
Publ. RIMS, Kyoto Univ.
17 (1981), 165-177

Chaos in C°-Endomorphism of Interval

By

Motosige OSIKAWA* and Yoshitsugu OONO**

§ 1. Introduction

The simplest non-trivial dynamical system that exhibits a "chaotic

behavior" is the one governed by an endomorphism F: /—> J where / is

a closed interval. In this paper, we propose a natural definition of chaos

(formal chaos), from which the chaos in the sense of Li and Yorke

follows. In the case of C°-endomorphisms, we give necessary and sufficient

conditions for the formal chaos (the existence of a periodic orbit with

period not equal to any power of 2, the existence of ^-invariant ergodic

probability measure for some positive integer m). The proof is mainly

based on three fundamental lemmas on C°-endomorphisms. They auto-

matically provide a unified exposition of the following known theorems

on chaotic behavior of C°-endomorphisms: Li-Yorke's theorem, Sarkovskii's

theorem, the estimation of a lower bound of the topological entropy, etc.

Furthermore, we get a result that in the case of F with only 2n-orbits

with n<M for some positive integer M, every ergodic invariant probability

measure of -F is concentrated on some periodic orbit and the topological

entropy of F vanishes.

Throughout this paper, F: J—>Iis an endomorphism of a closed interval

J, N= {1, 2, •••}, JV* — {0,1, 2, •••} and p denotes some odd integer larger

than 2.

We say that ael is an n-point of F if Fna = a and Fla^=Fja for

0^f<J^w —1, and that {a, Fa, * • • , F*~la} is an n-orbit of F. The set

of all ^-points of F is denoted by Per (F, ri).
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§ 2. Fundamental Lemmas on £°-Eiidomorphisms

In this section we assume that F: /— »/ is a continuous endomorphism

of a closed interval I.

(1) Lemma. If I is compact and if Per (F, 2) = 0, then for
every point x^I there exists a point z e Per (F, 1) such that lim F*x = z.

Proof. We may assume /= [0, 1]. Let U={x:x<>Fx}. If there

is M^N such that F"x<=U (or Fnx^U) for all T^M, then {F r̂},̂

is a bounded monotone sequence, so that this sequence has a limit point

zePer (F, 1). If we can not find such M as above, then we can choose

an increasing sequence of positive integers n(V),n(2) , ••• , as follows: n(T)

is a positive integer such that Fn(l)~lx<£U and Fn(1)x<EU. For & = 1,

2, ••• , w(2£) is the least integer larger than n(2k— 1) such that Fn(zk)~lx

^U and Fn(zk)x&U, and »(2* + l) is the least integer larger than n(2k)

such that ^^^-^^C/and F***+»xeU. Then,

follows from F^^eC7for n(I)<si<,n(2) -I. Fn^

follows from Fnx&U for ^(2) ^^^^(3) — 1. Assume that there is an

integer n,n(2)^n<,n(3) -I such that Fn+1x<Fn^~1x^Fnx^Fn(2)x.

Then, from FFnx<Fn(2)~1x<FFn(2)~1x and from the continuity of F

there is a point a such that Fn(2)~1^<a<Fn^ and Fa = Fn(2)"1^. Further-

more, from FFn(2)"1jt:>a>Fa and the continuity of F there is a point

b such that Fw(2)~1^:<^<^ and Fb-a. Consider the open set C= {(x9 y) :

aO<l, 0<y<&}. The continuous curve y = F(x) goes into the set

C passing through the point (a, Fn(2).r)and reaches the line y=b (aO<l)

or the line x = l (O^y^^), and the continuous curve x = F(y) goes into

the set C passing through the point (a, b) and reaches the line x = a

(0<:y<F*(2)~1.r) or the line y = Q (a^x<3.) . Then the two curves

have at least an intersecting point, which is in C or is the point (1, 0) ,

and then is in Per (F, 2) . This is a contradiction and then Fn™~1x<>Fn(syx.

By the same way we have
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Let limFn™x = z and lira F"*-°x = zr. Then, since lim F~t*-°-tx = z
Tl-»oo »-»oo »-»oo

and F is continuous, Fz = z'. Likewise Fz' = z. Hence z = zr e Per (F, 1) .

