On $H^{p,q}(X, \mathbf{B})$ of Weakly 1-Complete Manifolds

By

Takeo OHSAWA*

§ 1. Introduction

This note is a continuation of the author's previous work [4]. Let X be a complex manifold of dimension n and $\pi: \mathbf{B} \to X$ a holomorphic line bundle. We want to know the *q*-th cohomology group of X with coefficients in the sheaf of germs of *B*-valued holomorphic *p*-forms on X. We denote it by $H^{p,q}(X, \mathbf{B})$.

X is called weakly 1-complete if there exists an exhausting C^{∞} plurisubharmonic function φ on X. φ is called an exhaustion function. In [4], we considered the case that **B** has a metric along the fibers whose curvature form is positive outside a compact subset K of X, and obtained the following theorems.

Theorem 1'. Let X be a weakly 1-complete manifold of dimension n. Then under the above situation,

dim
$$H^{n,q}(X, \mathbf{B}) < \infty$$
 for $q \ge 1$.

Theorem 2'. Let X be a weakly 1-complete manifold of dimension n with an exhaustion function φ . Under the above situation, if $X_c := \{x \in X; \varphi(x) < c\}$ contains K, then the restriction map

$$\rho_{\mathfrak{c}} \colon H^{n, q}(X, \mathbf{B}) \to H^{n, q}(X_{\mathfrak{c}}, \mathbf{B})$$

is bijective for $q \ge 1$.

The purpose of this note is to prove the following theorems under the same conditions for X and **B** as above.

Received April 27, 1979. Revised July 21, 1980.

^{*} Reseach Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

TAKEO OHSAWA

Theorem 1. Under the above situation, we have $\dim H^{p,q}(X, \mathbf{B}) < \infty \quad for \quad p+q > n.$

Theorem 2. Under the above situation, if X_c contains K, then the restriction map

 $\rho_c: H^{p,q}(X, \mathbf{B}) \rightarrow H^{p,q}(X_c, \mathbf{B})$

is bijective for p+q>n.

The author thanks the referee for valuable advices.

§ 2. Preliminaries

Let X be a weakly 1-complete manifold of dimension n with an exhaustion function φ and **B** a holomorphic line bundle over X such that **B** has a metric a along the fibers whose curvature form $\Theta(a)$ is positive outside a compact subset K of X. Let ds^2 be a hermitian metric on X whose fundamental form ω is $\sqrt{-1}\Theta(a)$ outside a neighbourhood U of K. Let $\lambda(t)$ be a C^{∞} convex nondecreasing function on $(-\infty, c)$, where $c \in \mathbf{R} \cup \{\infty\}$, and ds_{λ}^2 the hermitian metric on X_c associated to $\omega + \sqrt{-1}\partial\overline{\partial}\lambda(\varphi)$.

Proposition 1. If $\int_{a}^{c} \sqrt{\lambda''(t)} dt = \infty$ for some d < c, then ds_{λ}^{2} is a complete hermitian metric on X_{c} .

Proof. Similar as Proposition 1 in [3].

We denote by $L_{\lambda}^{p,q}(X_c, \mathbf{B})$ the space of the square integrable **B**-valued (p, q)-forms with respect to $ae^{-\lambda(\varphi)}$ and ds_{λ}^2 . We denote by $(f, g)_{\lambda}(\|f\|_{\lambda})$ the inner product (the norm) in $L_{\lambda}^{p,q}(X_c, \mathbf{B})$. $\|f\|_{\lambda}^2$ is expressed in the form

$$\int_{X_c} |f|^2_\lambda dv_\lambda \, .$$

Here dv_{λ} denotes the volume form for ds_{λ}^2 , and $|f|_{\lambda}$ denotes the length of f with respect to $ae^{-\lambda(\varphi)}$ and ds_{λ}^2 .

We denote the adjoint of $\overline{\partial}: L^{p,q-1}_{\lambda}(X_c, \mathbf{B}) \to L^{p,q}_{\lambda}(X_c, \mathbf{B})$ by $\overline{\partial}^*_{\lambda}$. The domain, the range, and the kernel of $\overline{\partial}(\overline{\partial}^*_{\lambda})$ are denoted by $D^{p,q-1}_{\lambda}, R^{p,q}_{\lambda}$, and $N^{p,q-1}_{\lambda}(D^{p,q}_{\lambda*}, R^{p,q-1}_{\lambda*})$, respectively.

We denote the quotient space $N_{\lambda}^{p,q}/R_{\lambda}^{p,q}$ by $H_{\lambda}^{\rho,q}(X_c, \mathbb{B})$.

Proposition 2 ([4], Theorem (2.6)). If $X_c \supset \overline{U}$ and ds_{λ}^2 is a complete hermitian metric on X_c , then

$$\dim H^{p,q}_{\lambda}(X_c, \mathbf{B}) < \infty \quad for \quad p+q > n.$$

We denote by $L_{loc}^{p,q}(X_c, \mathbb{B})$ the space of locally square integrable \mathbb{B} -valued (p,q)-forms on X_c .

Lemma 1. For any countably many elements $f_{\mu} \in L^{p,q}_{loc}(X_c, \mathbb{B})$, $\mu = 1, 2, \cdots$, there exists a C^{∞} strictly convex increasing function λ_0 on $(-\infty, c)$ and a constant A > 0 such that $ds^2_{\lambda_0}$ is complete, $\|f_{\mu}\|_{\lambda_0}$ $<\infty$ for every μ , and $A\|f\|_0 \ge \|f\|_{\lambda_0}$ for every $f \in L^{p,q}_0(X_c, \mathbb{B})$.

Proof. Similar as Lemma 2.4 in [4].

