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Eta Invariants and Conformal Immersions

By

Kenji TSUBOJ*

§ 0. Introduction

Let Al be a closed oriented Riemannian manifold of dimension 4&-—1.

The purpose of this paper is to give necessary conditions of the existence

of a global conformal immersion of M in an appropriate Euclidean space

in terms of the eta invariants and to give examples by applying these

results. Our main results are Theorem 3. 10 and Theorem 3. 12.

In their paper [1], Atiyah, Patodi and Singer defined a real valued

spectral invariant of ]\I which is called the eta invariant of M. Through-

out this paper ??(M) denotes the eta invariant of M. r/(M) can be

calculated in some cases. Let M be a regular covering space over M

with finite covering group. We assume that the orientations and the

Riemannian metrics of M and M are compatible by the covering pro-

jection. Moreover we assume that M admits an orientation-reversing

isometry. Then, the formula in [7] enable us to calculate i](M) with

respect to any 'Riemannian metric of M. In Section 1, we recall the

notion of the eta invariant and give an example of the calculation.

On the one hand, in his paper [11], Simons defined a singular

JR/Z-cochain on M which is called the -5-character or the Chern-Simons

invariant. The S-character is an obstruction to the existence of a global

conformal immersion of M in an appropriate Euclidean space. In many

cases, however, it is difficult to calculate the S-characters and they seem

to be not calculated with respect to non-standard metrics. In Section 2,

we recall the notion of the S-character.

In Section 3, by connecting the ^-character and the eta invariant,

we give necessary conditions of the existence of a global conformal
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immersion of M in an appropriate Euclidean space in terms of the eta

invariants.

In Section 4, we give examples by applying the results in Section 3.

I would like to thank Professor Adachi who gave me the oppor-

tunity of doing this work and Dr. Kono who gave me many valuable

advices.

§ 1. The Eta Invariants

Let M be a closed oriented Riemannian manifold of dimension 4/e — 1

and Aev (M) the exterior algebra which consists of differential forms on

M having type 2p for some 0<^><^2& — 1. Let D denote the first order

self-adjoint elliptic differential operator on Aev(M) given by

where 0 is a 2^-form and * is Hodge's star operator. Then D has the

pure point spectrum consisting of eigenvalues A with finite multiplicity

m (A) . The spectral function

converges for Re (s) sufficiently large and has a meromorphic continua-

tion to the entire complex s-plane. Moreover, 0 is not a pole and ^(0,M),

which we call the eta invariant of M and denote by 97 (M), is finite.

The main result of [1] is as follows.

Theorem 1.1 (Atiyah-Patodi-Singer) . Let (W,g) be a compact

oriented 4k- dimensional Riemannian manifold -with boundary M and

assume that, near M, it is isometric to a product. Then

= f
JW

-where sign(W) is the signature of W, Lk is the k-th Hirzebruch

L-polynomial and Pt(g) is the i-th Pontrj agin form.

Remark 1.2. Even if M is not zero-cobordant, 2M= M(J M is

zero-cobordant by the dimensional reason. Then, let 2M = dW, as it is
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obvious from the definition that 7j(2M) =2^(M), we have

Remark 1. 3. It can be proved using Theorem 1. 1 and the con-

formal invariance of Pontrjagin forms that y(M) is a coiiformal invariant.

Namel}^ if two Riemannian metrics g, gf of M are conformally related

(i.e. there exists a positive real valued smooth function f on M such

that g' =/• g) , then if] (Mg) = y (Mg>) .

Now we suppose that M is a closed oriented Riemannian manifold

of dimension 4&-1 and G is a finite group which acts on M freely,

isometrically and orieiitation-preservingly. M or 2M is zero-cobordant

by the dimensional reason. For simplicity, we assume that M is zero-

cobordant. Let W be a compact oriented 4&-dimensional Riemannian

manifold with boundary M, We assume that the action of G is extend-

ed to an isometric action on W.

