we have the

following equalities

=Um. Wm(Q, \z\/m, loc)

= limm Urn* #-(£:„, \z\/m)

Since the mapping from Hm+l(£n+1, \z\/m + l) into Hm(Km, \z\/m) is

weakly compact EF(fi) is an .F5* space.
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Remark 2.27. Since 3(Q) is a nuclear Frechet space, 5(£) has

an FS space structure.

From Proposition 2. 25 we have the following equalities

\z\/m)Y

The following theorem shows that (ff (,#))' has a DPS* space struc-

ture.

Theorem 2. 28. Z/££ {X/, %fc} be a weakly compact protective

sequence of Banach spaces such that #y (lim JJQ zs dence in Xj for

each j. Then the dual sequence {X?j9 u'jk} is a 'weakly compact injec-

tive sequence and the strong dual space of the protective limit

limXy is isomorphic to the injective limit limX$.

Proof. See Theorem 11 of H. Komatsu [7].

Proposition 2.29. For each bounded set B in &(&))', there

is an index m such that B is the image um(Bm) of bounded set

Bm in [Hm(Km:, \z\/m)]'9 where um is an inclusion mapping from

\Hm(Km)\z\/m)~\' into &(&))', and um is a weak homeomorphism

of Bm onto B.

Proof. This proposition is a direct consequence of the following

theorem.

Theorem 2. 30. The injective limit X—limXj of a weakly

compact sequence of locally convex spaces is a complete reflexive and

bornologic DF space. For each bounded set B in X there is an

index k such that B is the image uk(Bk) of a bounded set Bk in Xk

and uk is a weak homeomorphism of Bk onto B. In particular, a

sequence xn in X converges weakly to zero if and only if there is a
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sequence yn in Xk with xn^uk(y^ -which converges weakly to zero

in Xk.

Proof. See Theorem 6 of H. Komatsu [7].

Proposition 2. 31. Let \_Hm (£, $)] ' be the dual space of Hm (Q, 0) .

Then Te \_Hm (J2, 0) ] ' has the form

(2. 1) T= £ W«O), /«(
l«!£m

Conversely the distribution having the above form belongs to

Pro*?/. For T<E [Hm(fl, #)]' there exists g^Hm(Q,(j)) from the

Riesz theorem such that the following equation holds

In particular if /e Cj° (fl 0 Cn) we have

Since C%>(&f}Cn) is dense in Hm(Qy<p) and g^Hm(S,<fi)9 we have

T= I
l«|<

and

Thus we have the required form (2. 1) of T. Conversely, for the distribu-

tion having the form (2. 1) we have

<?',/>= S W,(*), /(*)>= S (-i)la|</«(*), />'/(*)>
|a|Si» |a|£»»

for /e Q" (5 0 C") . Since C0~ (5 D C") is dense in H m (Q, $) we have for

It is obvious that the above linear form on Jfw(J2, $) is continuous.

This completes the proof.
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Remark 2. 32. The topology of [Hm(Q9 #)]' is given by the norm,

for T of the form (2. 1) .

§ 3. Approximation Theorem

i
Theorem 3. 1. Let K be a compact set in JID71*, then

is dense in Qk,i(K).

Proof. We define C7P = ![#*'»'< where

with ni = ki + li and ^ = (zki, zti) ̂ Qki'li. The proof goes on in a fashion

similar to that in Theorem 2. 2. 1 of T. Kawai [6] , if we can construct

a sequence of subsets {Sp} possessing the following properties:

(a) C7,D SP"S) K and fip's tend decreasingly to K.

(b) For any ^> and any TCC^p), there exists an open set V and

a function 0(#) strictly plurisubharmonic in Up such that

(ii) 0(*)<0 on THC*;

(iii) d(z)^>§ near dVC\Cn;

(iv) sup 6(z) <^ML<^oo for any

We can also construct {J?p} in a way similar to that in Theorem

2. 2. 1 of T. Kawai [6] or Appendix of S. Nagamachi and N. Mugibayashi

[11]. We shall say that S is of type (E) if 5= flT-iV, where V1^1

and

Here /,(«) =^ exp^-^X^-^f)2}, ^eH and af^R. Then ^T can be

approximated by a decreasing sequence of Sp of type (E). Moreover,

for any TC@P we can find an open set V of type (E) such that

In the construction of V, we may assume di — d. On setting
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0 (z) = max, {d\Im zki |
2 - |Re zj |2 - 1} , (7 (2) = sup, log]/, (z) |

and

we define

0 (z) = j^z) *P. + e [1 + £ {log (1 +1^+1^2,^}],

where ps is a mollifier in jR2n. Then 6(z) thus defined is strictly

plurisubharmonic and 6(z)<Q on TC\Cn and 0(»>0 near QV^Cn for

sufficiently small £>0. Thus we have constructed {Q^ possessing the

properties (a) and (b) .

Lemma 3. 2. Let S^l'/i be one of the spaces «5 f̂ of type S of

J. M. Gelfand and G. E. Shilov [1] having the indices a= (aly ••• ,<270,

/?= 0?i, -,i3n), a, = l/4, ft = 3/4 /or l</^n, onrf/w^ ff^^O^^n^O,

^Ae^ J^ylcSVj ^^ ^^ original topology of ^\f/\ is stronger than

that induced by Sk,i.

Proof. Let 3~m be a Banach space of those entire functions which

satisfy the condition

l/L=sup |/(*)iexp{iRe z\*/m-m\lm z\*} <oo .

I/L is the norm of the Banach space STW, and ^\f/i is the inductive limit

of {<2m} (see I. M. Gelfand and G. E. Shilov [1] p. 220) . Let

for «J=(«*<,^<)e<?*"1' and {?*•' = IK?**1', then SP^.j is the inductive

limit of 0?(t7"*fl:w).

If z^Uk>i;m (w]>2) , we have a series of inequalities

iRe*|Ym-m|Im*!4>(— — L) |Re *|4- A(./
m

for some constant c. Hence ||/||m^ec|/|m. Therefore 3"wC0f (C7fcfl;w)
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and consequently ^Iftc: $ k,i and the topology of &*& induced by

is weaker than its original topology.

