
Publ. RIMS, Kyoto Univ.
17 (1981), 179-199

/^-Algebras and their Applications

By

Julio ALCANTARA*(1'2) and Daniel A. DUBIN*

Abstract

We analyze the algebraic, topological, and order properties of /*-algebras: complex
unital topological *-algebras for which S^/*^/=0 implies #f=0 (Je/), JcJV any finite
subset. We consider the ergodic properties of states on an I*-algebra with a distinguished
group of automorphisms. Particular attention is given to I*-algebras of the form
£=Sf®n£ where E is a nuclear LF-space. When E=^(JR4) (0(K»)©$(R3) respec-
tively) then E has applications to relativistic quantum field theory (the canonical anti-
commutation or commutation relations, respectively).

Introduction

In this paper we study complex topological *-algebras that are nuclear

LF-spaces in which ^jX*Xj = 0 implies Xj = Q O'eJ) for any finite subset

JFcJV. We call such algebras 7*-algebras.

The characteristic example of an 7*-algebra is the completed tensor

algebra E = Yj$&)1lE over a nuclear Z/F-space E, equipped with the induc-

tive topology. The systematic study of these tensor algebras was initiated

independently by Borchers [5] and Uhlmann [6]. We say that E is

the BU-algebra over E. Obviously nuclearity precludes any infinite

dimensional C*-algebra being an J*-algebra.

In the first section we derive some general algebraic and topological

consequences of the definition of /^-algebras. An interesting result here

is that the multiplication on a BU-algebra E is jointly continuous if and

only if E is an LB-space.

The second section considers the order properties of proper I*-
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algebras. These are 7*-algebras whose completed positive cone is proper.

A result of Dubois-Violette [40] implies that all BU-algebras are proper.

An important notion here is that of a state on an 7*-algebra, defined to

be a normalized linear functional, positive on the complete positive cone.

The GNS construction (GePfand, Naimark; Segal) associates with each

state a canonical strongly cyclic representation of the algebra by a family

of symmetric unbounded operators with a common dense domain in a

Hilbert space, i.e. by a *-operator family. We indicate that for proper

7*-algebras the states separate points (Proposition 2. 3) .

7*-algebras with the best order properties are those satisfying a

certain technical condition on convergent nets (Condition (N) ) . In such

algebras, e.g., the initial topology is determined by the states (Proposition

2. 4) . For a BU-algebra E with E a nuclear -F-space, Yngvason [41]

has shown that a necessary and sufficient condition for E to satisfy (N)

is for E to be isomorphic to a closed subspace of the sequence space s.

More generally E cannot satisfy (JV) if E^gE^E^^E. Thus, e.g. the

states on S) (Rn) do not determine the initial topology, whereas they do

We note that the proof of Proposition 2. 8 implies that

the states on E are the same as the states on ]£]$(§)W.E.

The third section is concerned with an application. Certain repre-

sentations of the BU-algebra with E = S) (Rn) © 3) (Rn) comprise the con-

tinuous representations of the canonical anticommutation and commutation

relations of quantum field theory. This is considered in some detail.

In the final section we adjoin an automorphism group to an 7*-algebra.

The ergodic structure of such a system is more restrictive than for O*-

algebras. For example, G-ergodicity of a state does not imply that the

GNS cyclic vector is the only normalized G-invariant vector (Proposition

4. 1) . The notion of asymptotic abelianness, so important in the ergodic

theory of C* -algebras [2, 3, 35] seems to take its natural form as weak

asymptotic abelianness (Definition 4. 2) for 7*-algebras. By considering

the closure of the GNS representation for weakly asymptotically abelian

states we are able to generalize a result of Borchers [42] (Proposition

4.4).
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§ 1. I*-Algebras

The fields describing quantum systems with infinitely many degrees

of freedom are families of unbounded operator-valued distributions on

various representation Hilbert spaces [1]. In order to bypass the dif-

ficulties inherent in working with such *-operator families, it is conven-

tional in Statistical Mechanics to consider various bounded functions of

the fields. This leads to the C*- or W*-models. Such models are also

available for relativistic systems [2-4].

Clearly it is also of interest to consider the fields directly. For re-

lativistic S37stems a model of the fields as representations of a topological

*-algebra has been proposed by Borchers [5] and Uhlmann [6] and

considered by various authors since: [7-10] are review articles. We

have considered similar models, for nonrelativistic systems and for current

algebras. In the course of our work it became clear that much of the

analysis depended only upon the algebras having certain algebraic and

topological properties. The class of algebras so defined we shall call

J*-algebras.