Let GB/z^l. Then the fixed point set F of h is the disjoint union

of closed connected totally geodesic (but not necessarily orientable) sub-

manifolds N of W. Let [A/"] denote the (twisted) fundamental homo-

logy class of N. The normal bundle TN-1 of N decomposes as

± (o)f) )

where the differential of h acts on TN±( — 1) via multiplication by —1

and on TNL (o)t) via rotation through the constant angle a)^ (j&t^=7t.

The complex vector bundle TN-1 (a)f) has the natural orientation and we

assume that the (local) orientations of TN±( — 1) and [AT] are compat-

ible with the orientation of W.

Now, corresponding to the G-signature theorem of Atiyah-Singer in

their paper [3], let rj(h,M) denote the difference

(1.4) I] {2(*-«w jj ( _ /Zi Cot (0,/2) ) «•*£ (TN) X (TAP ( - 1) )
N&F i

X e (TJVX ( - 1) ) II 3tt°" (TN^ (00 ) } [JV] - sign (h, W)

where ?i is the dimension of N, m is the fiber dimension of TN-1 (-— 1) ,

c (a)i) is the complex fiber dimension of TN^-^Oi), e is the (twisted)
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Euler class, JL. and 3^** are the stable characteristic classes defined in

[3, § 6] (or [7, § 2]) and sign (h, W) is the G-signature of W on AeG.

Then, in his paper [7], Donnelly gave the following formula which

useful.

(1. 5)
n*j*i

where |G| is the order of G. In particular, if M admits an orientation-

reversing isometry, it is obvious from the definition of y(M) that ??(M)

is zero. Then

(1.6)

Details may be found in [7] .

Example 1. 7. Let

be the unit sphere in C2k. Suppose that p is a positive integer and

1< !̂, • • • , <72fc^.£~"l are integers which are relatively prime to p. The

cyclic group G = Z/pZ acts on S^"1 by sending a generator of G to the

diffeomorphism

(~i, • • • , *2fc) >-> ( (exp (2n\/^lql/p} )* ! , - • - , (exp ^TTV'111! W£> ) ^2fe)

for (2?!, • • • , z2k) ^S*k~~\ The quotient space S*k~1/G will be denoted by

L(p\ QI, •-, qZk) • Let g be any Riemannian metric of L(p; ql9 •-, q2k)

which has the following property;

(1. 8) (5f4fc~1, r*g) admits an orientation-reversing isometry where r\S*k~l

l,-",qzk) is the covering projection.

g need not be the standard metric of lens spaces. Let

be the unit ball in C2fc. Then the action of G on iS^"1 can be extended

to the action on D4k and the fixed point set of G^h=^I is the origin

of Czk.

Connecting the standard metric near the origin with r*g on the

boundary S4*"1 and averaging over G, we obtain the Riemannian metric
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gD on D4k which has the following properties;

(1) gD is invariant by the action of G,

(2) gD coincides with the standard metric of Czk near the origin,

(3) QD coincides with r*g on the boundary 54*"1.

Then according to the formula (1. 6), we can calculate the eta

invariant.

p-l 2fc

Remark 1. 10. As in Example 1. 7, by connecting a metric on G-

invariant tubular neighborhoods of fixed point manifolds with a metric on

the boundary M, it can be proved that, for GB/i=^l, fj(Ji,M) does not

depend on the G-invariant metric of W, namely, f ] ( h , M ) is a topolo-

gical invariant of M. This is the fact known in [2], [7] and this fact

gives the possibility of calculating eta invariants with respect to non-

standard metrics.

§ 2. The T-Forms and the 8-Characters

Let n:O(M)—>M be the orthonormal frame bundle with fiber

O(4k — 1). Let 6 denote the Riemannian connection form in O(M) and

Q the curvature form of 6. Let I(m) denote the set of invariant poly-

nomials of degree m on the Lie algebra of O(4k — 1). For any

P^I(m), let P(S) denote the 2m-form on M defined by the Weil

homomorphism. Then it is well known that there exists a (2m — 1) -form

TP(6) on O(M) which has the following properties;

(2.1) dTP(0) =7T*PC0).