Proposition 3.3. c^?$ is dense in $H,I.

Proof. See Proposition 2. 2 of S. Nagamachi and N. Mugibayashi

[10].

Corollary 3. 4. Let n = g k, + 4 &+ = 3>0>rl <z*<* 5>** = 5V0. Then

2?#* zs densely included in £P f c t j tm<f iP*^ zs densely included in £P^.

Proof. Since the inclusion relation is obvious from the definition,

this corollary is the direct consequence of Proposition 3. 3.

Proposition 3. 5. 0 S'fe£,z« i$ dense in 9?k,i-

Proof. B. S. Mityagin [8] has shown that 0 3^fi (I?71*) is dense in

Sri'/KK*) (» = 2><). By Lemma 3.2, <8>^f#(lTli) C®^,^ and the
i=l £=1

topology of J?^i/4(l?w) induced by &kil is weaker than its original topology,
/

and ^y/\(KK) is dense in 9?k,i by Proposition 3. 3. Therefore ® &ki,it
i=l

is dense in &kti.

Proposition 3. 6. (g) <£kitl. = 3?k,i.
i-l

Proof. By Proposition 3. 5 and Proposition 2. 12, it suffices to show

that 3?k,i induces on ® iP*.,t. the topology 7T = £. Since the multilinear
€=i

y
mapping (e^, •••,%) ->® ^ of JJ £Pfc€,j€ into SP^i is continuous, the it

topology is finer than the induced topology. On the other hand, if {/„}

is a net converging to zero in 3?i&,i it converges to zero uniformly on the

equicontinuous subset of (£Pfc.i)'. In particular, sets of the form 0 A'i9i=i
with equicontinuous sets Ai d (&kitli)' are equicontinuous in (<Pktty.

Thus 9?ic,i induces on (g) Q^^ a topology which is finer than the £ one.
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Remark 3. 7. Let Dn and H Dni be closures of Rn in Q°'n and
i«l

fl<?"'n', where n=j±nt. Then 00,,(/>
n) = &.i (fl #"0, where (*„ &)

£==1 i=l i=l

= (0, HI) . In fact the fundamental system of neighbourhoods of Rn is

given by Um—{z^C1 \\lrn z\<\/m} in both topologies.

§ 4. The Soft Resolutions of the Sheaf Oh)i

In this section we construct a soft resolution of the sheaf Ok.t by

slowly increasing C°° differential forms, which will be used later to

calculate the cohomology groups Hs(V, Ok.i)-

Let Q be an open set in Cn. If 0 is a continuous function in ,0,

we denote by l?($^ (8, <fi) the space of forms of type (p, q) with co-

efficients in L2G0, 0),

where 2H' means that the summation is performed only over strictly

increasing multiindices. We set

m 2 \~\s i r 12
= lj I//,/! ?

and

11/11= fJ^ne

It is clear that L2 (fi, 0) is a Hilbert space with this norm. Similarly

we define I>(3,>a)(5) where D(&) is a notation for Q° ( J2) .

If 0j and $2 are two continuous functions in J2, then the Cauchy-

Riemann operator d defines a linear, closed, densely defined operator

whose domain contains D^^^Q). Let 08 be another continuous function

and let S be the operator from L\P)^D (Q9 02) to L\P)I1^) (Q, ̂ 3) defined

by 9.

Lemma 4. 1 (Hormander). Le^ ^v, y = l, 2, ••• , 6e a sequence of

functions in Cj° (J2) s^c^. ^Aa^ O^^^l and %, = ! o;z a?jy compact subset

of Q ^vhen v is large. Suppose that <j)z<E.Cl(8) and that
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(4. 1) #-*" £ 1 8^,/as, | ̂ «~*' j = 1, 2 ; v = 1, 2, • • • .
fc=l

Z)(pffl+1)(J3) £5 £feftse m DT*r\Ds for the graph norm

Proof. See Lemma 4.1.3 of L. Hormander [2].

Lemma 4. 2. Let $ be a C* -plurisubharmonic function on Cn

such that d<f>/dzj, d<f>/dzj and d^/dzfizj (0<£j<*n) are bounded. If

^(C\<l>) for

Proof. Choose a function (l>(=C°°(Cn) such that

(4. 2) f; |9Vto»l^* in C», y = 1, 2, -. .

If we set 0j = 0 — 20, 02==0~"(/'> 03 = ^> the condition (4. 1) is satisfied for

any choice of 0, and the following inequality holds for f&D<pt(l+1)(C
n):

c' f £ A,*//,«9V/0*,9«.«-*<«+ir i;,ir J ^,&=i /,J /-i

( (4. 2. 7) in L. Hormander [2] ) . Since we can choose yy satisfying the

condition

we can choose (/> = 0 in (4. 2). Since ^ is a C2-plurisubharmonic function,

we have for f(=D<p,t+1)(C
n)

IT g

If / only satisfies the hypothesis in the lemma, we can choose

fn^D(ptq^(Cn) such that /,->/, T*/n-^T*/ and Sfn-+Sf as n->oo by

Lemma 4. 1. Then dfn,i,j/dzj converges in L2(Cn, ^) and hence 9fltJ/dzj

GL2(Cn, 0). The proof is therefore reduced to the following lemma.
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Lemma 4. 3. Let $ be a C*-function on Cn such that

d<f>/dzj and d2(f>/dz$Zj (0<>j<>n) are bounded. If dw/dzk&Lz(Cn,<j>)

k = I,2,—,nfor rv^L2(C\(f>), then w<= Wl(Cn, 0).

Proof. We have only to prove that dw/dzj^L2(Cn, <£) . If

w€EC5°(C t t), integrations by parts give the following equality,

= (i\drv/dzj\*-dw/dzjd<fi/dzjW-i

4-

From the assumption, d$/dzj, d$/dzj and d2^/dzjdzj are bounded. There-

fore we have

for some positive constant C. If w only satisfies the hypotheses in

Lemma 4. 3, approximating w by wn^D(Cn) in the same way as we did

in the proof of the previous lemma, we obtain that dw/dZj^L2(Cn
9 0).

