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Construction of Transverse Projectable
Connections in Some Foliated Bundles

By

Haruo SUZUKI*

§1. Introduction

Let KX be a local Lie group [7] and KC K a subgroup such that
the left multiplication of every element 2K on K is defined. We
introduce a notion of partial connections and foliated structures in a
bundle & with the fibre K and the structure group K. Notions of
transverse connections and transverse projectable connections [b, 3] are
generalized to foliated structures in &. Under a certain condition on X,
we construct foliated structures and transverse projectable connections in
the principal K-bundle E associated with & from those in the Local Lie
group bundles.

In consequence of the above fact, construction methods of foliated
principal bundles equipped with transverse projectable connections are
enlarged and these vield Bott’s strong vanishing of characteristic classes
for some locally homogeneous G-{oliation [4]. We assume all manifolds
are C*-manifolds without boundaries, and all maps and bundles are of

class C=.

Theorem 1.1 (Main theorem). Let G be a Lie group and KCG
a compact connected Lie subgroup of G. Let [ and t be Lie algeberas
of G and K respectively. Suppose there exists a subalgebra ¢ 1 such
that

[=tP¢ (direct sum of vector spaces)

and
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[t.p]lco.

Let G be the left coset foliation on G/K by the subgroup G of G
containing K. Then the principal G-bundle p: E=GX 3y G—>G/K has
a transverse projectable connection with respect to some lift foliation

gE Of Ef

Moreover, in the above theorem if I'CG is a discrete subgroup
operating properly discontinuously and without fixed points on G/K, then
it follows that the principal G-bundle p’: E'= (I'\G) Xx G—T\G/K
=M has a transverse projectable connection with respect to some lift
foliation &5 of the foliation &’ on I'\G/K induced by & (Corollary
4.3). Let g be the codimension of &’ and V(') the transverse vector
bundle of &’. Since V(') is associated with the foliated G-bundle
P’ B'—M, we have the Bott’s strong vanishing of characteristic classes

of V(9"),
Pont®(V($)) =0  k>q,

where Pont® denotes the Pontryagin subgroup in the de Rham cohomology
group H¥%z (M) (Theorem 4.4).

In Section 2, we construct partial connections in the principal K-
bundle E from those in the local Lie group bundle £€. Section 3 concerns
foliated structures and transverse projectable connections in &, and is
devoted to construct transverse projectable connections in E from those
in &. In Section 4, after reviewing the notion of G-foliations and
(locally) homogeneous foliations, we prove the main theorem and results
obtained by this theorem.

The author wishes to thank the referee for his kind advices.

§ 2. Local Lie Group Bundles

Let K be a local Lie group in the sense of L.S. Pontryagin [7,
p. 137 and Chapter 10] and K a Lie subgroup of K such that a left
multiplication KX K —XK of every element of K on X is defined. Let

e KC K denote the unit element. Suppose there exists a neighborhood
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9 of ¢ and a left K-nvariant open set K <X such that e X and a
“right multiplication” J X J1—>X of every element of J1 on X is defined.
7 is also a local Lie group containing K. Let & be a fibre bundle over
a manifold N with the fibre X and the structure group K. Let £
denote the principal K-bundle associated with &. Then we have
E=Ex g K. We denote projection maps of & and E by p, and pgp re-
spectively. We call & simply a local Lie group bundle.

If we have the right multiplication of b& KX for k= KX, we define

a right multiplication R, for u=[(’, k)] by
Ry(w) =u-b=1[(d'.kD)].

S=ExXxX is a fibre subbundle of ¢ and the “right multiplication”
EX TN —E of every element of I on & is well defined.

Suppose we have a local Lie group homomorphism /z: X — K satisfying
the following two conditions:

(i)  hle=id.

(i) If we have h (k) =h (k) for k, ke X, then there exists b K

such that %,= k5.

We call h a canonical homomorphism of K onto K. Obviously we
have h(6) =e. Let h,: E=(EXX)/K—E=(EXK)/K be the fibre
map induced by the map idXh: EX X —>EXK.

Lemma 2.1. If vw-bc¢& is defined for uc & and b= X, then we

have

ho(u-b) =he(w) -h(b).

Poof. Let (u',k) € EX X be a representative of z. It follows that
he(u-b) =he (L', k)]-b)
=he[ (. kb)]
=[@' h(kD))]
=[@ h(R)] k()
=he W) -h(). g.e.d.