Remark 1. If Jis not compact, then the possibility arises that |F |̂

run away toward infinity.

Remark 2. This lemma is an extension of Theorem B of Block

[2].

It is obvious from (1) and Remark 1 that

(2) If Per (F, 2) = 0, then Per (F, n) = 0 for

Note a property from the continuity of F that for compact intervals

7j and 72 such that F7jD72 there is a compact interval J/Clj such that
F7/=72. Then, if there is a sequence of compact intervals 70, 7j, 72, • • • ,
7i9 7i+1, ••• such that 7i+1cF7£ (zGAT*), then we can inductively construct

compact intervals WX/j, J<+1, •••, J<+fc) (i,k€zN*) satisfying the follow-
ing conditions:

C Wr(It, I(+1,

t) = Wr(IM,

(3) Lemma. Let J0, 7j, •••, 7fc_j be a sequence of compact inter-

vals such that Ii+1C.FIi for z = 0, 1, — , k-2 and 70cF7fc_1. Then there

exists a point x such that x^I^ Fix^Ii for i = 1, 2, ••• , k— 1 and
Fkx = x.

Proof. Note the fixed point property of a continuous endomorphism
F that for a compact interval 7j such that FIi^D^ there is a point 0:^7!
such that Fx = x. Then, since jF*W>(70, 7j, • • • , Ik_l9 70) =70D W>(70, 71? • • - ,
7fc_j, 70) and Ffc is continuous, there is a point x^. WF(!Q, I\> • • • , 7fc_1? 70)
such that Fkx = x. Furthermore, F^eFiWF(70, 7^ • • • , 7€) =7^ for f = 0,
1,- -,*-l.
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(4) Lemma. If Per (F, p) =£0, then Per (F, n) ̂ =0 for any nl>p - 1.

Proof. Let Op= {XQ, xl9 • • • , ^-J GCO<^I<"-<>P-I) be a £-orbit of

F. There exists a point xr&Op such that xr<^Fxr and .rr+1>F.rr+1.

Furthermore there exists a point xs(^xr) ^Op such that Fxs<^xr<^xr+1

<Frs+1. If not, then F{xQ, xl9 • • • , .rr} C £rr+1, .rr+2, ••• , a:,-!} and F{xr+i,

xr+2, •••yXp-i} C {.r0, xl9 "-9xr}9 so that ^> can not be odd, a contradiction.

Let F* be the continuous piecewise linear function which is defined on

[.TO, .Tp-i] and whose breaking points are (xiy Fxi) (^eOp). Let

70= [xr,xr+1~j. Since /o^^*^ anc^ t^le enc* points of intervals F*"J0 (n

= 0,1, 2,"-) are in Op, there is a positive integer t<*p — 2 such that

pfr»-'/ogF**/0 for » = 0,1, -,*-l and F*J0= [>0, a:,.J for »^/. Let

& be the integer such that [xs, xs+1] C F** IQ\F^~l J0 (^^) and write

Jfc = [̂ :5> ̂ :s+1] . We can choose a sequence of compact intervals Ik.l9 Jfc_2,

• •• , J2, Jj whose end points are adjacent points in Op such that J^cF^/oX

F**'l/0 and 7i+1cF*7< (z = £-l, *-2, • • • , 2, 1). From this choice we

have JiCF*J0. From the choice of xsy we have J0cF*Jfc. Hence from

Lemma (3) there is a point b for ^ Q^k + l^p — l) ^N such that &e J0,

F^eJ0, •••,F7l-fc-1&e/0, Fn~kb^Il9 -, Fn~lb<=Ik and F*& = £. This & is

an Tz-point of F.

The proof of (4) greatly simplifies the proof of the similar Lemma

15 (a) in [11].

(5) (Stefan [11]). If Per(F,£)=^0 and Per(F,£-2) =0, then

each p-orbit of F has a point x satisfying Fp~2x<^--<Fx<ix =

x or Fp

Proof. In the proof of (4) if k<>p-3, then Per (F, p - 2) =£0, so

that k=p — 2. In this case (5) follows from the choice of Jfc, Ik-l9 •••,/!

and J0.

