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Weakly 1-Complete Manifold and Levi Problem

By

Takeo OHSAWA*

§ 0* Introduction

Let X be a paracompact complex manifold of dimension «J>1. We

call X a weakly 1-complete manifold if there exists a C°° plurisubharmo-

nic function (? on X such that for every ceR (real number), <p~1((— oo?

c)} is relatively compact in X. cp is called an exhaustion function of

X. It is well known that holomorphically convex manifolds are weakly

1-complete. The converse is not true in general (cf. [1]), so one is led

to the problem of seeking natural additional conditions which make

weakly 1-complete manifolds holomorphically convex.

The content of this article is divided into two parts; Section 1 is

devoted to prove some properties of weakly 1-complete manifolds which

have a nonconstant holomorphic function. In Section 2, first we present

an application of the Nakano's vanishing theorem to the Levi problem

on projective spaces and hyperquadrics. These results are not new

(cf. [3]) but the method will be of some interest. Next, combining the

Nakano's vanishing theorem with the result in Section 1 and a well

known theorem (due to Bonnet) of differential geometry we obtain the

following.

Theorem 2. 2, Let X be a -weakly \-complete manifold of

dimension 2. If the canonical bundle of X is negative, then X is

holomorphically convex.

The last paragraph is a variant of Section 2, 1. Combining Theorem

2.2 with the Nakano's vanishing theorem we solve the Levi problem on
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some hypersurfaces and complete intersections.

The author thanks Messrs. A. Takeuchi, A. Fujiki, Te. Ueda, and

K. Takegoshi. The discussions with them led the author to this prob-

lem. He also thanks the referee for valuable criticisms. The proofs

of Theorem 1. 1 and Proposition 1. 4 are partly simplified by him (or her).

§ I. Weakly I-Complete Manifold with a

Nonconstant Holomorphie Function

Let X be a weakly 1-complete manifold and (p an exhaustion func-

tion on X. For a real number c we denote by Xc the sublevel set

<^T 1 ( (—- oo, c)) . By the definition of (p, Xc is relatively compact in X.

We denote by dXc the (topological) boundary of Xc in X.

Theorem I. 1. Let X be a connected -weakly ^-complete mani-

fold. If there exists a nonconstant holomorphic function f: X->C,

then either

i) f'1 (z) r\Xc is empty or noncompact for any z^C and ceR,

or

ii) f'1 (z) r\Xc is compact for any 2GC and ceR.

Proof. For a complex manifold M and a holomorphic function g on

M, we denote by F% the connected component of g~l(g(x)) that con-

tains x. We need the following

Sublemma 1. 2. Let & be an open set of Cn containing the

origin (0, • • • , 0) and f a holomorphic function on $ such that /(O, • • • , 0)

= 0. Then there exists a neighbourhood U of (0, • • - , 0 ) in Q such

that if xK.E,U\f-l(ty (k = l,2, - • • ) and f(xk) ->0 (£->oo), then F^ are

nonsingular and dist (F*k,f~
l(V) 0 C7)) ->0 (^->oo). Here dist (A, B)

: = sup inf \x — 3 / j+sup inf \y — x\.
x&A y&B y^B x^A

Proof of Sublemma 1.2. By the local parametrization theorem (cf.

[2] p. 98, 10. Theorem), after a suitable change of coordinates we can

choose a polydisc Jr in C71 with radius r= (rly • • • , rn) and center (0, • • - , 0)
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such that the projection 7t defined by n(zl9 • • • ,2 n ) — (^i> m",zn-i) induces

proper holomorphic maps f rom /" J (0) D Jr and f~l (xk) D Ar to Jr/, where

rf:= (rl5 • • - , ; - „_! ) . Let I be a complex line in C""1 through the origin.

