# Pursell-Shanks Type Theorem for Free G-Manifolds

By

Kazuhiko FUKUI\*

#### Introduction

Let M and N be connected paracompact  $C^{\infty}$ -manifolds and  $\mathfrak{X}(M)$  and  $\mathfrak{X}(N)$  the Lie algebras of all  $C^{\infty}$ -vector fields with compact support on M and N respectively. A well-known theorem of Pursell-Shanks [6] may be stated as follows.

**Theorem.** There exists a Lie algebra isomorphism  $\mathfrak{O}$  of  $\mathfrak{X}(M)$  onto  $\mathfrak{X}(N)$  if and only if there exists a  $C^{\infty}$ -diffeomorphism  $\varphi$  of M onto N such that  $\mathfrak{O} = d\varphi$ .

The above result still holds for Lie algebras of all infinitesimal automorphisms of several geometric structures on M and N. Indeed, Omori [3] proved the corresponding result in case of volume structures, symplectic structures, contact structures and fibering structures with compact fibers, and Koriyama [2] proved that this is still true for submanifolds regarding a submanifold M' as a geometric structure on M.

Our purpose of this paper is to show that the above result still holds for free G-manifolds under a certain condition.

More precisely, let G be a compact connected semi-simple Lie group and M and N be paracompact connected free G-manifolds without boundary. Let  $\mathfrak{X}_{G}(M)$  and  $\mathfrak{X}_{G}(N)$  be the Lie algebras of all G-invariant  $C^{\infty}$ -vector fields with compact support on M and N respectively. Then we obtain the following theorem.

Communicated by N. Shimada, March 28, 1980. Revised May 23, 1980.

<sup>\*</sup> Department of Mathematics, Kyoto Sangyo University, Kyoto 603, Japan.

**Theorem 3.2.** Suppose that the automorphism group of the Lie algebra of G is connected. Then  $\mathfrak{X}_{G}(M)$  is algebraically isomorphic to  $\mathfrak{X}_{G}(N)$  if and only if M is G-equivariantly diffeomorphic to N.

If  $Aut(\mathfrak{g})$  is not connected, our theorem is no longer true (see § 4). Moreover if G is not semi-simple, our theorem does not hold (see § 5). The first part of the proof of our theorem is parallel to that of Pursell-Shanks. In the rest, we discuss equivalences of principal G-bundles.

All manifolds, actions and diffeomorphisms considered here, are differentiable of class  $C^{\infty}$ .

The author would like to express his gratitude to Professors M. Adachi and H. Imanishi for their helpful advices.

#### § 1. Preliminaries

Let M be a connected paracompact  $C^{\infty}$ -manifold and G a compact connected Lie group and  $\mu: G \times M \to M$   $C^{\infty}$ -free (left-)action. We denote by  $B_M$  the orbit space. In our case,  $B_M$  is a connected  $C^{\infty}$ -manifold.

Then we have the following theorem.

**Theorem 1.1** (Bredon [1]). The orbit map  $\pi: M \to B_M$  is the projection in a fiber bundle with fiber G and structure group G (acting by right translation on G). Conversely every principal G-bundle comes from such an action.

Thus, we remark that the notions of a principal G-bundle and of a free G-action are canonically equivalent.

If  $g \in G$ ,  $p \in M$ , we write  $g \cdot p$  to denote the result of letting g act on p. We shall also write g to denote the diffeomorphism  $p \rightarrow g \cdot p$ . An action of G on M induces an action of G on TM, the tangent bundle of M. If  $g \in G$ , we write Tg(v) for the result of acting on  $v \in TM$  by g. The resulting diffeomorphism of TM is  $Tg:TM \rightarrow TM$  and is just the tangent of  $g:M \rightarrow M$ .

**Definition 1.2.** A vector field v on M is called G-invariant

vector field (simply, G-vector field) if  $Tg \circ v = v \circ g$  for all  $g \in G$ . We denote by  $\mathfrak{X}_{G}(M)$  the Lie algebra of all  $C^{\infty}$ -G-vector fields with compact support. The following two lemmas are easily obtained.