(6) Lemma (Odd Periodicity lemma) . If Per (F, p) =£0, then

there exist two compact intervals IQ and Jj such that F2 J0 Pi F2 Jj D J0 U Ii
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and /0 H /! = 0.

Proof. We may assume that p satisfies the assumptions of (5) and

without loss of generality that there is a point x such that Fp~1x<^Fp~sx<^

•>»<F2x<x = Fpx<Fix<F*x<-~<Fp-2jc. From Fx<F2(Fx) and the

continuity of F2 there is a point a4 such that x<^a4<^Fx and a4<^F2a4.

From F2(Fp~lx) = Fx^>a4 and the continuity of F2 there is a point al

such that Fp"1^<a1<Fp~3x and a,<F2a,. From F2(Fp~*x) = Fp~1x<a1

and the continuity of F2 there are points a2 and a3 such that a1<^a2<^Fp~*x,l

F2a2<>i, F3'~3.r<>3<>4 and F2az<^al. Let /0= [#i, <z2] and Ii=[<% aj.

Then we have F270=> [F2a2, F
2aJ D fo, aj D/0U 4 F^D [F2a3, F

2a4]

D[a,,a4] D / o U J j and ^^^ = 0.

Remark 3. This lemma is a stronger version of Theorem A of

Block [4] and Lemma B of Oono [8] ; n necessary for FnIQ fl F1^ D J0 U Ij

is given explicitly.

(7) If Per (F, P) =£0 , ^A w Per (F, 6)

Proof. From (6) and (3), there exists a point b such that b€zlQy

F2£eEl0, F22b^I, and F2'*b = b. Clearly £<EPer (F2, 3) . Hence

& €E Per (F, 6) U Per (F, 3) . Per (F, 3) =£0 implies Per (F, 6) =£0 by (4) ,

so that Per (F,

N<

§ 3. A Simple Proof of SarkovskiPs Theorem

(8) Theorem (Sarkovskii [10]). Let F: I—* I be a continuous

endomorphism of a closed interval I. By n^m we mean that Per (F,m)

follows from Per (F, n) =£0. Then

This theorem is equivalent to the collection of the following pro-

positions (

( 9 )

(10)
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(11) If 2k^p, then 2np<2n+\

(12) 2n

Proof of (9). For » = 0, (9) follows from (4). For n = !9

^)^0 follows from Per (F92p) =£0, so that Per (F2,£ + 2) =£0

follows from (9) n = Q. Therefore Per (F, 2 +p) U Per (F, 2 O + 2) ) ^0,

but Per (F9p + 2) =£0 implies Per (F, 2 (£ + 2) ) =£0 because of (4). As-

sume (9) holds for n = k. Then Per (F, 2fc+1£) =£0 implies Per(F2,

2* ( j> + 2) ) =£0. This, in turn, implies Per (F, 2fc+1 (p + 2) )

*/ (10) . Per (F, 2np) =£0 implies that Per (F2", p) =£0. Hence

Per (F2*, 6)=£0 follows from (7), so that Per (F, 2n+1 • 3)

Proo/ <?/ (11) . If Per (F, 2np) =£0, then Per (F2", />) ̂ =0. From (4)

Per (F2*, 2fc) ̂ 0 (̂ 1) follows, so that Per (F, 2n+*)

Proof of (12) . For ^ = 0 this is obvious. For n = 1 this follows

from (2). Assume (12) holds for » = £(^1). If Per (F, 2*+2) =£0, then

we have Per (F2, 2*+1) =£0, so that Per (F2, 2*) ̂ =0 follows from the as-

sumption. Since 2* is even, Per (F, 2*+1) =£0.