We denote by $C_{0}^{p,q}(X_c, \mathbf{B})$ the space of C^{∞} B-valued (p, q)-forms on X_c with compact support. We denote by ϑ_{λ} the formal adjoint of $\overline{\partial}: C_{0}^{p,q}(X_c, \mathbf{B}) \to C_{0}^{p,q+1}(X_c, \mathbf{B})$ with respect to the metrics ds_{λ}^2 and $ae^{-\lambda(\varphi)}$.

Proposition 3 (cf. [5], Theorem 1.1). If ds_{λ}^2 is complete, then i) $C_{0}^{p,q}(X_c, \mathbf{B})$ is dense in the space

 $\{\psi; \psi \in L^{p,q}_{\lambda}(X_{c}, \mathbb{B}), \overline{\partial} \psi \in L^{p,q+1}_{\lambda}(X_{c}, \mathbb{B})\}$

with respect to the graph norm of $\overline{\partial}$.

ii) $C_0^{p,q}(X_c, \mathbf{B})$ is dense in the space

 $\{\psi; \psi \in L^{p,q}_{\lambda}(X_c, \mathbf{B}), \vartheta_{\lambda}\psi \in L^{p,q-1}_{\lambda}(X_c, \mathbf{B})\}$

with respect to the graph norm of ϑ_{λ} .

In what follows let λ be a C^{∞} strictly convex increasing function on $(-\infty, c)$ satisfying $\int_{a}^{c} \sqrt{\lambda''(t)} dt = \infty$ for some d < c. Let $\{\lambda_{n}\}$ $(\mu = 1, 2, \cdots)$ be a sequence of C^{∞} convex increasing functions on **R** such that $\int_{0}^{\infty} \sqrt{\lambda_{\mu}''(t)} dt = \infty \text{ and for every } c' < c \text{ and every nonnegative integer } \nu$

$$\lim_{\mu\to\infty}\sup_{t\in(-\infty,c')}|\lambda_{\mu}^{(\nu)}(t)-\lambda^{(\nu)}(t)|=0.$$

Here $\lambda_{\mu}^{(\nu)}(t) (\lambda^{(\nu)}(t))$ denotes the ν -th derivative of $\lambda_{\mu}(t) (\lambda(t))$.

Lemma 2. Let λ_{μ} be as above. If p+q>n and $X_c \supset X_d \supset \overline{U}$, then there exists a constant C_0 such that for every μ ,

$$\int_{\boldsymbol{X}-\boldsymbol{X}_{\boldsymbol{d}}} |f|^2_{\lambda_{\boldsymbol{\mu}}} d\boldsymbol{v}_{\lambda_{\boldsymbol{\mu}}} \leq C_{\boldsymbol{0}} \Big\{ \|\bar{\partial}f\|^2_{\lambda_{\boldsymbol{\mu}}} + \|\bar{\partial}^*_{\lambda_{\boldsymbol{\mu}}}f\|^2_{\lambda_{\boldsymbol{\mu}}} + \int_{\boldsymbol{X}_{\boldsymbol{d}}} |f|^2_{\lambda_{\boldsymbol{\mu}}} d\boldsymbol{v}_{\lambda_{\boldsymbol{\mu}}} \Big\}$$

for $f \in D^{p,q}_{\lambda_{\mu}} \cap D^{p,q}_{\lambda_{\mu}*}$.

Proof. Similar as Lemma 3.3 in [4].

Proposition 4. Let λ and λ_{μ} be as above, p+q>n, and $X_e \supset \overline{U}$. Assume that there exists a constant $C_1>0$ such that for every μ and $f \in L^{p,q}_{\lambda_{\mu}}(X, \mathbf{B})$ we have $||f|_{X_e}||_{\lambda} \leq C_1 ||f||_{\lambda_{\mu}}$, then there exists a constant C>0 and an integer μ_0 such that for every $\mu > \mu_0$ we have

 $C^{2}\left\{\|\overline{\partial}f\|_{\lambda_{\mu}}^{2}+\|\overline{\partial}_{\lambda_{\mu}}^{*}f\|_{\lambda_{\mu}}^{2}\right\}\geq \|f\|_{\lambda_{\mu}}^{2}$

for any $f \in D_{\lambda_{\mu}}^{p,q} \cap D_{\lambda_{\mu}*}^{p,q}$ satisfying $(f|_{X_{t}}, g)_{\lambda} = 0$ for $g \in N_{\lambda}^{p,q} \cap N_{\lambda*}^{p,q}$.

Proof. If the proposition is false, then choosing a subsequence of $\{\lambda_{\mu}\}$ if necessary, we may assume that there exists a sequence $f_{\mu} \in L^{p,q}_{\lambda_{\mu}}(X, \mathbf{B})$ $(\mu = 1, 2, \cdots)$ such that

(1)
$$f_{\mu} \in D^{p,q}_{\lambda_{\mu}} \cap D^{p,q}_{\lambda_{\mu}}$$

(2)
$$\|f_{\mu}\|_{\lambda_{\mu}} = 1$$

$$\|\bar{\partial}f_{\mu}\|_{\lambda_{\mu}} < 1/\mu$$

(4)
$$\|\overline{\partial}_{\lambda_{\mu}}^{*}f_{\mu}\|_{\lambda_{\mu}} < 1/\mu$$

(5)
$$(f_{\mu}|_{X_{\mathfrak{c}}},g)_{\lambda}=0 \text{ for any } g \in N_{\lambda}^{p,q} \cap N_{\lambda*}^{p,q}.$$