**Lemma 1.3.** For any coordinate chart  $(U; (x_1, \dots, x_n))$  of  $B_M$  such that  $\pi$  is trivial on U, every  $v \in \mathfrak{X}_G(M)$  is described as follows:

$$v = \sum_{i=1}^{n} a_i(x_i, \dots, x_n) \frac{\partial}{\partial x_i} + \sum_{j=1}^{m} b_j(x_i, \dots, x_n) X_j$$
 on  $\pi^{-1}(U)$ ,

where  $a_i$  and  $b_j$   $(1 \le i \le n, 1 \le j \le m)$  are  $C^{\infty}$ -functions on U and  $\{X_1, \dots, X_m\}$  is a basis of the Lie algebra  $\mathfrak{g}$  of G.

**Lemma 1.4.** If  $v \in \mathfrak{X}_{\sigma}(M)$  satisfies  $d\pi(v)(\pi(p)) \neq 0$ , then there is a coordinate chart  $(U; (x_1, \dots, x_n))$  at  $\pi(p)$  such that

$$v = \frac{\partial}{\partial x_1} + \sum_{j=1}^m b_j(x_1, \dots, x_n) X_j$$
 on  $\pi^{-1}(U)$ .

## $\S$ 2. Characterization of Maximal Ideals of $\Re_G(M)$

By Lemma 1.3, we see that the natural mapping  $d\pi: \mathfrak{X}_{G}(M) \to \mathfrak{X}(B_{M})$  is a surjective homomorphism as Lie algebras, where  $\mathfrak{X}(B_{M})$  denotes the Lie algebra of  $C^{\infty}$ -vector fields on  $B_{M}$  with compact support. Let  $\mathfrak{a}(M)$  be its kernel. Note that  $\mathfrak{a}(M)$  is an ideal of  $\mathfrak{X}_{G}(M)$ .

**Lemma 2.1.** Suppose that m is an ideal of  $\mathfrak{X}_{\sigma}(M)$  such that for any point  $p \in M$ , there is  $u \in \mathfrak{m}$  such that  $(d\pi u)(\pi(p)) \neq 0$ . Then  $\mathfrak{m} + \mathfrak{a}(M) = \mathfrak{X}_{\sigma}(M)$ .

*Proof.* Let v be an arbitrary element of  $\mathfrak{X}_{G}(M)$ . From the assumption, for any  $p \in \text{supp } v$ , there are a vector field  $u \in \mathfrak{m}$  and a coordinate chart  $(U; (x_{1}, \dots, x_{n}))$  at  $\pi(p)$  such that  $\pi$  is trivial on U and  $u \equiv \frac{\partial}{\partial x_{1}} + \sum_{j=1}^{m} b_{j}(x_{1}, \dots, x_{n}) X_{j}$  on  $\pi^{-1}(U)$ . (See Lemma 1.4.)

Since supp v is compact, there are  $u_i \in \mathfrak{m}$ ,  $v_i \in \mathfrak{X}_{\sigma}(M)$  and coordinate charts  $(U_i; (x_1^i, \dots, x_n^i)), i=1, 2, \dots, r$  such that

$$\bigcup_{i=1}^r U_i \supset \text{supp } v, v = v_1 + \dots + v_r, \text{ supp } v_i \subset \pi^{-1}(U_i)$$

and

$$\begin{split} u_i &= \frac{\partial}{\partial x_1^i} + \sum_{j=1}^m b_j^i(x_1^i, \cdots, x_n^i) X_j^i, \\ v_i &= \sum_{k=1}^n \hat{\xi}_k^i(x_1^i, \cdots, x_n^i) \frac{\partial}{\partial x_i^i} + \sum_{l=1}^m \mu_l^i(x_1^i, \cdots, x_n^i) X_l^i \end{split}$$

