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Homogenization in Stochastic Differential Geometry?
By

Mark A. PINSKY*

§1. Introduction

It is well known that a diffusion process on Euclidean space can be
rigorously considered as the limit of a sequence of transport processes.
This idea, which dates at least to Rayleigh’s problem of random flight
[3] has now received a general treatment by modern probabilistic methods
[2,10]. In addition, we have shown that a suitable transport approxi-
mation remains valid for the Brownian motion of any complete Rieman-
nian manifold [11].

In another direction several authors [1,4,5,6,7,8] have considered
“stochastic parallel displacement”, i.e. parallel displacement of vectors
along Brownian motion curves in a manifold. The purpose of this paper
is to show that the stochastic parallel displacement can be rigorously
considered as the limit of parallel displacement along the paths of a
transport process. The transport approximation introduces an extra
velocity variable which disappears in the limit, hence the term /&onio-
genization.

In addition to its elementary geometric appeal, our approach has the
advantage of producing the following coordinate-free definition of the

infinitesimal operator of the stochastic parallel displacement:
(L. D MNf=PZ .

A is a second-order degenerate elliptic operator on the bundle of k-frames

of the given manifold. Z is a horizontal vector field on the bundle of
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(k+1) frames and P is the operator which averages out the extra
velocity variable. In case £=0, our formula reduces to a multiple of
the Laplace-Beltrami operator on functions [11]. In case k=1, our co-
ordinate formula for ./ agrees with previously obtained formula [1] for
stochastic parallel displacement. In case £=#n and we work with O (M),
the bundle of orthonormal frames, ./ is a multiple of the horizontal
Laplacian [8] on O(M). Formula (1.1) allows a rapid proof that this

process preserves the inner product of tangent vectors.

§ 2a. Transport Process on the Frame Bundle

Let M be a complete Riemannian manifold, 7% " (M) the bundle

of frames over M ;
T(k—!) (A[) = {(_r’ é’ Ny oty Wk) . .EE]\/j, gEMI’ 7715]\[19 ) WkEA/[ft}'

Here 0<%, 7 is the dimension of Ad, and M, is the tangent space at x.
Let 7., be the geodesic on M with 7(0) =x,7(0) =& Let 7; (¢) =7 (¢; 7;)
be the parallel displacement of the tangent vector 7; along 7. The

canonical horizontal vector field Z is defined by
(2 1) Zf(xy gy 771’ T Wk) =7j7f(7'(t) > T(t) i Wl (t) s T ﬁk (t)) ILrO .
The projection operator P is defined by

2.2) PGt 1) = [ £ 8, e, 10) o)

where #,(d€) is the unique rotationally invariant probability measure on

the unit sphere of the tangent space M,. Note that

(2.3) Pr=f  feC(T®))
(2. 4) PZf=0  feC(T™® (A]))

where f is independent of &.
Let {e,};° be a sequence of independent random variables on a prob-

ability space £; with the common exponential distribution
Prob{e, >t} =e™" n=1,2,---,1>>0,

and let t,=e;+---+e¢, Define a sequence of T **V(M)-valued random
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variables (™, &™, 9™, -+, 7™) n=0,1,2, ---, as follows:
O=g, EO_g Oy O
If (2™, 9™ ... () have been defined, we let

1) = .
x("+]):Tz‘"),E(") (en+1), 77? )=77(en+1; '”(jn)), J :13 Tty k

amn D

Finally Z is distributed according to /g «+» (d¥), independent of {x
e Y. We let

0

>

2 (L) =7z o (t—Tp) (Ta=t<tw1)
§(2) =Fam s (E—1T45) (Tat<Tny)
7;(@) =T(E—Ta; 1) A=j<k, . =t<Tpy1)
Tof (z, &M, 1) =fG@®,7®, 1@, -, 7)), [feC,

R;f (.T, 5’ 771, Tty 771:) = \Lme—“T;f(.Z‘, 5’ 771’ ) ﬂk)dt s fEC ]
th(xy 5’ 771’ Ty 77k) :Ef<x(t)7 S(t>, nl(t)’ 577k(t>)9 fEC ]
Rif (2,6, 1) = [ e Tof (o, 4,1, )z, fEC,

where C is the space of differentiable {unctions on 7% " (M) which

vanish at infinity.

Lemma 1. R} maps C into C and (A—2)Rf=/, feC.
Proof. The geodesic flow and parallel displacement depend smooth-

ly on initial conditions, hence the first statement. The second statement

is obtained by Laplace transform.

Lemma 2. R, /=R} [+ R.,PRS, feC.

Proof. We use the renewal method, applied to .. Thus

Rxf=E{£”+ Lf}e—“ﬂx(z),s<z>,m<z>,--~,m<z))dz.

The frst term is
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E j Tacene™ £ (2 (@), £@), 1 (2), -+, 1e(5))dt

_ j TeTletE(r (@), 1), T(2), -, T (D) dt

:qu-xf .