By (2) and the assumption $||f_{\mu}|_{X_{c}}||_{\lambda} \leq C_{1}||f_{\mu}||_{\lambda_{\mu}}$, we have $||f_{\mu}|_{X_{c}}||_{\lambda} \leq C_{1}$. Thus there exists a subsequence of $\{f_{\mu}|_{X_{c}}\}$ which has a weak limit f in $L_{\lambda}^{p,q}(X_{c}, \mathbf{B})$. Since the coefficients of $\vartheta_{\lambda_{\mu}}$ converge uniformly on every X_d (d < c) to the coefficients of ϑ_{λ} , by (4) we have $\vartheta_{\lambda}f = 0$. Since ds_{λ}^2 is complete, we have $\overline{\vartheta}_{\lambda}^* = \vartheta_{\lambda}$ by Proposition 3. Hence we obtain $\overline{\vartheta}_{\lambda}^* f = 0$. By (3) we have $\overline{\vartheta}f = 0$. On the other hand, by (2), (3), (4), and Lemma 2, for every μ ,

$$\int_{X_d} |f|^2_{\lambda_{\mu}} dv_{\lambda_{\mu}} > 1/C_0 - 2/\mu^2$$

hence

$$\int_{X_d} |f|^2_{\lambda_\mu} dv_{\lambda_\mu} \ge 1/C_0'$$

for some constant C'_0 and d < c. Thus $f \neq 0$. But by (5) $(f, g)_{\lambda} = 0$ for any $g \in N_{\lambda}^{p,q} \cap N_{\lambda*}^{p,q}$. This is a contradiction. Q.E.D.

Let H_i (i=1,2) be Hilbert spaces. For a densely defined closed linear operator $T: H_1 \rightarrow H_2$, we denote by T^* the adjoint of T and by D_T , R_T and $N_T(D_{T'}, R_{T^*}$ and $N_{T'})$ the domain, the range and the kernel of $T(T^*)$, respectively.

Proposition 5 (cf. [1], Theorem 1.1.4). Let H_i (i=1,2,3) be Hilbert spaces, S(T) a densely defined closed linear operator from $H_2(H_1)$ to $H_3(H_2)$, satisfying $S \circ T = 0$, and F a closed linear subspace of H_2 containing R_T . Assume that the following estimate holds for some constant C > 0.

 $C^{2}\{\|T^{*}f\|_{1}^{2}+\|Sf\|_{3}^{2}\} \geq \|f\|_{2}^{2}, \text{ for every } f \in D_{T^{*}}\cap D_{S}\cap F.$

Here $\| \|_i$ (i=1, 2, 3) denote the norms of H_i . Then

(I) for every $u \in F$ satisfying Su = 0, there exists $v \in D_T$ such that Tv = u,

(II) R_T is closed in H_1 and for every $u \in R_T$, there exists $v \in D_T$ such that $T^*v = u$ and $||v||_2 \leq C ||u||_1$.

Proposition 6. Let λ and λ_{μ} be as above, $p+q \ge n$, and $X_c \supset \overline{U}$. Assume that there exists a constant $C_1 > 0$ such that for every μ , $i=0, 1, and \ u \in L_{\lambda_{\mu}}^{p,q+i}(X, B)$, we have $\|u\|_{X_c}\|_{\lambda} \le C_1 \|u\|_{\lambda_{\mu}}$. Then, for every $f \in L_{\lambda}^{p,q}(X_c, \mathbf{B})$ satisfying $\overline{\partial} f = 0$, and for every $\varepsilon > 0$, there exist an integer μ_0 and $\tilde{f} \in L_{\lambda_{\mu}}^{p,q}(X, \mathbf{B})$ satisfying $\overline{\partial} \tilde{f} = 0$ and $\|\tilde{f}\|_{X_c} - f\|_{\lambda} < \varepsilon$. TAKEO OHSAWA

Proof. Let g be an element of $L_{\lambda}^{p,q}(X_c, \mathbf{B})$ such that $(g, \tilde{f}|_{X_c})_{\lambda} = 0$ for any $\tilde{f} \in L_{\lambda_{\mu}}^{p,q}(X, \mathbf{B})$ $(\mu = 1, 2, \cdots)$ satisfying $\bar{\partial} \tilde{f} = 0$. If we prove $(g, f)_{\lambda} = 0$ for any $f \in L_{\lambda}^{p,q}(X_c, \mathbf{B})$ satisfying $\bar{\partial} f = 0$, then the proposition follows from the Hahn-Banach's theorem.