Definition 1. 1. An J*-algebra is a unital topological complex

*-algebra which is a nuclear LjP-space. Furthermore if 2tj^*^i = 0, then

Xi = 0 (/ejf), / any finite subset of N.

Note that for a topological *-algebra, the product is separately con-

tinuous and the involution continuous.

Lemma 1. 2. An I*-algebra is barrelled, bornological, and com-

plete. It is Montel and reflexive. Its strong dual is nuclear and

complete, barrelled, bornological, and Montel.

Proof. As an 7*-algebra <Jl is an LF-space, it is barrelled, borno-

logical, and complete: [13], Cor 2 (p. 61); Cor 2 (p. 62); and Cor (p.

60). Being complete, barrelled, and nuclear implies that Jl is a Montel

space: [14], Cor 3 (p. 520); consequently it is reflexive: [13] (p. 147).

As Ji is nuclear LF its dual, <JLr, is nuclear: [13], Thm 9.6 (p.
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172); Ex 2 (p. 173). JL' is complete because Jl is home-logical: [13],

Thm 6. 1 (p. 148). As Jl is nuclear, it is a Schwartz space ([15]) and

the dual of a complete Schwartz space is barrelled and bornological: [16],

Prob 9 (p. 287). Finally, Jl' is Montel because JL is: [13], Thm 5. 9

(p. 147).

The question of the existence of non-trivial J*-algebras is answered

affirmatively by the following paradigmatic example of a Borchers-Uhlmann

algebra, or BU-algebra.

Definition 1. 3. Let ER be a real nuclear LF-space and E=ER®C

its complexification. The BU-algebra over E is the locally convex direct

sum tvs

(1.1)

where n = 0 corresponds to C by convention, and 0 indicates the com-

pletion of the tensor product in the inductive tensor product topology

[17]. The product with respect to which E is an algebra follows from

the graded structure: if x = (.rn)n, y= (yn)ne.E, then

(1.2)

It is further assumed that a continuous involution, J, is defined on ER.

In an obvious was this extends linearly to an involution x«*)x* on E,

with (xy) * = y*.r*.

Theorem 1. 4. A BU-algebra is an I*-algebra with no divisors
of zero whose invertible elements are C— {0} and 'whose centre is C.

Proof. For the algebraic properties we may modify Lemma 1. 2. 4

of [7] slightly. The identity is 1= (1, 0, 0, • • • ) . For the divisors of zero

we come to xh$$yt = Q with xhe®hE and yte®iE, y^O (c.f. [7] ibid.).

Then xh = Q by the linear disjointness of tensor products: [14] (p. 403).

If x is in the centre of the algebra, choosing elements y such that yn = 0

unless n = h, where xh=£Q9 ^ = 0 for all z>&, then xh®yh = yh®xh for

all yfte(g)ftjE. The case h — Q gives x&C so assume &>0 and xh=£Q. By
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linear disjointness it follows that .2^ = Ayft (A e C) for all yhe®hE, imply-
ing xh = Q. This proves the algebraic properties.

We shall prove below that if F, G are nuclear LF-spaces, then so

is F(g)G; and the locally convex direct sum of LF-spaces is LF. Grant-

ing these results, (g)nE is nuclear LF for all n^O; and ]T]®(gjnF is a

nuclear LF-space, which is the required topological result.

First of all, let F=tHm,F,, G = tlimiG£. Then ([18], App 2)

F(g)G = f HmiFi®Gi. But as F^, Gf are nuclear F-spaces, F^G^

= Fi®Gi are nuclear F-spaces. Then F0G is LF, and as the countable

inductive limit of nuclear spaces is nuclear ([14], Prop 50.1), so is

F(g)G. That (gj = (g) for F-spaces is found, e.g. in [17], 1.5.1 (p. 74).

Next let F=^2®Fi be a locally convex direct sum, with Ft = ̂  lim/Fy

an LF-space. Define Gk = ̂ ^j^kFjk. Then Gk is closed in Gk+1 and

U Gfc = F. Moreover the Gk are F-spaces and f lim^Gfe is the set F equip-

ped with a bornological topology which has the same bounded sets as

the original topology on F. Then these two topologies are equal: [13]
II. 8. 3, so F=| linifcGfc and we are done.