Let $ be a pseudoconvex domain in Cn and (fj(z) be a plurisubharmon-

ic function in Q. We denote by Xj, Yj and Zj the spaces of differential

forms L(p>tt-i)(£,0i), I^ (#,&), ^ka+D (^ ^«) respectively, where

A (*) = V (*) // + 4 log (1 + |*|2) + 0 («) ,

and

Here, we denote by ^(2:) the modification of |«| near {zj = 0 for some J}

so as to become C°° and convex, which has been used in the proof of

Proposition 2. 15.

Lemma 4. 4. Let T and S be the Cauchy-Riemann operator

defined in the distribution sense, then the sequence

is exact.
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Proof. Since y ( z ) / j + 2 log(l + kl2) +0 is a plurisubharmonic func-

tion, this lemma follows from Theorem 4. 4. 2 of L. Hormander [2] .

Definition 4. 5. An open set S in @ fc>l is said to be a Qfe' ̂ pseudo-

convex domain if it satisfies the conditions:

(i) sup {2\ImzKi\*-\Rez't\\ [ImSli|
2}^M<oo ,

*esnc», !£«:£/

where *<'= (*.„ zl() e<?*"« and <?M = II <?*"'<•

(ii) There exists a C°° strictly plurisubharmonic function $(2:) on

Q fl Cn having the properties :

(a) {%'90(zXc}C£ for any c<oo and sup |0(s) |^ML<cx> for
inc»

any I/C'G,
(b) sup |Da0(X) |^ML,a for any multiindex a and

The Qfc' l-pseudoconvex domain is the 0M-pseudoconvex domain

(Definition 5. 1) satisfying the condition (b) . In order to get a C°° re-

solution of 0fc,b we require the condition.

Let Q be a Qkt l-pseudoconvex domain. We denote by Ay, B} and

C}, the spaces of differential forms W(p)a-1) (J2, </»1? loc) , W(P,g> («0, ^2> loc)

and W(p>a+D (J2, 03, loc) respectively, where

and

Proposition 4. 6. L££ 9 ^e the Cauchy-Riemann operator. Then

the sequence A^'1 — *BSj — ^C*"1 is exact.

Proof, (a) First assume that q = l. For every f^Bs
J9 we can

find a plurisubharmonic function <p(z) such that f^L\Ptl)(^,(j)^ where

& (*) = ^i (#) + ^ (*) , by the assumption of the existence of plurisubhar-

monic function 6 (z) in Definition 4. 5. Therefore the equation du =f has

a solution u = J^f Ujdz1 & L\M (Q9 ̂ , loc) for every /e B} such that 9/=0

by Lemma 4. 4. The equation du —f means that dut/dzi =//,* e W8 (J2, </>2, loc)
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for all I and i. Suppose that u^ Affj for a certain ff with 0<J(T<Js; we

know that this is true if (7 = 0. Let % be a bounded C°° function whose

all derivatives are bounded and whose support is contained in KClC71 for

some compact set K in S. Then we have d^Uj/dzj = £/>,/ + Ujd%/dzj

e Wff (Cn, </>j) . If v is a derivative of order 6 of %#/, then dv/dz3-

eL2(C*,0,) for every y. Hence *>e W^C", </0 by Lemma 4.3, that is

all derivatives of %&/ of order <7-fl are in L2(Ctt, </>i). This means that
tf+1 (J2, </>!, loc) = Ay. Repeating the argument, we conclude that

(b) Next assume that <?>!, and define for (^>, q) form /

#/=£' ^9fux/dzfdxff\d^. Then we have T*/= (-l)*"1^* («"*•/),
I,K j=l

where <t>3'(z) =(pj(z) +(f)(z) (j = l,2) for the plurisubharmonic function

<f> (z) used in the part (a) , and T* is the adjoint operator of T in Lemma

4.4. The solution of the equation Tu=f given by Lemma 4.4 can be

chosen orthogonal to the null space of T, that is, in (the closure of)

the range of T*. Since $2 = 0, we have d-(e~^u) =0 or $u — au where a

is a differential operator of order 0 with C°° coefficients. Moreover it

follows from the property of 6(z) that the coefficients altj- of a satisfy

the following condition:

sup \D«aItj(z)\e*

for any multiindex a and any LC^Q. Assume that we have already

proved that u^ Aj for a certain finite 6 with 0<^<T<^s. Choose the same

% as we did in part (a) , then we have

and

We apply Lemma 4. 2 to the above facts. Let D be a differentiation of

order (T. Then

and
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where b is a differential oprator of order 0 with bounded C°° coefficients,

and T* is the adjoint operator of T in Lemma 4. 2. Since ^ satisfies

the condition in Lemma 4. 2, it follows that D(%u) e W}Ptq) (Cn, fa) . Hence

%uGW£k (Gn, fa) , that is, we W£J> (£, 0,, loc) = A*/1. By induction we

have tiEiA*j. This completes the proof.

The following theorem due to H. Komatsu is very useful in the

later argument.

Theorem 4. 7. Let Xl9 X2 and Xs be Frechet spaces and let

u1:Xl—>Xt and uz: X2—^X$ be densely defined closed linear mappings

such that ^2°«i = 0. Denote by X^ and u'j the strong dual spaces of

Xj and the dual mappings of % respectively.

Then:

(i) The image im% is closed in Xj+1 if and only if the image

im u'j is (weakly*) closed in X'j.

(ii) Suppose that both im u% and imuz are closed. Let Z=keru2,

B^imut, Z* = ker u{ and B*=imz4. Then the quotient space H=Z/B
is Frechet and its dual space Hf is identified with the quotient space

H* = Z*/B* as a set. If X2 is (FS*) then His (FS*) and the strong
dual space H! is isomorphic to H* equipped 'with the bornologic or

the Mackey topology associated with the quotient topology in H*. If

X2 is (FS) , then so is H and H' is isomorphic to H*.