Let $u \in L^{p,q}_{\lambda_{\mu}}(X, \mathbf{B})$. From the assumption we have

$$(g, u|_{X_c})_{\lambda} \leq C_1 \|g\|_{\lambda} \|u\|_{\lambda_{\mu}}$$

Hence $(g, \cdot|_{x_e})_{\lambda}$ is a continuous linear functional on $L_{\lambda_{\mu}}^{p,q}(X, \mathbf{B})$ and its norm is not greater than $C_1 ||g||_{\lambda}$. From the Riesz representation theorem there exists $g_{\mu} \in L_{\lambda_{\mu}}^{p,q}(X, \mathbf{B})$ such that $||g_{\mu}||_{\lambda_{\mu}} \leq C_1 ||g||_{\lambda}$ and $(g_{\mu}, u)_{\lambda_{\mu}}$ $= (g, u|_{x_e})_{\lambda}$ for every $u \in L_{\lambda_{\mu}}^{p,q}(X, \mathbf{B})$. Clearly $g_{\mu} = 0$ on $X - X_e$ and $||g_{\mu}|_{x_e}||_{\lambda} \leq C_1^2 ||g||_{\lambda}$. On the other hand by the assumption we have $(g_{\mu}|_{x_e}, v)_{\lambda}$ $\rightarrow (g, v)_{\lambda}(\mu \rightarrow \infty)$ for every $v \in C_0^{p,q}(X_e, \mathbf{B})$. Therefore $g_{\mu}|_{x_e}$ converges weakly to g in $L_{\lambda}^{p,q}(X_e, \mathbf{B})$. Since g_{μ} is orthogonal to $N_{\lambda_{\mu}}^{p,q}, g_{\mu}$ is contained in the closure of $R_{\lambda_{\mu}}^{p,q}$. Hence by Proposition 4, and Proposition 5, (II) there exist C > 0 and $w_{\mu} \in L_{\lambda_{\mu}}^{p,q+1}(X, \mathbf{B})$ for any μ such that $||w_{\mu}||_{\lambda_{\mu}} \leq C ||g_{\mu}||_{\lambda_{\mu}}$ and $\bar{\partial}_{\lambda_{\mu}}^{*} w_{\mu} = g_{\mu}$. We have $||w_{\mu}||_{\lambda} \leq C_1 ||w_{\mu}||_{\lambda_{\mu}} \leq C \cdot C_1^2 ||g||_{\lambda}$. Hence a subsequence of $\{w_{\mu}|_{x_e}\}$ converges weakly in $L_{\lambda}^{p,q+1}(X_e, \mathbf{B})$. Let the weak limit be w. By Proposition 3, we obtain $\bar{\partial}_{\lambda}^{*} w = g$.

Therefore for every $h \in N_{\lambda}^{p,q}$ we have $(g, h)_{\lambda} = (\overline{\partial}_{\lambda}^{*}w, h)_{\lambda} = (w, \overline{\partial}h)_{\lambda}$ = 0. Q.E.D.

Lemma 3. Let $c \in \mathbf{R}$ and λ_{μ} ($\mu = 1, 2, \dots$), λ be as above. Assume that $d\varphi$ is nowhere zero on the boundary of X_c and there exists a constant $C_2 \ge 1$ such that for every $\varepsilon > 0$, there exists an integer μ_0 so that the following inequalities are satisfied for $c - \varepsilon < t < c$ and $\mu > \mu_0$.

$$(6) \qquad \qquad \frac{1}{C_2 \varepsilon} \lambda''_{\mu}(t) \leq \lambda''_{\mu}(t),$$

(7)
$$\frac{1}{C_2\varepsilon}\lambda'(t) \leq \lambda''(t),$$

- (8) $\lambda_{\mu}(t) \leq \lambda(t),$
- $(9) \qquad \qquad \lambda'_{\mu}(t) \leq C_2 \lambda'(t),$
- (10) $\lambda_{\mu}^{\prime\prime}(t) \leq C_2 \lambda^{\prime\prime}(t),$

On $H^{p,q}(X, \mathbf{B})$ of Weakly 1-Complete Manifolds

(11)
$$e^{-\lambda(t)/n}\lambda'(t) \leq C_2 e^{-\lambda_{\mu}(t)/n}\lambda'_{\mu}(t),$$

(12) $e^{-\lambda(t)/n}\lambda''(t) \leq C_2 e^{-\lambda_{\mu}(t)/n}\lambda''_{\mu}(t).$

Then there exists a constant C_3 such that, for every μ and $f \in L^{p,q}_{\lambda_n}(X, \mathbf{B})$,

(13)
$$\|f\|_{X_c}\|_{\lambda} \leq C_3 \|f\|_{\lambda_{\mu}}.$$

Proof. We choose c' satisfying c' < c so that $d\varphi$ is nowhere zero on $X_c - X_{c'}$. Let $x \in X_c - X_{c'}$ be any point. We choose a basis $(\sigma_1, \dots, \sigma_n)$ of the holomorphic cotangent space of X at x so that $(\sigma_1, \dots, \sigma_n)$ is orthonormal with respect to the original metric ds^2 and satisfies the following conditions (14) and (15).

(14)
$$\partial \varphi |_{x} = \eta \sigma_{1}$$

(15)
$$\partial \overline{\partial} \varphi|_{x} = \sum_{i=1}^{l} \eta_{i} \sigma_{i} \wedge \overline{\sigma}_{i} + \sum_{i=1}^{l} \eta_{i}^{1} \sigma_{i} \wedge \overline{\sigma}_{i} + \sum_{i=1}^{l} \overline{\eta}_{i}^{1} \sigma_{i} \wedge \overline{\sigma}_{i}.$$

Here $\eta > 0$, $\eta_i \ge 0$, $\eta_i > 0$ for $2 \le i \le l$, and $\eta_i^1 \in \mathbb{C}$. We set $\eta_i = 0$ for $i \ge l+1$. Note that, by hypothesis, there exists $\eta_0 > 0$, which is independent of x, satisfying $\eta > \eta_0$.

We have

(16)
$$ds_{\lambda_{\mu}}^{2}|_{x} = (1 + \lambda_{\mu}^{\prime\prime}(\varphi(x))\eta^{2} + \lambda_{\mu}^{\prime}(\varphi(x))\eta_{1})\sigma_{1}\cdot\bar{\sigma}_{1}$$
$$+ \sum_{i=2}^{n} (1 + \lambda_{\mu}^{\prime}(\varphi(x))\eta_{i})\sigma_{i}\cdot\bar{\sigma}_{i}$$
$$+ \lambda_{\mu}^{\prime}(\varphi(x))(\sum_{i=2}^{n}\eta_{i}^{1}\sigma_{1}\cdot\bar{\sigma}_{i} + \sum_{i=2}^{n}\bar{\eta}_{i}^{1}\sigma_{i}\cdot\bar{\sigma}_{1}).$$

Since φ is plurisubharmonic, we have

$$|2\operatorname{Re}(\eta_i^1 u_1 \overline{u}_i)| \leq 2\eta_1 |u_1|^2 + \frac{1}{2} \eta_i |u_i|^2, \text{ for any } u_i \in \mathbb{C} \quad (1 \leq i \leq n).$$