It remains to show the continuity of the product and the involution,

and the order axiom. The multiplication is separately left continuous iff

for every net in &)nE which converges to zero, x^-^Q, the net y&)xy-*Q

in (g)w+mE for all yG=®mE, and this for all n, m>0. But (y, xv} -> (y, 0)

in ®mE X ®nF, so y^xy-^Q in the inductive tensor product topology.

Similarly for right continuity.

The involution is continuous iff it is continuous on each

We need only consider w>2 and prove that (xl9 •~,xn)>«

(xt^E) is separately continuous. As above, let (xnv)y be a net converging

to zero in E. This implies limyx*v^"'^Xi =0 an<l similarly for each

factor separately. This gives continuity for the involution on §§nE which

extends to ®WF by continuity.

Assume that ^,NxfXi = 0 with (x^ t nonzero. Let (xi)^^ be the

subfamily whose greatest non-vanishing components (xir)i^s contribute to

the greatest order component of ^Nxf xt. Assume the (xir) i are linearly

independent, so J%2*xfr&)xir = Q implies ,r£ = 0 (l<^"<is) by linear disjoint-

ness. We now consider the case where the (xir)i^ are linearly dependent,

say xir = ̂ t£j£k&jixjr, where (.£/»•) *s/s* ^s a maximally linearly independent
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subset. After some manipulation we find that

for l<^t<^k. By linear independence, l + ]Cy=*+iUi/l2 = 0> contradicting

the linear dependence.

Corollary 1. 5. In a BU-algebra the only idempotents are zero
and the identity. There are no proper minimal ideals, and the
Jacob son radical is {0} : [7], [11].

We wish to point out that the inductive tensor product topology is

the natural topology to use in BU-algebras. First of all, E&)F is, but

E®F generally is not, barrelled when E and F are. Secondly, E®F

has transitive properties for inductive limits. Note that 3)(R)®3)(R)

is the set 3) (H2) but with a strictly coarser topology than the canonical

LF-topology.

Examples 1.6. (a) E = ̂ (JR4) and E= 3) (JR4) are the original

BU-algebras due to Borchers [1] and Uhlmann [2] respectively. Here

J is the identity, (b) For applications to the canonical anticommutation

relations (CAR) and the canonical commutation relations (CCR) we take

ER = ®r(M) ®3)r (M) and E= 3) (M) ®3) (M) , where the configuration

space M is a paracompact C°°-manifold, countable at infinity and Hausdorff.

The case M=Rd is typical. Here and hereafter 3) will be equipped

with its canonical LF-topology. For ease of notation we shall write

ER = zS)r(M) and E = 2®(M), so that E = Z3)(M). Note that 2® (M)

~®(M,C2)—g)(M)(>t)C2. The involution J on ER is taken to be

J(x®y) =y®x. (c) For any real finite dimensional Lie algebra g, the

BU-algebra formed from ER= 3)r (M, g) ̂ <Dr (M) (g)g will be shown to

be pertinent to the description of the current commutation relations for

9: [19].

As 7*-algebras are barrelled, the product law is hypocontinuous.

Hence if xn-*x and yn— >y are two convergent sequences, xnyn-*xy . In
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general the product is not jointly continuous.

Proposition 1. 7. (a) Let Jl be an I* -algebra, t its initial

topology and v the finest locally convex topology for which the linear
map (x®y) »&xy of Jl (r) ®nJL (r) -*Jl (v) is continuous. Denote the
kernel of this map by K. Then

(1.3)

(1.4) Jl (r) ®,JL (r) /K-JL (r) .

(b) For a EU -algebra E, v = r if and only if ER is an LB-

space.

Proof, (a) Let ju be the finest convex topology on JL such that

M: JL (r) ®f Jl (r) -*Jl (ju) ; x®y*H xy is continuous. Then m : JL (r)

X JL (r) — *JL (ju) ; (x, y) *&xy Is separately continuous, and so the maps

Lx:y*Hxy are continuous from JL (r) — >JL (it) . Taking a: = 1 implies that

r is finer than #; but by definition ju is finer than r, so # = r.

Going to the quotient, it is obvious that

is continuous and one-to-one.

Now M~!oM is the canonical projection of JL (r) <S)CJL (r) onto^(r)

®tJL(t)/K, which is continuous. But as r = #, M~l°M is continuous iff

M"1 is. Thus M furnishes the indicated isomorphism. The projective

case is similar and we omit the proof.

