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A New Class of Domains of Holomorphy (III)

(Reinhardt domains of holomorphy on a
3-dimensional analytic set with a (C*)%action)

By

Osamu SUZUKI®

Introduction

The present paper is the third part of the study on domains of
holomorphy under the same title ([1] and [2]). In this paper we shall
give a supplement of the second paper and complete the discussions there.
We remark on the notations in this paper. If we say an analytic set M,
we mean that it is a 3-dimensional analytic set which is defined by poly-
nomials in C¥ and with an isolated singularity p, p, is assumed to be
the origin of C¥.

In the first paper, a new class of domains of holomorphy is introduced
and they are called L-manifolds ([1]). In the second paper, we have
treated domains of holomorphy on 3-dimensional Stein spaces and we have
given examples of L-manifolds ([2]). There we have shown that certain
domains of holomorphy are L-manifolds under certain conditions. The
condition is stated as the condition A and domains are called simple
domains (see Introduction in [2]). Unfortunately function-theoretic
meanings of the condition A and simple domains have not been given
there.

In this paper we shall remove these additional restrictions and
generalize the examples to a certain general situation. For this purpose
we consider a 3-dimensional analytic set with an isolated singularity which
admits a (C*)*action (§1). Then we see that the condition A can be

satisfied on such an analytic set. Moreover, if we define the concept
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of Reinhardt domains with respect to the (C*)*action on the analytic
set, then the discussions for simple domains can be applied to Reinhardt

domains (§2). Then we can state our results as follows:

Main Theorem. Let M be a 3-dimensional analytic set with an
isolated singularity which admits a (C¥)*-action and let 4 be a rel-
atively compact Reihardt domain on M. Then 4 is a domain of
holomorphy if and only if it is an L-manifold.

Detailed results will be stated at the end of Section 2. We prepare
a proposition (see (3.2)) and by using this proposition, we shall show
that we can reduce essentially the proof of Main Theorem to the results

in [2].

§ 1. An Analytic Set with a (C*)*-Action

In this section we define an analytic set M with an isolated singu-

larity p, which admits a (C*)%action and construct the canonical resolu-

tion of the singularity.

Definition (1.1). The jfollowing transformation group tv: (C*)*
—Aut(C") is called a (C*)*-action on C¥ if there exist two euclidian
subspaces C", C™ with C¥=C"XC™ such that t© can be given as
Sfollows:

=2 (1=1,2, .-, n)
Tyt
w!' =pw! (j=1,2, .-, m),
where g= (A, 1) € (C*)* and =, w’ denote the coordinates of C", C™

respectively.

Definition (1.2). An analytic set M in C" is said to have a
(C*)*action if (1) MEC" and M ¢ C™ hold and (2) if PEM, then
7, (p) €M for every ge (C¥)2

Let M be an analytic set which is defined by the following poly-
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nomials:
M: F;=0, j=1,2,-- 1

Then, if M has a (C*)*action, F;, may be assumed to have the follow-

ing form:
(1.3) Fi=31 ¢ (=), 2% -, 2 o (w', w0, o, ™),
L
where ¢¢’ and ¢§’ are homogenous polynomials with respect to 2, 2%

-, 2" and 1}, w? +--, w™ respectively whose degrees depend only on j
and not on k.

Now we shall construct a resolution of the singularity of M with
a (C*%action: From (1.3), {F;=0} can be regarded as an analytic set

in P"7'XP™"! which we denote by A, ie.,
A: F=0, j=1,2 -7 in P"'xP™"

Let [e,;] be the canonical positive divisor in P"™' whose dual bundle is
denoted by F. Then we have the following monoidal transform at the
center 0&C",

o' F-C".
We denote the zero-section of F by O’. Then we see that
0"1(0) =0’ and o: F—0'=C"—{0}.

In the same manner, {rom the canonical positive divisor [e,] in P™7},

we can get the monoidal transform
0”: G—C",

where G is the dual bundle of [e,]. Then we see that

p”71(0) =0" and p":G—-O"=C"— {0},
where O” is the zero-section of G. Now we set
1. 4) M=FPG,, o=0Poy and m: M—A.
Then we see that

0: M—M and o: M—O=M — {py},

where O is the zero-section of M. Since M admits only one isolated
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singularity, it is easily seen that A is a compact non-singular algebraic

curve and M gives a resolution of the singularity of M.

