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On H?%X,B) of Weakly 1-Complete Manifolds

By

Takeo OHSAWA*

§ 1. Introduction

This note is a continuation of the author’s previous work [4]. Let
X be a complex manifold of dimension n and 7:B—X a holomorphic
line bundle. We want to know the g¢-th cohomology group of X with
coefficients in the sheaf of germs of B-valued holomorphic p-forms on X,
We denote it by H”*?(X, B).

X is called weakly 1l-complete if there exists an exhausting C*
plurisubharmonic function ¢ on X. ¢ is called an exhaustion function.
In [4], we considered the case that B has a metric along the fibers
whose curvature form is positive outside a compact subset K of X, and

obtained the following theorems.

Theorem 1’. Let X be a weakly 1-complete manifold of dimen-

ston n. Then under the above situation,

dim H**(X,B) <oco for q¢=1.

Theorem 2'. Let X be a weakly l-complete manifold of dimen-
sion n with an exhaustion function ¢. Under the above situation, if

No={xeX;¢p(x) <c} contains K, then the restriction map
o H**(X,B) — H"'(X,, B)
is bijective for q=1.

The purpose of this note is to prove the {ollowing theorems under

the same conditions for X and B as above.
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Theorem 1. Under the above situation, we have

dim H**(X,B) <co  for p-+g>n.

Theorem 2. Under the above situation, if X, contains K, then

the restriction map
o.: H**(X,B) — H”*(X,, B)

is bijective for p+q>n.

The author thanks the referee for valuable advices.

§ 2. Preliminaries

Let X be a weakly 1-complete manifold of dimension » with an ex-
haustion function ¢ and B a holomorphic line bundle over X such that
B has a metric @ along the fibers whose curvature form ® (a) is positive
outside a compact subset K of X. Let ds* be a hermitian metric on X
whose fundamental form o is +/—1@ (a) outside a neighbourhood U of
K. Let A(¢) be a C~ convex nondecreasing function on (— oo, ¢), where

ceRU {oo}, and ds; the hermitian metric on X, associated to -+

v/ —1002(p).

Proposition 1. If J‘ G () dt=oco for some d<c, then ds: is a
'

complete hermitian metric on X,.
Proof. Similar as Proposition 1 in [3].

We denote by L{?(X,, B) the space of the square integrable B-
valued (p, q)-forms with respect to ae™*® and dsi.. We denote by
(f,9):(lf]) the inner product (the norm) in LP*(X,,B). |fli is ex-

pressed in the form

[, 1o,

Here dv, denotes the volume form for ds}, and |f|, denotes the length

of f with respect to ae™*“ and ds..
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We denote the adjoint of 8: L2 (X,, B) L (X,,B) by 0¥. The
domain, the range, and the kernel of 8 (0f) are denoted by Dp?', RP,
and NP 1(Dpd R&2' and NI, respectively.

We denote the quotient space N¥¢/RI'? by HP (X, B).

Proposition 2 ([4], Theorem (2.6)). If X.2oU and dst is a

complete hermitian metric on X,, then

dim H?%(X,, B) <{co  for p+q>wn.

We denote by L% (X, B) the space of locally square integrable B-
valued (9, ¢)-forms on X,.

Lemma 1. For any countably many elemenis f,eLpd (X, B),
n=1,2, -+, there exists a C* strictly convex increasing function 1,
on (—oo,¢) and a constant A>0 such that ds,, is complete, |f.|.,
<oo for every p, and A|f|o=|f]1, for every fe Lp*(X., B).

Proof. Similar as Lemma 2.4 in [4].