For part (b) we need the following result: let F be a non-

normable metrizable Ich space. Then there exists a neighbourhood basis

(Wfc)^! and a family (^)fc^i of linear forms such that sup{|0fc(.r) |:

.reWfc+1}<oo and sup {\<f>k (x) |: xG Wk} = +00. To show this we con-

sider a family of increasing mutually inequivalent seminorms P\(x) <Lpt(x)

<^-" defining the topology of F. As F is non-normable, the open unit

ball of pl9 Wl9 is unbounded. Hence there is a continuous linear functional

& on F such that sup {{fa (x) \ : x& W^ = + oo. As 0t is continuous, there

exists an index n^2 and a constant ^>0 such that \<t>i(x)\'^*cjpni(x)

for all x&F. We may proceed to the result inductively.
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Now consider F, with F not an LB-space ; we assert that the bilinear

functional (x, y) «w40 (xy) , where </>= (1, (f>lt ^3(8)^2, '")» is not jointly

continuous, and hence that (x, y) *&xy is not jointly continuous. As-

suming the product jointly continuous, and choosing x = (0, xlt 0, • • • ) »

y= (0, ••• , yn, 0, •••) we compute 0Cry) and use \$(xy) \<*P(x)P(y) for

some continuous seminorm. This leads to the dominance of all the <f>n

by a single continuous seminorm p^F which is a contradiction. For the

general case we consider such a space F as one of the defining sequence

of JE. The proof is an exercise in extension and we omit the details:

[20].

It remains to show that if F is LB, then v = r. As F is nuclear,

®nF (n^2) are LB, and so is F therefore: Theorem 1. 5 with B replac-

ing Frechet. From [36] (p. 316) it follows that F®CF = F®nF, and

y = r by Proposition 1.8.

§ 2. Order Properties

The order properties of ^(JR1) are well known [7, 21, 22]. In this

section we consider the corresponding properties for a certain class of

J*-algebras. Note that by a cone we mean a convex cone which contains

its vertex 0.

Definition 2. 1. (a) For an J*-algebra the set of hermitkn ele-

ments is

(2. 1. a) Jlh

the set of positive elements is

and the closure of <Jl+ is written <JL+. An J*-algebra will be termed

proper if <Jl+ is a proper cone.

(b) The hermitian functionals on Jl comprise the <_^' subset

(2. 2. a) cJ /
f t=^ec

the positive functionals are
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(2.2.b)

and the states

(2.2.c)

In this section we consider only proper I*-algebras and so will not

indicate this explicitly. Let us note that all BU-algebras are proper

7*-algebras [40].

Lemma 2. 2. A positive functional obeys the Cauchy-Schwarz

inequality :

(2.3) \t(x*y)\l^>(x

: [7,21].

Proposition 2. 3. The hermitian part, ^Ah, of an I* -algebra is

a complete real vector space whose complexification is <Jl. The cones

<Jl+, <Jl+ are proper strict b-cones which are generating for <Jlh.

The hermitian functionals Jlf
K constitute a complete real vector

space whose complexification is Jl', with <Jl'jl= (<JLh)'. The cone <Jl'+

is a complete proper normal cone with base E (Jl) . The set Jl'+ — Jlf+

is dense in JHf
h.

Proof. The analysis for ^(JK4) in [7, 21] suffices to prove most of

this. We need only show that Jl+ is a proper strict &-cone and Jl'+ a

proper normal cone. The former follows because <JL+ is a strict 6-cone

and <Jl+ is proper. Together with the reflexivity of <JE, this implies the
latter: [23], 1.26 (p. 75).

For a proper /^-algebra, therefore, the states separate points of the

algebra.

We have found that the following condition on the v topology enables

us to prove a number of further order properties.

(N) An 7*-algebra Jl has property (N) if for any net (X), in

the cone (Jl (r) <H>«c^ (f)) +, the convergence of the net limM(xv)=0
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implies limv xv = 0. Here M(x®y) =xy as in Propostion 1.7, and

Proposition 2. 4. The topology of an I*-algebra Jl is given by

its states, i.e, by the family {x*H(l>(x*x)l/2'.<t>&E(Jl)}, iff it has pro-

perty (N).