Hence we have

(17)
$$|2\operatorname{Re}\sum_{i=1}^{n}\eta_{i}^{l}u_{1}\overline{u}_{i}| \leq 2(n-1)\eta_{1}|u_{1}|^{2} + \frac{1}{2}\sum_{i=2}^{n}\eta_{i}|u_{i}|^{2}.$$

Therefore we obtain

(18)
$$((1+\lambda''_{\mu}(\varphi(x))\eta^2-(2n-3)\lambda'_{\nu}(\varphi(x))\eta_1)\sigma_1\cdot\bar{\sigma}_1$$

$$\begin{split} &+\sum_{i=2}^n \left(1+\frac{1}{2}\lambda'_{\mu}(\varphi(x))\,\eta_i\right)\sigma_i\cdot\bar{\sigma}_i\\ &\leq ds_{\lambda_{\mu}}^2|_x\\ &\leq \left(\left(1+\lambda''_{\mu}(\varphi(x))\right)\eta^2+\left(2n-3\right)\lambda'_{\mu}(\varphi(x))\,\eta_1\right)\sigma_1\cdot\bar{\sigma}_1\\ &+\sum_{i=2}^n \left(1+\frac{3}{2}\lambda'_{\mu}(\varphi(x))\,\eta_i\right)\sigma_i\cdot\bar{\sigma}_i\,. \end{split}$$

We set

(19)
$$S_{\mu} = \sum_{i=1}^{n} \hat{\varsigma}_{\mu i} \sigma_{i} \cdot \bar{\sigma}_{i}$$

and

(20)
$$S = \sum_{i=1}^{n} \hat{\xi}_{i} \sigma_{i} \cdot \overline{\sigma}_{i} ,$$

where

(21)
$$\begin{cases} \hat{\varsigma}_{\mu 1} = 1 + \lambda''_{\mu} (\varphi(x)) \eta^{2} + \lambda'_{\mu} (\varphi(x)) \eta_{1} \\ \hat{\varsigma}_{\mu i} = 1 + \lambda'_{\mu} (\varphi(x)) \eta_{i}, \text{ for } 2 \leq i \leq n, \\ \hat{\varsigma}_{1} = 1 + \lambda'' (\varphi(x)) \eta^{2} + \lambda' (\varphi(x)) \eta_{1} \\ \hat{\varsigma}_{i} = 1 + \lambda' (\varphi(x)) \eta_{i} \text{ for } 2 \leq i \leq n. \end{cases}$$

First we compare $ds_{\lambda_{\mu}}^{2}|_{x}$ $(ds_{\lambda}^{2}|_{x})$ with S_{μ} (with S). We choose c' in advance sufficiently close to c so that

(22)
$$3(2n-3)C_2(c-c')\eta_1 < \eta^2.$$

By the assumption, there exists an integer μ_0 such that the inequalities (6) to (12) are satisfied with $\varepsilon = c - c'$, c' < t < c, and $\mu > \mu_0$. Hence, by (6), (18), and (22), we have

(23)
$$\frac{1}{3}S_{\mu} < ds_{\lambda_{\mu}}^{2}|_{x} < 3S_{\mu}$$
, for $\mu > \mu_{0}$.

Similarly as above, we have

(24)
$$\frac{1}{3}S < ds_{\lambda}^2|_x < 3S.$$

Let $(\tau_{\mu 1}, \dots, \tau_{\mu n})$ be a basis of the holomorphic cotangent space of X at x such that

(25)
$$S_{\mu} = \sum_{i=1}^{n} \tau_{\mu i} \cdot \overline{\tau}_{\mu i}$$

and

(26)
$$ds_{\lambda_{\mu}}^{2}|_{x} = \sum_{i=1}^{n} \gamma_{\mu i} \overline{\tau}_{\mu i} \cdot \overline{\tau}_{\mu i}, \quad \gamma_{\mu i} > 0.$$

By (24), we have

(27)
$$\frac{1}{3} < \gamma_{\mu i} < 3, \quad \text{for} \quad \mu > \mu_0 .$$

We put

(28)
$$V_{\mu} = \left(\frac{\sqrt{-1}}{2}\right)^{n} \tau_{\mu 1} \wedge \overline{\tau}_{\mu 1} \wedge \cdots \wedge \overline{\tau}_{\mu n} \wedge \overline{\tau}_{\mu n} .$$

Then we have

(29)
$$dv_{\lambda_{x}}|_{x} = (\prod_{i=1}^{n} \gamma_{\mu i}) V_{\mu} = (\prod_{i=1}^{n} \gamma_{\mu i}) (\prod_{i=1}^{n} \xi_{\mu i}) dv|_{x}.$$

Let $f \in C_0^{p,q}(X, \mathbf{B})$. We put

(30)
$$f|_{x} = \sum_{\substack{i_{1} < \cdots < i_{p} \\ j_{1} < \cdots < j_{q}}} f_{i_{1} \cdots i_{p} \bar{j}_{1} \cdots \bar{j}_{q}} \mathcal{O}_{i_{1}} \wedge \cdots \wedge \mathcal{O}_{i_{p}} \wedge \bar{\mathcal{O}}_{j_{1}} \wedge \cdots \wedge \mathcal{O}_{j_{q}}.$$

Here $f_{i_1\cdots i_p \bar{j}_1\cdots \bar{j}_q} \in \mathbf{B}|_x$. Let $|f|_x|'_{\lambda_p}$ denote the length of $f|_x$ with respect to $ae^{-\lambda_\mu(\varphi)}$ and S_μ . By (19), we have