Proof. See Theorem 19 of H. Komatsu [7].

Theorem 4.8. Let Q be a QF'l-pseudoconvex domain in Qk'1 and
d be the Cauchy-Riemann operator. Then the sequence

(4. 3) g ,̂.,, Cfl) 4^, (fl) 4>2(P)8+1) (ft

is exact.
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Proof. Let A}*1, B}, and C}~1 be spaces of differential forms which

appeared in Proposition 4. 6. We denote by (A^1) ', (BJ) ', (CJ"1) ' and

i? the dual spaces of Ay+1, JB% Q"1 and the dual operator of 9 respectively.

It follows from Proposition 4. 6 that the sequence

is exact. Therefore the sequence

is exact and the ranges of $ are closed by Theorem 4. 7. Note

that (5(p,g)(£))' = ljinCBJ)' etc., since 5(£) =lim_W*CO, \z\/m, loc) by

Proposition 2. 25. Since the inductive limit preserves the exactness, we

have the exact sequence

Therefore the theorem is trivially true if q^>2 by Theorem 4. 7.

We consider the case g = l. By the well-known Krein-Shmulian

theorem Frechet space is fully complete, so we need to prove only

i m ^ n Y 0 is closed, where V is a neighbourhood of 0 in 3^tq~.^(S)

and V° is the polar set of V. Now by Proposition 2. 29, there exists

some m such that im $ f| y° = #w ( J3m) , where Bm is a bounded set in

[H^,1_1)(^ro,«5m)]'(?5m(Z)=^(z)/m + 41og(l+|2:|
2)) and «. is a weak

homeomorphism. If we assume ^uv—^f^ V°, then ##„ converges weakly

to / in some [/J^Li) (^tm, ̂ m) ] ' . Here we need the following lemma.

Lemma 4. 9. // e<EE [Hfp,Q)(^fe, ^fc)]7 (0*(«) = ?(*)/* + 2 log(l+ k|2))

^e [JHĴ 1.!) (Jtm, ̂ w) ] ' (k>m), then there exists some v in (B%)'

and $u = $v holds.

Proof of the lemma. If we represent [-H^ (KH9((tk) ] x etc., by the

set of (/>,#) forms with distribution coefficients [fl*(^fc,0*)](pffl), then d

is represented by
1 /\dzK .

Let $n(X) =exp( — z2/^) and pe* be the Friedrichs mollifier. It is easily
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seen that for u^ [Hm(Kk, </0 ]<?,«) ps*u is a (#>, #) form with C°° coefficients

whose supports are contained in Kk+1 fl Cn and 0npe*# belongs to

[Jc:Pl(l^jfc+I,0TO)](pi,) since we have assumed

sup
*€«nc»,i

Thus (t>npt*ii belongs to

Note that $(f>nps*u = (f>ni}ps*u = 0«pe* ($w) and $nps* ({hi) converges to &u

in [W5^.1)(fi,^w,loc)]/=(4;+1)/ as rc-*oo and e->0. Since 7> is a

closed range operator from (JBJJ) 7 to (^1S+1) x> there exists some t> in (B%) '

such that &v = {}u.

We return to the prooof of Theorem 4. 8. By Lemma 4. 9 we may

assume not only f)uv^ (A^+1) ' but also &ye (J3JJ) '. Since $uv converges

weakly to /in [Hm+1(Km, ^)](P,a-i)» ^ converges weakly to /in

( AS+1) x = Hm, \_H™* (Kh 0.) ] ̂  .

Since d(BS)7 is closed in (A™^) 7, ??(JBS)X is weakly closed because

^(jB^)' is convex. Therefore there exists some v in (JBJ) ' such that

/=$t;. This proves that im #0 y° is closed, hence im $ is closed. Then

it follows from Theorem 4. 7 that the sequence (4. 3) is exact.

For the later use, we prepare the following proposition.

Proposition 4. 10. Let Q be a pseudoconvex domain in Cn and

(f>(z) be a pluri sub harmonic function in Q. We define X=limXj9

y=lim Yj and Z=lim Zy where Xiy Y} and Zy are those spaces which

appeared in Lemma 4. 4. Then we have the following exact sequence-.

Proof. See Lemma 2. 1. 1 of T. Kawai [6] .

Now we will show that every point z in the open subset Q in Qkrl

which satisfies the condition (i) of Definition 4. 5, has a fundamental

system of Qfcfl-pseudoconvex domains. If z belongs to Cn, it is evident that
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z has a fundamental system of Qk' z-pseudoconvex domains, since the re-

latively compact convex open set in Cn is a pseudoconvex domain, hence

it is a Qkt *-pseudoconvex domain. Then we consider the case that z^

belongs to fl CS~ i+'*~1 X v^l^) . First, let z™ = (el9 —, ef) + /^ 0,

where et= (1, 0, ••• , 0) eS2***1*"1 and z*£ be the point at infinity correspond-
k + l

ing to z(1\ We define p\ l (z) = rl i (*) + Y] \lm zA* for z<= Cn and positive
/-* + !

integers k, I, where

and

#*(*)=

Let C7e={2:eC7l;^e(2;)<s} and V8 = f7e, then {Fe}0<e<1/4 is a funda-

mental system of neighbourhoods of z£ which consists of Q*'l-pseudo-

convex domains. To show this, it is sufficient to prove that qs (z)

— ~L/(ps(z)—£) satisfies the condition (ii) of Definition 4.5. In fact, it

can be easily seen that q* (z) is C°° strictly plurisubharmonic in Us and

the derivatives of ps (z) are all bounded on Kf] Cn for any compact set

K in Vg. Thus we see that qs (z) satisfies the required condition. For

the general z^^z'^ + iy^lKS^+^X J^IR1*), we choose a transforma-
*=i

tion T which is a tensor product of unitary operators Ti in Cn*, that is

T = (g) T| satisfying T (O = a^. Let

then y£ = 0"£ for U$= {z<=Cn; ps («)<e>, 0<e<p2oo is a Qfc'l-pseudo-

convex neighbourhood of z^, where p2oo is an upper bound of e in order

that C7e satisfies the condition (i) of Definition 4. 5.