Proof. Let (pa) a€EA be a family of ^-symmetric seminorms defining

the initial topology r on Jl. For any zero neighbourhoods [7, VdJl let

£{7, v be the seminorm on

associated with the ®e topology. Here .r = £]^ y*® 2^. For £a in the
defining family we write ea for U= V the open unit ball of pa. Now
let p be any continuous seminorm on Jl (r) . By nuclearity there is a

sequence of positive numbers A= (AJ^jeZ1 and a r-equicontinuous sequence

(^TrOn^i of linear functional such that [15]

(2.4) P(xY^^«\Tn(x)\z.

There exists an a&A such that

(2. 5)

To see this we note that by *-symmetry and Cauchy-Schwarz,

s« (y *®y) = sup { 1 0 (y) | z : ̂  6 Ul}

and hence

As Tnef/S, |Tn(o:) |f^e«(j:*®^)f giving the desired inequality.
By a theorem of Ky Fan ([24], Thm 1), to any continuous semi-

norm p there is a dominating positive functional a),

if whenever lim, (Sn(v)^^) =0 and lim, J^n(v) p (xiv)
 2 = £ then ? = 0.

For a zero-convergent net Xj^^iv* condition (N) implies that the net
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2 x*v®xi» converges to zero. The inequality (2. 5) then gives £ = 0

and the existence of a dominating state. As Jl (r) is barrelled,

.ZW0 (x*x) 1/2 is continuous: [25].

Now assume r generated by the states. For any seminorm p in a

defining family for r let n(z) =inf {^P(x^)p(y^)} be the indicated semi-

norm on Jl§§Jl. The infimum is over all product representations

£ = ][] ̂ (gtyi. Let 0 be a state dominating p. Then 7r(

Corollary 2.5. Le£ cJZ /iat>£ property (N). Then Jl+ has a

base iff there is a continuous norm on Jl (r) .

Proof. Now cJJ+ has a base iff there is a strictly positive linear

functional on Jl: [23] Prop 3. 6 (p. 26). Let ow||a:|| be the hypothesiz-

ed norm. By Proposition 2. 4 there is a dominating state, so 0<||.a:||

Proposition 2. 6. For aw I*-algebra Jl, Jl (v) is Hausdorff and

nuclear.

Proof. From Equation (1.3) it follows that JJ+C (JL (v) h) ', as in

[21] (p. 324). Since Jl'+—Jl'+ is dense in Jl'h9 then Jl'+ separates points

in Jl. Therefore Jl (v) is Hausdorff. It follows from this that K is

closed (Prop 1. 8) and from Equation (1. 3) that JL (v) is nuclear.

Proposition 2.7. If Jl has property (N), Jl+ is normal in

Jl(v). If r=£y, v is not barrelled. If v is also complete, it is not

bornological, and Jl+ is generated by its extreme rays.

Proof. From [21] follows the v-eontinuity of x*»u) (x) for any

state. If 0 is a state, x*H(f>(y*xy) is again a state, so a polarization

argument shows that x*H(d(yx) is y-continuous for any state, all y&Jl.

From Cauchy-Schwarz it follows that for any state a)

) =1}.
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We may write, therefore,

{*<= Jl: a>(x*xy<*<l} = C\,{xeJl: |tf(y*ar) |̂ 1, »(y*y) =1}.

From the continuity of x*H(j)(yx) it follows that this set is closed, and
hence a y-barrel. As v is strictly coarser than r, there is a state ft) for

which the above set is a r-neighbourhood of zero (Prop 2. 4) but not a
y-neighbourhood of zero; hence vis not barrelled. The normality of Jl+

in Jl(v) follows as in [21], Theorem 4.

As a complete bornological space is barrelled: [13], II. 8.4, if v
complete it is not bornological.

For x&Jl+, let [0, x\ be the order interval Jl+ fl (x — Jl+). As
Jl' is reflexive, barrelled and nuclear, Jl is quasicomplete and conuclear:

[26] (p. 46). Therefore if the order intervals [0, x] (x&Jl+) are
compact, Jl+ is the closed convex hull of its extreme rays ([27] Thm
1). But Jl is Montel so we need only prove boundedness of these order
intervals. As Jl+ is normal in <Jl(p), [0, x] is bounded in Jl (v) : [13],
V. 3. 1, Cor 2. Hence every v-barrel absorbs [0,^] : [14], Lemma 36. 2;
[16] (p. 109). We have shown above that there is a fundamental
system of r-neighbour hoods of zero consisting of y-barrels. Hence [0, x\

is r-compact, giving the proposition.

The following proposition characterizes the BU-algebras that have
poperty (N).

