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Homogenization in Stochastic Differential Geometry1'

By

Mark A. PlNSKY*

§ 1. lii trod 11 cli oii

It is well known that a diffusion process on Euclidean space can be

rigorously considered as the limit of a sequence of transport processes.

This idea, which dates at least to Rayleigh's problem of random flight

[3] has now received a general treatment by modern probabilistic methods

[2, 10]. In addition, we have shown that a suitable transport approxi-

mation remains valid for the Brownian motion of any complete Rieman-

nian manifold [11].

In another direction several authors [1, 4, 5, 6, 7, 8] have considered

"stochastic parallel displacement", i.e. parallel displacement of vectors

along Brownian motion curves in a manifold. The purpose of this paper

is to show that the stochastic parallel displacement can be rigorously

considered as the limit of parallel displacement along the paths of a

transport process. The transport approximation introduces an extra

velocity variable which disappears in the limit, hence the term homo-

genizatio7i.

In addition to its elementary geometric appeal, our approach has the

advantage of producing the following coordinate-free definition of the

infinitesimal operator of the stochastic parallel displacement:

( L i ) .4/-PZ2/-.

Jl is a second-order degenerate elliptic operator on the bundle of ^-frames

of the given manifold, Z is a horizontal vector field on the bundle of
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(k-\- 1) -frames and P is the operator which averages out the extra

velocity variable. In case k = Q, our formula reduces to a multiple of

the Laplace-Beltrami operator on functions [11]. In case & = 1, our co-

ordinate formula for Jl agrees with previously obtained formula [1] for

stochastic parallel displacement. In case k = n and we work with O(7W),

the bundle of orthonormal frames, Jl is a multiple of the horizontal

Laplacian [8] on O(Af). Formula (1.1) allows a rapid proof that this

process preserves the inner product of tangent vectors.

§ 2a. Transport Process on the Frame Bundle

Let M be a complete Riemannian manifold, T(&Tl)(.M) the bundle

of frames over M\

Here 0<I&, n is the dimension of M, and Mx is the tangent space at x.

Let Yx.t be the geodesic on M with f(0) =x, f (0) = f. Let ^,(*) = ?(*; %)

be the parallel displacement of the tangent vector %• along 7". The

canonical horizontal vector field Z is defined by

(2.1)

The projection operator P is defined by

(2.2)

where fj.x(d$) is the unique rotationally invariant probability measure on

the unit sphere of the tangent space Mx. Note that

(2.3) Pf=f

(2.4) PZf=0

where / is independent of f .

Let {^}T be a sequence of independent random variables on a prob-

ability space *0j with the common exponential distribution

Prob {<?„>*} =?-' ;i = l,2, " - , ^>0 ,

and let ru=^i-f ---- h en- Define a sequence of T(k"l) (M) -valued random
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variables (x(n\ ?(n), ?<n>, • • - , ̂ n)) w = 0, 1, 2, • - - , as follows:

.r<0)=o:, f(0) = f, ?J0) = ?i, "^i0) = V*.

If Or(n), ?(?7), ^n), ••- ,^ r j )) have been defined, we lei

Finally ^(TI !) is distributed according to /^(«+i) (W?) , independent of

•••,1??°}. We let

- rw)

= /(r(0,

f, %, • • - , 70 = f°
Jo

where C is the space of differentiate functions on T ( k ~ l ) (M) which

vanish at infinity.

Lemma 1. R\ maps C into C and (i-Z)2?5/=/, /eC.

Proof. The geodesic flow and parallel displacement depend smooth-

ly on initial conditions, hence the first statement. The second statement

is obtained by Laplace transform.

Lemma 2. RJ = ft>J+RL+lPRJ, feC.