on  $\pi^{-1}(U_i)$ . If we want to prove that  $v \in \mathfrak{m} + \mathfrak{a}(M)$ , it suffices to prove that  $v_i \in \mathfrak{m} + \mathfrak{a}(M)$  for each i. Hence we may assume that there is a coordinate chart  $(U; (x_1, \dots, x_n))$  (of  $B_M$ ) such that v is written as

$$v = \sum_{i=1}^{n} \xi_i(x_1, \dots, x_n) \frac{\partial}{\partial x_i} + \sum_{j=1}^{m} \mu_j(x_1, \dots, x_n) X_j \quad \text{on } \pi^{-1}(U)$$

with supp  $\xi_i \subset U$ , supp  $\mu_j \subset U$  for  $i=1,2,\cdots,n,\ j=1,2,\cdots,m$  and a suitable extension of  $\frac{\partial}{\partial x_1} + \sum\limits_{j=1}^m b_j(x_1,\cdots,x_n) \, X_j$  is contained in  $\mathfrak{m}$ . Thus a suitable extension of  $\frac{\partial}{\partial x_1}$  is contained in  $\mathfrak{m} + \mathfrak{a}(M)$ . We use the same notation for the extended vector fields because all argument is local. Since  $\frac{\partial}{\partial x_1} \in \mathfrak{m} + \mathfrak{a}(M)$  and  $\frac{1}{2} \left[ \frac{\partial}{\partial x_1}, (x_1)^2 \frac{\partial}{\partial x_1} \right] = x_1 \frac{\partial}{\partial x_1}, x_1 \frac{\partial}{\partial x_1} \in \mathfrak{m} + \mathfrak{a}(M)$ . For  $\xi_1(x) \frac{\partial}{\partial x_2}$ , we have the following relations:

$$\left[\frac{\partial}{\partial x_1}, x_1 \xi_1(x) \frac{\partial}{\partial x_1}\right] = \left(\xi_1(x) + x_1 \frac{\partial \xi_1}{\partial x_1}\right) \frac{\partial}{\partial x_1} \in \mathfrak{m} + \mathfrak{a}(M)$$

and

$$\left[x_1\frac{\partial}{\partial x_1},\; \xi_1(x)\frac{\partial}{\partial x_1}\right] = \left(x_1\frac{\partial \xi_1}{\partial x_1} - \xi_1(x)\right)\frac{\partial}{\partial x_1} \in \mathfrak{m} + \mathfrak{a}\left(M\right).$$

Hence we have

$$\frac{1}{2}\left(\left[\frac{\partial}{\partial x_1}, x_1 \xi_1(x) \frac{\partial}{\partial x_1}\right] - \left[x_1 \frac{\partial}{\partial x_1}, \xi_1(x) \frac{\partial}{\partial x_1}\right]\right) = \xi_1(x) \frac{\partial}{\partial x_1} \in \mathfrak{m} + \mathfrak{a}(M).$$

On the other hand, for  $\xi_i \frac{\partial}{\partial x_i}$ ,  $i \ge 2$ , we have the following relations:

$$\left[\frac{\partial}{\partial x_{1}}, \ x_{1} \xi_{i} \frac{\partial}{\partial x_{i}}\right] = \left(\xi_{i} + x_{1} \frac{\partial \xi_{i}}{\partial x_{1}}\right) \frac{\partial}{\partial x_{i}} \in \mathfrak{m} + \mathfrak{a}\left(M\right)$$

and

$$\left[x_1\frac{\partial}{\partial x_1}, \xi_i\frac{\partial}{\partial x_i}\right] = x_1\frac{\partial \xi_i}{\partial x_i}\frac{\partial}{\partial x_i} \in \mathfrak{m} + \mathfrak{a}(M).$$

Hence we have  $\xi_i \frac{\partial}{\partial x_i} \in \mathfrak{m} + \mathfrak{a}(M)$ . Therefore we have

$$v = \sum_{i=1}^{n} \xi_{i} \frac{\partial}{\partial x_{i}} + \sum_{j=1}^{m} \mu_{j} X_{j} \in \mathfrak{m} + \mathfrak{a}(M)$$
.