We denote by CP?(X,, B) the space of C* B-valued (p, ¢)-forms on
X, with compact support. We denote by 9, the formal adjoint of 8:C2%(X,,
B) = C2' (X, B) with respect to the metrics ds; and ae ¥,

Proposition 3 (¢f. [5], Theorem 1.1). If ds; is complete, then
1) CP1(X.,B) is dense in the space

;e (X, B), 9y Ly (X, B)}
with respect to the graph norm of 0.
i) CP4(X,, B) is dense in the space
;9 LF (X, B), 9pelP (X, B)}

with respect to the graph norm of 9,

In what follows let A be a C* strictly convex increasing function
on (—oo,c¢) satisfyingf V7 (£)di=oo for some d<c. Let {4} (u=
d

1,2, --:) be a sequence of C* convex increasing functions on R such that
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J; \/Z;—'(Z) dt= oo and for every ¢’< c and every nonnegative integer Y

lim sup [A¥ () —A®(@)!=0.
)

Hn—00 LE(—~0o,C

Here 29 (#) (A (#)) denotes the y-th derivative of ,(2) (A(2)).

Lemma 2. Let 1, be as above. If p+qg>n and X,oXx,o0,

then there exists a constant C, such that for every u,
[ v =c s, + iz, + [ 1fdv.,|

for fe D0 D4,
Proof. Similar as Lemma 3.3 in [4].

Proposition 4. Let A and 1, be as above, p+q>n, and X,oU.
Assume that there exists a constant C,>0 such that for every u and
fe Ly (X,B) we have |flg i1 XC\|fl,, then there exists a constant
C>0 and an integer My, such that for every u>>u, we have

CHIa£15, + 10713 =1 £113,
for any fe Dp*0 DEY satisfying (flx,9)1=0 for g NP*N NP

Proof. 1If the proposition is false, then choosing a subsequence of
{4} if necessary, we may assume that there exists a sequence f,

eLy'(X,B) (#=1,2,-) such that

¢)) f.€ D5 N DY

@) 1 Fulla, =1

3 10.full2,<1/2

€Y 10%,fulla, <1/n

©) (Fulx, 9)2=0 for any ge NP NP2,

By (2) and the assumption ||f,|x,[,<SCi[full2,, we have [fulr].<C.
Thus there exists a subsequence of {f,lx} which has a weak limit f in

Lp%(X,,B). Since the coefficients of ¢, converge uniformly on every
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X, (d<<c) to the coefficients of ¥, by (4) we have %,f=0. Since ds;
is complete, we have 8¥ =0, by Proposition 3. Hence we obtain 8§ =0.
By (3) we have 8f=0. On the other hand, by (2), (3), (4), and

Lemma 2, for every 4,

[ 1,102/,

hence

[ 1rtdo,z1/c;

for some constant C; and d<(c. Thus f==0. But by ) (£ ¢).=0
for any g NPV N3, This is a contradiction. Q.E.D.

Let H; (i=1,2) be Hilbert spaces. For a densely defined closed
linear operator 7: H,—H,, we denote by 7™ the adjoint of 7" and by
Dy, Ry and Ny(Dyr., Rr. and Np) the domain, the range and the kernel
of T (T%*), respectively.

Proposition 5 (¢f. [1], Theorem 11.4). Let H; (i=1,2,3) be
Hilbert spaces, S(T') a denselv defined closed linear operator from
H,(H)) to H;(H,), satisfying SoT =0, and F a closed linear subspace
of H, containing Ry. Asswmme that the following estimate holds for
some constant C>0.

C*H{IT* i+ | SFlsy =1f13, Sfor every f& Dyt Dol F.
Here | | (=1,2,3) denote the norms of H, Then

@) for everv ucF satisfving Su=0, there exists ve Dy such
that Tv=u,

(II) Ry. is closed in H, and for every uc Ry therc cxists
v€ Dy such that T*v=u and ||v|,<Clu|,.

Proposition 6. Let X and 1, be as above, p+q=n, and X.oU.
Assume that there exists a constani C, >0 such that for every I,
1=0, 1, and 1tELf"‘q*i(X. B), we have |u|g|,:=Clu|,,. Then, for
every fe Lt (X, B) satisfying 0f=0, and for every >0, there exist
an integer u, and fe LA (X, B) satisfving 0Ff=0 and | fly,—fl:<e.
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Proof. Let g be an element of L$?(X,, B) such that (g, f'lxc),lzo
for any fe Ly(X,B) (u=1,2,--) satisfying 0f=0. If we prove
(¢,/),=0 for any fe Lr?(X,, B) satisfying 8f =0, then the proposition
follows from the Hahn-Banach’s theorem.