Definition (1.5). 0: M—M is called the canonical resolution
of the singularity of M.

§ 2. A Reinhardt Domain

We define Reinhardt domains on an analytic set with a (C*)%action.

We write
U={0=QQA 0 CH*|Al=1 and |ul=1}.

Restricting the (C*)%action on U, we get U—Aut(C").

Definition (2.1). A relatively compact domain 4 on M is
called a Reinhardt domain if the following holds: If pEd, then
T, (p) €4 for any 0€U.

We assume, for the sake of simplicity, that the following condition
is satisfied when we talk about a domain 4 with p,&94: For any neigh-
borhood U of p,, there exists uniquely a connected component 4” of 4NU
such that p,€04’ holds.

Reinhardt domains can be classified as follows:

Definition (2.2). Let 4 be a Reinhardt domain.

(1) 4 is called of Type I, if p,£04.

Furthermore, a domain with p,€04 can be classified as follows:

(II) 4 is called of Type I1, if there exists a point p& M (p7p,)
such that ©,(p) N 4=0 for any ge (C¥)*

(IIT) Otherwise, 4 is called of Type III.

Let o: M—M be the canonical resolution of M. Then M can be
written as in (1.3). With respect to a certain covering {U,} of A, we
denote the fibre coordinates of F and G on U, by £, and 7%, respectively.

We define analytic sets S and H on M by
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(2.3) S=1{4=0y and H= {5,=0}.
We set

A= (07 (4))°,

where E means the closure of E and E° means the open kernel of E.
In the following, if we say that 4in M is a Reinhardt domain, 4 satisfies
a similar condition to (2.1) with respect to the (C*)*action along the
fibres of M. Then if 4 is a Reinhart domain in M, then 4 is a
Reinhardt domain., Corresponding to the classification of Reinhardt domains

4 in M, we obtain

2.4 Q) disof Type 04N A=0,
(2) 4 is of Type II & 04N A=~<0 and there exists a point p
in A such that 7' (p) NI=0 holds,
3) 4 is of Type Il 04N A0 and 7w (p) N 456 holds
for every point ps A.

In the following we classify domains of Type III into two classes:

(4) 4 is called of Type 111, < 4N S50 or 4N H=0,
(B5) 4 1is called of type Ill, & ANS=0 and AN H=0 hold.

Then we can state our results as follows:

Theorem (2.5). Let 4 be a Reinhardt domain on M which is
a domain of holomorphy. Then d is an L-manifold. Moreover, we

can obtain the following results:

(I) If 4 is of Type I, then 4 is Stein.

(I1) If 4 is of Type II, then 4 is Stein.

Iy () If 4 is of Tvpe IIl,, then Ev is of infinite order
and the algebra of holomorphic functions on 4 is noi a Stein
algebra.,

B) If d is of Twpe 111, then Ey is of infinite order and 4 is
not Stein.

As for the definition of E,, see [2], pages 527 and 528. Then we

can summarize our results in the following table:



132 OSAMU SUZUKI

Type\\\\ of finite order of infinite order
I | Stein Stein
11 ! Stein 1 Stein
Ml | - nloantein with a non-Stein
‘ algebra
1Lz ‘ —_— non Stein

§ 3. Proof of Theorem (2.5)

In this section we give a proof of Theorem (2.5). At first we

prove the following

Proposition (3.1). In the case of Type I or II, a domain of

holomorphy is Stein.

Proof. We have given a proof for a domain of Type I in (3.2)
in [2]. Hence we consider a domain of Type II. From (2) in (2. 4),
there exists a point p& A such that 4 is contained in M—7"'(p). Since
A—p is Stein, M—7n"'(p) is Stein. Hence 4 is Stein. If 4N A=0, then
4 is also Stein. If 4N A==, then 4 is not a domain of holomorphy,
because codimension of A is two. In this case the K-hull of 4 is 4 (see

(2.5) in [1]). Hence we prove the assertion.

Here we prepare a proposition. We choose an integer [({>>0) and
take a metric of {a,} of FQG™ with respect to some covering {U,} of
A (see (1.4)). We denote the fiber coordinates of F and G as in (2. 3).
We put

¢l.l:alICA,2/l7h!ﬂ .