(31)
$$|f|_{x}|_{\lambda_{\mu}}^{\prime 2} = \sum_{\substack{i_{1} < \cdots < i_{p} \\ j_{1} < \cdots < j_{q}}} \frac{|f_{i_{1}\cdots i_{p}}\overline{j_{1}}\cdots\overline{j_{q}}|_{\lambda_{\mu}}^{2}}{(\prod_{\alpha=1}^{p} \widehat{\xi}_{\mu i_{\alpha}})(\prod_{\beta=1}^{q} \widehat{\xi}_{\mu j_{\beta}})}.$$

On the other hand, if we set

(32)
$$f|_{x} = \sum_{\substack{i_{1} < \cdots < i_{p} \\ j_{1} < \cdots < j_{q}}} f_{i_{1} \cdots i_{p} \overline{j}_{1} \cdots \overline{j}_{q, \mu}} \tau_{\mu i_{1}} \wedge \cdots \wedge \tau_{\mu i_{p}} \wedge \overline{\tau}_{\mu j_{1}} \wedge \cdots \wedge \overline{\tau}_{\mu j_{q}},$$

we have

(33)
$$|f|_{x}|_{\lambda_{\mu}}^{2} = \sum_{\substack{i_{1} < \cdots < i_{p} \\ j_{1} < \cdots < j_{q}}} \frac{|f_{i_{1} \cdots i_{p}} \tilde{j}_{1} \cdots \tilde{j}_{q, \mu}|_{\lambda_{\mu}}^{2}}{(\prod_{\alpha = 1}^{p} \gamma_{\mu i_{\alpha}}) (\prod_{\beta = 1}^{q} \gamma_{\mu j_{\beta}})}.$$

Therefore, in virtue of (27), we have

(34)
$$|f|_{x}|_{\lambda_{\mu}}^{2} \geq 3^{-\rho-q} \sum_{\substack{i_{1} \leq \cdots \leq i_{p} \\ j_{1} \leq \cdots \leq j_{q}}} |f_{i_{1}\cdots i_{p}j_{1}\cdots j_{q},\mu}|_{\lambda_{\mu}}^{2}$$

TAKEO OHSAWA

$$=3^{-p-q}|f|_{x}|_{\lambda_{\mu}}^{\prime 2}$$

$$=3^{-p-q}\sum_{\substack{i_{1}<\cdots< i_{p}\\j_{1}<\cdots< j_{q}}}\frac{|f_{i_{1}\cdots i_{p}j_{1}\cdots j_{q}}|_{\lambda_{\mu}}^{2}}{(\prod\limits_{\alpha=1}^{p}\xi_{\mu i_{\alpha}})(\prod\limits_{\beta=1}^{q}\xi_{\mu j_{\beta}})}, \quad \text{for } \mu > \mu_{0}.$$

Combining (27), (29) and (34), we have

$$(35) \qquad |f|_{\lambda_{\mu}}^2 dv_{\lambda_{\mu}}|_x$$

$$\geq 3^{-p-q-n} \sum_{\substack{i_1 < \cdots < i_p \\ j_1 < \cdots < j_q}} \frac{|f_{i_1 \cdots i_p \overline{j}_1 \cdots \overline{j}_q}|^2_{\lambda_\mu} \prod_{i=1}^n \hat{\xi}_{\mu i}}{\prod_{\alpha=1}^p \hat{\xi}_{\mu i_\alpha} \prod_{\beta=1}^n \hat{\xi}_{\mu j_\beta}} dv|_x, \quad \text{for } \mu > \mu_0.$$

Similarly as above, we have

$$(36) \qquad |f|_{\lambda}^{2} dv_{\lambda}|_{x}$$

$$\leq 3^{p+q+n} \sum_{\substack{i_1 < \cdots < i_p \\ j_1 < \cdots < j_q}} |f_{i_1 \cdots i_p \overline{j}_1 \cdots \overline{j}_q}|_1^2 \frac{\prod_{i=1}^n \hat{\xi}_i}{(\prod_{\alpha=1}^p \hat{\xi}_{i_\alpha}) (\prod_{\beta=1}^q \hat{\xi}_{j_\beta})} dv|_x.$$

By (9) and (10), we have

(37)
$$\hat{\xi}_{\mu i} \leq C_2 \hat{\xi}_i$$
, for $1 \leq i \leq n$ and $\mu > \mu_0$.

Therefore we obtain

(38)
$$\frac{C_2^{p+q}}{(\prod_{\alpha=1}^{p} \hat{\xi}_{\mu i_{\alpha}}) (\prod_{\beta=1}^{q} \hat{\xi}_{\mu j_{\beta}})} \ge \frac{1}{(\prod_{\alpha=1}^{p} \hat{\xi}_{i_{\alpha}}) (\prod_{\beta=1}^{q} \hat{\xi}_{j_{\beta}})}, \quad \text{for} \quad \mu > \mu_{0}.$$

On the other hand, by (8), (11) and (12),

(39)
$$C_2 e^{-\lambda_{\mu}(\varphi(x))/n} \hat{\xi}_{\mu i} \geq e^{-\lambda(\varphi(x))/n} \hat{\xi}_i$$
, for $1 \leq i \leq n$,

whence

(40)
$$C_{2}^{n} \sum_{\substack{i_{1} < \cdots < i_{p} \\ j_{1} < \cdots < j_{q}}} |f_{i_{1} \cdots i_{p} \overline{j}_{1} \cdots \overline{j}_{q}}|_{\lambda_{\mu}}^{2} \binom{n}{i_{1} \cdots i_{p}} \hat{\xi}_{\mu i})$$

$$\geq \sum_{\substack{i_{1} < \cdots < i_{p} \\ j_{1} < \cdots < j_{q}}} |f_{i_{1} \cdots i_{p} \overline{j}_{1} \cdots \overline{j}_{q}}|_{\lambda_{\mu}}^{2} e^{\lambda(\varphi(x)) - \lambda_{\mu}(\varphi(x))} \prod_{i=1}^{n} \hat{\xi}_{i}$$

$$= \sum_{\substack{i_{1} < \cdots < i_{p} \\ j_{1} < \cdots < j_{q}}} |f_{i_{1} \cdots i_{p} \overline{j}_{1} \cdots \overline{j}_{q}}|_{\lambda}^{2} \prod_{i=1}^{n} \hat{\xi}_{i}, \quad \text{for} \quad \mu > \mu_{0}.$$