In particular, TP(Q) defines a cohomology class

{TP(6)}^H2m-1(O(M)-K) if and only if P(fl) =0.

(2.2) Let P'^I(mf). Then

T(PP') (6} =TP(0)/\P'(S) + exact form = P(£) /\TP' (d) + exact form.

Details may be found in [5, § 3].

Now, let G(4k — 1, JV) be a Grassmann manifold for sufficiently
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large N which is a finite approximation to BO (4k — 1) and let $0 be

the curvature form of the universal connection in the canonical O(4k — 1)-

bundle over G(4k — l,N). Let Z2m_1(M) denote the additive group of

the smooth singular (2m —1)-cycles in M. Let u be an element of

H2m(BO(4k — 1) ; Z) which we can naturally regard as an element of

Hzm(G(4k — 1, jV) ; Z) and Pw be the element of I(m) which corresponds

to u except 2-torsion by the Weil homomorphism. We define a Z-module

homomorphism su(ff): Z2m-1(M')-*R/Z as follows. Let 0(0) : M—>G(4k-I,

N) be the classifying map of O(M) with the Riemannian connection.

Namely, the Riemannian connection of M is the pull back connection

from the universal connection of G(4k — 1, N). For any x^ZZm-i(M),

(x) is a (2m — 1) -cycle in G(4£ —1, JV) and either 0(0)#(.r) or

*(;r) bounds. If 0(0)s|e(a;) bounds, say 0(0) s|c(^:)=9y where y is

a smooth singular 2w-chain, define

where denotes reduction mod Z. If 20(0)J?C(^:) bounds, we choose an

integral cochain U which represents u and define

su =!( f
2 i J»

This definition of su (6) is independent of the choices of 0 (0), y and C7.

Details may be found in [11, §3].

As R/Z is a divisible Z-module su(G) can be extended to an R/Z-

cochain with the ambiguity of a coboundary. su(6) has the following

properties;

(2.3) d(

In particular, su(G) defines an element of Hzm~l(M\R/Z) if and only

if P t tCB)=0.

(2. 4) If P«(£) =0, the lift of the cohomology class {su(Q}} to O(M)

coincides with the reduction mod Z of {TPU(0}}.

Now let Q(aly-",ak) be any integral polynomial (i.e. polynomial
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over the integers) of weight k (i.e. Q(a\, • • • , a\k) is homogeneous of

degree 4k). Let H4i (BO (4k — 1) ; Z) 3Pi be the z'-th inverse Pontrjagin

class defined by

(2.5) Pt=(-iyBt*(c&)

where t: O(4& —1) ->C7(4& —1) is the natural inclusion and c^e

H4l(BU(4k — 1) ; Z) is the 2z*-th inverse Chern class characterized

by (1-fcjH h £ j H ) ( l - ^ C j L H hf jH )=1 in integral domain

/f*CBZ7(4£-l);Z). Then Q ( # - , - • • , / > £ ) is an element of

H4k(BO(4k-l)-Z) and we can define SQCfrV",/>*)(#)• Given any

1<^<&, evaluating on the top cycle M, we define SQ(p^, • • • , />£) (M)

which is an element of B/Z.

The key theorem of this paper is the following which is the

result in [11, Theorem 5. 4].

Theorem 2. 6 (Simons). A necessary condition that M admits

a global conformal immersion 'with codimension d in J?4fc"1+d is that

SQ(Pt-, •", />*) (M) =Q for any s^\d/2~\ +1 and any Q as above.

§ 3. The Ela Invariants and the Conformal Immersions

From the result in [11, Theorem 5. 15], the following lemma fol-

lows immediately.