Let H be a vector subbundle of the tangent bundle 7°(¢) of the
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local Lie group bundle &, satisfying the following conditions:
(i) H,NKX,={0} for every uc& and K, the tangent space to
the fibre through u.
(ii) I u-b€& is defined for €& and b= K, then we have
H,,=Ry (H,).

(iii) For every x&€M and ucp '(x), the vector subspace p..(F,)
of the tangent space T, (M) at x does not depend on the choice of u.
We call H a partial connection in £. By the condition (iii)), we set
F,=p..(H,) for ucsp™(x). We obtain a subbundle structure of
F = {F.}.cy in the tangent bundle 7T'(M) from the subbundle structure
of HCT(£). F is denoted also by p..(H). If the partial connection
H satisfies the following condition, we call H a connection in the local
Lie group bundle &:

(iv) For every u&, we have
T.,(8)=H®K,.

It is noted that (iv) implies (i) and (ii).

Theorem 2.2. If H is a partial connection in &, then there
exists a unique partial connection H’' in the principal K-bundle E,

assoctated with &, such that
he«(H,) = ng .

If H is a connection in £, then H' is a connection in E.

Proof. For every ue &, we define H;zew) =he.(H,). Suppose
he (W) =he(v) for u=[(a',9)] and v=[(v',%k)]. Since we have pz (')
=pz(v’), one can assume that " =v’. Because of the equality [ (#',2(g)) ]
=[(@',h(k))], we have h(g) =h(k). By the property (ii) of A, there
exists b€ K such that k=g-b. It follows that b&Ker (k) and

v=[@, B]=[W,90)]=[,9]-b
=u-b.

By Lemma 2.1, we have h,=h,oR, and hence

her(Hy) =heoo(Hya)
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=heoRy (H,)
=h.(H,).

Therefore, if we fix u' =h, (&) (ueé’), then H,. =h, (H, does not
depend on the choice of .

Since we have
E=(EXK)/KC (ExX)/K=&
and A.lp=1id,
H=hg(H,)

is defined for every «'€E. By Lemma 2.1, it follows that for every
ke K,

H‘:l/-lc =he(Hyox)
=Rh(lc)" Oh,gx (H,y)
ZRk# (H:,/) .

This is the condition (ii) of partial connection {for the family of vector
subspaces H' = {H,.} ,.cz
For every x&M and u«' €pz'(x), we have

b (Hy) = pa-(he (Hy))
= pes (Hu') .

Therefore the condition (iii) of the partial connection for H implies that
for H'.

Since we have
Hy N Ko = {0},
Hur= (Dol ry(e)) 7 (0)
for every «' € E, we obtain

dim (H,,) >=>dim (H.)
=dim (- (H3))
= (dim (p¢ (Hu))
=dim (Hy.),
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dim (H,.) =dim (pgz (Hy))
and therefore
H, NK, = {0},

which shows the condition (i) of partial connection for H’.

Let dim (H,) be . A local r-frame field for H induces that for H’
and hence H’ is a subbundle of 7°(E). Thus the first part of our
theorem is proved.

The condition (iv) of connection for H implies that for H’ and we

obtain the second part. q.e.d.

§ 3. Foliated Local Lie Group Bundles and Connections

Let & be the local Lie group bundle over a manifold M with fibre
X and structure group K stated in the preceding section. A partial con-
nection H in & is called flat, if the subbundle HC T (€) is involutive.
A local Lie group bundle & is called foliated, if £ is equipped with a
flat partial connection. This definition is of course valid for usual
principal Lie group bundles. Let E be the principal K-bundle associated
with € and H’ the partial connection in E which is induced by the

canonical homomorphism A from H (Theorem 2. 2).

Lemma 3.1. If a partial connection H in &£ is fat, then the

partial connection H' in E is also flat.

Proof. Since the differential map A, preserves commutator operators
of vector fields, the subbundle H' C 7' (E) is involutive if the subbundle
HcT(E) is involutive. q.e.d.

Let & be foliated by the flat partial connection H. Integral sub-
manifolds of the involutive subbundle HC T (€) define a foliation on &
which we denote by .. Since the differential map p,. preserves commu-
tator operators of vector fields, the vector subbundle F=p..(H) CT (A])

is also involutive and defines a foliation on M which we denote by &.
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We call &, a lift of §. If a local right multiplication of an element
of X is defined, then it preserves the foliation ,. Every leaf [ . of
%, is (generally) a “partial covering space” of a leal of & under the
projection p,. Conversely, if a foliation ¢, having properties ol lift of
a foliation & on M is given, then & is foliated through the flat partial
connection defined by the vector subbundle HC T (£) which is tangent
to &%,. In this situation, we call &, a foliated local Lie group bundle
over a foliated manifold (M, F) and denote it by & (M, p., K,D.).