Proof. We use the renewal method, applied to TI. Thus

R,f=E\ f r i + r
1 Jo JrJ

The first term is
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E r/(«<ri,e-"/(j:(0,?(
Jo

= fV^
Jo

The second term is

E

= £ fV'<''+VOr(ri + *),£(ri + 0 , - - ,7*(
Jo

-lr'£ f%-"/(a:(r1 + i ) > f ( r 1 + 5)>-,7 t(r1
Jo

-^E\ (">"/(*(*; *?»), • • - , ^(5; T?«) |rlfI Jo

Lemma 3. (i-Z-P + r)RJ=f, ff=C.

Proof. Applying (7+A — Z) to Lemma 2, we have

(I+i-Z)Rif=f+PRJ

which was to be proved.

Lemma 4. Ttf-f = £ (Z+ P- /) TJds , /e C .

Proof. The Laplace transform of the left-hand side is R^f—l~lf

while the right-hand side transforms into



HOMOGENIZATION IN STOCHASTIC DIFFERENTIAL GEOMETRY

Using Lemma 3, we have proved the result by uniqueness of Laplace

transforms.

We now observe that we may interchange the order of the two oper-

ators appearing in the right-hand side of Lemma 4. Indeed, from the

semi-group property of Tt, it follows that lim s~l{Tt ~sf— Ttf} = Tt{lim
S->0 S->0

s~1(Tsf-f^)}=Tt(Z-\-P-I)f, from Lemma 4. Applying the fundamental

theorem of calculus gives the stated result.

§ 2b. Convergence to a Diffusion Process

Let S^>0 be a small parameter. If we replace Z by sZ in the con-

struction of the previous section, we obtain a process

Define

= f
Jo

It is readily verified that these correspond to the infinitesimal operator

£~1Z 4-£~2(P — /) in Lemma 4 above. We now introduce the infinitesi-

mal operator of stochastic parallel displacement on T

Using [5] it can be shown that Jl generates a strongly continuous semi-

group of contraction operators on C(TCfc)M). The resolvent operator is

defined by

Theorem 1. If ge C(TM (M) ) , then
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We follow the analytic method of Papanicolaou [9]. For this pur-

pose, let /eC3(T(fc)(M)) and let

/. =/-t-s/i

where

Note that A/^ C(T(fc)(M)) in general.

Lemma 5. [e-'Z-f r2(P--/)]/e = PZ2/+ sZ/2 , £>0 .

Proof. Multiply out the six terms involved and collect like powers

of £. The coefficient of £~2 is P/-/=0, by (2.3). The coefficient of

£-2 is Z/+(P-/)/1 = Z/+(P-/)Z/=Z/-Z/=0, by (2.4). The con-

stant term is Z/1 + (P-l)/2- Zy+(P-I)(Z2/-PZ2/) = Z2f+PZ2f-PZ2f

-Z2f+PZ2f=PZ2f. Finally the coefficient of £ is just Z/2.

Proof of the Theorem. We write Lemma 4, rescalecl with £, in

terms of Laplace transforms. Thus

Using Lemma 5 and collecting terms, we have

*Ri (if-

where

Now let kf — PZ2f=g,f=W$. Letting s-»0, we have proved that

lim e7?;.g = W;gr, as required.

We now justify the term "stochastic parallel displacement". Let

X(f) be the diffusion process on T(fc) (M) governed by the differential

operator PZ2. Let Nij= (7fi9 %•) be the inner product of a pair of tangent

vectors, 1^7, J^/^. A^y is a real valued function on T(fc) (A/) .

Theorem 2. AT<, (X (0 ) = Ny (X (0) ) , l<ij<*k, ^
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For the proof we first note the useful

Lemma 60 ZNtJ = 0 .

Proof. The classical parallel displacement preserves the inner prod-

uct of tangent vectors. Thus (^ (£) , ^ (£)) = (jji (0) „ TJJ (0)) . Glancing

at (2.1) shows that ZNi}- = 0.

Lemma 7. N i J ( X ( l ' ) ) is a martingale.

