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Weakly 1-Complete Manifold and Levi Problem

By

Takeo OHSAWA¥*

§ 0. Introduction

Let X be a paracompact complex manifold of dimension z=1. We
call X a weakly 1-complete manifold if there exists a C* plurisubharmo-
nic function ¢ on X such that for every c€R (real number), ¢™' ((— oo,
c)) is relatively compact in X. ¢ is called an exhaustion function of
X. It is well known that holomorphically convex manifolds are weakly
1-complete. The converse is not true in general (cf. [1]), so one is led
to the problem of seeking natural additional conditions which make
weakly 1-complete manifolds holomorphically convex.

The content of this article is divided into two parts; Section 1 is
devoted to prove some properties of weakly 1-complete manifolds which
have a nonconstant holomorphic function. In Section 2, first we present
an application of the Nakano’s vanishing theorem to the Levi problem
on projective spaces and hyperquadrics. These results are not new
(cf. [3]) but the method will be of some interest. Next, combining the
Nakano’s vanishing theorem with the result in Section 1 and a well
known theorem (due to Bonmnet) of differential geometry we obtain the

following.

Theovem 2.2. Let X be a weakly 1-complete manifold of
dimension 2. If the canonical bundle of X is negative, then X is

holomorphically convex.

The last paragraph is a variant of Section 2, 1. Combining Theorem

2.2 with the Nakano’s vanishing theorem we solve the Levi problem on
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some hypersurfaces and complete intersections.

The author thanks Messrs. A. Takeuchi, A. Fujiki, Te. Ueda, and
K. Takegoshi. The discussions with them led the author to this prob-
lem. He also thanks the referee for valuable criticisms. The proofs

of Theorem 1. 1 and Proposition 1. 4 are partly simplified by him (or her).

§ 1. Weakly 1-Complete Manifold with a

Nonconstant Holomorphic Function

Let X be a weakly 1-complete manifold and ¢ an exhaustion func-
tion on X. For a real number ¢ we denote by X, the sublevel set
0 '((—o0,c)). By the definition of ¢, X, is relatively compact in X,
We denote by 0X, the (topological) boundary of X, in X

Theorem 1.1. Let X be a connected weakly l-complete mani-
fold. If there exists a nonconstant holomorphic function f: X—C,
then either

1) F (=) NX, is empty or noncompact for any z€C and ceR,
or

i) ') NX, is compact for any z€C and ceR.

Proof. For a complex manifold A and a holomorphic function ¢ on
M, we denote by FZ the connected component of ¢ '(g(x)) that con-

tains x. We need the following

Sublemma 1.2. Let 2 be an open set of C" containing the
origin (0, -+, 0) and f a holomorphic function on £ such that £(0, ---, 0)
=0. Then there exists a neighbourhood U of (0,:-,0) in 2 such
that if z7eU\Sf'(0) (k=1,2,:-) and f(x;) —>0 (k—>o0), then FY are
nonsingular and dist(F9,f'(0) NU))—>0 (k—oo). Here dist(A, B)
:=sup inf |x—y|+sup inf |y—z|.

zEA yEB yEB zc4

Proof of Sublemma 1.2. By the local parametrization theorem (cf.

[2] p. 98, 10. Theorem), after a suitable change of coordinates we can

choose a polydisc J. in C* with radius = (s, ++-, 7,) and center (0, ---, 0)
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such that the projection 7 defined by #(z,, :-, 2,) = (24, ***, 2,-1) induces
proper holomorphic maps from /~'(0) N4, and f'(x;) N4, to d,,, where
r':= (@, o, Fae). Let [ be a complex line in C"™' through the origin.
Then 77'(l) meets every irreducible component of f'(0) which contains
the origin. Therefore, in order to prove the sublemma we have only
to prove the case n=2. Let 4, be such that for any xed,\f'(0),
df].5=0 and f7'(0) N 4, is connected. If /'(0) N4, has irreducible com-
ponents V,, ---, V... there exists ¢>0 such that {r;|/(x)!|<<e}N4\dr,.
has m connected components Wy, -+, W, and |f(x)|>¢ if (25| =7, We
let