Combining (35), (36), (38) and (40), we obtain

(41)
$$3^{2(p+q+n)}C_2^{n+p+q}|f|^2_{\lambda_{\mu}}dv_{\lambda_{\mu}}|_x$$

$$\geq |f|_{\lambda}^2 dv_{\lambda}|_x, \quad \text{for} \quad \mu \! > \! \mu_0.$$

Since $x \in X_c - X_{c'}$ was arbitrary, we have

(42)
$$3^{2(p+q+n)}C_{2}^{p+q+n}\int_{X_{e}-X_{e'}}|f|_{\lambda_{\mu}}^{2}dv_{\lambda_{\mu}}$$
$$\geq \int_{X_{e}-X_{e'}}|f|_{\lambda}^{2}dv_{\lambda},$$

for $f \in L^{p,q}_{\lambda_{\mu}}(X, \mathbf{B})$, if $\mu > \mu_0$.

On the other hand, since $X_{c'}$ is relatively compact in X_c , $ds^2_{\lambda_{\mu}}$ and $ae^{-\lambda_{\mu}(\varphi)}$ converge to ds^2_{λ} and $ae^{-\lambda(\varphi)}$, respectively, uniformly on $X_{c'}$. Therefore, there is a constant C' such that for any $\mu \ge 1$ and $f \in L^{p,q}_{\lambda_{\mu}}(X, \mathbb{B})$,

(43)
$$C' \int_{x_{\epsilon'}} |f|^2_{\lambda_{\mu}} dv_{\lambda_{\mu}} \ge \int_{x_{\epsilon'}} |f|^2_{\lambda} dv_{\lambda}.$$

Combining (42) with (43), we have

(44)
$$\int_{x_{\mathfrak{c}}} |f|^{2} dv_{\lambda} \leq C'_{3} \int_{x_{\mathfrak{c}}} |f|^{2}_{\lambda \mu} dv_{\lambda \mu},$$

for $\mu \ge \mu_0$, where $C_3' = \max \{3^{2(p+q+n)}C_2^{p+q+n}, C'\}$. Since X_c is relatively compact in X, there is a constant C_3 such that $C_3 > C_3'$ and

(45)
$$C'_{3} \int_{X_{c}} |f|^{2}_{\lambda_{\mu_{0}*1}} dv_{\lambda_{\mu_{0}*1}} \\ \leq C_{3} \int_{X_{c}} |f|^{2}_{\lambda_{\mu}} dv_{\lambda_{\mu}},$$

for $1 \leq \mu \leq \mu_0$ and $f \in L^{p,q}_{\lambda_{\mu}}(X, \mathbf{B})$. Thus we obtain

$$\|f\|_{X_{\varepsilon}}\|_{\lambda}^{2} \leq C_{3}\|f\|_{\lambda_{\mu}}^{2},$$

for any μ and $f \in L^{p,q}_{\lambda_{\mu}}(X, \mathbf{B})$.

Q.E.D.

§ 3. Proof of Theorem 1

Let $N_{\text{loc}}^{p,q}(X_c, \mathbf{B})$ $(R_{\text{loc}}^{p,q}(X_c, \mathbf{B}))$ be the subspace of $L_{\text{loc}}^{p,q}(X_c, \mathbf{B})$ consisting of the $\overline{\partial}$ -closed $(\overline{\partial}$ -exact) forms. When U_c is a domain of holo-

morphy in \mathbb{C}^n , we have $N_{\text{loc}}^{p,q}(U_c, \mathbf{B}) = R_{\text{loc}}^{p,q}(U_c, \mathbf{B})$ (cf. Theorem 4.2.5 in [2]). Therefore by a standard argument we have $H^{p,q}(X_c, \mathbf{B}) \cong N_{\text{loc}}^{p,q}(X_c, \mathbf{B}) / R_{\text{loc}}^{p,q}(X_c, \mathbf{B})$ (cf. Theorem 7.4.1 in [2]).

Theorem 1 immediately follows from Proposition 2 and Lemma 1, combined with the above expression of $H^{p,q}(X_c, \mathbf{B})$. In fact, let p+q>nand $f_{\mu} \in N^{p,q}_{loc}(X, \mathbf{B})$ $(\mu=1, 2, \cdots)$. By Lemma 1, there exists a C^{∞} strictly convex increasing function λ_0 on \mathbf{R} such that $f_{\mu} \in L^{p,q}_{\lambda_0}(X, \mathbf{B})$ for any μ . Therefore by Proposition 2, there exists $g \in L^{p,q-1}_{\lambda_0}(X, \mathbf{B})$ such that $\overline{\partial}g$ is a nontrivial linear combination of f_{μ} . Hence $H^{p,q}(X, \mathbf{B})$ cannot be infinite dimensional. Q.E.D.

§4. Proof of Theorem 2

Let p+q > n and $X_d \supset \overline{U}$ $(d \in \mathbf{R})$. We assume that $d\varphi$ is nowhere zero on the boundary of X_d .

