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Supplement to Holonomic Quantum Fields. IV

By

Michio JIMBO*, Tetsuji MIWA* and Mikio SATO*

This note is a supplementary paragraph to our preceding paper
IV [1]. Our aim here is to relate the field operators in [1], con-
structed directly from the commutation relations, to the known models
of Lagrangian field theory in two space-time dimensions; namely the
Federbush model ([2]) and the massless Thirring model ([3]). In fact
this connection has been known in the literature ([4] [5]), which we
have come to know only lately. We wish to thank Professor N. Nakanishi
for drawing our attention to the articles [5] [6]. As such, the content
of this note is not essentially new, except for the exact computation of
the n-point functions for the Federbush model (see § 3).

The plan of this note is as follows. In Section 1 we prepare
several formulas needed in subsequent paragraphs. In Section 2 we
give the operator solutions of the Federbush model ([4][5][6]) in terms
of the operators introduced in Section 1. By identifying the current with
the free one we check the validity of the microcausality and the equa-
tions of motion. In Section 3 we calculate their asymptotic fields, S-matrix
([5]) and the #z-point functions by appealing to the results of IV [1].
In Section 4 we follow the analogue of Section 2 for the Thirring model,

by using the operators introduced in II [7].

§1.

Let ¢ (x) =" (¢+ (@), ¢- (@), ¢* (x) =*(¢* (x), ¢* (x)) denote the free
Dirac fields with positive mass m in two space-time dimensions. We

choose the normalization®
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* Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.
& Qur definition here differs from [1] by a factor Vm/2.
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WD 6@ =2 [du o ey ) =g, (s m),

$12) = [dudOF 7" emimes s () =91 (a5 m),

so that the canonical equal time anti-commutation relations hold:
1.2) [¢:(0, z), 9% (0, 2) ], =00 (' — 2")
[¢6 (0’ xl) ’ ¢)€’ (09 xll) ] += 0’ [Sb;k (07 xl) ] ‘b:" (0’ xl,) ] += 0
(e,e’=+).

In 1.2) ¢@), ¢*(w) signify the creation (#<C0)-annihilation (z>0)
operators in (4. 3.48), (4.3.49) of [1], carrying the energy-momentum

-1 =1
) = (B, )
In the sequel we adopt the following convention:

(1.3) r°=(_i i), r‘=<_i—i>, r5=r"r’=<1 _1>

rel(Er), 2=l

on the mass shell.

—y+0
id =1 (7%, + 1'0,) =< o ‘)

0o+ 0, 0

¢ (x) ="*(2)1'= (—i¢%(2), i$¥(x)).
The free current j*(z) and pseudo-current j*(x) are, by definition,
1.9 @ =g @71 @) 7@ =:¢ @7rrd@):

7 (@) = F (@) =: g1 (@) ¢ (@) 1.

Let now ¢r(a) =¢r(a;l’,1”) be a field operator satisfying the fol-

lowing commutation relations with the free fields:
ey, (x)pr(a) i z*<a™ and x7>a~
e VY, (2)pr(a) if zx*>at and x™<a~

YL @)gr(e) i 2*<a® and 27>a
e "Wk () or(a) i z¥>a" and z~<a™.

1.5) s (@) (@) = |

or (@92(2) |

In the case [”=0 this type of operator has been constructed in [1]
((4.3.67), (4.3.68) with [ shifted by a half odd integer). The general
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case is obtained by multiplying e N with ¢r(a;l’—1"+1/2) in [1],
where N= f@ ¢*(—u)Pp(w):. The result reads as follows.

1.6) or(a;l’,17) =: err@t i,
or(a; ', 17)/2
= jj@ du’Re(u,u’; 1, 17) g tme@ruwdrarwieu =gk (4 ¢ (@)

RF(“& u,; l,a l”)

=92 sinn'(l' _ l”)' enit'(c(u)«e(u')) (u — io)l'—t'n/z (u' _ iO)-L'+L'+l/2

_i ——1(e"*®sin wl’ 4 ™" ®sin nl”) 2m|u |0 (u +u”)
utu

X P

=RF<“u,’ —Uu; _Z-,’ _T”)-

Formulas needed to derive (1.6) are given in the Appendix. Note that
the n-point functions for ¢r(a;l’,1”)’s are essentially those in IV
since they commute with N. For instance <{gr(as; i, i) or(as; s, 1))
={e™iNpy (ar; I — I +1/2) e™iNgp (an; 1 — I3 +1/2) Y=L or(as; 1 — 1]
+1/2)¢r(as; I —15 +1/2)>, and so forth.