Corollary 3.2. Let h: X—K be a canonical homomorphism. 1If
the local Lie group bundle £ with fibre K and structure group K is
Sfoliated over a foliated manifold (M, F), then the principal K-bundle
E associated with & has the foliated structure E(M, pgy, K, %) over
(M, G, induced by .

Proof. Let H be the flat partial connection of the foliated structure
of £&. By Lemma 3.1, the partial connection H’ in E determined by FH
is flat. Since we have pp (H') =F, H' defines a lift foliation &5 of <.

q.e.d.

Let 4 be a connection in the local Lie group bundle &. K is
called adapted 1o a partial connection H in &, if we have H,C ¥, for
every uc&. Y is called transverse to the foliation &, defined by a
flat partial connection H in &, if 4 is adapted to H. Let QU C K be
an open neighborhood of e. We note that ] is again a local Lie group.
Let & be a local Lie group bundle over a manifold N with fibre ] and
Ve EE an injective fibre map, that is a fibre map which embeds every
fibre of & into a fibre of &€ and is equivariant with respect to the local

right actions of elements in K. For every ueé\, we set
ﬁu:fﬂzl(‘%ﬂu)) mTu(g)'
It is easy to see that the family of vector subspaces,

defines a connection 4 in £. We call Y a connection induced by |
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Sfrom Y and denote it also by ﬁ=f*ﬂ(.

Let 4 be a connection in & (M, p., K,F.) which is transverse to
%.. If for every point of M, there is its neighborhood U for local
submersion ¢: U—B of 4 and a subbundle R of £|; having some open
neighborhood of ¢ in X, as fibre, such that in R, 4 is induced by an
injective fibre map f covering ¢ from a connection in a local Lie group
bundle over B with fibre X, then we call projectable. Let H be
the flat partial connection defined by 4,. For every uc R, we have
H,=%er (fylr,e»). So Hlg is adapted to Hlg and f is a local submer-

sion of .

Lemma 3.3. Let H be a partial connection in the local Lie
group bundle & with fibre K and structure group K, and H a con-
nection in &. Let E be the principal K-bundle associated with &.
Let H' be the partial connection in E induced by a canonical homo-
morphism h: X—K from H and H’ the connection in E induced by
h from Y (Theorem 2.2). If H is adapted to H, then I’ is also
adapted to H'.

Proof. Let h,: E—E be the fibre map induced by the canonical
homomorphism 4. Since for every u=& we have H,C X, it follows

that for every #' € E

Héfzhg*(Hu/)Chg*(j[u') =g§[;t. q-e-d.

Theorem 3.4. Let E=E (M, p., K,F.:) be a foliated local Lie
group bundle over a foliated manifold (M, F) and let E=E (M, pz, K,
g be the foliated principal K-bundle over (M, F) induced by a
canonical homomorphism h: X—K from & (M, p., X, %) in the princi-
pal K-bundle E associated with £ (Corollary 3.2). If a connection
H in & is transverse to F,, then the connection ¥’ in E induced
Sfrom Y is transverse to Sz Moreover, if a transverse connection Y
in &E(M, pe, X,5.) is projectable, then the transverse connection 9’
in E(M, pg, K, S5) induced from K is also projectable.

Proof. The first part is a direct consequence of Lemma 3.3. We
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prove the second part in the following. Projectability of transverse con-
nection in & (M, p,, K,F.) is a local property and hence one can assume

without loss of generality that
(i) M=R'=R"‘XR' 9 ={R" ‘X {a}lacs R%},

(ii) & is a trivial bundle R*X X with the natural projection pg:
R"X X—R",
(i) there exists an open neighborhood U C K of e, such that

QA c KNI and there exists a map 7: R"=R"?X R*—>Q], such that for
every a€ R® we have 7(0,a) =e= QU and

Leowi={(zx,a,7(x,a)k) xR} (acsR, k),
Gelgna={Ler NR*"X U jae R, ke U }.