The second term is

E j TemHf(x(2), E(8), mE), -+, M () dt
=EK ﬁmf“““)f(x(frFS), E(ti+5), o, N (T1+5))ds
=E{ e~ tul j;we‘“f(:c(z‘,—}-s), E(ti+s), -, ﬂk(fl—i—s))ds}

= BB | [Te s af), o 155 1) 7, 4

=E{e "R f (D, §D, 7, .-, 9P }}
=E{e—lr1 (Psz) (‘r(l)a 5(0)’ W£I)> Ty 7719))}

- f e (PR (1 @), 7 (), T (8), -, T (D)) e dlt
=R(1)+APR1f-

Lemma 3. (A—Z—P+DR,f=f, feC.

Proof. Applying (I4+2—Z2) to Lemma 2, we have

which was to be proved.

1
Lemma 4. T.f—f= j (Z+P—DT.fds, fecC.
0

Proof. The Laplace transform of the left-hand side is R,f—27f

while the right-hand side transforms into

ﬁ”e_u ﬁt(Z—i—P—I)T,fds



HOMOGENIZATION IN STOCHASTIC DIFFERENTIAL GEOMETRY 239

— re—“(z+P—1) T, fds
0
AN Z+P-DR.f.

Using Lemma 3, we have proved the result by uniqueness of Laplace
transforms.

We now observe that we may interchange the order of the two oper-
ators appearing in the right-hand side of Lemma 4. Indeed, from the

semi-group property of 7', it follows that lim s™' {7, . f—T,f} =T,{lim

>0 §-0

sTYNT f—)}y=T . (Z+P—1)f, from Lemma 4_. Applying the fundamental

theorem of calculus gives the stated result.

$ 2b. Convergence to a Diffusion Process

Let >0 be a small parameter. If we replace Z by ¢Z in the con-

struction of the previous section, we obtain a process

Cx (@), 5@, m@), -, n(8).
Define

Tof (x, &7, oo, 1) =E{f Gz (2/€9), %6 (/") -, 1 (t/€")}

ele(x, 5’ 771, R 7716) = j;me_“(Eth) (.:C, E’ 771’ Ty 7716) dt .

It is readily verified that these correspond to the infinitesimal operator
¢ 'Z +e*(P—1I) in Lemma 4 above. We now introduce the infinitesi-

mal operator of stochastic parallel displacement on 7% (M),
A=PZ*%.

Using [5] it can be shown that [ generates a strongly continuous semi-
group of contraction operators on C(T®M). The resolvent operator is
defined by

W, /= (—PZ% .

Theorem 1. If geC(T™ (M), then

lim *R,g=W,g .
-0
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We follow the analytic method of Papanicolaou [9]. For this pur-
pose, let f&e C*(T® (M)) and let

fe=f+efi+ef
where

fi=2f, fi=2f—PZf.
Note that f}, /L& C(T* (M)) in general.

Lemma 5. [¢'Z+e¢*(P—1)]f.=PZ¥+eZf,, ¢>0.

Proof. Multiply out the six terms involved and collect like powers
of ¢&. The coefficient of ¢? is Pf—f=0, by (2.3). The coefficient of
et is Zf+ (P—Dfi=Zf+ (P—-1)Zf=Zf— Zf=0, by (2.4). The con-
stant term is Zf, +(P— D) fi=Z*f+(P— D) (Z*f— PZ*)f)=Z°f+ PZ’f— PZ*f
— Z*f+ PZ*f=PZ*. Finally the coefficient of ¢ is just Zf,.

Proof of the Theorem. We write Lemma 4, rescaled with ¢, in

terms of Laplace transforms. Thus
*Rife—1Ye=°R, (e Z+e*(P—D)f:.
Using Lemma 5 and collecting terms, we have
‘R,(AMf—PZf) =f+¢cF,+¢&F,
where
F,=fi—°R, fi—*R.Zf:
F,=f,—2 R, f:.

Now let Af—PZ=g, f=W,9. Letting ¢—0, we have proved that
lim *R,g=W,g, as required.
&0

We now justify the term ‘stochastic parallel displacement”. Let
X(t) be the diffusion process on T%® (M) governed by the differential
operator PZ:. Let N;= (7;,7;) be the inner product of a pair of tangent
vectors, 1<{i, j<<k. N, is a real valued function on 7% (M).

Theorem 2. N, (X () =N, (X)), 1<i, i<k, t=0.
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For the proof we first note the useful
Lemma 6. ZN;=0.

Proof. The classical parallel displacement preserves the inner prod-
uct of tangent vectors. Thus @;(®),7;()) = @:(0),7;(0)). Glancing
at (2.1) shows that ZN;=0.

Lemma 7. N;(X(2)) is a martingale.