For later reference we calculate the short distance behavior of the
product j*(x) ¢r(a;l’,1”). We have

@7 @) or(a; U, 1) =G (@) pr(a; U, ") e (as U, 1)
+ig¥ (@, a; U, 1) o (z,a; U, 17) er @0,

where

A8 G @er(ast, 17)y=FMBICZL (g

X (K oy (mr) Kyo_pp(m7) — Kooy (mr) Ky o1 (1)),
(r=2v—(x—a)*(x—a)")

1.9  ¢x(xz,a;,1")

= @3 1) i (= (5= @) +i0, (2= @) *—i0)

)

+230% (a1 - w*iy (= (x—a)~+10, (x—a)* —10),

j=1



140 MICHIO JIMBO, TETSUJI MIWA AND MIKIO SATO
¢s(x, @ ', 17)

=j>°_ff Oores(@; 1) wory, (= (2= a)~+i0, (x—a)*—i0),

+,i{¢""’(a;l”) cwk (= (x—a)~+i0, (x—a)*—i0),

with [=0"—1"+1/2 and

1.10) 4t (@317 =g [ du 0+ iuyrerirmargs ) gmimrssanes

u(as 1) =y [au 0 inyrerrmnog (@) imenae,

The functions w;="'(w,,, w;-), wF="(w}¥, wf¥) appearing in (1.9) are
those in IV [1].
In particular, assuming 0<|/ —1"|<1/2 we have from (1. 7)~(1. 10)

A 1
i (x—a)*¥

(1.12) lim: gt (z, as 2, 1) du (z, a3 1/, 17) Vo000

111 GE@er(as 1, 1))==+ +0(1) (z—a)

—tim: (gf (a5 E= DD

1
<1¢7>!
Ly (m(z—a)H)=r
+e - oF(ail”) <1 ” 1>' + >
—l% 5!
(s a1y L= @) )
[
+e kg (a3 1) (m(xz—a) *) =/ +.-.)g”i("’;l"")ﬂ:
1
(13)!
=ill_l7%(/l_-—#: ¢l¥-z~i1/z(d; l”)¢—l'+z';1/2(a; l") gPF(@iIn/,
=+ 1 0 F(a; l/’ l”),

TEm@ =0 e’

Hence
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(1.13) um_;.:( JE(a+e)pr(a; ', 1”) + % (a—e)or(as I, 1))
&0

1 9 1
=1 0 a1y (o< L),
Fma =) 0@ ( <l < 2>

§2.

The Federbush model ([2]) is a 2-dimensional model theory in
which two species ¥, () =" os (2), o (%)), To(2)=T¥, (), T*_ (2))7°
(=1, II) of massive Dirac fields are interacting via current-pseudocur-

rent interaction, Its Lagrangian is written as
(2~ 1) IFED=£0+-£iM,
Lo= lelwa(x) (8 —my) ¥ ()

L= =27 @TF @) +T7 @ Ti ()
=—0 5 enTt(@ i)

where J2 () =T . (2) 7*¥ . ()= FJE () =1/2(J% () £ J% () (e =1, II),
€w= —&,, €p=1. Accordingly the equations of motion are
2.2 G —m)¥:(x) =20 (JF (@)1 +J7 (@) 1) ¥ (x) =0

G —mD¥i(x) +20(JF (@)1~ +I7 (@) 1) ¥s(2) =0,
As has been pointed out previously in the literature ([3][4][5]) this
model has an explicit operator solution. Namely let ¢, (x;m,) (=1,
II) denote independent® free fermion fields of mass m,, and let
¢re(x; U, 1" ; m,) be the corresponding operators introduced in Section 1.
Then the products
2.3 ¥ (x) =¢s(x;mp) -@ra(x; 1,175 my)

o Vi(x) =¢g(x; mp) @rr (317,15 my)
7[ (x) =$1 (JC; m,) -(p“(x; '—l/, —l”; 171])

Vy(x) =ps(x; mp) -@p:(x; =17, =15 my)
™ That is, they are regarded as elements of a Clifford algebra A(W, QW )=A(W))
QRA(W;) of a direct sum of orthogonal spaces W; W;. In particular ¢; or ¢,*
and ¢z or ¢, totally anticommute with each other.
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provide an exact solution of the Federbush model (2.1). The parameters
U, I” are related to the coupling constant g through

2. 4) , g=2n(l'-1").