We set

$$\lambda(t) = -2n \log (d-t)$$

and

$$\hat{\lambda}_{\mu}(t) = -2n \log (d+1/\mu - t), \text{ for } t \leq d+1/2\mu$$
$$= 4n\mu(t - d - 1/2\mu) - 4n \log 2\mu, \text{ for } t > d+1/2\mu$$

for $\mu = 1, 2, \cdots$.

Let $\tau(t)$ be a C^{∞} convex increasing function such that $\int_{0}^{\infty} \sqrt{\tau''(t)} dt$ = ∞ and the inclusion map

$$\mathcal{L}_{\tau}: H^{p,q}_{\tau}(X, \mathbf{B}) \to H^{p,q}(X, \mathbf{B})$$

is surjective (cf. § 3). We may assume that $\tau(t) = 0$ on $(-\infty, d)$. We set

$$\lambda_{\mu,k}(t) = k \int_{-\infty}^{\infty} \hat{\lambda}_{\mu}(s) \chi(k(s-t)) ds + \tau(t).$$

Here χ is a nonnegative C^{∞} function with compact support satisfying $\int_{-\infty}^{\infty} \chi(t) dt = 1.$

For every μ and k there exists $r_{\mu,k} \in \mathbf{R}$ such that

$$\lambda_{\mu,k}^{\prime\prime}(t) = \tau^{\prime\prime}(t) \quad \text{for} \quad t \ge r_{\mu,k} \,.$$

Therefore $\int_{0}^{\infty} \sqrt{\lambda_{\mu,k}''(t)} dt = \infty$ and the inclusion maps

$$\mathcal{L}_{\mu,k}: H^{p,q}_{\lambda,\mu,k}(X,\mathbf{B}) \to H^{p,q}(X,\mathbf{B})$$

are surjective.

We have

$$\int_{d-1}^{d} \sqrt{\lambda''(t)} dt = 2n \int_{d-1}^{d} \frac{dt}{d-t} = \infty .$$

Since $\lambda_{\mu,k}^{(\nu)}(t) \to \lambda_{\mu}^{(\nu)}(t)$ $(k \to \infty)$ for every μ and ν , uniformly on $(-\infty, d)$, there exists a sequence $\{k_{\mu}\}$ of positive integers such that $\lambda_{\mu,k_{\mu}}(\mu=1,2,\dots)$ and λ satisfy the requirements (6) to (10) in Lemma 3. Let t < d. Then

$$e^{-\hat{\lambda}_{\mu}(t)/n}\hat{\lambda}'_{\mu}(t) = d + 1/\mu - t$$

> $d - t = e^{-\lambda(t)/n}\lambda'(t)$

and

$$e^{-\hat{\lambda}_{\mu}(t)/n}\hat{\lambda}_{\mu}^{\prime\prime}(t) = 1$$
$$= e^{-\lambda(t)/n}\lambda^{\prime\prime}(t).$$

Therefore we may assume that $\lambda_{\mu,k_{\mu}}$ and λ satisfy also (11) and (12) in Lemma 3. We set $\lambda_{\mu} = \lambda_{\mu,k_{\mu}}$.

By Lemma 3, λ and λ_{μ} satisfy the requirement in Proposition 4 and Proposition 6. Since $H_{\lambda}^{p,q}(X_d, \mathbf{B})$ is finite dimensional (cf. Proposition 2), from Proposition 6 we obtain the surjectivity of the restriction map

$$\rho_{d,\lambda} \colon H^{p,q}(X, \mathbf{B}) \to H^{p,q}_{\lambda}(X_d, \mathbf{B}).$$

On the other hand from Proposition 4, it follows that there exists μ_0 such that the restriction map

$$\rho_a^{\mu}: H^{p,q}_{\lambda_a}(X, \mathbf{B}) \rightarrow H^{p,q}_{\lambda}(X_a, \mathbf{B})$$

is injective if $\mu > \mu_0$.

Observing the following diagram

we have the surjectivity of ρ_a^{μ} , since ι_{μ} and $\rho_{d,\lambda}$ are surjective. Since ρ_d^{μ} is injective for $\mu > \mu_0$, it follows that ρ_d^{μ} is bijective for $\mu > \mu_0$, whence ι_{μ} is bijective for $\mu > \mu_0$.

Hence $\rho_{d,\lambda}$ is bijective. Therefore, for every c > d, the restriction map $\rho_{d,\lambda}^c: H^{p,q}(X_c, \mathbf{B}) \to H^{p,q}_{\lambda}(X_d, \mathbf{B})$ is bijective. Thus, the restriction map

$$\rho_{c}: H^{p,q}(X, \mathbf{B}) \rightarrow H^{p,q}(X_{c}, \mathbf{B})$$

is bijective, since $\rho_{d,\lambda}^c \circ \rho_c = \rho_{d,\lambda}$.

By Sard's theorem, for any X_c such that $X_c \supset \overline{U}$, there exists X_d such that $d\varphi$ is nowhere zero on the boundary of X_d and $X_c \supset X_d \supset \overline{U}$. Since U can be chosen arbitrarily close to K, ρ_c is bijective for every $c \in \mathbf{R}$ satisfying $X_c \supset K$. Q.E.D.

References

- [1] Hörmander, L., L² estimates and existence theorems for the $\overline{\partial}$ operator, Acta Math., 113 (1965), 89-152.
- [2] ———, An introduction to complex analysis in several variables, North-Holland 1973.
- [3] Nakano, S., On the inverse of monoidal transformation, Publ. RIMS, Kyoto Univ.,
 6 (1970/71), 483-502.
- [4] Ohsawa, T., Finiteness theorems on weakly 1-complete manifolds, Publ. RIMS, Kyoto Univ., 15 (1979), 853-870.
- [5] Vesentini, E., Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems, Tata Institute of Fundamental Research, Bombay, 1967.