This completes the proof.

**Lemma 2.2.** Suppose that m is an ideal of  $\mathfrak{X}_{\mathfrak{G}}(M)$  such that for any point  $p \in M$ , there is  $u \in \mathfrak{m}$  such that  $(d\pi u)(\pi(p)) \neq 0$ . Then  $\mathfrak{m} \supset \mathfrak{a}(M)$ .

Proof. Let v be an arbitrary element of  $\mathfrak{a}(M)$  and  $(U; (x_1, \cdots, x_n))$  be a coordinate chart of  $B_M$  such that  $\pi$  is trivial on U. Let V, W be open subsets of U such that  $W \subset \overline{W} \subset V \subset \overline{V} \subset U$ . We may assume that supp v is contained in W and that  $v = \sum_{j=1}^m \xi_j(x_1, \cdots, x_n) X_j$  on U. From the assumption, there is a vector field  $u \in \mathfrak{m}$  such that  $u = \frac{\partial}{\partial x_1} + \sum_{j=1}^m b_j(x_1, \cdots, x_n) X_j$  on  $\pi^{-1}(U)$ . Let  $f, g: U \to \mathbb{R}$  be  $C^{\infty}$ -non-negative functions on U such that  $f \equiv 1$  on W,  $f \equiv 0$  outside of V and  $g \equiv 1$  on V,  $g \equiv 0$  outside of U. Since

$$\frac{1}{2} \left[ \frac{\partial}{\partial x_1} + \sum_{j=1}^n b_j(x_1, \dots, x_n) X_j, (x_1)^2 \frac{\partial}{\partial x_1} \right]$$

$$= x_1 \frac{\partial}{\partial x_1} + \sum_{j=1}^m (x_1)^2 \frac{\partial b_j}{\partial x_1} X_j,$$

 $x_1 \frac{\partial}{\partial x_1} + \sum_{j=1}^m (x_1)^2 \frac{\partial b_j}{\partial x_1} X_j$  is contained in  $\mathfrak{m}$ . We have following relations:

$$\left[\frac{\partial}{\partial x_1} + \sum_{j=1}^m b_j(x_1, \dots, x_n) X_j, x_1 f(x) \frac{\partial}{\partial x_1}\right]$$

$$= \left(f(x) + x_1 \frac{\partial f}{\partial x_1}\right) \frac{\partial}{\partial x_1} + x_1 f(x) \sum_{j=1}^{m} \frac{\partial b_j}{\partial x_1} X_j$$

and

$$\begin{split} & \left[ x_1 \frac{\partial}{\partial x_1} + \sum_{j=1}^m (x_1)^2 \frac{\partial b_j}{\partial x_1} X_j, f(x) \frac{\partial}{\partial x_1} \right] \\ & = \left( x_1 \frac{\partial f}{\partial x_1} - f(x) \right) \frac{\partial}{\partial x_1} + f(x) \sum_{j=1}^m \frac{\partial}{\partial x_1} \left( (x_1)^2 \frac{\partial b_j}{\partial x_1} \right) X_j \in \mathfrak{m} . \end{split}$$

Thus we have

$$f(x)\frac{\partial}{\partial x_1} + \sum_{j=1}^m \frac{1}{2} f(x) \left( x_1 \frac{\partial b_j}{\partial x_1} - \frac{\partial}{\partial x_1} \left( (x_1)^2 \frac{\partial b_j}{\partial x_1} \right) \right) X_j \in \mathfrak{m}.$$

Put

$$\mu_{j}(x) = \frac{1}{2} \left( x_{1} \frac{\partial b_{j}}{\partial x_{1}} - \frac{\partial}{\partial x_{1}} \left( (x_{1})^{2} \frac{\partial b_{j}}{\partial x_{1}} \right) \right), \quad j = 1, 2, \dots, m.$$