§ 4. Formal Chaos

The following definition of chaos was proposed by Li and Yorke

[5, 7] : an endomorphism F: I— > J of a closed interval I is chaotic if, first,

there are points x^I of arbitrarily large period and, second, there is an

uncountable set Rdl such that no point in R is even asymptotically

periodic. More precisely the Li- Yorke chaos is defined as follows:

Definition. An endomorphism F: I— >I of a closed interval I shows

a Li- Yorke chaos if

(13) there are points in J of arbitrarily large period, and there is

an uncountable set PC J of non-periodic points satisfying

(14) for every x, y&R with x=^y, Km sup|F^ — F"y|>0,
7l-»oo

(15) for every x,y^R with x=£y, Km inf \Fnx — Fny\ =0, and
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(16) for every x&R and every periodic point y<E/,

lim

However, the definition above is not totally satisfactory for physicists,

since non-periodicity does not necessarily imply "chaos". The dynamical

systems which are "chaotic" in the intuitive sense of physicists such as

the baker's transformation, Smale's horseshoe map ([9]) etc. are intimately

connected with shift dynamical systems. We propose an intuitively satis-

factory definition of chaos which implies Li-Yorke chaos as is shown in

the next section.

Let iG= {0, ~L}N be -the set of all one-sided sequences of two symbols

and o)fc be the k-th coordinate of a) 6E.3. The shift T on Q is defined by

o)fc+1, k&N. We call [al9 az, • • • , afc] = {a): o>i = aiy z = l, 2, • • • , k,

, where at = 0 or 1 (z = l, 2, • • • , k) 9 a ^-cylinder. The following

definition is a 1-dimensional version of one given in [8], which can be

readily extended to many dimensional cases.

Definition. We say that an endomorphism F: /— »7 is formally

chaotic (or shows a formal chaos) if there exist JV/GE N9 an F^-invariant

set Xc/and one-to-one map 0: Q-^K having the following properties:

(A) FM(/>a) = (f>Tu) (o>e£),
(B) Let V[aly <22, • • • , afc] be the smallest closed interval contain-

ing (f>[al9 a2) • • • , a^\. V^alta2)'"9ak] is compact for every ^-cylinder

[alt a2, •**,#*:] (k&N) and for mutually distinct ^-cylinders [al5 a2, • • • ,#&]

and [fr,,6,,-,6*](*e^), V[o,, «„ -, a»]

The meaning of the adjective "formal" is explained in the end of

this section.

(17) Theorem. Let F: /— >J be a continuous endomorphism of

a closed interval I. Then F is formally chaotic if and only if

Per(F,r)^0 for some

Proof. Assume that Per(F, 2np)^=0 for some n^N*. Then

Per (F2U,p) =7^0, so that by the odd periodicity Lemma (6) there are
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compact intervals IQ and Ij in I such that F*I0 D J0 U Il9 FxI1'Dl9\JIl and

/oH/^0, where M=2W+1. For o>eJ2, define W. by W.= 0 WFM(L,
&=2

Zos> •••>Z*X Then W^ is a point or a compact interval. If 0)^0)', then

W,n W^ = 0. Since FM is continuous, F^W^ 0 FMWFM(I^ /.f, • • - , I%)
fc=2

00

= fl WVAf (/„ , •••,/•») = Wr*. We have only to construct 0 and j£ such
fc=2

that 0ft) eW. and FM<f>(D = <f>To) for any eoefi.

( i ) For a) such that W. consists of a point a,,,, then 0o) = a^

(ii) If 0o> is defined for a), then 0Ta) = F^0a).

(iii) If 0Ta) is defined for a), then 0a> is defined such that FM<j>(jd

(iv) If 0 is not yet defined on {T^ii^N*} and all T^o) are not

periodic points, then 0o) is chosen as an arbitrary point in W0.

(v) If 0 is not yet defined on {T*a): i&N*} and Tna) = a), T'co^jP'o)

for 0<f<j^» — l, for some n&N, then we can choose 00)^1^ such

that FMn<t>a) = 0o), since F^T^=W<,

Thus desired 0 and ,&r= {0o): o)^J2} are simultaneously constructed.

Conversely, there is raeJVsuch that Per(jP, 3)^=0, because Per(T, 3)

=7^0. Hence there is a divisor n' of n such that Per (jP, 3;z')

Since F^ restricted on K is isomorphic to the diadic shift T, we

have

(18) Corollary (Stefan [11]). Let F: /-> I be a continuous

endomorphism of a compact interval I. If Per (F, 2np) ̂ =0 for some

?*eJV*, then ent(F>;>log2/2w+1, where ent(F) is the topological entropy

ofF ([!]).