Lemma 3. 1. We assume that M is the boundary of W and

that, near M9 (W, g) is isometric to a product. Then, for any

= f
jw

-where, as in Theorem 1. 1, Pu(g) denotes the kk-form defined by the

Weil homomorphism 'with respect to the Riemannian metric g of W.

Remark 3. 2. We assume that M is zero-cobordant and u 6E

H4k(BO(4k-l) ;Z) is a torsion element. Then PU = V and it follows

from Lemma 3. 1 that su (M) = 0.
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Now, let Nk denote the denominator of the k-th Hirzebruch L-

polynomial Lk. Namely, Nk is the least integer for which NkLk is a

polynomial over the integers. It is well known that

where the product is over odd primes q, 3<J<?<i2&-!-l. For example,

N, = 3, N2 = 45 etc.

Lemma 3. 3. There exists an integral polynomial Qk of -weight

k such that NkLk(Pl9 ~-,Pk) = Qk(Pt, •", ^P*) as an element of I(2K) ,

where Pi^I(2i) is the i-th Pontrjagin polynomial and P£^I(2i) is

the i-th inverse Pontrjagin polynomial.

Proof. From the relation (1-4-A + ••• + P< + •••)(! + PI + •
-f . .-) = l, it follows that P^-P^-P^Pj ----- PfPt-!. Hence, it

follows by the induction that Pt can be expressed as the integral poly-

nomial of Pf, • • • , P±. Therefore, the lemma follows immediately.

Lemma 3.4. Q k ( P f , ••-, P£) =nkP£+ decomposable part, for a

certain integer nk. The decomposable part is the Z-linear combina-

tion of terms any of -which can be decomposed as the product

(3.5) R(Pi,-)R'(P1,-,P,k/!,),

where R is an integral monomial of weight^>L\k-\-\/t£\ and R' is an

integral monomial of

Proof. As in Lemma 3. 3, Pi can be expressed as the integral

polynomial of Pl9 • • • , P, for l<,i<,k-l. Hence, Qfe (P£, • • - , Ptf =

nkP^ + Z-linear combination of P1Pfc_1, • • • , PLk+ 1/^^/21, • • • ,

Remark 3. 6. In H4k(BO(4k-I) ; Z) , the equality

+ decomposable part of type (3. 5)

still holds modulo 2-torsion elements. Hence,
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2NkLk(ply -sAO = 2Qk(Pt, -,/>£) =2nkp±

+ decomposable part of type (3.5).

It is well known that the Pontrjagin forms of Riemannian metrics

are conformally invariant and if M is conformally flat, namely if M is

locally conformally isomorphic to the flat Euclidean space, then P/ (fi) =0

for any /^>1.

Definition 3.7. In this paper, we will call a (4^—1) -dimensional

Riemannian manifold M to be "partially Pontrjagin flat" if the Riemann-

ian metric of M satisfies the following condition;

(3.8) R(P1(S)9-9PJ(a))=0

as differential 4j-form on M for any integral monomial R of weight

j, [* +1/2] <;./<;* -i.

Example 3.9. If £>3, decomposing R4k~l = R*k~5X R* where we

suppose that R4Jc ~5 has the standard flat metric and R4 has a metric with

respect to which the first Pontrjagin form does not vanish, it can be

proved that JR4*"1 has a metric which is partially Pontrjagin flat, but not

conformally flat. Thus, using this and destroying the standard metrics

locally, \ve can construct Riemannian metrics of lens spaces which are

partially Pontrjagin flat, but not conformally flat, and have the property

(1.8).

Theorem 3.10. We assume thai M is partially Pontrjagin flat

and -* : H4^1 (M; R/Z) -^H4*"1 (O (M) ; fi/Z) is injective, where

TT : O (^/) — >M is the ortlwnormal frame bundle. Then, a necessary

condition that M admits a global conformal immersion -with codi-

mension 2k — \ in RQk~2 is that Nk7](AI) is an integer if M is zero-

cobordant and 2Nk7j(M) is an i?iteger if M is not zero-cobordant.