Then rCl (I) meets every irreducible component of f ~ l ( Q ) which contains

the origin. Therefore, in order to prove the sublemma we have only

to prove the case n = 2. Let Ar be such that for any x e Ar\f~
l (Q) ,

df\x=£Q and /~!(0) ^4- is connected. If /"'(O) H Ar has irreducible com-

ponents Vj, • • • , I7™, there exists £>0 such that {x; |/(.r) !<£} fl 4-\/r/2

has ;;? connected components W{,--,Wm and |/(.r) |>e if \zz\=rz. We

let

Clearly Ut is open and closed in Jr Pi {JT; |/(o:) \<^s}\f~l (0) . Assume

f/£^=0 for some f. Since Jr fl { :̂; |/(^) Ke}^1^) is connected, it fol-

lows that Z7£ = JrO {x; |/(x) KelX/"1^)- This contradicts the definition

of Ui. Thus Ui = Q for every /, whence the sublemma follows.

Proof of Theorem 1.1. We set

X is compact}.

To prove the theorem we have only to show that there are only two

possibilities, i.e., B is empty or B = X. This is equivalent to saying

that B is open and closed. It is easy to see that B is open. In order

to see that B is closed, first we note that Fx is compact if and only if cp\Fv

is constant. In fact, "if" part follows from the fact that cp is an exhaus-

tion function and "only if" part follows from that (p is plurisubharmonic.

Suppose that B is not closed. Then there exist a point XQ in X

and a sequence of points xfce,B, & = 1, 2, • • • , such that xk—*x0 (k— >oo) and

FXo is not compact. In virtue of the sublemma, FXk converge to Fro

uniformly in a neighbourhood of jc0. Since FXk are compact and con-

tained in a compact subset of X it follows that FXje converge uniformly

to Fav Therefore <p must be constant on FiTV This is a contradiction.

Q.E.D.

Remark. We did not use in the proof the differentiability of (p.



156 TAKEO OHSAWA

Only the continuity of cp suffices.

For the later use we quote here a theorem of R. Narashimhan.

Theorem 1.3 (cf. [6], Corollary 1) . A "weakly [-complete mani-

fold X is holomorphically convex if and only if Xc is holomorphically

convex for every

As a corollary to Theorem 1.1 we obtain

Proposition 1. 4.*} Let X be a noncompact weakly ^-complete

manifold of dimension 2. Then X is holomorphically convex if and

only if X has a nonconstant holomorphic function.

Proof. The only if part is trivial. Let f: X^C be a nonconstant

holomorphic function. Then i) or ii) of Theorem 1. 1 holds. If ii) holds

then by Stein factorization theorem there exists an open Riemann surface

Si and a proper holomorphic map g:X-*<R. Since SI is holomorphically

convex (cf. [2]), X is also holomorphically convex. If i) holds, then

since the critical values of f\Xc are finitely many and f is constant on

every compact connected subvariety of X, Xc contains only finitely many

compact irreducible curves. Therefore there exists cf <^c such that Xc*

contains all the compact curves contained in Xc. Let the connected

components of these compact curves be denoted by Aiy i — 1, • • • , m. Let

Ui be a neighbourhood of At such that Utc:Xc,. Then for every
m _

zeC,/"1^) r\Xc>— \JU i is a disjoint union of open Riemann surfaces.
i = l

Thus combining the theorem of Richberg (cf. [8], Satz 3.3) and the

usual patching technique (cf. [9], Corollary 4.14) we obtain a strictly
_ m

plurisubharmonic function (// defined on a neighbourhood of Xc>—\JUi9
_ i = l

where c" is such that Xc»dXc, and Xc*Dt/f for any i. Therefore Xc.

is a strongly pseudoconvex domain in X. Since c was arbitrary, by

Theorem 1. 3 we conclude that X is holomorphically convex. Q.E.D.

i>) Proposition 1.4 can be viewed as a special case of the Theorem ol Knorr and
Schneider (cf. [4]).
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§ 2. Levi Problem