For determining whether F is formally chaotic or not, the following

version of Theorem (17) is practically more useful.

(19) If there exist compact intervals J0 and ^ in I sharing at

most one point and m, n<=N such that F"1^ 0 Fm Jj Z) 70 U Il9 then F is

formally chaotic. (Take M= (L.C.M. of m and n) X 2.)

By (17) a continuous endomorphism F: I—* I of a closed interval /
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is formally chaotic if and only if F satisfies the condition of the formal

chaos with only (A) but without (B) . However, there are endomor-

phisms which are not continuous but formally chaotic, e.g. /9-transforma-

tion. In this case (B) does not follow from (A).

Even if F is formally chaotic, it is not guaranteed that we can

observe a chaotic behavior. The chaotic behavior is "experimentally"

observable when the set of initial points which eventually behave chaotical-

ly has positive Lebesgue measure. This is why the adjective "formal"

is added to the definition.

§ 5. Formal Chaos Implies Li-Yorke Chaos

(20) Theorem. If an endomorphism F: I— >I of a closed inter-

val I is formally chaotic, then F shows Li-Yorke chaos.

Proof. Note that there are uncountable sequences u)&G (called

transitive sequences) such that, for every cylinder set Q in j?, T^co^Q

for infinitely many n&N. We can choose a transitive sequence E—e^e^

•••^ifi such that WE consists of one point (the transitivity is unnecessary

for this theorem, but we need it in (21)). For any point B = bibj>i' • • & Q

define XB<=Q by

XB = *1&1*1£2616,

and R={<f>Xs:B<=Q}. (14), (15) and (16) hold for this R.

Proof of (14). Let J5, £'eJ2, B^B and £ = Wv, V = VJt&*».

Then there exists k&N such that bk^=b'k. Hence there is a positive fj

such that for any n

because of (B) .

Proof of (15). This follows from that Tn(n^XB^ [el9 eg, — , en+l~\

and that V[e^ e&9 • • • , en+l] converges to a point as #— »oo because of the

choice of E.
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Proof of (16) . If (16) does not hold, then for some periodic point
qtEl of F such that lim\Fm(n+»(t>Xs-F

m«l+1)q\=Q. Hence we can
»<-00

choose a subsequence {nk}(2N so that Fmk(nk+i) </>XB converges to some
point r in the periodic orbit containing q, but this implies 0JE=r, an
impossibility.

For dynamical systems which show chaotic behaviors such as the
horseshoe map and the Lorenz model [6], non-periodic points or orbits

are closely mingled with periodic points. L. Block [3] showed that the
non-wandering set of a continuous endomorphism F: I— »I is in the closure

of the set of periodic points and eventually periodic points (i.e., points
mapped into periodic points by a finite-time operation of F) . We have
the following proposition.

(21) Proposition. If a continuous endomorphism F: /-»/ of a

closed interval I is formally chaotic, then for any e>0 there are

infinitely many periodic points q of F such that

lim inf | F^x — q \ < £ , for any point x€=R,
n-»oo

where R is the same set appearing in (20).

Proof. There is a cylinder Q such that the length of the interval

VQ is less than s. There are infinitely many periodic points in VQ>
From the transitivity of JE, F^x&VQ for infinitely many n^N.

§ 6. Mixing Invariant Probability Measure and Formal Chaos

Among the properties which physicists consider as the characteristics

of chaos, the existence of a mixing invariant probability measure is appear-
ing. The following theorem shows that the mixing property and formal
chaos of a continuous endomorphism F: 7— » I is intimately related. This
shows that formal chaos is an intuitively satisfactory concept.

A probability measure fj. on / is .F-invarint if /Jt(F~lA) = {t(A) for
every Borel set A. ju is mixing if lim ju (F~n A H B) = p. ( A) n (B) for

»-»00

every pair of Borel sets A and B.
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(22) Theorem. A continuous endomorphism F: 7—»7 of a closed

interval I is formally chaotic if and only if there is a positive in-

teger m such that Fm has a mixing invariant probability measure.