We consider the following system of differential equations on U:

$$\frac{\partial \lambda_j}{\partial x_1} + \sum_{i,k=1}^n \mu_i(x) \lambda_k(x) c_{i,k}^j = \xi_j(x), \quad j = 1, 2, \dots, m,$$

where  $\{c_{i,k}^{I}\}$  denote the structure constants with respect to the basis  $\{X_{1}, \dots, X_{m}\}$ . This system of differential equations can be solved on U. Indeed,

$$\lambda = \exp\left(-\int_{-\infty}^{x_1} \mu dt\right) \left\{ \int_{-\infty}^{x_1} \left(\exp\left(\int_{-\infty}^{t} \mu ds\right) \xi\right) dt + C \right\},$$

where

$$\lambda(x) = \begin{pmatrix} \lambda_1(x) \\ \vdots \\ \lambda_n(x) \end{pmatrix}, \quad \xi(x) = \begin{pmatrix} \xi_1(x) \\ \vdots \\ \xi_n(x) \end{pmatrix},$$

$$\mu(x)$$
 is an  $n \times n$ -matrix  $(\sum_{i=1}^{n} \mu_i(x) c_{i,k}^j)$ ,

and  $C = C(x_2, \dots, x_n)$  denotes a vector.

Put 
$$I(v) = g(x) \sum_{j=1}^{n} \lambda_j(x) X_j$$
. Then we have

$$\left[f(x)\left(\frac{\partial}{\partial x_1} + \sum_{j=1}^m \mu_j(x) X_j\right), I(v)\right] = v$$

on V. Since supp  $f \subset V$ , the above equality holds on U. This completes the proof.

**Proposition 2.3.** Let m be a proper ideal of  $\mathfrak{X}_{\mathfrak{G}}(M)$ . Then there is a point  $\overline{p} \in B_{\mathtt{M}}$  such that every element  $d\pi u$  of  $d\pi m$  vanishes at  $\overline{p}$  with all of its derivatives.

Proof. From Lemma 2.1 and 2.2, it is easy to see that there is a point  $\overline{p} \in B_M$  such that every element  $d\pi u$  of  $d\pi m$  vanishes at  $\overline{p}$ . Let  $(U; (x_1, \dots, x_n))$  be a coordinate chart at  $\overline{p}$  such that  $\pi$  is trivial on U and  $d\pi u \equiv \sum_{i=1}^n a_i(x) \frac{\partial}{\partial x_i}$  on U. Suppose that for some function  $a_i$  and some integer r > 0,  $\frac{\partial^r a_i}{\partial x_{i_1} \cdots \partial x_{i_r}} (\overline{p}) \neq 0$ . Then we have the following relation:

$$\left[d\pi u, \frac{\partial}{\partial x_{i_{\tau}}}\right] = -\sum_{j=1}^{n} \frac{\partial a_{j}}{\partial x_{i_{\tau}}}(x) \frac{\partial}{\partial x_{j}} \in d\pi m.$$

Therefore  $\left[d\pi u, \frac{\partial}{\partial x_{i_r}}\right]$  has at least one component with non-vanishing derivatives of order r-1 at  $\bar{p}$ . This procedure leads to give an element of  $d\pi m$  not all of whose components vanish at  $\bar{p}$ . This completes the proof.

**Proposition 2.4.** Every maximal ideal of  $\mathfrak{X}_{\mathfrak{G}}(M)$  contains the ideal  $\mathfrak{a}(M)$ . Moreover, this must be equal to  $d\pi^{-1}\mathfrak{m}_{\bar{p}}$  for a point  $\bar{p} \in B_{\mathtt{M}}$ , where  $\mathfrak{m}_{\bar{p}}$  is the maximal ideal of  $\mathfrak{X}(B_{\mathtt{M}})$  corresponding to the point  $\bar{p}$ .