Proof. It suffices to show that PZ2(.ZV?7) =0, which is immediate

from Lemma 6.

Lemma 8U The increasing process of Ntj(X(L)} is zero.

Proof. By the results of Taylor [12] for example, it suffices to

show that PZ2 (N*tJ) -2NiJPZz (A^) - 0. But this also follows immediately

from Lemma 6.

§ 3, Explicit Formulas in Local Coordinates

The operator PZ2 which occurs in the above limit theorem is called

the homogenized transport operator. It is an invariantly defined second

order differential operator on the frame bundle T(fc) (Af) . In case k = Q,

we have shown [11] that the homogenized transport operator is equal

to n~l times the Laplace-Bel trami operator of the Riemannian metric.

We now obtain an explicit local formula in case k= L? i.e. the tangent

bundle. For this purpose, we work with the bundle of 2-frames

T(2) (M) =

Let r ( t ) be the geodesic with /-(O) =x, f (0) = f . Let y ( t ) be the

parallel displacement of f] along r. The canonical horizontal vector field

Z is defined by

(3. 1) Zf(x, S, TI) = - - f ( x ( f ) , I (0, ? (0) U=o .
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In a coordinate chart we can compute Z by the formula

(3. 2) zf(x, s, ?) - - r ,w£ - JW

The projection operator P maps from C(TC2)(M)) to C(T(M)) by the

rule

(3.3) P/(*,£)= f f(x,S,
JHfj.

where /^. is the rotationally invariant probability measure on the unit

sphere of Mx. Of particular relevance are the coordinate formulas [11].

where gij is the inverse of the metric tensor. The homogenized trans-

port operator can be computed according to the following

Proposition 9. In a coordinate chart *we have the formula

(3. 5) pz2/= »-y {/„„ + nriu'TTjw - 2/7mir/w
- n/x! + en,/-;,?- + r^Hrf - /?«. «?-) /,.}

-where f=f(x, fj) is a C2 function.

Proof. This is a straightforward computation, using (3. 1) , (3. 2) ,

(3. 4) . Except for the sign convention of T"7^, this agrees with the for-

mulas of [1, 4] .

We now consider the case k = ?i, specializing to O(M) the bundle

of orthonormal frames. Let (el9 • • • , en) be an orthonormal basis of Mx.

Let TP(t) be the geodesic with 7>(0)=.r, j^(Q)=e0. Let ei&(t) be the

parallel displacement of <^ along 7" .̂ The horizontal vector field E$9

^, is defined by

(3. 6)
at

The horizontal Laplacian is defined by

(3.7)
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Proposition 10. Aoar>f=nPZff\0w, f^C(Tk(M)}.

Proof. In any coordinate chart, we have

(3. 8)

Assuming a normal chart centered at x, we have for /e C (T(fc) (M ) )

Using (3.4)

(3. 9)

To compare with (3. 7) , we recall the coordinate form of (3. 6) [5] :

(3.10,
where (x\ • • - , xn, e{, el, • • • , e£) is any coordinate chart on O(Af). Assum-

ing a normal chart centered at x, we have

Summing on 0 and using the orthonormality, we have

a ; t9^9^ 9 (^J)

which agrees with (3. 9) to within the factor n~l.

Finally, we note that the orthonormal frame m= (x, eiy • • • , en) has

a unique stochastic parallel displacement along the Brownian motion path.

For this purpose, recall the Stratanovich equation [5] for horizontal

diffusion on O (M ) :
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Using the coordinate representation (3. 10) , we have

dx* = e\ - dw13

Thus, given the Brownian motion path {x(t),t>0}, the vector ea(t) is

uniquely determined by solving a linear system of stochastic differential

equations. Thus we have proved

Proposition 11. The mapping (x (t) , e1 (t) , • • • , en (t) ) — >jc (f) is a

me a sure -pre serving bisection from the path space of the horizontal

diffusion on O(M) to the path space of the Brownian motion on M.
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