Proof. It is obvious that formal chaos implies the existence of an

^-invariant mixing probability measure for some m&N.

Assume that there is an Fm (m e N) -invariant mixing probability

measure /Jt. Take six disjoint subintervals Il9 72, 73, 74, 75, 76 of I from

left to right such that fi(Ij) >0 for Je {1, 2, • • • , 6}. Then there is n<= N

such that 72nF-|mZ1=£0, 73 H F~nmIQ=£&, I4r}F-nmI^& and I^F~nmIQ

=^=0. If not, then for some pair i and j in {1,2, -",6} there are in-

finitely many n^N such that I t f ] F ~ n m I / = 09 i.e., ft (7, H F~*mlj) = 0, but

this contradicts with the mixing property of fji. Choose four points al9

a^ a$ and a4 such that a1^I2t #2e73, a3e74, a4&I5 and Fnma1^I1,

¥*™a, e 71? F
nma2 e 76, F

wma4 e 7fl. Put 70 = [fll, «J and 7$ = [a3, <]. Then

FWW70 H FnmI/
Q D 70 U 7^ and 70 H 7$ = 0, so that F is formally chaotic by (19).

Remark 4. A necessary and sufficient condition for a continuous

endomorphism .F: 7—>7 having a mixing invariant probability measure is

Per (F9 p) ^0 for some odd pl>3. The necessity follows from that there

are an odd integer n and disjoint intervals 7X, 72, 78, 74, 75, 76 arranging

from left to right such that I^F^I^Q, I^F~nIQi=Q, 74nF~7l71^0

and 75nF-n76=^0, and from that Per (F1, £) ^0 for an odd p^3. The

sufficiency follows from (5) and that the Markov subshift with the follow-

ing structure matrix has a mixing invariant Markov measure;

0 0 0 1
0 0 1 0

0 0—0 0 0 1—0 0
0 0—0 1 1 0—0 0
0 0—1 0 0 0—0 0

0 1* 0 0 0—0 0
1 0 0 0 0—0 0
1 1 1 0 0—0 0
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§ 7. Concluding Note

If only 2n-orbits (n<^M for some M&N) appear for a continuous

endomorphism F: J— »J, then (1) implies that every F-invarinat ergodic

probability measure is on a single periodic orbit and then ent(F) =0.

On the other hand, (21) and (22) show that if Per (F, 2» ^=0 for some

n€~N* and odd P^39 Fm for some m&N has a mixing invariant prob-

ability measure and ent (F) >0. What happens when all 2w-orbits but

no other orbits appear for a continuous F: J— >/? (22) also shows that

in this case Fm for every m&N has no mixing invariant probability

measure. The following example suggests that the case is marginal.

(23) Example. F: [0, 1]-»[0, 1] is defined as follows:

Fx = - 7 (x - 2/3") /3 + (1 - 1/3*-1) for x e (l/3n, 2/3n]

) for x<= (2/3*,

for n^N, and F0 = l. From its construction, F has all 2n-orbits (7/5 -371

is a 2w-point) but has no other orbits. Any point in [0, 1] is eventually at-
oo

tracted to the periodic orbits or the classical Cantor set D = {w : w = ]T] ze /̂3*,

7^ = 0 or 2 for i&N}. The restriction F\D is isomorphic to the adding

machine S on Q: for any k^N and coefi satisfying a)! = co2= ••• =o)fc_1 = l

and ft)jk = 0, So> = O)r where o)( =0)2 = ••• =ft>i_i = 0, ft)i = l and u)'j = a)j for

In fact, (l)Fw~S(pw for w&D, where </»: D-*Q is defined by
00

= ft> with w = ^]Te;i/3*eD and o)|= (2 — Wi)/2 for *"eW. Hence

ent (F) = 0 and F has a continuous ergodic but not mixing invariant prob-

ability measure.

The example above and (18) suggest that a continuous endomorphism

F: /->/ of a compact interval I is formally chaotic if and only if

ent (F) >0. Indeed, Y. Takahashi communicated that he proved this
conjecture.
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