Let ue L1:*(X,B). From the assumption we have

(9, ulx),ZCigl: ”u"u .

Hence (g,-!x,);: is a continuous linear functional on L*(X,B) and its
norm is not greater than C||g|;. From the Riesz representation theorem
there exists g,€LP?(X,B) such that [g,],,<Clgl: and (9, %),
=(g,ulx); for every uell*(X,B). Clearly g,=0 on X—X, and
19,12 l:=C%|lg|l;- On the other hand by the assumption we have (g,ix,, ©):
— (g, v)(y—>o0) for every veCP?(X,B). Therefore ¢,lx, converges
weakly to g in LP?(X,, B). Since g, is orthogonal to N} ¢, is con-
tained in the closure of R}:%. Hence by Proposition 4, and Proposition
5, (II) there exist C>0 and w,e L} (X,B) for any # such that
Jw, =Cllg,ls, and 3,0, We have [w,ini<GCllw, ), <C-Clgl.
Hence a subsequence of {w,|z} converges weakly in L' (X,, B). Let
the weak limit be w. By Proposition 3, we obtain 0fw=g.

Therefore for every he N»? we have (g, h),= (0fw, h),= (w,0h),
=0. Q.E.D.

Lemma 3. LetceR and 2, (u=1,2, ), A be as above. Assume
that do is nowhere zero on the boundary of X, and there exists a
constant C,=1 such that for every e>0, there exists an integer p,

so that the following inequalities are satisfied for c—e<t<c and
H> Uy

1 ’ "
(6) M OSH O,
(7) éﬁ%wgvax
(8) LO<AE),
(9) M =Cul’ (8),

(10) Ay () =C” (),



ON H™1(X, B) OF WEAKLY 1-COMPLETE MANIFOLDS 119
(11) emROMY (1) < Cye= 5O, (2),
(12) emAOMY” (£ < Cre™4nOMA” (2).

Then there exists a constant Cy; such (hat, for every y and f
e Ly (X, B),

’
”

13 1A x a2 Csll s, -

Proof. We choose ¢’ satisfying ¢’<(c so that d¢ is nowhere zero
on X;—X,.. Let reX,—X. be any point. We choose a basis (g, -,
0.) of the holomorphic cotangent space of X at x so that (6, -, 0,) is
orthonormal with respect to the original metric ds* and satisfies the fol-
lowing conditions (14) and (15).

(14) a‘M:::ﬂGl
_ l _ 1 _ L _ _
(15) 06(0],,:;;1 7,0;/\G; + i}_jl 70, \0; + Zl 7:0:/\0, .

Here 7>0, 7,20, 7,>0 for 2<i<<[/, and 7;€C. We set 7,=0 for =
[+1. Note that, by hypothesis, there exists 7, >0, which is independent
ol x, satisfying 7>>7,.

We have

(16) dsi,le= A+, (9(x) 7"+ 2, (¢ (x)) 75) 01+ 04
IS CEYACIEIE LA
20 (@) (TGt Y 70003
Since ¢ is plurisubharmonic, we have
I2Re(77§u1u‘i)i§2771iu1,i2+—;—77i[uii2, for any u,eC (1<i<n).
Hence wec have
(17) [2Re 3 7| S 2Ge =D+ N mlwl”

Therefore we obtain

(18) (A+25 (@ @) 7 — @n—3) 4, (¢ (x)) 1) 010,
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=2

3 (14 2@ @) m)0d,

=dsj},ls

=(A+4@@)N7+ 2n—3) A, (p(x)) 1) 010

+33 (1+ 28 e@)m)o.a..

We set
(19) S,= ﬁ‘épio-i'&i
1=1
and
(20) S=Zn:$i6i'6zs,
i=1

where

=1+, (p(@) 7+ A, (0 (x))

§,=1+2,(p(x))y;, for 2<i<n,
(21)

$1=1+2"(p @) 7"+ 2" (¢ (x)) M
=1+ (p(@)m for 2<i<=n.