We define an injective fibre map (actually a local isomorphism) @: R"™?
XRIXU->R"IXRXK by O(x,a,k)=(x.a,1(x a) k). OWLeax
N(R1x R*Xx q])) is an open set of R""*X {(a, k)}. Similarly we define a
K-bundle map (actually an isomorphism) @': R" *X RIX K—>R" *X R*X K
by @'(x,a, k)= (x, a, h(r(x,a)) k). Setting L% .= {(x,a, h (7 (x,a))k) |z
ER" %} (aeR% kEK), we have Fz={L%z .slaE R, k= K} and @' (L% .01)
=R"'X {(a,k)}.

Let £ be the trivial bundle R?X X with the natural projection
pr: R*X K—RY. Let fi R"'X (R*XX)—>R*X X be the natural pro-
jection defined by f(x,a, k) = (a, k). Since the transverse connection 4
in & with respect to &, is projectable, (replacing Q[ by a smaller one
if necessary) one can assume that the connection @y = (07 * (K| gaxar)
in O@(R"X Q) is induced by the injective fibre map f: R"X U =R""?
X (R*X Q) —>RIX K=& from a connection 4 in . Therefore we

have
Oy (K zrarinay) =Fa' (H o) N T (R*XU)
=T,(R" Y XK o .
The fibre maps h,: R*"X X—>R"X K and hz: RIX H{—>R*X K are
given by h.(x,a, k) = (z,a,h(k)) and hz(a, k) = (a, h(E)) respectively.

Let & be the Lie algebra homomorphism of h. Since we have h o0

=@’ oh,, it follows that
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[N
[\
~

% (K zaynizom) = 0o he (H a0z an)
=00y (K zar0z07)
=he (f 5 Hwo) NT a0 (R*> AU))
= (id X id X B) (T2 (R™) X H (a.0))
=T, (R X (idXA)H 0,0
=T (R X hz-(H )
=T, (R X" (a0
= fRH @) NT g0 (R*X K).

The maps @ and f are compatible with the right multiplication of every
element of K on R*X K and so the last formula implies projectability
of the transverse connection J’ in R"X K with respect to the foliation

Gp={L%.rla= R, k= K}. q.e.d.

Let G be a Lie group and KCG a closed subgroup of G. A foliated
K-bundle E=E(M,p§, K, %%) over foliated manifold (M, #) induces
uniquely the foliated G-bundle structure E (M, pz, G, Fz) in the principal
G-bundle EzExK G associated with the K-bundle E, by the right multi-
plication of an element of G. A transverse connection in E (M, pz, K, %3
also yields naturally a unique transverse connection in E (M, pg G, Gg)
by the differential map of the right multiplication of an element of G.
We close this section by the following Lemma which is proved in a

similar way to Theorem 3.4 and easier than it.

Lemma 3.5. Let Y be the transverse connection in E(M, pp, G, Fx)
which is determined by a transverse connection 9 in E (M, pp, K, F3).

IF I s projectable, then H is also projectable in E (M, pg, G, Fx).

Proof. Projectability of a transverse connection in £ =E (AL, pgz, K,
%) is a local property and hence, as in the proof of Theorem 3.4, one
can assume that

(i) M=R'=R"*XR! G ={R"*X{a}lasR%,

(i1) E is a trivial bundle R"XK with the natural projection
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ps: R"X K—R",
(iii) there exists a map 7: R"=R" "X R?—>K such that 7(0,a)
=ec KCG (the unit element of G) for every ac€ RY,
L o,={(.a,7(x,a)g) lxreR%
and
Gp={Lg..,lacs R, ke K}.

We define a K-bundle map 0: E—E by 0(x,a k) = (z,a,7(x, a) k).
Since we have @ (Lg o) =R" "X {(a, k)}, (i) is reduced to

(i) Fa={R"'X {(a, k) }|ac R, ke K},

Let E be a trivial bundle R*x K with the projection pg: R X K—R"
Because of the condition of theorem, one can assume that the connection
9 in E is induced from a connection JI in E, by the submersion of g,
FiE=R"XK=R" X (R*xK) —E =R"x K which maps (z,a, k) 1o (a, k)
and gives a K-bundle map over the submersion R"—>R? of the foliation
. It follows that

Hoa =T (H a) NT ooy (R* X< K)
=T (R X T 0y .