Proposition 2. 8. (a) If E is a nuclear Frechet space then the

BU-algebra E has property (N) iff E is isomorphic to a closed sub-

space of s, the Frechet space of rapidly decreasing sequences.

(b) If E is a nuclear LF-space such that E^^E^E^E then

the BU-algebra E does not have property (N).

Proof, (a) See [41] Satz 4.8.

(b) If T is a state on E it is also a state on £3®£:o(E)w-E> because
(f,:Q*»T(fx(i[) is a jointly continuous bilinear form. By [41], Lemma
4.2 /*»T(/*X/)1/2 is a continuous seminorm on XIf^00

n^ and the

conclusion follows immediately from this and the fact that
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Corollary 2. 9. The BU-algebras 3) (Rn) , ZS) (IT) an d S) (IT, g)

do not have property

Proposition 2. 10. Every bounded set in Jl (r) h is order-bounded.

Proof. Mokobodzki has shown ([28], Thm 3) that as Jl'+ is normal

in <Jl (r) 'h9 and as the continuous seminorms pB on Jl (t) 'h are given by

Ps(L) =sup{\L(x) \:x^B}9 where JBcJf(r)A is bounded,

(2.6) PB(L}<^kn\L(xn)\ (LeJK)

for some sequence A= (An) eZ1 with ^2^0, and (x^) a positive equiconti-
nuous sequence in <Jl+. Now for L^<Jl'+ and x&B, where Bd<Jl+,

nxn — x)^>Q. Thus B is contained in the order interval [0,

lw<rj, i.e. it is order-bounded.

Now if Bl is an arbitrary bounded subset of Jih, there is a bounded

1+ such that B1 = B—B, since <J£+ is a strict &-cone. Then J^C^ — y, y],

§ 3. Representations of the Commutation Relations

Every state of an J*-algebra determines a strongly cyclic representa-

tion of the algebra as a *-operator family. For BU-algebras, this cor-

responds to the Wightman reconstruction [1] ; in all cases it is the GNS

construction [12] .

The construction and notation is standard: e.g. [7], Thm I. 4. 5. We

remind the reader that for every state a), L (o)) = {x e Jl : co (x*x) = 0} is

a closed left ideal, T)lo = tJL/L(a>) is a pre-Hilbert space with canonical

projection x^> [x\ ffl and <( [x\ w, [y] ̂  = (D (x*y) . The GNS representation

7^(3:) Dy]o»= [^y]co is strongly cyclic and *-symmetric, with 7^ (x) * Z> n^ (x*)

and cyclic vector &„ = [1] a.

The canonical relations CAR, CCR are introduced for the algebra

by means of the fields (a, a*) .

Proposition 3. 1. To any * -representation (TT, X) of

associate
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(3. 1) a* (/) =x(f,0), a (/) = n (O,/)

for fe® (M) . Then

(3.2) fl(/)*z>fl*(/), **</)* Da (/).

Conversely, let there be given a pair (a, a*) 0/ complex linear map-

pings from 3) (Af) ZTZ£O operators on a dense domain 3) 0/ some

Hilbert space such that (i) dom[a* (/) ] D®, (ii) 3) w rfa&/e, (iii)

Equation (3. 2) , (iv) /«H (¥, a* (/) 0) w in 3) (M) ' /or all ¥, 0 in 3).

Then every normalized vector 0e3) defines a state on Z3) (M) by

extension from

(3. 3) «. (JVg). • -(g)FB) = <*, H [a* (/,) + a (ff,) ] (5 >
/=!

F,=f&g, in S)(M)@S)(M). (Cf. Thm 1.4.5 o/ [7].)

Proposition 3. 2. L#£ there be given a jointly continuous sym-

metric bilinear form < | > from S)r(M) to R which is non- degenerate

and vanishes between functions of disjoint support. The CAR resp.

CCR ideal for this form is the smallest closed * -ideal 7e (e= +1 resp.

— 1) generated by

(3. 4) (0, 0, (/, 0)®(g, 0) +e(ff f 0)® (/, 0), 0, .-)

(0, 0, (0, /)® (0, flr) +e(0, g)0(0, /), 0, ..-) (/, »e fl)r(JIO)

, 0, «(/, 0)(g)(0, g) + (0, fl® (/, 0), 0, .»).

a) ow 2*P (M) which annihilates I£ gives rise to fields

(a, a*) satisfying

(3.5) [«*<y),«

for all
Conversely, if fields are given satisfying the hypotheses of Prop-

osition 3. 3 and the relations Equation (3. 5) , then the (D0 annihilate Is.