Usi={z e 4, {z; | £ @) | <e\F(0); FEN (4\Tp) VW, =0}

Clearly U, is open and closed in 4,N {x; | f(x)|<<e}\/'(0). Assume
U;0 for some i. Since 4,N {x; |f(x)|<<e}\f '(0) is connected, it fol-
lows that U;=4,0 {x; |f(x) |<e}\f '(0). This contradicts the definition

of U, Thus U;=0 for every 7, whence the sublemma follows.

Proof of Theorem 1.1. We set
B:={xeX; F¥ is compact}.

To prove the theorem we have only to show that there are only two
possibilities, i.e., B is empty or B=X. This is equivalent to saying
that B is open and closed. It is easy to see that B is open. In order
to see that Bis closed, first we note that F, is compact if and only if ¢y,
is constant. In fact, “if” part follows from the fact that ¢ is an exhaus-
tion function and ‘“only if” part follows from that ¢ is plurisubharmonic.

Suppose that B is not closed. Then there exist a point ., in X
and a sequence of points x,€ B, k=1, 2, -+, such that x,—xz, (k—>00) and
F,, is not compact. In virtue of the sublemma, F,, converge to F,,
uniformly in a neighbourhood of &, Since F, are compact and con-
tained in a compact subset of X it follows that F,, converge uniformly
to F,,. Therefore ¢ must be constant on F,. This is a contradiction.

Q.ED.

Remark. We did not use in the proof the differentiability of ¢.
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Only the continuity of ¢ suffices.
For the later use we quote here a theorem of R. Narashimhan,

Theorem 1.3 (cf. [6], Corollary 1). A weakly l-complete mani-
fold X is holomorphically convex if and only if X, is holomorphically

convex for everv ceR.
As a corollary to Theorem 1.1 we obtain

Proposition 1.4.% Let X be a noncompact weakly 1-complete
manifold of dimension 2. Then X is holomorphically convex if and

only if X has a nonconstant holomorphic function.

Proof. The only if part is trivial. Let f: X—C be a nonconstant
holomorphic function. Then i) or ii) of Theorem 1.1 holds. If ii) holds
then by Stein factorization theorem there exists an open Riemann surface
R and a proper holomorphic map g: X—R. Since R is holomorphically
convex (cf. [2]), X is also holomorphically convex. If i) holds, then
since the critical values of fly, are finitely many and f is constant on
every compact connected subvariety of X, X, contains only finitely many
compact irreducible curves. Therefore there exists ¢’<c¢ such that X,
contains all the compact curves contained in X, Let the connected
components of these compact curves be denoted by A, i=1, -, m. Let
U, be a neighbourhood of A; such that U,cX,. Then for every
zeC, f1(z) ﬁXc/——iCJl(—/—'i is a disjoint union of open Riemann surfaces.

Thus combining_the theorem of Richberg (cf. [8], Satz 3.3) and the
usual patching technique (ef. [9], Corollary 4.14) we obtain a strictly
plurisubharmonic function ¢ defined on a neighbourhood of XC.——G’ U,
where ¢” is such that X,C X, and X, DU, for any i. Therefor;_lXc,
is a strongly pseudoconvex domain in X. Since ¢ was arbitrary, by

Theorem 1.3 we conclude that X is holomorphically convex. Q.E.D.

M Proposition 1.4 can be viewed as a special case of the Theorem of Knorr and

Schneider (cf. [4]).
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§ 2. Levi Problem

1. The Levi problem on complex projective

space and hyperquadrics

Let M and N be complex manifolds. We say that A7 is a domain
over N if there exists a holomorphic map 7:M-—N which is a local
homeomorphism. Let p:L—A/ be a holomorphic line bundle over M
with trivializing covering {U;} and transition functions {e;}. L is called
positive (semipositive) il there exists a metric {a;} along the fibers of
L. (ie., a; and positive C* {unctions on U, satisfying a;le;I’=a; on
U;NU,) such that —+/—=100 log a; is a positive (resp. semipositive) (1, 1)
form on M. We say L is negative (seminegative) if the dual of L is
positive (resp. semipositive).