We have immediately E=EX x G=R"XG and EXx G=R'XG de-
noted by E. Let i: E—~E and i: E—E be the natural inclusion maps.
By (iii"), one obtains Y= {R" X {(a,9)}lac R, g=G}. The sub-
mersion of Fy is the map f: E=R"XG=R"'X (R*XG) —»E=R*XG
which is defined by f(x,a,¢) = (a,g) and gives a G-bundle map over
the submersion R*—R? of the foliation &. Let J{ denote the connection
in E determined by i*jf through the differential map of right multi-
plication of g&G in E.

Let ¢ denote the natural inclusion map fC¢q of Lie algebras of K

and G. By the assumption on J{, we have
Hnwo=ix(Heao)
=iy (P (H 0,0) NT (0,0 (R X K))
= (idXid X ¢) (T3 (R X K (a,0))
=T (R % (idX ) I 40
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=T, (R Xi4(H a0)
=T (R X H a0
=i H w0) N T (o0, (R" X G).

Since f is compatible with the right multiplication of every element of
G on R"XG, the last formula implies projectability of the transverse con-

nection 4 in R*XG with respect to the foliation %y q.e.d.

§ 4. Locally Homogeneous Foliated Bundles

At beginning of this section, we examine the canonical homomorphism
h of a local Lie group onto its subgroup, which is appeared in the
previous sections. Let L be a Lie group and KC L a compact connected
Lie subgroup. Let [ and f be Lie algebras of L and K respectively.
Suppose there exists a Lie subalgebra ¢ C[ such that

[=t@P¢ (direct sum of vector spaces)

and
[f,8]Cd.
Let C and D be small open balls around 0 in ¢, such that CD>D. We

set € =exp(C) and 9 =exp (D), and choose D so small that 9-PCZ.
It is noted that D=9~ We set

K=K -9D=1{kdlkeK, d= D}.

Since K is an open set in L and hence it is a local Lie group containing
K. An obvious left multiplication KX K—XK of every element of K on
K is defined. If we take a sufficiently small open neighborhood K, of
e in K and a sufficiently small open neighborhood 4’ of e in &), then
we have (K,-9")*C K. We set N=K, 9D’ and X=K-9D’. Then 7
and KX are open sets in J and hence they are local Lie groups. More-
over, we have KC X and a right multiplication X X J1— X of every

element of 91 on X is immediately defined.

Lemma 4.1. One can find a local Lie group homomorphism

h: X—K satisfying the following conditions:
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(1)  hle=id.

() If we have h(k) =h(k) for k, k=X, then there exists
be X such that k,=kb.

Therefore, h is a canonical homomorphism of K onto K.

Proof. Since K is a closed subgroup of L, one can assume that
KN® ={e} and hence every element k=K is expressed uniquely as
k=gd for g K and d=9). Therefore a map h: X—K is defined by

h(gd) =g,

and % satisfies obviously the condition (i). Suppose A (k) =h(k,) [or
kokhe XK. k (i=1,2) is uniquely expressed as k;=g.d; for g;€ K
and d;€49)’. Then we have g,=h (k) =h (k) =¢,. One can assume that
without loss of generality that 9’ = (9)’) "' and hence d;"'d, e (D")*C K

which we denote by 4. Therefore, we obtain
ky= g,y = g,d\d dy = g,dib
=k,

which shows the condition (ii).

We take a small open ball C’ around 0 in ¢ such that C'CC and
€ - &' CF for ' =exp(C’). If D and hence & is sufficiently small,
then we have 9 C ¥’, and for any k€K and d=9) there exists an
element d’€ %’ such that dk=Fkd’ by the condition [f, ] C¢ and com-

pactness of K. It follows therefore that 4 is a homomorphism. q.e.d.

Now, we review briefly the notions ol homogeneous and locally homo-
geneous G-foliations by F. W. Kamber and Ph. Tondeur [4]. Let & be
a codimension ¢ foliation on a manifold A and V(&) the transverse
vector bundle (normal bundle) of <. The Bott’s connection [1] in
V(%) defines a flat partial connection in the frame bundle P(V (%))
of V(<) and hence the principal GL(g; R)-bundle P(V(Y)) has a
canonical foliated bundle structure P(V(%))=PV (M, p, GL(q; R), Try).
Let G be a closed subgroup of GL(g; R). If there exists a G-reduction
E of P(V(4)), such that the canonical foliated bundle structure on
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P(V(9)) arises from a foliated bundle structure E(M,p, G, %,), then
& is called a G-foliation. It is noted that

P(V(F)) =EXsGL(q; R),

and the requirement in the definition of G-foliation is that the canonical lift
foliation $»y on P(V(¥)) is the GL(g; R)-equivariant foliation which
is given by the G-equivariant foliation ¢ of the foliated bundle structure
on E. Both foliations $py on P(V(¥)) and Yz on E project onto the
given foliation & on M.