In the sequel we shall check the validity of the equations of motion
(2. 2), examining the precise meaning of the current, product at an equal

space-time point, etc.

(1) Microcausality. Making use of the commutation relation
(1.5) and the local commutativity of ¢gfields (cf. pp. 102~107 [1]),
we may verify the microcausality for ¥;(x),¥;(x). For example if
(x—2’)*<0 and (x—x’) >0 we have

T, ()T, (2"

=¢r(z; mp) @es(x; 1,17 myp) gu(x”s mp) e (275 17,1 my)
'—"ezdl'{l’r (x; mz)([’l(x’; mp) @ri(x; l’, l”, mporr(x’; l”, Usmyp)

= "ehw(bl(x’; mp)§r(x; mp) Qrr («73,§ l”a l,, mp)@rr(x; 1,175 my)
=—¢p(x"; mp)@rr (2" 17,1 mp) s (x5 mp) orax; 7, 17, my)
=T, (x).

Similar argument shows that any two of ¥;(x), 7, (2), ¥;(x) and ¥, (x)

anticommute for spacelike seperation of variables.

(2) Current. Formally the current for ¥;(x) is given by J¥ (x)
=T, (@) 7V (x) =¥ (@) b1 (@) -@rr(x; =V, =V ;s mp) ora(x; U, 1”5 my).
The second factor, if it has a meaning, should again be an element of
the Clifford group whose induced rotation is 1. It is natural therefore
to regard this factor as a constant. Thus we identify the interacting

currents with the free ones: Ji(x)=ji(x) (a=11II).

(3) Equation of motion. Applying the Dirac operator id—m;
to (2.3) we obtain

(2. 5) (zﬂ—m;)?} (.Z') = (zﬂ—m,)(b[ (x; m;) -(op,(x; l,, l”; m,)

+¢r(x, my) - iBprs(x; 1,175 my)
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7/

=¢;(x; my) -i(‘r“ a; ¢r1(z) +77 ai_

¢ri(x) ) .

On the other hand we have from (1.13)

(2.6)

L or (@i U, 1) =~ 2075 (&) -0r (a3 U, 15 1)

where the product of the right hand side is defined through the point
separating limit (1.13). This shows that

GB—m)T(x) =297 T71(x) +77 75 (2)) ¥ (x)
=20 (r*J7 (2) +77JF () - ¥ (2).

The second equation of (2.2) is checked similarly.

All these considerations have a straightfoward extension to include

many species of fermions. Namely a model with Lagrangian

2.7 L= Z:]l T, (x) ((F—my)¥o(x)

- ; Ros (7 (@) T4 (@) +J2 (2) T ()

1

1
2

has an operator solution
2.8) Vu(x) =¢o(x) I1 0re(x; lag, Lse)
8™
741 (z) =$a (=) II ¢rex; — Lagy — o)
BlEa)
where

(2 9) laﬂ =27 (laﬁ - lﬁa) =- lﬁu .

§ 3.

The asymptotic fields for ¥, (x) are calculated in the same way as
in Proposition 4.6.2 of IV [1]. We merely state the results here.
Define ¥,;, (%) to be

out

B AT gy @) =lim L[ g (psmacrareny
out Z0=1¢

t—>Foo 2

6 a Mo (T-U+TrUL
X _69—:5—"?‘16 (z) =¥ () —0?8‘ @raratah >
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where =1 II and ¢= + refers to the spinor component. We also

define ¥¥,, (w) by replacing ¥,.(x) by ¥¥* (x) in the right hand side of
out

(8.1). We set further

3.2 Na= [Cdw @ranew) -
Naw= |~ du @2 @)gr ) ~ ) ba@)
Na@; 1, 1) =V N&+I"Nay

(=1 IL ¢¥" (u) = P (—u), ¢L () =¢& (—u)).
We have then the following (cf. (13), (14) of VIII [8]).