*Proof.* The first part of this proposition follows from Lemmas 2.1 and 2.2. Let m be a maximal ideal of  $\mathfrak{X}_{\sigma}(M)$ . It is easy to see that  $d\pi \mathfrak{m}$  is a maximal ideal of  $\mathfrak{X}(B_{\mathtt{M}})$ . Hence there exists a unique point  $\overline{p} \in B_{\mathtt{M}}$  corresponding to  $d\pi \mathfrak{m}$  which is denoted by  $\mathfrak{m}_{\overline{p}}$  (for the proof, see [3] and [6]). This completes the proof.

**Remark 2.5.** The ideal  $\mathfrak{a}(M)$  is given by the intersection of all maximal ideals of  $\mathfrak{X}_{\mathfrak{G}}(M)$ .

**Theorem 2.6.** Let G be a compact connected Lie group and M, M' be free G-manifolds. If  $\mathfrak{X}_{G}(M)$  is algebraically isomorphic

to  $\mathfrak{X}_{G}(M')$ , then the orbit manifold  $B_{M}$  is diffeomorphic to  $B_{M'}$ .

*Proof.* Since  $\mathfrak{a}(M)$  and  $\mathfrak{a}(M')$  are ideals of  $\mathfrak{X}_{\mathfrak{G}}(M)$  and  $\mathfrak{X}_{\mathfrak{G}}(M')$  respectively, the quotient Lie algebras  $\mathfrak{X}_{\mathfrak{G}}(M)/\mathfrak{a}(M)$  and  $\mathfrak{X}_{\mathfrak{G}}(M')/\mathfrak{a}(M')$  are isomorphic to  $\mathfrak{X}(B_{M})$  and  $\mathfrak{X}(B_{M'})$  respectively. Let  $\mathfrak{G}:\mathfrak{X}_{\mathfrak{G}}(M) \to \mathfrak{X}_{\mathfrak{G}}(M')$  be a Lie algebra isomorphism. We have

Thus we can see that  $\mathfrak{X}_{G}(M)/\mathfrak{a}(M)$  is isomorphic to  $\mathfrak{X}_{G}(M')/\mathfrak{a}(M')$ . Hence  $\mathfrak{X}(B_{M'})$  is isomorphic to  $\mathfrak{X}(B_{M'})$ . By Pursell-Shanks theorem ([3], [6]), there is a diffeomorphism  $\varphi:B_{M}\to B_{M'}$  such that  $d\varphi$  is the above isomorphism of  $\mathfrak{X}(B_{M})$  to  $\mathfrak{X}(B_{M'})$ . This completes the proof.

## § 3. Proof of Main Theorem

Let  $\pi: M \to B_M$  be the principal G-bundle over  $B_M$ . By a system of coordinate transformations in  $B_M$  with values in G is meant an indexed covering  $\{U_i\}_{i\in I}$  of  $B_M$  by coordinate charts and a collection of continuous maps  $g_{ji}: U_i \cap U_j \to G$  such that

$$g_{ki}(x) \cdot g_{ii}(x) = g_{ki}(x)$$
 for  $x \in U_i \cap U_i \cap U_k$ .

Any principal G-bundle over  $B_M$  determines such a set of coordinate transformations. In case of our principal G-bundles, each coordinate transformation  $g_{ji}(x):G\rightarrow G(x\in U_i\cap U_j)$  is given by right translation and  $g_{ji}:U_i\cap U_j\rightarrow G$  is differentiable of class  $C^\infty$ . Let  $\mathfrak g$  denote the Lie algebra of G consisting of left invariant vector fields on G. Consider the adjoint of  $g_{ji}(x)$ ,  $\operatorname{ad}(g_{ji}(x)):\mathfrak g\rightarrow \mathfrak g$ . Then the map  $\operatorname{ad}(g_{ji}):U_i\cap U_j\rightarrow \operatorname{Aut}(\mathfrak g)$  is differentiable of class  $C^\infty$ , where  $\operatorname{Aut}(\mathfrak g)$  denotes the group of all automorphisms of  $\mathfrak g$  which is a subgroup of GL(m,R),  $m=\dim G$ . Since G is connected, the image of  $\operatorname{ad}(g_{ji})$  is contained in the identity component of  $\operatorname{Aut}(\mathfrak g)$  which is denoted by  $\operatorname{Aut}_0(\mathfrak g)$ . Furthermore we may see that for any i,j,k in I,  $\operatorname{ad}(g_{kj}(x))\cdot\operatorname{ad}(g_{ji}(x))=\operatorname{ad}(g_{ki}(x))$  for  $x\in U_i\cap U_j\cap U_k$ . Hence from  $\mathfrak g$ . Steenrod ([7, Existence theorem]), there exists a bundle  $E(M,\mathfrak g)$  with base space  $B_M$ , fiber  $\mathfrak g$ , group  $\operatorname{Aut}_0(\mathfrak g)$  and the coordinate transformations  $\{\operatorname{ad}(g_{ji})\}$ . Since each fiber of  $E(M,\mathfrak g)$ 