I. The Levi problem on complex projective

space and hyperquadrics

Let M and N be complex manifolds. We say that M is a domain

over N if there exists a holomorphic map niM—^N which is a local

homeomorphism. Let />:L— >7\/ be a holomorphic line bundle over M

with trivializing covering {Ut} and transition functions {e^} . L is called

positive (semipositive) if there exists a metric {a{} along the fibers of

L (i.e., at and positive C°° functions on Ut satisfying ai\eij\
2 = aj on

Uf^Uj) such that —\/ — 199 log at is a positive (resp. semipositive) (1,1)

form on M. We say L is negative (seminegative) if the dual of L is

positive (resp. semipositive) .

We denote by P* a complex projective space of dimension n and by

Q71 a complex hyperquadric in Pn~:. We also denote by K^ a canonical

bundle of X.

The following theorem was proved by A. Hirschowitz [3] under a

less restrictive assumption but we present the proof here for the sake

of its simplicity.

Theorem 2. 1. Let X be a rveakly \-complete manifold. If X

is a domain over P71 or Q71, then X is holomorphic ally convex.

Proof. We denote by Hn~l a hyperplane in Pn. We have

and

where we denote by [D] the line bundle associated to a divisor D.

First we prove the theorem for P71 by induction on 11. For w = l,

the theorem is well known (cf. [2]). Let us assume that we have

proved the theorem for ;z^r, (r^>l) and let X be a weakly 1- complete

manifold which is a domain over P r r l . We are going to prove that Xc

is holomorphically convex for every re=R. If Xc is compact then Xc is
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trivially holomorphically convex. So we may assume dXc=^0. Let

x^QXc and 7r:X— »Pr'rl be the given local homeomorphism. Let y&Xc

and choose a hyperplane JJcPrTl which contains n(x) and Tt(y). Then

7i~l (H) is a noncompact submanifold of X and by the induction hypo-

thesis holomorphically convex. Therefore K~l (H) fl Xc is also holomor-

phically convex. Hence, for any sequence {xk} (k = ~L, 2, • • • ) satis-

fying xk&Xc and lim.rfe = :r there exists a holomorphic function / on

7t~l(H) HXC such that

sup :cfr = oo .

As usual the obstruction for finding a holomorphic function / on Xc

such that f\1[-iannXc=f ^es ^n t^le cohomology group H1 (Xc, [rc~1(H)

OX,.]*), where \_7t~1 (H) HXC]* denotes the dual of the line bundle

[K~I (H} OX,.]. We are going to prove that this group is 0. First,

H1 (X«, [7T-1 (H ) n Xe-\ *) = -ff1 (X,, K^c(8) (K^f® [7T-1 (H) n Xe] *) ) ,

where Kjr denotes the canonical bundle of Xg. Since

* -

we have

*) )

) * [ (r

On the other hand since [H~\ is a positive line bundle and 7r|jrc is local-

ly a biholomorphic map (7r|^e) *[W] is a positive line bundle over Xe.

Hence by the Nakano's vanishing theorem (cf. [7], Theorem 1) we ob-

tain

Thus / can be extended to a holomorphic function / on Xc. Since the

choice of x was arbitrary this implies that Xc is holomorphically convex.

Hence by Theorem 1.3 X is holomorphically convex. Thus by induction
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we obtain the theorem for Pn. The proof for Qn is similar. Q.E.D.

2. Weakly 1-complete surface

In this paragraph we prove the following

Theorem 2. 2« Let X be a weakly \-compleie manifold of

dimension 2. If the canonical bundle of X is negative, then X is

holom orphic ally convex.

Proof. Let cp be an exhaustion function on X. First we assume

that there exists a point x^X where q> is strictly plurisubharmonic.