(3.3) V1 in () =y (u) g™t
U1 ou (00) =@y () eVt
C U pon () =g () @2HVres 10
¥ youe () = Pp(u) 71051510
(3.5) ¥ () = 0¥ () e~ 2N uw 1)
¥ ous () = 0¥ (u) @72 HN 1061510
(3.6) Tk (1) = OF () e~ Frsan

W?wt (u) — ¢i (u) e—z:riNl(u:l',l’)'
Making use of the equations

eV (u) (lu|>]u’])
eV (') (Ju|<|u’])

e Px () (lu|>u’])
e~ @) (lu|<lu’])

we can explicitly verify the canonical anticommutation relations

8 W@, Fip )] =0ulrlulfutu?).

(3. 7) et¥al, z')¢a (u/) e~ iNa(wil, 1) {

ezaiNa(u;l',l')(/,: (u/) e-zxiNa(u;t',l') — {

Other combinations vanish identically.

Remark. If we start with ¢Z(a;l',1l") =:¢.(a) @2 and

¢ F (a; U, 17y =: Q¥ (@) 7"~ instead of taking the tensor product
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(2. 3), we obtain the asymptotic fields (cf. [8])
(3.9) OL(us U, 1) =G (@) (@>0)
=p@) e IE (4 <0)
PEF(us I, 17)y= e e tmogn () (u>0)
= g% (@) T (1<0)
(@F:, 9XF are obtained by interchanging [’ and /).
However in this case they do not satisfy the canonical anti-commuta-
tion relations. For instance
(3.10) i (u; U M gfn(u U, 1) = — e e (Ju| — |u’])
X @i (@3 UV, 1) ot (us 1, 17),
O VI (w5 1, 17) =2x|u|0 (u+u’)
— gt DG (U, 1) i (3 17, 17),
and so forth. Although there seems to be no simple equations of motion
for @I, ¢*F  they are manifestly covariant fields satisfying the micro-

causality. Therefore the canonical anticommutation relation for the

asymptotic fields are not a consequence of these properties.

The 2-body S-matrices are read off from (3.7) directly. For =, #’
>0 we use the notation |Ip, IIp'>, =T ¥, (—u)¥ 11 (—u”)|vac)
out out out

u+u u—u“> p ( ' +u'™? u'-u"’>>
=(m , m , /= \my , Mg , ete. (Not
(‘b ( Ty oMy ) ? 2 2 (Note

that %, (—#) (resp. ¥,in (—#)) represents a creation operator of
out out

particle « (resp. anti-particle &) with momentum ') Then we find
(3.11) lap, & p"Dou="Ss:(ap, &' p") |ap, &’ p" D
(a,a’=1L 1L I 1II)
where
(3.12) See(ap, ap’) =1 (o, ’ =1 II T IT)
Ss,o(Ip, IIp") =Sy, (Ip, IIp") = goc@ 2t-2"2")
So,s(Ip, 11p") = So,s (Ip, IIp’) =g 0@ 7' =2
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That is, the S-matrices are energy independent constants, but they do
depend on from which direction the two particles approach each other.
This has been first noted in [5]. It is easy to see by using (3.3)

~(3.6) that a general S-matrix element factorizes into a product of
2-body S-matrices (“factorization property”, [5]):

(3.13) |aupr, 5 Anbr)ous =t]_<—_; Sa,2(Qups, 0;07) |Cupy, oy WnPrdin

where a;=1,II T or II and S,,(ap, a’p’) denotes one of the correspond-
ing factors displayed in (3, 12).