Now, let 3(o, P) be the sheaf subordinated to the presheaf {3(Q>

then it is easy to see that the sheaf is soft. From Theorem 4. 8, we
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have the following theorem, which is the key theorem to construct vector

valued Fourier hyper functions.

Theorem 4.11. Let Q be an open set in Qkrl satisfying the

condition (i) of Definition 4. 5. We have the following soft resolu-

tion of the sheaf Ok,i on Q\

Therefore the cohomology group Hp(^90k,i) is isomorphic to the

p-th cohomology group of the following complex:

o-> 5(0,0) (fi) -»S«,i> 00) -*—*3<o,») ($) -*o •

§ 5. Vanishing Theorems and Duality Theorems

of Cohomology Groups

In this section, we use the resolution of O^.i by the projective limit

of Lz spaces which is convenient to give duality theorems. This resolu-

tion was used by T. Kawai [6] in type I case and by Y. Saburi [13],

[14] in type II case. In the case of mixed type, we can also obtain the

Z,2 resolution of O^.i and calculate the cohomology groups in the same

way.

In this section we use the following definition of 0fc>rpseudoconvexity

which was used in T. Kawai [6] and Y. Saburi [13], [14], and is

weaker than Definition 4. 5.

Definition 5.1. We call an open set Q in Qk>l an C^-pseudo-

convex domain if it satisfies the following conditions:

(i) sup {2|Im zki\
2- |Re £ \\ |Im zl(\

2}<,M<oo, where z\

= (**«, *i«) (=Qki''li and <J*'* = JI()*"l«.

(ii) There exists a C°° strictly plurisubharmonic function 0(z) on

Q fl Cn which satisfies {z; d (z) <^c} C Q for any real c and sup

<*ML for any LC-2, where ML is some constant.
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Remark 5. 2. In the case of L2 resolution of 0fc,i> it is not nec-

cessary to assume that the derivative of 6(z) are bounded, which is

assumed in Definition 4. 5.

j
Theorem 5. 3. Let S be an open set in U Dn* and U be an

i=l ^

open neighbourhood ofS in Qk>l, then there exists an Ok,rpseudoconvex
j

domain V which satisfies the condition: VdU and S=VC\ (

Proof. For the type I and type II cases, this theorem has been

proved by T. Kawai [6] and Y. Saburi [13] respectively. For the mixed

type we can prove it in a way similar to T. Kawai [6] and Y. Saburi

[13]. We have only to mix their methods.

First, choose ?(z) eC°°(f7n Cn) which satisfies

(i) {s(=tfn^r(*)<^}CC7for any c,

(ii) suP{|r(*)l, (i + l*l)|Pr(*)l, (i + W)T2r(*)J}^ML<oo for
inc»

LCU,
where V means any of d/dxi or d/dy^ and P means any of ff/dxfixj,

d2/dxidy,- or d2/dyidyj. Next choose a(x) eC°°(5n JRn) which grows

sufficiently rapidly as x tends to the boundary of (Dn — S) from the

interior of SHIT, but sup {\a(x)\9 (1+ k|) \Va(x) I, (1+ \x\)*\7*a(x) 1}
jcnJB»

<,NK<oo for any K^S. Define p (z) =a(Re z) |Im z\2/ (1 + |Re zk\
2)

+ Y(z) (^=fefc ? ?0)- Then we can fined a neighbourhood W(cC7) of

S in Qk>l such that p(z) is strictly plurisubharmonic in W. For the

construction of f ( z ) and a (x) and the detailed proof of the plurisub-

harmonicity of p (z) , see Y. Saburi [13] .

Now, let us define

{0, [2|Im z|2- |Re(«-«tt)

and % (x) e C°° (JR) to be a convex monotone increasing function such that

%(X>=0 if x<^Q and % (.r) >0 if a:>0. By a suitable choice of z(i)

e (9W— D71) nCw, we may assume that the sum £ (s) = 2 % (0« (*0 ) is

i

locally finite in Cn and q(z) >1 if «e (9T^~1>W) 0 Cn. Then the domain

y== WCi {z^Cn; q(z) <C1} is an 0*,rPseudoconvex domain with a pluri-

subharmonic function d ( z ) =p(z) +!/(! — q(z)).



52 SHIGEAKI NAGAMACHI

Definition 5.4. Let Q be an open set in Qk'1. We define 3£y(,0)

to be the set of all (0, f) forms u on Q fl Cw which satisfy the following

conditions: For any compact set ^ in Q and any positive £,

f .|«|V-*«<«<oo and f \du\2e-*>Vdl<oo
jKncn Jjrnc*

hold. We denote by 2Cj the sheaf subordinate to the presheaf {2Cj (&) } .

Definition 5.5. Let Q be an open set in Qk'1. We define Qfj(Q)

to be the set of all (0,j) forms u on £!ClCn which satisfy the following

conditions: For any compact set K in J2, there exists some positive dK

such that

f |»|V««<M<oo and f |
Jimo71 JKCIC"

hold. We denote by Q/^ the sheaf subordinate to the presheaf

It is easily seen that the sheaves 3Cj and QJj are soft sheaves. By

the definition of Ok,i and Ok,i and the existence theorem for 9u=f with

bounds (Proposition 4. 10) we obtain the soft resolutions of Oktl and Qkti

respectively

Therefore we obtain the following Dolbeault isomorphism:

Here we denote by H$(&,0k,i) the ^>-th cohomology groups with com-

pact support. In order to compute the above cohomology groups we

introduce the following spaces.

Definition 5. 6. Let Q be an open set in Qk> l. We denote by Xj (Q)

the set of all (0,j) forms u on SClC" satisfying the following condition:

For any compact set K in Si and any positive e,
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holds.

Definition 5. 7. Let Q be an open set in Qk l. We denote by

Yj(S) the set of (09j) forms u with compact support in J2 satisfying the

condition: For some positive (J,

f \u\2es*M
Je»

holds.