For a proof see [7] , Theorem I. 5. 6, mutatis mutandis.

For obvious reasons, a state annihilating 1+ will be termed a CAR
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state, and one which annihilates /_ will be termed CCR state.

By a well-known theorem: e.g. [2], Thm 1 (p. 270), the CAR

fields a* (f) are bounded. It follows immediately that

(3.6) *(/)* = *

Thus a CAR state on ZS) (M) leads to a representation of the CAR in

the usual sense [2, 29].

The CCR fields are not bounded. Hegerfeldt [30] has shown that

if the Weyl fields are continuous from S)r(M) into B(M), equipped

with the weak operator topology, then the fields Q, P exist as self-adjoint

operators on a dense Carding domain. This may be adapted trivially

to (<z, <z*) and so a CCR state on 23) (M) . Conversely, the same di-

agonalization of the fields may be used to show that (<2, a*) determines

a Weyl representation iff it is essentially self-adjoint on all finite dimen-

sional subspaces of 3)r(M) and if the two-point function is continuous

(private communication: G. Hegerfeldt, cf. [30]).

§ 4. Symmetries

By a symmetry we mean a ^-automorphism of the algebra in question;
automorphisms which are * -antisymmetric may be treated analogously. By

a symmetry group we mean a group of such automorphisms. Continuity

will always be assumed. Much of what follows is actually true for

arbitrary locally convex Hausdorff topological * -algebras, but for our

purposes consideration of J*-algebras suffices.

In the same way we can consider fairly general groups, but in view

of our applications we shall take G to be locally compact, non-compact,

Il-countable, and amenable.
We proceed as for C*-algebras, terming G-ergodic the extreme points

of the set of G-invariant states. As in the bounded case, a (G) is unitarily

implemented in the GNS representation of every G-invariant state and

conversely

Proposition 4. 1. Let & be a G-invariant state on an I*-algebra.

Consider the following conditions:
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(i) a) is G-ergodic.

(ii) Let icm(JL) U U"(G) =£.; then ($at,
(£0)'w = C.

(iii) The range of P, the orthogonal projection onto the G-

invariant vectors, is one dimensional, spanned by Q*.

Then (i) «* (ii) <= (iii) .

Proof. To show (i) ^> (ii) we note that in the proof of Theorem

6. 3 of [33], assuming the states 0) = ^+ (1 — A)o)2, a>i G-invariant implies

that the operator Cet/^G)' (ibid.), and the result holds.

Next assume (iii) and let CeC7to(G)/, then CQ& is G-invariant and

so CQa — kQa. Now if Ce (7rtf (JK) ) 'w also, then C=A, because Qu is separat-

ing for (TTa(JO)i-
For C*-algebras, (i) =^ (iii) follows from certain G-abelian conditions

[2, 35] . For 7* -algebras this result is not implied by the following defini-

tion of G-abelianess : see [37] (p. 250) for a counterexample involving

a local field, hence w.a.a. with respect to the group of space translations.

Definition 4. 2. A state to is a (G) -weakly asymptotically abelian,

or waa, if for every pair 0, Fe®,,,, every pair x9 y^Jl, and every £>0,

there exists a compact JcG such that

(4.1)

for all

Even though this definition is not good enough to derive the im-

plication (i) =» (iii) we have given it because in Proposition 4. 4 we have

a generalization of Theorems 1 and 2 in [42].

Lemma 4.3. For a waa state a) on Jl, for every x&Jk and
the function

(4.3)

£5 continuous and bounded,

Proof. From Equation (4.1), for every x, y&Jl, £>0, there is a
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compact JcG such that for every

+ < Dv] ., ». (y) ». («,-. (***) ) 4, 1

where it suffices to consider 0= [y]*. Thus /is bounded in the comple-
ment of a compacta. Now as Jl is barrelled, 7T» is strongly continuous,

i.e., x*&\Ttt(x)®\ is continuous Jl-*C for all 0e2X,. Therefore, the
map / is a continuous function of G. Thus / must be bounded on J"1,

or /

Let P be the orthogonal projection from M* into the G-invariant
vectors. We shall show that P behaves well with regard to operator
domains.

Proposition 4. 4. (a) For a G-invariant waa-state CD, we have

P:3X,->3)J*, where

(4.4) $**= 0 aomfr (*)**].
XG.JL

(&) For a G-invariant waa-state a>, the reduced family

{Pic%*(x)PixGjl} is a strongly abelian * -operator family with

domain 2)**.