Then we can show the following

Proposition (3.2). Let 4 be a Reinhardt domain on M such
that 771 (p) NA+0 for every pc A. Moreover, we assume that 40 .S
#0 holds. Then we can find an integer [(I>>0) and a neighborhood
U of A such that every holomorphic function on 4 can be extended
to a domain satisfying {¢,,<e} NU, where U is a neighborhood of A
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and ¢ is a positive number.

Proof. We make a resolution of singularities of indeterminancy of
?,, as in Section 4 in [2] (see (II) in p. 551), which we denoted by
Q% My, —M. We write

QOMA) =3 . QP (S) =3y, =S5F and QD ()°=.,,.

As we have defined in [2] (see p. 552), we choose local coordinates z;,,

¢® and «ff) such that

(P =0}=SF and {£B=0}=L,.
We set

Qi=A{(z, &8, uf) 161 <+ o0 and  [uffi| <+ oo}

and 2,=U ). We take a holomorphic function f on J. Since Jis a
2

Reinhardt domain, we see that

. i 13
QW*f=3 ai® (=) R ufl on 4N,

where

{af?" (=)} e H (4, O([L ] RLS¥T).
Since Sf M 440, we see that #>0. If we choose a positive integer [

very large, then from (i), (1) and (i), (1) in (4.14) in [2] (also see
(4.12) in [2]), we get

[S{k] [A>O and [Ll] 14<<0.

Hence, if j<<0, we see that [S¥]*Q®[L,]/<0. Therefore we see that

{a{"™} =0 in this case, which proves the assertion in (3.2).

Now we return to the proof of our Theorem in the case of domains
of Type 11I. At first we consider domains of Type Ill;. From the
construction of the canonical resolution p: A/—>M, we see that M satisfies
the conditions A« and B in page 547 in [2]. From (3.2), we see
that 4 satisfies the condition C, in page 554 in [2]. Hence following
the discussions in Sections 5 and 6 in [2], we get our conclusions in
this case. Next we treat domains of Type IIl,. We take a holomorphic

function /" on 4. Then / can be written as
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f=21a" (=),
where
{af"} e H° (A, O([F17®[G]™).
From the assumption on a domain of Type IIl,, we have 4N S=@ and
AN H=@. Since F and G are negative, we see that both j and & can

never be negative at the same time. Hence we have the following de-

compositions of f:
f=fi+f+ S

where

f1: the singular part of f which is singular at H,
f»: the singular part of f which is singular at S,

f3: the holomorphic part of f.

Then we see that f; (resp. f,) is a holomorphic function at S (resp. H).
Therefore by using (3.2) and following the proo{ of Theorem (5.1) in
[2], we see that there exist small positive constants ¢, ¢ and a neigh-
borhood U of A such that f; (resp. f») is holomorphic on {¢*<le} NU
(resp. on {p*<e’} NU), where ¢* is the characteristic function of M
(see (1.6) in [2]). We construct the resolution of singularities of
indeterminancy of ¢*, yu: My—M. We follow the notations in (5.13)
in [2]. By using (6.1) in [2], we can find positive constants ¢, ¢’ such

that
3.3) E* N A* = {C’<hw‘<€} s

where E, is the exceptional set which is inserted at the final step of
the construction of g and 4y = (#7'(4))°. Since J is a Reinhardt domain,

we see that
3.4 dpy CHe' <A<} .

From (3.3), (3.4) and by using (3.5) in [2], we see that 4, is a
weakly 1l-complete manifold. Moreover, [E,] is a negative line bundle
on dy. From these facts, we see that 4y is a B-resolution of 4 if Ey
is of infinite order (see (5.13) in [2]). Hence we see that 4 is an

L-manifold if E; is of infinite order. Detailed discussions can be done
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in a similar as in Section 6 in [2]. Therefore we need not repeat them.

Hereby we complete the proof of Theorem (2.5).

References

[1] Suzuki, O., A new class of domains of holomorphy (I) (The concepts of boundary
resolutions and L-manifolds), Publ. RIMS, Kyoto Univ., 13 (1977), 497-521.

[2] ————, A new class of domains of holomorphy (II) (Domains of holomorphy
on a three dimensional Stein space with an isolated singularity), ibid., 13 (1977),
523-571.