Let W: X~^X be the blowing up of X at x. Then as usual the obstruc-

tion for finding a holomorphic function on X with a prescribed differ-

ential at x lies in the group H1 (X, psT1^)] *). Note that W~l (x) = P*

and deg [W~1(x)~\ L-ite) = — 1, where we denote by deg L the degree of

the line bundle L over P1. We have

cleg Ki|m-i(,) = deg Kpl + deg [iff * (X>]" !»-«(*) :

Hence K|(X) \_2w~1 (x) ] *L-i(a.) is a positive line bundle over Wl (x) . So

there exist neighbourhoods W1 and W2 of W'1 (x) such that Wi£l W2,

KfCX^GT"1^)]* is a positive line bundle over W1\J (X—W^*} and ̂ QQ;

is strictly plurisubharmonic in a neighbourhood of W2— Wi. Multiplying

exp ( — fl(cp°W) to the metric along the fibers of K<|(2)[287~1(.r) ] *, where

// is a sufficiently large positive number, we immediately see that

Kj^pET^jr)]* is a positive line bundle over X. Thus by the Nakano's

vanishing theorem we obtain Hl(X, [2w~l (x)~\ *) —0. So there exists a

nonconstant holomorphic function on X. Hence by Proposition 1.4 X is

holomorphically convex. Let us assume that exp cp is nowhere strictly

plurisubharmonic on X. Since, by Sard's theorem, there exists a ceR

such that dcp is nowhere zero on dXc> replacing (p by exp cp if necessary,

we may assume that dd(p annihilates every holomorphic tangent vector

of dXc. In other words, letting S be the subbundle of the complexified

tangent bundle of dXc which consists of the holomorphic tangent vectors

Note that by the assumption K*0[2o)~1(^)]'i; is positive over X— W2.
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and S be the conjugate of 5, S@S is exactly the null space of ddcp.

It is easily verified that if a holomorphic tangent vector f is annihilated

by dd(p, then the tangent vector [?, £] is also annihilated by ddcp, where

[£, £] is defined by extending f as a local vector field. It follows that

[5, 5] C 505. This is the integrability condition of S so that there

exists a foliation (of class C°°) on dXc whose complexified tangent bundle

is S@S. Let JL be a maximal leaf of this foliation. Then JL. is a

complex submanifold of X since at every point of JL the tangent space

is a complex line in the tangent space of X at that point. Since dXc is

compact and the canonical bundle of X is negative, there exists a complete

hermitian metric on J^ whose Gaussian curvature is greater than some

positive constant. *} Therefore by the theorem of Bonnet (cf. [10],

Chapter 8, Theorem 17) JL is compact. Since [_£] \^ is the trivial

bundle**5 the canonical bundle of JL is negative. Hence JT^P1 and

there exists a neighbourhood W of X and a proper holomorphic map S

from W to an open disc JcC such that S is of maximal rank and

8~1(Q)=_C (cf. [5], Main theorem). To complete the proof we need

the following.

Lemma. The line bundle [mj?~\ is semi -positive for any integer

m.

Admitting the lemma, we proceed as follows: By the Nakano's

vanishing theorem we obtain

H1 (X, [2 _£] *) = H1 (X, K^K|(g) [2 _£] *) = 0 .

That Hl(x, [2_f]*) =0 implies that there exists a holomorphic function

on X with a prescribed differential along JH so there exists a nonconstant

holomorphic function on X. Thus by Proposition 1. 4 X is holomorphi-

cally convex.

Proof of Lemma. Since <p\8-i(t) is constant for every £e J, (?°8~l is

C°° and subharmonic on A. Since 90^ has no zero on dXc, choosing J

smaller if necessary, we may assume that (p°8~l is strictly subharmonic

> **} See the appendix.
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on A. Let A' be a neighbourhood of 0 such that J'CJ. Let z be the

coordinate of C. We choose a metric {a^, f = l, 2 along the fibers of

\mJI~\ as follows:

Ot-.S-tW -> R,

n1 :=(0°(5,

where p ( z ) is a positive C°° function such that p(z)= \z\~"" on J—4' .

a.^X-fl-'CJ') -> R,

<rz2 : = 1 .