From the above definition Xj(S) and Y}(«G) are given natural

and DPS* space structures respectively, that is,

X, (O) = Urn. LI,, n (Km, T? 0) /m) ,

y,(0) -lim.L^Ct*, -?(*)/«)

and using the natural identification of (0, j) form with (0, n —j) form,

we have Yn-j (S) = [X/ (fi) ] ' where XjC ^C • • • is the increasing sequence

of compact sets in & which exhaust S.

Then Hp(S9Ok,i) is isomorphic to the p-th cohomology group of

the complex

and HI ( S9 Ok, i) is isomorphic to the <?-th cohomology group of the com-

plex

Therefore we obtain the following theorem from Theorem 4. 7, since — d

is the dual operator of d.

Theorem 5.8. If H'(Q, #».,) =0 (/>>!)

Concerning to the hypothesis of the above theorem, we have the

following theorem.
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Theorem 5. 9. For any QUtl-pseudoconvex domain 3, we have

Proof. From Proposition 4. 10 and the existence of the plurisub-
harmonic function 6 (z) satisfying the condition (i) and (ii) of Definition
5. 1, follows the theorem.

Corollary 5. 10. Let K be a compact set in Qk'1 which has a

fundamental system of neighbourhoods composed of Ok,rpseudoconvex

domains *fi/, then

Proof. It is sufficient to show that

Let u(z) be arbitrary cocycle in Hp (QJ9 Okri). Then u (z) cosher belongs

to Hp(SJ+1,Ok,i) for sufficiently small £>0. By Theorem 5.9 u(z)

X cosher is a coboundary in Hp(fij+ly Ok,i), that is, u(z)coshsz = dv(z)

for some v (z) e 2CP-! (Qj+^ . Define w (z) =v (z) /cosh ez. For sufficiently
small £>0, w(z) belongs to ^p.j^+j) and dw(z)=u(z), hence the

image of Hp (Qjy Ok,i) in H* (fy+l9 Ofc,i) is zero. Therefore Mm, «*(£/, Ok>l)~

Theorem 5. 11. Let & be any open set in Qk>l satisfying

sup {2|Im^|2-~|Re^|2, |Im^J2}^M<oo, then Hn(Q,Ok>l) =0.

Proof. We can prove the theorem in the same way as Theorem

3.1.8 in T. Kawai [6].

Using above theorems, we have the following theorem.

Theorem 5. 12. Let K be a compact set in Qk>l, and V be an

Ok,i~pseudoconvex domain containing K. Suppose Hp(K,Ok,i)=Q f°r

p^l. Then we have HRV, &.,) = 0 (#=£») and HRV, &.,)= [jg>fcl
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Proof. We have only to replace 0 by Ok,i and Q by Ok.i in the

proof of Theorem 3. 2. 1 of T. Kawai [6] .

3

If K is a compact set in JJ Dn% K has a fundamental system of
~ iaal

neighbourhoods composed of (5fc,rpseudoconvex domains by Theorem 5. 3.

Thus we have the following theorem.

Theorem 5. 13. Let K be a compact set in ]J -Dw< an^ V ^e

i=i ^
an open neighbourhood of K in Qktl. Then we have H|(V, Ok,i) =0

and HI (V, &.,) = [£>».,

As is well known, this theorem combined with Theorem 5. 11,

concludes the pure-codimentionality of Ok,i with respect to IJ Dni
9 or the

following theorem holds.

3 ~
Theorem 5. 14. Let Q be an open set in j[Dni. Then HI (V, Ok,i)

= 0 (p^ri), where V is an open set in Qk> l containing Q as a rela-

tively closed set.

§ 6. Vector Valued Fourier Hyperfunctions

In this section, we define Fourier hyperfunctions which take their

values in a Frechet space jE, and we call them ^-valued Fourier hyper-

functions. In the case where E is the one dimensional space of complex

numbers, JE-valued Fourier hyperfunctions are ordinary Fourier hyperfunc-

tions.

Definition 6. 1. Let Q be an open set in Qk'1 and £ be a Frechet

space. We denote by 3(S9 E) the set of £-valued C°° functions on

$r\Cn which satisfy the following condition:

For any compact set K in J2, any positive e and integer m and any

continuous seminorm p on E,

^sup p(D«f(x,

where z =
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Proposition 6.2. Let Q be an open set in Qk>l. C0°° (Q H

is dense in 3 ($, E) .

Proof. Let f^3(S9E). Consider an increasing sequence

C'" of compact sets in Q which exhaust Q and C°° functions $m(z) on

Cn whose support are contained in Km f! C"1 and $m(z) =1 if z^Km-! fl Cn,

then 0«/effc(-KTw, IS) and 0m/-^/ in 2: (J2, JB) as m tends to infinity. Let

%(2) be C°° functions with compact support in Cn such that f]y(z) =1 if

H<Iy and their derivatives are bounded uniformaly in v, then yv<t>mf-»$mf

in 3 (Q, E) as v tends to infinity. Thus ym$mf-+f in SF (J2, £) and

Let g€=.C™ (&H Cn, E) and /? be a continuous seminorm of jE. For

any positive s we can find a finite covering C71? • • • , UT of the support of

g by relatively compact open subsets of «fiDCn such that P(g(z) — - f f (y ) )

<£ for 3/, z^Uj (j = l, •••, r). Let {&/} be a C°° partition of unity on

the support of g, subordinated to the above covering, and in each set Uj,

pick up a point yj. Then we have for any positive integer m,

This shows that g <= Q° (5 0 C", £) is a limit of & e Q° (J2 H C") (g)J5 in

the topology defined by the seminorms

Ar,»(/)= sup

where K is a compact set in Q and m is a positive integer. Let ps# be

the usual Friedrichs mollifier. Then it is not difficult to see that for a

sufficiently small £>0, p&*g is the limit of pe*Qj in 3(£,E), since we

may assume that the supports of QJ are contained in an arbitrary neigh-

bourhood U of the support of g.