Let G be a Lie group and GCG a Lie subgroup. The foliation of
G by the (left) cosets of G defines a G-foliation with trivial transverse
vector bundle V,; The G-reduction E of the frame bundle of Vjin this
case is the trivial G-bundle GXG on G. The formula

@ 9-9'=@y. 99

for (§,9) €EGXG and ¢’ €G defines the diagonal right action of G on
G XG. The G-orbits of this free action define a foliation on G XG,
which under the projection G X G—G maps onto the left coset foliation of
G. The vector bundle Vj is associated with the trivial G-bundle G X G

via the adjoint action of G on the quotient [/g of the Lie algebras [ and

g of the Lie groups G and G respectively, that is,
Ve=EXql/qg.

The Bott’s connection in V; is induced from the foliated structure by
the G-orbits on G XG.

Let KXCG be a subgroup which is closed in G. The left coset
foliation of G by G induced a G-Aoliation & on the homogeneous space
G/K, which is called a homogeneous foliation. The canonical foliated
bundle structure in G XG given by G-orbits of the diagonal right action
is K-equivariant and passes to the quotient situation by K. The trans-
verse vector bundle of the foliation & is associated with the principal

G-bundle
E=GxxG—-G/K.

(See, e.g., [2].) The canonical foliated bundle structure on E is denoted
by E(G/K,p,G,%5). We note that the homogeneous G-foliation &F is
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G-invariant.

Let E be the principal G-bundle associated with the principal G-
bundle E. E has the canonical foliated bundle structure E (G/K, 5, G, ¥z)
over (G/K, &) which arises from E(G/K, p,G,Fz). We try to find a
transverse projectable connection in E(G/K, .G, ¥g).

Lemma 4. 2. The foliated G-bundle E=E (G/K, p.G.95) has a

transverse projectable connection.

Proof. Since E is the principal G-bundle associated with the G-bundle

E, we have
E=Ex,G

= (é X K G) X G C_

Z—G— X K G— .
The diagonal right G-action on G XG induces a foliated bundle structure
E(G/K, p,G,%5) over the trivial one leaf foliation of G/K. The tangent
subbundle T(Fg) for g in the tangent bundle 7(E) is invariant under
the diagonal right G-action. By denoting the tangent bundle along the

fibre of p:E—G/K by ¢(E), we have G-invariant splitting of the
vector bundle T(E),

T(E) =T (z) DL(E),

which defines a G-invariant connection @ in E. Since %5 is the (right)
G-orbit foliation, every leaf of ¥z is contained in a leaf of &z and hence
 is a transverse connection in the foliated principal G-bundle E (G/A.
2,G, 9% over the foliated manifold (G/K, F). 0 is obviously G-invariant
and therefore it is a transverse projectable connection in E (G/K. 5, G, ¥5).

g.e.d.
Using the above result, we obtain a transverse projectable connection
with respect to some foliated G-bundle structure on E, which is stated

in the main theorem.

Proof of Theorem 1.1. Let K be the local Lie group which is
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given for the Lie group G=LDK at the beginning of this section. By
the assumptions for the subalgebra ¢C( and Lemma 4.1, we have the
canonical homomorphism A: X—K. Let £CE be the local Lie group
bundle which has K as fibre and is associated with the quotient K-bundle
$:G—-G/K. The foliated bundle structure E(G/K, 5,G, %5 in E
induces a foliated bundle structure & (G/K,p., K,F:) in & over the
foliated manifold (G/K, &) and the transverse projectable connection 6 of
Lemma 4. 2 induces a transverse projectable connection @, in the foliated
local Lie group bundle & (G/K, pe, K, %.).

By applying Theorem 3.4 to € (G/K, ps, K, %.) and the canonical
homomorphism #h: —K, we observe that the principal K-bundle 5:
G —G/K has a foliated bundle structure G (G/K, %, K, F5) over (G/K, F)
and 6, determines a transverse projectable connection § with respect to
this foliated bundle structure. The lift foliation 7 is extended naturally
to a lift foliation & 5 on the extended G-bundle E=G X G of 3:G—>G/K
and 0 defines a transverse projectable connection o in the foliated G-bundle
EWG/K,p,G, §E) by applying Lemma 3. 5 to E(M 28, K, 3 =G (G/K,
b, K,9%) and 6= q.e.d.