Let us turn to the z-point functions. In general if {7, -, 4} U
{Ji> ***s Ja-x} is a partition of {1, -, n}, then
(3.14) (¥ (x:) TR (2p) TRt (s, Vgl (24))
=P8 (@1,) ¢ (2,5 17, 1) 0 (24,5 17, 1) o (220 D
X QP (a3 U, 17) @t (24,) -+ OEint (25,4) 05 (23 1, 17) )
(e;==+1,0,=+1)
where  ¥3,(x) =¥ (2), Vo (2) =¥ 0 (), 9 (x) =¢F (2), ¢7 (x) = ¢ ()
and ¢f(z; 17, 1) =¢p(z; =1, =), 05 (x; 17, ") =¢r(x; 1", 1"). Using
(3.15) iy @1, @i
=@y, 1)

“ v
v Pfaﬂianl: <1...{[)l‘...¢jl...(pj”-k...¢"...1> ]
<1‘.'1'Hq’fx“.(ﬂfn-k'“l“'l> =1y, i

(¢s, ¢; are shorthands for ¢%(x;) and ¢%(x;;0”,17)),

we obtain closed expressions as well as infinite series expansions for
(3.14) by the aid of the results of IV [1]. Note that (3.14) reduces
to O if either £ or —#% is odd. It also vanishes unless positive- and

negative- 0;,’s (resp. 0;,’s) are equal in number.

Example (2 point functions). The only non-zero combinations for

n=2 are
(3.16) Tt (x0) Cre,(x2) >
=P (1) Pe, () D@ (215 — 07, — 1) @r (223 1, 17))
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<¢ Ie, (z1) Wu, (z2) >
=<, (1) O3, (x2) Yr (215 1/, Yor(xs; =1, =1")>

and those obtained by interchanging I with II and !’ with I”. Here
ep(xy; =V, =1 pr(xe; U, 1) >=Lpr(xs; —U+1" +1/2) ¢p (225 ' =1"
+1/2) >=r1p is given by (IV [1])

(3.17) T py = €XPp ( - % J;wds <s < <j—f> smh2¢v> tanh2¢))

with 2=2m,v — (21— 22) * (21— )~ and

(3.18) = ( j‘b) p tanh ¢ (1 —tanh’p) + —smh 2¢,

[==2'-1"Y=—g/T.

§ 4.

Here we follow the analogue of Section 2 for the (massless)

Thirring model defined through the Lagrangian
4.1 Lrg=T (2)i8¥ (2) +9 (T (2)¥ (2))*
=—¥i(2)0,¥,(x) -¥2(2)0-¥_(x)
=207 (¥, (D ¥E (D) ¥ _(2)
with the equations of motion
(4.2 0.¥: (x) +2ig¥* () ¥ - (x) ‘¥ (x) =
—0-¥_ () —2ig¥t () ¥ . (x) ‘¥ (x) =

Formally the Federbush model (2.1) reduces in the massless limit to

two non-interacting Thirring models ([2]):

4.3) Lrzplmy, g0
=—¥1(2)0.¥:1.(z) ¥ (2)0-¥ 1 (2)
— 207 (D) ¥ 1. (D VL (2) ¥ (2)
~ V5 ()0, (2) — V1 ()07, (2)
+20¥ 1 (D1 (D) VI (D) ¥ (7).
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In accordance with this fact, the operator solution for (4.1) is obtained
by modifying the operators constructed in II [7] which are regarded as
massless limits of those in IV [1].

Let ¢*(x), ¢ (x) be free fermion operators in one dimension {(II [7])
such that

@y (FEEE0L [¢*<x),¢<x'>1+>==<° i@
[0, $* @], 9@, 9@ 1\ o

<<¢* (@) ¢*(x)> P*(@)¢(x)) )
@) * (x> P@) (=)

In correspondence with (1.6) we introduce ¢r(a) =g¢r(a;l’,1”) through

(0 11 i
_<1 o)zzzx—x’+i0'
4.5) pr(a; 1, 17) =: @V,

(4.6)  pr(a; 0, 1") /2= jjdxdx'R (x—a,z’—a; U, 1")p*(2) ¢ (z")

Rz, 251, 1%) = (e™™ (z +0) ¥+ — ¥ (2 — i0) ~'+1")

% (_1_ 4 i e"""'(x’—iO i
21 x—x’ +1i0
1 —1i

il enil' x/_{_io z'—z~>
2t x—zx’ —i0 ( )

which enjoys the property

e"9(z)¢r (a) (x<a)
") (z) ¢or (a) (z>a)

e (x)pr(a)  (2<a)
e V¥ (x)gr(a)  (z>a).