Finally we see that pe*gj e Q° (Q fl C*) ®E converges to ps#<7

( €E CS° (J2 0 Cn, E) ) in 5 (5, E) and pe*g converges to g ( e Q° (fl 0 Cn, E) )

in ^(Q.E), but there is a sequence jf> e C^ (J? fl Cn, E) which converges

to f&3:(£},E) in the topology in S(G,E). This completes the proof.

Proposition 6. 3. SXifi, -E) is complete.
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Proof. Let {/}} be a Cauchy sequence in 3(Q,E). As E is com-

plete, fj converges point wise to a function fy moreover f} converges to

f in the topology defined by the seminorms

Therefore f(z) is continuous function in J2flCw satisfying px,m(f) <^oo.

In the same way DV} converges to a continuous function /a satisfying

PK.m(fa)<°°. Then we have only to show that Daf=fa. Let

a= (#!, • • • , a2n) with ap+1 = ap+2= ••• = a2» = 0. Then we have

= J*i

where we put 2= (x^ •••, x2n) , C= (ft, '", ft») and ^ = <f/ for

<I2?£. Since y} and Z)aj^- converge uniformly to f and fa respectively on

every compact set L in Q fl Cn, we have

Thus we have Daf=fa.

Proposition 6. 4. 3" (£, £) =

Proof. By Propositions 6. 2 and 6. 3, it suffices to show that 2"(fl, JE)

induces on <3<(&)§§E the topology e.

We observe, first, that 3(Q9 E) can be canonically injected in

L(Ei;3(Q)) the space of continuous linear mapping from E'r to S'Gfi),

where the index r means Mackey's topology on E'r, i.e., the topology

of uniform convergence on the convex balanced weakly compact subset

of E. Indeed, let f^*3:(Q9E) and consider the complex valued function,

defined in J2flCn , z-^^e\f(z)y where e' is an arbitrary element in E' '.

It is easy to see that the function <X,/(V)> belongs to 3:(,fi). Now

let a be arbitrary 2^-tuple such that ajf^m, and K is a compact set in

J2. Then (Daf(z))e~Wm stays in a compact subset J{ of jE as z varies
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in K 0 Cn, and the closed convex balanced hull P (JC) of J{ is weakly

compact. If er belongs to the polar of (L/e)F(JC) which is a neigh-

bourhood of zero in E'T, we have

sup !/)<"<*',/(*) >!*-""»n

= sup |<*\D«/(*)>l*H'l

This shows that the mapping e'-»0&— Ke',/0&)» is continuous from J5£

into S(J2).

The proof will be complete if we show that the topology of

3(Q,E) is equal to the topology induced by L5 (E't , 3 (5) ) , the space

L(E'r,S(£)) equipped with the topology of uniform convergence on

the equicontinuous subset of E* ', since £ topology on 3(S)^eEis the

induced topology from j8e(EJ, S (ifl)£) which is isomorphic to Le (JE£, SFCfi)) .

(See Proposition 42. 2 of F. Treves [15] .) Let U be a closed convex

balanced neighbourhood of zero in E, U° its polar, K a compact set in

J2, and a^Nzn such that \a\<^m. Then it is equivalent to say that

(Daf(z))e~Wm^U for all zeKHC*, or to say that \D\e\ f(z)y\e~^/m

<:i for all z<=KriCn and all e'<=U°. This completes the proof, since

a subset of E' is equicontinuous if and only if it is contained in the polar

of some neighbourhood of zero in E.

The following theorem due to P. D. F. Ion and T. Kawai is very

useful to go to the vector valued theory from the scalar valued theory.

Theorem 6. 5. Consider the category of Frechet nuclear spaces

'where the morphisms are continuous linear maps, and also the category

of protectively completed tensor products of Frechet spaces with

metrizable locally convex spaces, 'where the morphisms are tensor

products of some continuous linear map on the Frechet factor and

the identity on the second factor. Let E be a metrizable locally
convex space. Then

and
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L (F19 FO 3«->«&l e L (Fi&JE, F2(§)£)

defines a covariant functor from the first mentioned category to the

second. This functor is exact.

Proof. See P. D. F. Ion and T. Kawai [4].

Let Q be an {?fc>rpseudoconvex domain. From the resolution (4. 4)

of the sheaf Ok,i and Theorem 5. 9 follows the exact sequence

(6. 1) 5Co,1))(5)^3(,>1)(fi)4...^(0(n)(j2)^0 .

Therefore from Proposition 2. 19, Proposition 6. 4 and Theorem 6. 5, we

have the exact sequence

(6. 2) 0-*0M (0, E) -+3M (0, -E)- ,̂̂  (0, E)-^

_ _ xx

where 9=901^ is the Cauchy-Riemann operator for the vector valued

functions, and O fc tj(«G, jE) is the space of JE-valued slowly increasing

holomorphic functions, that is, the kernel of the Cauchy-Riemann operator.

By localizing the above sequence, we have the following soft resolutions

of the sheaf E0k,i of the E- valued slowly increasing functions

(6. 3) 0->^i,i->
B£F(,)0A

£5co,1A--^£2c«,n)^0 .

Theorem 6. 6. If Q is an Okti-pseudoconvex domain and E is

a Frechet space, then for p^>l, Hp(Q,EOktl) =0.

Proof. This is a direct consequence of the exact sequence (6. 2) .

Theorem 6. 7. Let Q be an open set in Qk'1 satisfying the con-

dition-,

sup

where z( = (zkt, zlt) <-<>**' If and Qkl = Tl Qki'li, and E be a Frtchet space.

Then HP(Q, E0k>l) =0 for p^n.
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Proof. Theorem 5.11 shows that H*(Q, Ok,i) =0. This shows

that the complex (ff(0,.) («G), (?) is exact at 9"<o.w>C2)« Therefore it follows

from Theorem 6. 5 that the complex

0-^(M) (0, JE) -- • ~ 5 ( M ) (0, E) -»0-»0. - -

is exact at 3"<o,n) (£,£). Thus we have H*(Q,*8k.i) =0 for

Theorem 6. 8. Le£ Q be an open set in JI Dn' anJ E be a
~ i=l

Frechet space, then Ha(V9
EOk,i) = 0 (p=fcri) where V is an open set in

Qk>l containing Q as a relatively closed set.