Proof. If R(P1(Q)9 • • • ) vanishes, according to the product formula

(2. 2) of jT-forms, we have

{T(R(Pl> •••)#' CP,, -))(<?)} = <R(P>W, • ' • ) /\TR'(P>, -)(0» =0-
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Hence, considering the decomposition (3. 5) of the decomposable part of

Qk(Pi, '", Pk), it follows from the assumption that the cohomology

class {TQfcCPi1, •-, Pi}(0)} coincides with nk{TPt(0}}. Therefore, it

follows from (2. 4) that

n*{SNkLk(ply ..

Hence, it follows from the injectivity of 7T* that

{SNkLk(p1,-, A) (6) }=nk{ Spi (9)}.

Thus, if M is conformally immersible with codimension 2k —1, according

to Theorem 2. 6, we have

SNkLk(pl9 -,pk) (M) =nkSp£(M) -0.

We first assume that M is zero-cobordant and M=dW. From Theorem

1. 1 and Lemma 3. 1, it follows that

=Nk f
Jw

= JV.{ f Lk (P, (g) , • • -, Pk (g} ) - sign (W) \ = N^ (M) .
( JW )

Secondly, if M is not zero-cobordant, 2M is zero-cobordant by the dimen-

sional reason and let 2M=dW. Then we have

(M) =SNtLt(p1, ••-, A-) (2M)

Q.E.D.

In particular, we consider the case that & = 1. It is well known

that all closed orientable 3-dimensioiial manifolds are zero-cobordant and

parallelizable, hence, satisfy the assumption of Theorem 3. 10. As N!

= 3, we obtain the following.

Corollary 3. 11. A necessary condition that a closed oriented

3-dimensional manifold admits a global conformal immersion in I?4
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is that 3y(M) is an integer.

On the one hand, it is well known that all closed orientable

3-dimensional manifolds are smoothly immersible in J?4. In Section 4, as

an example of Corollary 3. 11, we will examine the conformal immer-

sion of the quotient spaces of Sz by binary polyhedral groups.

Theorem 3. 12. We assume that M is partially Pontrjagin flab

and there exists an integer c such that cpi ( TAf ) e H41 (M; Z) vanishes

for any l5S^[&/2] 'where pt(TJ\f) is the i-th Pontrjagin class of

the tangent bundle TM. Then, a necessary condition thai M admits

a global conformal immersion with codimension 2k~I in R6k~z is

that cNky(M) is an integer if c is even or M is zero-cob ordant and

is an integer if c is odd and M is not zero-cobordant.

Proof. We consider the decomposition (3.5). As

vanishes by the assumption, according to the product formula of the S-

characters in [4], we have

c{S(R(pl9 '")Rf(P^ -,/>:*/,:)) (0)}

= {SR(pl9 • • • ) (0)} U^'(

We first assume that c is even and c = 2a. Then, it follows from Re-

mark 3.6 that c{SQk(Pty—,pt) (0)}=cnk{Sp£(0)} and

cSNtLk(pl9 -,/>0 (M) =cSQk(Pt, -,^) (M) =cnkSpi-(M).

Thus if M is conformally immersible with codimension 2&— 1, then

Sp$(M) -0 and cSNkLk(pl9 - • • ,^ f c ) (M) =0. On the one hand, 2M is

zero-cobordant by the dimensional reason. So let 2M=dW. Then we

have

0=cSNtLt(plt • • - , A) (M) =aSNkLk(pi, ••-, pk) (2M)
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Secondly, we assume that M is zero-cobordant and M=dW. Then it

also follows from Remark 3. 2 that

cSNtLk(plt • • - , A) (M) =cnkSpi (M) .