Let 'CG be a discrete subgroup operating properly discontinuously
and without fixed point on G/K. The G-invariant homogeneous G-folia-
tion & on G/K passes to a GHfoliation &’ on the double coset manifold
I'\G/K which is called a locally homogeneous foliation (cf. [4]). The
transverse vector bundle V(¢4’) of the foliation ¢’ is associated with the
foliated G-bundle

P E =(I\G) X xG->I\G/K.

(See, e.g., [2].) The lift foliation Gy of G and the transverse projectable
connection @ of Theorem 1.1 passes to the lift foliation G5 of F and
the transverse projectable connection @’ with respect to g,; respectively.

Therefore we have the following result.

Corollary 4.3. Let G, G and K be the Lie groups and the Lie
subgroups of Theorem 1.1. Moreover, let I'CG be a discrete subgroup
operaling properly discontinuously and without fixed points on G/K
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so that they defines a locally homogeneous G-foliation 4’ on the
manifold I'\G/K. Then the principal G-bundle p’: E'—>M=I\G/K
has a transverse projectable conneciion with respect to some lift
Foliation Fy of F.

In conclusion, one obtains the Bott’s strong vanishing theorem for

characteristic classes of the locally homogeneous G-oliation 9.

Theorem 4.4. Let G be a Lie group and KCG a compact
connected Lie subgroup. Let | and f be Lie algebras of G and K
respectively. Suppose therc exists a subalgebra ¢ [ such that

(=tPP and [f,¢] 0.

Let GCG be a Lie subgroup containing K and I'CG a discrete sub-
group operating properly discontinuously and without fixed points on
G/K so that they define a locally homogeneous G-foliation G’ on the
manifold M=I'\G/K. Let q be the codimension of ¥ and V(F')

the transverse vector bundle of &'. Then we have
Pont*(V(4")) =0, k>q,

where Pont* denotes the Pontryagin subgrowp in the de Rham coho-

mology group HEp (M).

Proof. Since the vector bundle V(") is associated with the {oliated
G-bundle p': E' = (I'\G) X x G— M, the transverse projectable connection
' in the foliated bundle E’ (][ p', G, gE) of Corollary 4.3 (actually
the transverse projectable connection §’ in 7'\G with respect to the re-
striction g]»\gzgﬂll(,v@) defines a {ransverse projectable connection F in
V(4'). Let = (2;) be the curvature form of the connection V. If fis
a GL(g; R)-invariant polynomial of degree r on the Lie algebra gl(g; R)
of GL(g; R), then f(£) is a closed 2/~form and the de Rham cohomology
class [/(£)] of f(£) is by definition an element of Pont* (V($’)). The
curvature form £ is locally a pull-back of a curvature form of a connection

on a ¢ dimensional manifold and hence we have

f(82) =0 2r=k>q. q.e.d.
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Remark. The condition of compactness for the Lie subgroup KCG
in Theorem 1.1 and this section is used to obtain a canonical homomor-
phism 74 from a local Lie subgroup K CG containing K onto K. Thus
if the existence of 4 is assumed, then the compactness of K is weakened
to the closedness. For instance, if G is a semidirect product of closed
subgroups K and @ which have Lie algebras f and ¢ respectively, then
the results on (locally) homogeneous G-foliations in Theorems 1.1 and
4. 4 still hold good.

Example. The Lie group L(=G) and its subgroups in this section
can be obtained, for instance, from Lie groups which has the real semi-

simple graded Lie algebra

QZZQP

—kSp=sk

(see, e.g., [8] and [6]) as follows. Let f’ be a subalgebra of g which
generates a maximal compact subgroup in the adjoint group of g. Let m’
be the complementary subalgebra for f’ in the Iwasawa’s decomposition of
g and then we have g=f'@m’. Let L denote the Lie group determined
by the Lie subalgebra

[=tddCgq,
where f=f{"Ng, and g/):ls;qu. Then f and ¢ are subalgebras of [
satisfying the condition
[f,8]1Co.
Let ¢CI be a subalgebra such that
$Of.

We denote by K, GCG, the connected Lie subgroups defined by f, ¢
respectively. The subgroup K and G of the Lie group G satisfy the

conditions in Theorems 1.1 and 4. 4.
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