Proof. It is enough to show H%nnv(V,EOk>i) =0 for p=£n and V

an open set in Qk'\ where Dn is an abbreviation of fj Dn*. By the
i=a

excision theorem for relative cohomology groups and Theorem 5. 3, we

may choose V to be an Ofc,rpseudoconvex domain. Let 5 = 27*0 V, then

we have the following exact sequence of cohomology groups:

(6. 4) .-.^Hl<y9 *<5M) -+H'(V9
 E0k)l) ^H*(V-Q, 'd>j

If V is Ofc.rpseudoconvex, Hp (V, EQk>l) =0 for />^1 by Theorem 6.6,

so that for p^29 HP
Q(V, Edkll) ^Hp'l(V~ S,Edktl). By Theorem 6.7,

we have for p^n + 1, H%(V,Edk>l) =0.

For ;z-l>^>0, we have HP(V- Q, &kil) =0 from the exact

sequence

and the fact that Hg(Y, 5*,,) =0 for 0<,p<n (Theorem 5.14). Since

Hp(V—8,Ok,i) is the p-th cohomology group of the complex
— XN

(3&..)(V—&)9d) and tensoring by 0£ is an exact functor, HP(V—Q,
E5k,i) vanishes whenever HP(V— 8, Ok,i) does. Thus for

H*<y-a>*d*tl)=Q.
Lastly we deal with the sequence
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Since H$(V,dkti) =0 for £ = 0,1 if n=£l, the sequence 0->8k.i(V)

-*5k>i(V—ti)->0 is exact. Since Ok,i(W) for an open set W in Qk'1 is

a closed subspace of a nuclear Frechet space 3 (W) , Ok,i(W) is also a

nuclear Frechet space. By Theorem 6. 5 we have the exact sequence

(6.5) 0->

Since ker (9®1) = (ker 9) (g)£, we have

(6.6)

Thus we have the exact sequence

0 -» fi>*.i ( V, E) -> 0 fc( l (V-fl, JS) -> 0 ,

that is, Hg(F/0fc>l)=0 for £ = 0,1. The proof is complete if n^l.

The case n = ~L follows at once from Theorem 6.6 and Theorem 6.7.

Now we define the space of Fourier hyperfunctions as the only non-

vanishing relative cohomology group.

Definition 6.9. Let £ be a Frechet space. The space E3lkfl(Q)

of E- valued Fourier hyperfunctions of (k, I) type on an open set Q in

f[ V*1 is defined to be EStk>l (Q) =H%(V,EOk>l) where V is an open set
i=l

in Qkfl containing Q as a closed subset.

Proposition 6. 10. ESLttl (Q) =Hn
s (7, E0ktl) /H$Q (V, E0k,t) where Q

is the closure of Q in Qk'1 and d& is boundary of Q9 i.e., Q—Q.

Proof. Consider the following exact sequence:

where V is an open neighbourhood of Q in Qktl. By Theorem 6. 8, we

have HS"1(V—dS9
E0kti)=09 and from the exact sequence

and Theorem 6.7, we have H?2l(V,Bdk,i) =0. Therefore we have the

required isomorphism.
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Theorem 6.11. The presheaf {E3lk,i(Q)} constitutes a flabby

sheaf E3lk i over JJ Dttf, whose restriction to Rn coincides with the
i=i

sheaf of E-valued hyperfunctions over Rn.

Proof. The flabbiness of ESik,i is the direct consequence of Theorem

6. 8. Since the restriction of the sheaf E0k,i to Cn coincides with the

sheaf of JS-valued holomorphic functions E0, E3lk,i\ R
n coincides with the

sheaf of E- valued hyperf unctions defined in P. D. F. Ion and T. Kawai [4] .

We represent the E- valued Fourier hyperf unctions as boundary

values of JS-valued slowly increasing holomorphic functions. From

Theorem 5. 3 there exists an C^rpseudoconvex neighbourhood V of Q

such that (f[ 1>%) n V = Si. Let V3 = {z e V; Im z^O} ,j = l,29—9n, then
~ is=l

Vj is 0fc,rpseudoconvex. In fact, let Q(z) be a plurisubharmonic function

which satisfies the conditions of Definition 5. 1 for the (5&trpseudoconvex

domain V, then the plurisubharmonic function pj (z) -}~d(z) satisfies the con-

ditions of Definition 5.1 for Vh where Pj(z) =log(l/|Im Zj\2) or pj(z)

= log((l-f \z't |2)/|Im Zj\2) if Zj is a component of some zti or zki respective-

ly, where ^ = (^, zl€) ^Qk*>1* and Qk'l = fl Qki'h. Let F0= V, OJ> = {Vl9

•~>Vn}9 CV={VQ} \JCV' then (q;, q;7) is a Ofc,rpseudoconvex relative

covering of (V,V—S). Since the finite intersection of 0fc>rpseudocon-

vex domains is also O^-pseudoeonvex, we have Hp(Vjt fl ••• fl V/fc,
 E0k,i)

= 0 (P^V) for any jl9 •••,!* from Theorem 6.6. Then we have the

following isomorphism from a theorem of Leray,

^*^^
where F#£= {z<= V, Im z^09 for all j} and Vj= {z<=V;Imzk=£Q9 if

ki=j}. Thus the element / of EOktl(V#£) defines the ^-valued Fourier

hyperf unction [f] and we call f the defining function of [/*]. This

function f(z) can be considered as 2n tuple of JE-valued slowly increasing

holomorphic functions fff(z) defined in VH (Rn + iFff) where Ftf= {y^Rn;

(;̂ >0} and G\j-*Gj is a mapping from {1, ••-,#} to {1, —1}. Intuitively

speaking, the hyperf unction [/] is the sum of boundary values
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