First we compare ds} |, (dsil,) with S, (with S). We choose ¢’

in advance sufficiently close to ¢ so that
(22) 3@n—3)Cc—c)ym<7".

By the assumption, there exists an integer 4, such that the inequalities
(6) to (12) are satisfied with e=c—c’, ¢'’<<t<c, and u>u,. Hence, by
(6), (18), and (22), we have

(23) %—S,,<ds§”|,<3S,,, for p>pm.
Similarly as above, we have

(24) %S<ds§| <3S,

Let (cu, -+, Tuw) be a basis of the holomorphic cotangent space of X

at x such that
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(25) S,= Z._‘.]w Tui Tui
and
(26) ds-iyfx= Z% Tui®ui*Tuiy, Tui>0.

By (24), we have

(27) %<ni<3, for  u>u,.
We put
(28) V/t = (%1*) f,u,l /\ ?/41/\ o /\fpn/\?;m .

Then we have

(29) d”x,,!z=(i_1:[1T,u)V,.=(!]__I=1 Tﬂi)(gfﬂi)dvlz‘-
Let feCPi(X,B). We put

(30) Fla= 22 fuipivi0t /N NOsy NOj N NO i -
iy
1<<Jq

Here fi..i,j,.-7,€Bls. Let |fls]i, denote the length of f|, with respect
to ae”**® and S,. By (19), we have

| I
(31) FiF A s P A
IS A 60 (UL 60

On the other hand, if we set

(32> fll‘z . }; fix“‘ipix"'iqvl‘f,“il/\“./\r/"ip/\flljx/\“'/\?lqu 2
i <m<lip

§1<+<Jq

we have

33) Flolty= 3 Mutideliy
i<l
]‘1<~--<qu (‘H T[Aia) (B];J; Yﬂjﬂ)

Therefore, in virtue of (27), we have

(34) F1e8,23770 S0 | Faiyiesenl,

1 Zeelip
71<+<Jq
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=377 fl.l;
e 3 Wb o
1<l p P q 0
512 g (m];[1 §i) ([;Izl1 §.i0)
Combining (27), (29) and (34), we have
(35) [fli,dvs,l
| fisipivmielin LI Sni
=37 3 o dvls, for u>p.
3 dew (16
Similarly as above, we have
(36) [flidv:la
II é:
S UL S TP | R = R— I
1<y
oy (1) T e,
By (9) and (10), we have
37 $,w§czéi, for 1<i<#n and u>u,.
Therefore we obtain
Cr+e
(38) ; :
(T &) (T €24
> 1 for
== y q H or :u>ﬂ0-
(I &) JIL¢5.
a=1 B=1
On the other hand, by (8), (11) and (12),
(39) Cie™tu@@/ng > g=te@mg, - for 1<i<n,
whence
40) 3 20 | Fripiieigli, (IT 640
§<<Zip i=1
31 g
ST s 5|2 gre@)—2u(e(@) 4
Z1'.1<%-<‘ip If‘x"'*pfl"']qlxue i];l; Si
71<<Jq
= Z If‘i‘---ip]’,---iqlgﬂ §:, for u>u,.
l‘l<"'<1‘p i=1
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Combining (35), (36), (38) and (40), we obtain
41) gyt £, dv,, |
2| flidvsla, for u>u.

Since xeX,.— X, was arbitrary, we havc

(42) 32(174 q4'n)C%7+Q+n j |f|§”dvlﬂ

c—

= Ifﬁd'vx )

= XXy

for feLp(X, B), if u>u,.

On the other hand, since X.. is relatively compact in X, ds;, and

=2, —2{p)

ae converge to ds; and ae*®, respectively, uniformly on X,.

Therefore, there is a constant C’ such that for any #=>1and fe L;:*(X,B),
(43) ¢ | fiidvz | |fidv,.

Combining (42) with (43), we have

(44) [ irravi=ci | 11dvs,,

for p=>p,, where Cy =max{3*T"2™Ce+1*" (C’}. Since X, is relatively

compact in X, there is a constant C; such that C,>C;" and
(45) ¢ [ 17k dvi,.