We denote by P" a complex projective space of dimension 2 and by
Q" a complex hyperquadric in P"™". We also denote by Ky a canonical
bundle of X,

The following theorem was proved by A. Hirschowitz [3] under a
less restrictive assumption but we present the proof here for the sake

of its simplicity.

Theorem 2.1. Let X be a weakly 1-complete manifold. If X

is a domain over P" or Q, then X is holomorphically convex.

Proof. We denote by H" ' a hyperplane in P*. We have
Kpo=[— @m+1) H"]
and

Koo=[—n(H"[ga) ],

where we denote by [D] the line bundle associated to a divisor D.
First we prove the theorem for P" by induction on 7. For n=1,
the theorem is well known (cf. [2]). Let us assume that we have
proved the theorem for #=7, (#=1) and let X be a weakly 1l-complete
manifold which is a domain over P""'. We are going to prove that X,

is holomorphically convex for every ceR. I X, is compact then X, is
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trivially holomorphically convex. So we may assume 0X,5<0. Let
r€0X, and 7: X—>P""' be the given local homeomorphism. Let yeX,
and choose a hyperplane HCP™™! which contains 7 (x) and 7(y). Then
7 '(H) is a noncompact submanifold of X and by the induction hypo-
thesis holomorphically convex. Therefore #7'(H) NX, is also holomor-
phically convex. Hence, for any sequence {x,} (k=1,2, ) satis-
fying xy€X, and lim x,=x there exists a holomorphic function f on

k—c0

7 '(H) N X, such that
sup [ f(zy) | =00
k=13,

As usual the obstruction for finding a holomorphic function fon X,
such that f],,-l(mnxc:f lies in the cohomology group H'(X,, [z '(H)
NX.1*), where [#z7'(H) NX,]* denotes the dual of the line bundle
[z7'(H) NX,]. We are going to prove that this group is 0. First,

H' (X, [z7'(H) N X.]*) =H'(X., Ky @ K*Q[r™' (H) N X]*)),
where Ky, denotes the canonical bundle of X.. Since

x.= () x,) *Kpra= (@] 2) *[— (r +2) H]
=[(r+2)n (H) N X.]*
we have
H'(X, Ky Q@ Ki Q[ (H) N X]%))
=H' (X, Kz Q[+ Dzr™ (H) N X.])
=H'(X., KxQ @] x)*[(r+1) H]).

On the other hand since [H] is a positive line bundle and 7|y, is local-
ly a biholomorphic map (7|g,)*[H] is a positive line bundle over X,
Hence by the Nakano’s vanishing theorem (cf. [7], Theorem 1) we ob-

tain
H' (X, Kx,Q@|z)*[(r+1)H]) =0.

Thus f can be extended to a holomorphic function F on X,. Since the
choice of x was arbitrary this implies that X, is holomorphically convex.

Hence by Theorem 1.3 X is holomorphically convex. Thus by induction
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we obtain the theorem for P". The proof for Q" is similar. Q.E.D.

2. Weakly 1-complete surface

In this paragraph we prove the following

Theorem 2.2. Let X be a weakly l-complete manifold of
dimension 2. If the canonical bundle of X is negative, then X is

holomorphically conver.

Proof. Let ¢ be an exhaustion function on X. First we assume
that there exists a point x&X where ¢ is strictly plurisubharmonic.
Let w: X—X be the blowing up of X at x. Then as usual the obstruc-
tion for finding a holomorphic function on X with a prescribed differ-
ential at x lies in the group H'(X, [207'(x)]*). Note that ™! (xr) =P*
and deg [07'(x) ]lgwy = —1, where we denote by deg L the degree of
the line bundle L over P'. We have

deg Kz |g-12y =deg Kp: + deg [717~1 () 1*|g1m=—1.