Setting j(x) =¢* (x) ¢ (x) we find that
4.8) J(@)er(a; ', 1%)
=G (@ er(a; ', ") >0r(a; ', 1)
+i0*(x, a; UV, 1) P(x, a3 17, 17) efr@tto;

4.7) W@M@={

wwww={

where

V=17 1
2ni x—a

4.9 G@er(a, U,17)>=—
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(4.10) ¢*(z,a;0,1")

= [azrr @) (e @ —arioyrr L L
2n z’ —z+i0

+e" (2 —a— i0) _l,“,%{ x, _—xz- i0> e (2 —a+i0)V

$(z, a;1',1")

iir PN | Z
= \dz'¢(z’ <e""‘ ' —a+i0)V TV — —
f R S e e

+e " (2 —a—10) V‘"él;r P — _;Z_ z'0> ce” WV (z—a+i0)"VHY,

We have also
A1) lm (et e)er(a L 1) +i(a=e)pn(ai I, 1)

1 d
- &£ @ ;l,, 1 .
i —17) da’"e )

By a similar argument as in Section 2, the following operators, constructed
from copies of ¢*, ¢ and @r, are shown to satisfy the microcausality and

the equations of motion (4.2) for the Thirring model.

1

(4.12) ¥,.(2) = e

Or(—27) cppp(x™; 17, 17)
v_(z) =7%_¢,<x+> o (—z=3 17, 1)

v (z) = }Zsb;*(—x-) ezt =1, —1")

v*(z) =7%¢¢ &%) o (—a; =17, = 1.

Here the factor 1/4/2 is inserted to adjust the normalization: [(1/4/2)
X P (F2F), A/V2)PE(F2'™) ] 4l20mzn=0(2'—2") (@=1 II), and the

coupling constant ¢ is given by
(4.13) g=2nl"-1").

Since the #z-point functions of ¢r are power functions (II, §4 [7];
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the corresponding monodromy is abelian), this expression (4.12) agrees

with the known result [9] for 7z-point functions of the Thirring model.

Appendix

Let W=V'@V be an orthogonal vector space and its holonomic
decomposition ([10]). We assume that it is also equipped with a “charge
structure”; namely W admits an orthogonal decomposition W*@W” into
isomorphic copies W *=W’ of an orthogonal space W' =V"'®V’, so
that one has the ‘“charge operator” N characterized by the following

properties:
(A. 1) [N, w¥] =w*, w*e W*
[N, w] =—w, weW

(N>=0.

g

In other words we have cNw¥c N=cw*(w*eW*), MNwcN=c"
(weW) and {cN>=1 for any c€C. Choose a basis {v,},-;,..xfor W’
and its copy {v%},...y for W'* and set J= (v, v,)) = v} v¥)),
K= (Kv,v,)) = Kv*v}>), E,=J'K and E_=J K. In terms of these
basis the charge operator is given by

N
B2 N= 5 I Detn—gN= 3 T i vtosi,

u,y=1 syy=

Now let g&G(W) be an element that commutes with N:

(A.3) Nr (9) =<g>¢”*,
N
0/2= Y ryviv,=v*R'v
#,v=1

R=(ry), v*= (o, -, v§), v= (v, >, o).
We have then the following formulas:
(A. 9 Nr (cNg) ={g)e*"*=Nr (gcV)
0:/2=v*R. v,
RJ=QA—cHE,+c'E,-RJ-E,

Here we have set E,=cE,+ E_. In particular we have Nr (cN) =exp(v*
c(A—=cHEJ ).
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(A.5) Nr (eN: (w; + w¥) -+ (War—1 + w3F,) €2:)

= (Eet (wy) + B (wF)) o+ (Eor (Wap—r) + E, (w05)) e’

In (A5) E.(w) is understood to be cw™+w™ for w=w" +w"’

eW (wP eV we V"), and similarly for w*e W’*,

All these formulas are valid in the symplectic case, provided that

we replace J,E,, E_L,N by H=K—'K, E,.=H 'K, E_.=—H 'K and
N =v*H'*y+4 N/2, respectively.
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