It is easy to see that \_mjC~\ is semipositive with respect to the metric

{di exp (— vcp) } if v is a sufficiently large positive number. Q.E.D.

3. Complete intersection of type (2. 2)

Let Me P" be a complex submanifold of codimension 2. M is called

a complete intersection of type (2.2) if there exist hyperquadrics Q1? QaCP77

such that JM=Q1PlQ2 in scheme theoretic sense.

Theorem 2. 3. Let X be a weakly \-complete manifold. If X

is a domain over a complete intersection of type (2. 2), then X is

holo??2 orphic ally convex.

Proof. Let M be a complete intersection of type (2. 2) and X a

weakly 1-complete manifold which is a domain over M. Since the

theorem is well known if dimAf=l, we may assume dim Af^>2. We

prove the theorem by induction on dim M. Since dim MJ>2 the canonical

bundle of M is negative. Therefore if dim M= 2, by Theorem 2. 2 X is

holomorphically convex. Lei us assume that the theorem is valid if

dim M<,n, where ??^2. Let dimM=^ + l and Xc a sublevel set rela-

tive to an exhaustion function on X. We may assume that dXc^0.

Let xE-dXc and n:X-*M be the given locally biholomorphic map. Then

by Bertini's theorem there exists a hyperplane JfcPnr3 which contains

it (x) and intersects M transversally. We may assume that H contains

n(y) for some y^Xc. By the induction hypothesis n~1(HT\M) f l X c is

holomorphically convex. On the other hand
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Since ?2^2, TT* ([(# — 1) //] L¥) is a positive line bundle over X. Hence
by the Nakano's vanishing theorem we obtain

H1 (Xc, KT.®JT | *Xc [ (» - 1) ff ] I*) = 0 .

The remaining part of the proof is similar to that of Theorem 2.1.

Q.E.D.

Remark. Similarly as above one can prove the holomorphical con-

vexity of weakly 1- complete domains over hyper surf aces of degree 3.

Appendix

Let M be a complex manifold of dimension one provided with a

hermitian metric ds2 = a (z) dz • dz. The hermitian metric dsz is called

complete if every geodesic ball is relatively compact. We define the

Gaussian curvature p(z) of dsz as follows:

p ( z ) : ~ ~ '
a (z) dzdz

Proposition. Let X be a 'weakly \-complete manifold of dimen-

sion 2 -with an exhaustion function (p. Assume that the canonical

bundle K^ of X is negative and (p is nowhere strictly plurisubharmon-

ic. Let c be a noncritical value of (/?. Let 2CC be the foliation (of

class C°°) whose tangent bundle is the nullity of ddcp. Then every

maximal leaf of ^Cc is provided with a complete hermitian metric

-whose Gaussian curvature is greater than some positive constant.

Proof. Let {Wif be a locally finite trivializing covering of K_Y

and denote by {at} the metric along the fibers of K.^ such that
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— V — Wd log at is a negative (1,1) form on X. We may assume that

there exists a system of complex coordinates (zl9 ^) on Wt such that the

norm of dzi/\dti is V ai and %i gives a local coordinate when it is re-

stricted to the leaves of 3£c. Let J? be a maximal leaf and {Wj} be a

set of local defining equations of J? associated to an open covering {Uj}

of X such that for every j there exists Wy(j} such that H7/C R^). Let-

ting (X,(.?)5 Wj) be a local coordinate in a neighbourhood of C7y, we let

It is clear (and also the point) that us are nonvanishing holomorphic

functions. Therefore the normal bundle of J? in X is trivial. Taking

a refinement of {£//} and multiplying tvj by constants if necessary, we

may assume that

We obtain a hermitian metric defined by

on J?, where we identify zv(J} as a local coordinate of J". Since

2^>i%|^>l, ds2 is complete and its Gaussian curvature is greater than

some positive constant. O.E.D.
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