Hence K¥Q[20 7" (x)]* |y is a positive line bundle over @ '(x). So
there exist neighbourhoods W, and W, of @™ '(x) such that W,E W,
Ki®[207 (x)]* is a positive line bundle over WU (X—W,)* and gow
is strictly plurisubharmonic in a neighbourhood of W,— W,. Multiplying
exp(—/t(pow) to the metric along the fibers of K¥® [20 7' (x)]*, where
st is a sufficiently large positive number, we immediately see that
Ki®[207'(x)]* is a positive line bundle over X. Thus by the Nakano’s
vanishing theorem we obtain H'(X, [207'(2)]*) =0. So there exists a
nonconstant holomorphic function on X. Hence by Proposition 1.4 X is
holomorphically convex. Let us assume that exp ¢ is nowhere strictly
plurisubharmonic on X. Since, by Sard’s theorem, there exists a ceR
such that d¢ is nowhere zero on 0X,, replacing ¢ by exp ¢ if necessary,
we may assume that 90¢ annihilates every holomorphic tangent vector
of #X,. In other words, letting S be the subbundle of the complexified

tangent bundle of 90X, which consists of the holomorphic tangent vectors

" Note that by the assumption K¥®Q[2@7!(x)]* is positive over X—W..
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and S be the conjugate of S, S®S is exactly the null space of 80¢.
It is easily verified that if a holomorphic tangent vector & is annihilated
by 08¢, then the tangent vector [£, &] is also annihilated by 03¢, where
[£,&] is defined by extending & as a local vector field. It follows that
[S,5]cS@S. This is the integrability condition of S so that there
exists a foliation (of class C*) on #X, whose complexified tangent bundle
is S@S. Let L be a maximal leaf of this foliation. Then [ is a
complex submanifold of X since at every point of [ the tangent space
is a complex line in the tangent space of X at that point. Since 0X, is
compact and the canonical bundle of X is negative, there exists a complete
hermitian metric on [ whose Gaussian curvature is greater than some
positive constant.®  Therefore by the theorem of Bonnet (cf. [10],
Chapter 8, Theorem 17) [ is compact. Since [.L]|, is the trivial
bundle** the canonical bundle of _[ is negative. Hence _[=P' and
there exists a neighbourhood W of [ and a proper holomorphic map ¢§
from W to an open disc 4CC such that § is of maximal rank and

071(0) =L (cf. [5], Main theorem). To complete the proof we need

the following.

Lemma. The line bundle [m.L] is semi-positive for any integer

m.

Admitting the lemma, we proceed as follows: By the Nakano’s

vanishing theorem we obtain
H'(X, [2L]%) =H'(X, KxQKi®[2.L]*) =0.

That H'(x, [2.L]*) =0 implies that there exists a holomorphic function
on X with a prescribed differential along [ so there exists a nonconstant
holomorphic function on X. Thus by Proposition 1.4 X is holomorphi-

cally convex.

Proof of Lemma. Since @z is constant for every t& 4, ¢od™! is
C= and subharmonic on 4. Since 30¢ has no zero on 0X,, choosing 4

smaller if necessary, we may assume that @od™' is strictly subharmonic

*) *% See the appendix.
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on 4. Let 4’ be a neighbourhood of 0 such that 4/€©4. Let ¢ be the
coordinate of C. We choose a metric {a;}, =1, 2 along the fibers of
[m.L] as follows:

a:07'd) - R,
a,;:=po0,
where 0(2) is a positive C= function such that p(2)=|z|""" on J--4'.
a,: X—07'd) - R,
a,:=1.

It is easy to see that [m_[] is semipositive with respect to the metric

{a;exp(—y¢)} if v is a sufficiently large positive number. Q.E.D.