Proof. It suffices to show that PZ?(N;) =0, which is immediate

{from Lemma 6.
Lemma 8. The increasing process of Ny (X (L)) is zero.

Proof. By the results of Taylor [12] {for example, it suffices to
show that PZ*(N3;) —2N;PZ* (N;;) =0. But this also follows immediately

from Lemma 6.

§ 3. Explicit Formulas in Local Coordinates

The operator PZ*? which occurs in the above limit theorem is called
the homogenized transport operator. It is an invariantly defined second
order differential operator on the frame bundle 7% (). In case k=0,
we have shown [11] that the homogenized transport operator is equal
to »~ ' times the Laplace-Beltrami operator of the Riemannian metric.
We now obtain an explicit local formula in case 2=1, ie. the tangent

bundle. For this purpose, we work with the bundle of 2-frames
TP (M) ={(x, ¢, 1) xe M, i€ M, n€ M,}.

Let 7(¢) be the geodesic with 7(0) =z, 7(0) =§. Let 7(¢) be the
parallel displacement of 7 along y. The canonical horizontal vector field

7 is defined by

3.1) Zf(z, &) =-jt—f<x ©, 60, 1(5) |ems .
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In a coordinate chart we can compute Z by the formula

0f k af k &% af
3.2 Zf(x =gt _preigs 2 i9J
( ) f( ) é, 7]) 6 0 Tws 5 65" jé 7 aﬂk

The projection operator P maps from C(T® (M)) to C(T(M)) by the
rule

3.3) PF(z8) = [ Sz 8028

where t, is the rotationally invariant probability measure on the unit
sphere of M,. Of particular relevance are the coordinate formulas [11].
(3. 4) P(§¢) =n"1g¥

where ¢¥ is the inverse of the metric tensor. The homogenized trans-

port operator can be computed according to the following

Proposition 9. In a coordinate chart we have the formula
(3' 5) Psz': n_lg” {fzi.tl + rfjr?mvjvmf*q"ﬂﬂ - Zr?mﬂmfzin"
—Tifu+ (T }‘m')?m""rfjr?ﬁj =0 1™) fan}

where f=f(x,7) is a C* function.

Proof. This is a straightforward computation, using (3.1), (3.2),
(3.4). Except for the sign convention of I}, this agrees with the for-
mulas of [1,4].

We now consider the case k=, specializing to O(M) the bundle
of orthonormal frames. Let (e, ‘-, ¢,) be an orthonormal basis of M,.
Let 75(¢) be the geodesic with 75(0) =z, 75(0) =e, Let e;(2) be the
parallel displacement of e; along 7, The horizontal vector field E,,
1<B<~n, is defined by

d
(3.6) Eﬁf=;§f(7'ﬂ(t), e15(2), -, €ng(2)) |imo .
The horizontal Laplacian is defined by

(3.7) dogn = ﬂé:l ELf.
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Pl‘oposition 10. AO(M)f:: 71PszIo(M; 5 fE C(Tlc (M)) .

Proof. In any coordinate chart, we have

=i_ai__ tjaf I tjaf
(3.8 Zf=82 Iy 2" & oo

Assuming a normal chart centered at x, we have for f&C (T (M))

=g e et

a

0°f of
=gigt Sisa — T, 61 b

Using (3. 4)

4 0 f i Of ]
. PZZ = [ - _rz ida
@.9) f=n 0x'0x’ 1.4 ok

To compare with (3.7), we recall the coordinate form of (3.6) [5]:

6 1 i af
3.10 E.f= —ebell®
( ) of = eﬁa ;T €sCel iy 3 (eb)
where (2, -+, 2", e}, €3, --+, €*) is any coordinate chart on O(M). Assum-

ing a normal chart centered at x, we have

E4f= eﬂa {eﬂ af—eﬁ iri; of |

ozt 78 (er))
2 0
= efseﬁajéf ﬁQBEarij 10 (’i—)*

Summing on @ and using the orthonormality, we have

- ari 12
=P PET Y 719 (e

Sy g OF e Of

which agrees with (3.9) to within the factor n7%

Finally, we note that the orthonormal frame m= (z,e, -+, €;,) has
a unique stochastic parallel displacement along the Brownian motion path.
For this purpose, recall the Stratanovich equation [5] for horizontal
diffusion on O(M):

dm=3E, dw" .
=1
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Using the coordinate representation (3.10), we have

dzi=eb dw”
del= —ehelil’t; - dw?

= —‘eirfj‘dxi.

Thus, given the Brownian motion path {x(¢), 7=0}, the vector e, (¢) is

uniquely determined by solving a linmear system of stochastic differential

equations, Thus we have proved

Proposition 11. The mapping (x(t), e (2), -, e,(2)) —>x(t) is a

measure-preserving bijection from the path space of the horizontal

diffusion on O (M) to the path space of the Brownian motion on M.
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