Proof, (a) First we note that St0rmer [31] has shown that there
exists a net { Aa e FU* (G) : a e 1} in the convex hull of U*(G), which
converges to P in the strong operator topology. Now as M® is separable

and rUa>(G) is a bounded subset of B(SC^) in the uniform operator
topology, the strong operator topology on rU*(G) may be described by
a norm: [32], Prop (2.4.2). Therefore the above net contains a sub-
sequence {An: n = I9 2, •••} converging to P in the strong operator
topology.

Taking AeJ7C7fl>(G), it is clear from the previous lemma that
\\ft*(x) A0\\<^M/2 where the constant M depends upon x^Jl,
but not on A. Then for the above sequence.
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For any W e dom [na (x) *] ,

lim <*„ (*) * F, An0> = <?:„ (*) * r , P0> .

Now let ®&Ma and e>0: there is a sequence ¥n e dom [ffB (x) *] such

that for all n>N(s), \\&-¥n\\<s. Then

For #, w large enough, the second term is small because

The first term is bounded by eM, and so n»(x) (An — Am) 0 converges to

zero weakly. As every Hilbert space is sequentially weakly complete,

there exists some vector 3&.M® such that

lim («,«„(*) A.*) = (*,£)
n-»o>

for all ®t=:M».

Taking W e dom [TT^ (x) *] , it is clear from this that

Then P0edom [7rffl(a:)**] and we are done.

(b) In the same way as we proved that P3)o,cX?*, we can easily

show that P3>**c3>J*f since $**** = D** ([34]).

Consider

Fi (fir) = <?r** (a) */»», Z

for x> ySc^E, (^e3)* and 3Fe3)?*. For a) weakly asymtotically abelian,

Fl9 F2^CB(G) and their difference is as small as is wanted in the com-

plement of a G-compacta. Hence F1-F2^CB(G)9 with | (Ft — FJ (g) |<£

for 0eG\J(e). Applying the invariant mean 97, rrj(Fl — F2) =0. Using

the mean ergodic theorem, [2], p. 177,

= <0, [PTT**
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As 2)* is dense in M^ the result follows.

When a(G) is equicontinuous of class WQ [39], and this includes

all compact groups, g*»ti) (ag (x) ) is in CB(G). Then if y is the in-

variant mean, 7}<>a) is a G-invariant state, just as for C* -algebras. In

general, this function is only in C(G) and the existence of a mean on

this space is still an open question.

Now for BU -algebras (1, 0, 0, •••) is always a G-invariant state. It

would be interesting to have conditions to ensure that the subspace

generated by the G-invariant states is dense in the annihilator LQ of the

real subspace LG. Here L0 is generated by elements of the form

(x— cCgX\x&Jlh, geG>, cf. [10,22]. Yngvason has shown ([41]) that

this density condition holds for the translation group on S? (Un) .

For BU-algebras one often starts from a linear representation of a

group G on E, a(G) cL(E).

Proposition 4.5. Let a(G)dL(E) be given. Then {& =

is a continuous representation a(G)C.L(E). [20]

The standard symmetries of the field algebra ZS) (Rd) are space

translations and gauge invariant.

Definition 4. 6. (a) For /<= S) (Rd) , let /ae= 3) (R*) be the func-

tion x*^f(x — a)> for every a&R*. In an obvious way, this map induces
maps on ® (***) and 2^C*O> denoted by C[a,

 2ffa respectively. The auto-
morphism groups £(J?d) and 2£CRd) are termed space translations.

(b) For /€= S) (JRd) respectively (/, g) e 3) (RA) ®3) (Rd) consider

the mappings f*Heiof respectively (/, g)*»(eiof, e'isg), d^T\ the gauge

group. The corresponding automorphism groups of S) (Hd) and 23) (Ud)

are written £ and 2£ respectively.

Proposition 4. 7. The symmetries 2ff (Rd) , 2f (T1) are locally equi-

continuous with generators

29<= (0, 9{@d
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2N= (0,10-1, (1©-1)®I+/®(1©-1),--)

respectively. The generators are implemented by essentially self-

adjoint operators on the translationally invariant and gauge invariant

states, respectively. For invariant CAR or CCR states we have the

field equations (x e Rd, 0 e S)e)

respectively.

The proof is obvious.
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