<C: | |f1dvs,,

for 1ISu<u and feLp*(X,B). Thus we obtain

(46) I £l e 3=Cal £13, 5
for any ¢ and feL}'(X,B). Q.E.D.

§3. Proof of Theorem 1

Let NR2(X,B) (RpE2(X..B)) be the subspace of L& (X, B) con-

sisting of the 0-closed (8-exact) forms. When U, is a domain of holo-
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morphy in C", we have NEI (U, B) =Rl (U, B) (cf. Theorem 4.2.5
in [2]). Therefore by a standard argument we have H??(X,, B) = N3¢
(X.. B) /RYE (X, B) (cf. Theorem 7.4.1 in [2]).

Theorem 1 immediately follows from Proposition 2 and Lemma 1,
combined with the above expression of H”*(X,, B). In fact, let p+g>n
and f,e NRI(X,B) (u=1,2,---). By Lemma 1, there exists a C~
strictly convex increasing function 4, on R such that f,&L}%(X,B) for
any 4. Therefore by Proposition 2, there exists geL'(X,B) such
that 8g is a nontrivial linear combination of f,. Hence H»?(X,B) can-

not be infinite dimensional. Q.ED.

§ 4. Proof of Theorem 2

Let p+g>n and XdDU(cZeR). We assume that d¢ is nowhere

zero on the boundary of X,.

We set
A(t) = —2nlog (d—1¢)
and
1, =—2nlog (d+1/pu—1t), for t<d+1/2u
=dnu(t—d—1/24) —4nlog 21, for t>d+1/2u
for #=1,2, ---.

Let v(¢) be a C~ convex increasing function such that J V' (t) dt
0

=oo and the inclusion map
t: H?*(X, B) >H”* (X, B)
is surjective (cf. §3). We may assume that t(¢) =0 on (—oo,d).

We set

b @ =k [T 1.2 RG=0)ds+7 ).

Here % is a nonnegative C* function with compact support satisfying

fj ) de=1.

For every u and k there exists 7, ,R such that

W@ =t"@#) for t=7,..
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Therefore f «/lZ_,,(t) dt=co and the inclusion maps
0

Gt HPL (X, B) — H?*(X,B)

are surjective,

We have

a d
j V7 @Bde=2n [ %
- e d—2

Since 1Y% (6) =AY (£) (k—o0) for every x and vy, uniformly on (—oo, d),
there exists a sequence {k,} of positive integers such that 4,,,(#=1,2,
---) and 1 satisfy the requirements (6) to (10) in Lemma 3. Let z<ld.
Then

e~ OrY (5 =d+1/p—t
St e 1)
and
e-’x‘,,(t)/nzx @ =1
—emtom (1),

Therefore we may assume that 1,;, and 1 satisfy also (11) and (12) in
Lemma 3. We set 2,=2,,.

By Lemma 3, 2 and 1, satisfy the requirement in Proposition 4 and
Proposition 6. Since H?*(X,, B) is finite dimensional (cf. Proposition 2),

from Proposition 6 we obtain the surjectivity of the restriction map
0a.: H**(X,B) —» H (X, B).

On the other hand from Proposition 4, it follows that there exists (4,

such that the restriction map
pe: HN(X, B) — HP (X, B)

is injective if 4> u,.

Observing the following diagram
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H» (X, B) 224 Hpe(X,, B)

N
u\ 04

Hp{(X, B)

we have the surjectivity of 4, since ¢, and p4,; are surjective. Since 0%
is injective for u>u,, it follows that p4 is bijective for x>y, whence
¢, is bijective for u>u,.

Hence p,; is bijective. Therefore, for every ¢>>d, the restriction

map 03 ;: H?*(X,, B) >H?*(X,, B) is bijective. Thus, the restriction map
o H**(X,B) — H™*(X,B)

is bijective, since 03 ;°0.= 0q,1.

By Sard’s theorem, for any X, such that X,DU, there exists X,
such that dy is nowhere zero on the boundary of X, and X,>X,>U.
Since U can be chosen arbitrarily close to K, o, is bijective for every
ceR satisfying X, D K. 0Q.E.D.
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