Hence, we have

,, ••-, pk) (M) = cNk f Lk(P,(g}, •••,
Jw

= cNlc\{ Lk (P, (0), • •., Pk (g)) - sign (W) \ = cNrf (M).
I JW )

If c is odd and M is not zero-cobordant, we have

2cSNkLk(p1, .- . , pk} (M) =2cSQt(pr, •••, Pfi (M) =2c».5

Hence, we have

0 = 2cSNtLll(p1, ••-, p*) (M) =cSNtLt(ps, •••, pk) (2M)

f
Jw

( f
2 I Jw

Q.E.D.

In Section 4, as an example of this theorem, we will examine the

conformal immersion of a certain lens space.

§ 4. Examples

As an example of Corollary 3. 11, we consider 3-dimensional mani-

folds of positive constant curvature. They are known to be the quotient

spaces of <S3 by free orthogonal actions of certain finite groups which

are completely classified. In his paper [9] , Millson calculated the

-S-characters of lens spaces, namely the quotient spaces by cyclic groups,

which have the standard Riemannian metrics of positive constant curva-

ture. And he examined their conformal immersions by using those

results. So we consider the quotient spaces of 53 by binary polyhedral

groups.

We regard S3 as the Lie group of all quaternions of length one.
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Let G be a finite subgroup of Sz which acts on S3 on the right. The

action of G on Ss can be extended to the action on the 4-ball DL and

the fixed point set of G=?A^=1 is the origin of J?4. Let exp (\/ — la) (7z) )

and exp ( — A/ — io) (7i) ) be the eigenvalues of TzEEG which can be natural-

ly regarded as an element of SU(Z) . Then the rotation angles of the

action of h around the origin are just o)(/i) and — o ) ( h ' ) . Hence, accord-

ing to the formula (1. 6) , we can calculate the eta invariant of S^/G.

(4.1)

A-fl

Now, let O* denote the finite subgroup of -S3 generated by P = i,

Q=j\ B=- (l-H'-f j - f&)/2 and R= (i-k)/^ 2 which is known [10] to

be isomorphic to the binary octahedral group of order 48. Let T*

denote the subgroup of O* generated by P, Q and B which is known

[10] to be isomorphic to the binary tetrahedral group of order 24. Let

Z* denote the finite subgroup of S3 generated by U— (V~^> —l) /4- f i/2

+ (V 5 -fl)j/4 and V= —i which is known [10] to be isomorphic to the

binary icosahedral group of order 120. According to (4. 1), we can

calculate y(S*/T*), 9?OS3/O*) and 7] (S3//*) by a computer.

(4. 2) fi (SS/T*) = 49/36 , y (58/O*) -121/72 , y (53//*) = 361/180 .

Hence, by Corollary 3. 11, 53/T*, S'/O* and S*/I* can not be globally

coiiformally immersed in JR1.

Remark 4. 3. As in Example 1. 7, so long as the Riemannian

metric g of 53/G satisfies the condition that C^3, r*g) admits an orientation-

reversing isometry where r: SS—*SS/G is the covering projection, ^(53/G)

can be calculated by (4. 1) and 58/T*, 58/O* and S8//* can not be

globally coiiformally immersed in R1.

Next, as an example of Theorem 3. 12, we consider 15-dimeiisional

lens space L15 = L(137; 1, 10, 100, 41, 136, 127, 37, 96) which is an exam-

ple given by Millson in [9]. We assume that the Riemannian metric of

L15 is partially Pontrjagin fiat and has the property (1.8). Then we
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can calculate fj (Z/15) by (1.9). On the one hand, according to the result

in [8], L15 is known to be stably parallelizable. Hence, ^(TL15) =0 for

any £^>1. Thus we can put c = l. As A^4 = 14175, we have

(4. 4) 2cNtf (L15) - 120/137 mod Z .

Therefore, L15 can not be globally conformally immersed with codimen-

sion 7 in Rzz.

Remark 4. 5. As L15 is stably parallelizable, L15 can be smoothly

immersed with codimeiisioii one in R16. Moreover, if we give L15 the

standard metric, L15 is locally conformally isomorphic to R15.
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