3. Complete intersection of type (2.2)

Let MCP" be a complex submanifold of codimension 2. M is called
a complete intersection of type (2.2) if there exist hyperquadrics Q,, Q,CP"
such that M=Q;NQ, in scheme theoretic sense.

Theorem 2.3. Let X be a weakly 1-complete manifold. If X
is a domain over a complete intersection of type (2.2), then X is

holomorphically convex.

Proof. Let M be a complete intersection of type (2.2) and X a
weakly 1-complete manifold which is a domain over M. Since the
theorem is well known if dim M=1, we may assume dim M>2. We
prove the theorem by induction on dim M. Since dim A/=>2 the canonical
bundle of M is negative. Therefore if dim M =2, by Theorem 2.2 X is
holomorphically convex. Let us assume that the theorem is valid if
dim M<n, where n=>2. Let dim M=n+1 and X, a sublevel set rela-
tive to an exhaustion function on X. We may assume that 0X,50.
Let x€0X, and 7: X—M be the given locally biholomorphic map. Then
by Bertini’s theorem there exists a hyperplane HZP"™® which contains
7w (x) and intersects M transversallv. We may assume that H contains
7 (y) for some yeX, By the induction hypothesis 77 '(HN M) NX, is
holomorphically convex. On the other hand
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[r " (HNM)]*
=KxQKiQ[n ' (HNM)]*
=K Qr* (K@ [H]1%)
=K Q@u* ([nH]|«Q[H]|%)
=K Qr*([(n—1)H]|x).

Since n=2, n*([(n—1) H]|y) is a positive line bundle over X. Hence

by the Nakano’s vanishing theorem we obtain
H' (X, Ky ®r|3,[(n—1) H]|4) =0.

The remaining part of the proof is similar to that of Theorem 2.1.

Q.E.D.

Remark. Similarly as above one can prove the holomorphical con-

vexity of weakly 1l-complete domains over hypersurfaces of degree 3.

Appendix

Let M be a complex manifold of dimension one provided with a
hermitian metric ds*=a(2)dz-dz. The hermitian metric ds® is called
complete if every geodesic ball is relatively compact. We define the
Gaussian curvature p(z) of ds* as follows:

_ —1 09loga(z)

0(=): a(2) 0202

Proposition. Let X be a weakly 1-complete manifold of dimen-
sion 2 with an exhaustion function ¢. Assume that the canonical
bundle Ky of X is negative and ¢ is nowhere strictly plurisubharmon-
ic. Let ¢ be a noncritical value of ¢. Let X, be the jfoliation (of
class C*) whose tangent bundle is the nullity of 00¢. Then every
maximal leaf of 2X. is provided with a complete hermitian metric

whose Gaussian curvature is greater than some positive constant.

Proof. Let {W;} be a locally finite trivializing covering of Ky
and denote by {a;} the metric along the fibers of Ky such that
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—+/ =163 log a; is a negative (1,1) form on X. We may assume that
there exists a system of complex coordinates (z; #;) on W; such that the
norm of dz;/\dt; is v/a; and z; gives a local coordinate when it is re-
stricted to the leaves of X, Let [ be a maximal leaf and {w;} be a
set of local defining equations of _/ associated to an open covering {Uj}
of X such that for every j there exists W,y such that U, W,;. Let-

ting (2,1, w;) be a local coordinate in a neighbourhood of Uj, we let

0p

”f: = .
awi "“’J:U

It is clear (and also the point) that z; are nonvanishing holomorphic
functions. Therefore the normal bundle of [ in X is trivial. Taking
a refinement of {U;} and multiplying w; by constants il necessary, we

may assume that
1<lu;|<2.

We obtain a hermitian metric defined by

—2
ds’ = a,p| a1} =22y m0) dzugy-dE.
| i ‘

on [, where we identify 2,; as a local coordinate of _/I°. Since
2>{u;|>1, ds® is complete and its Gaussian curvature is greater than

some positive constant. Q.E.D.
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