has the Lie algebra structure, the space of global  $C^{\infty}$ -sections of  $E(M,\mathfrak{g})$ ,  $\Gamma(E(M,\mathfrak{g}))$ , has a natural Lie algebra structure. Then we may identify the space  $\Gamma(E(M,\mathfrak{g}))$  with the ideal  $\mathfrak{q}(M)$  as Lie algebra. Let  $E(M',\mathfrak{g})$  denote the bundle corresponding to the principal G-bundle  $\pi' \colon M' \to B_{M'}$ . Suppose that  $\mathfrak{X}_{G}(M)$  is algebraically isomorphic to  $\mathfrak{X}_{G}(M')$ . From Theorem 2.6, the space  $B_{M}$  is diffeomorphic to  $B_{M'}$ , via  $\varphi$ . Since the pull-back of  $\varphi$ ,  $\varphi^*M'$ , is equivalent to M' via a bundle isomorphism  $\widetilde{\varphi}$  and the Lie algebra  $\mathfrak{X}_{G}(\varphi^*M')$  (resp.  $\mathfrak{q}(\varphi^*M')$ ) is isomorphic to  $\mathfrak{X}_{G}(M')$  (resp.  $\mathfrak{q}(M')$ ) via the differential of  $\widetilde{\varphi}$ , it is sufficient to consider for  $B_{M} = B_{M'}$ ,  $\varphi = \text{identity}$ .

**Proposition 3.1.** If the Lie algebras  $\Gamma(E(M, \mathfrak{g}))$  and  $\Gamma(E(M', \mathfrak{g}))$  are isomorphic, then the vector bundle  $E(M, \mathfrak{g})$  is isomorphic in Aut  $(\mathfrak{g})$  to  $E(M', \mathfrak{g})$ .

*Proof.* Let  $\Psi: \Gamma(E(M,\mathfrak{g})) \to \Gamma(E(M',\mathfrak{g}))$  be the Lie algebra isomorphism and  $\{U_i\}$  be the common covering of  $B_M$  by coordinate charts with respect to  $E(M,\mathfrak{g})$  and  $E(M',\mathfrak{g})$ .

For each  $U_i$ , the local constant sections  $\sigma_k^{(i)}: U_i \to X_k^{(i)} (k=1, 2, \dots, m)$  are bases for  $\Gamma(E(M, \mathfrak{g}) | U_i)$  and  $\Gamma(E(M', \mathfrak{g}) | U_i)$ , where  $\{X_1^{(i)}, \dots, X_m^{(i)}\}$  denotes the appointed basis of  $\mathfrak{g}$  with respect to  $U_i$ . Then we have the following formulae:

$$\{(\Psi|_{U_i})(\sigma_k^{(i)})\}(x) = \sum_{l=1}^m b_{k,l}^{(i)}(x)\sigma_l^{(i)} \quad (x \in U_i, k=1, 2, \dots, m).$$

Since for each  $x \in B_M$ ,  $\Psi|_{\pi^{-1}(x)}$  is a Lie algebra isomorphism of  $\mathfrak{g}$ ,  $(b_{k,l}^{(i)})(x)$  is contained in Aut  $(\mathfrak{g})$ . Furthermore the map  $(b_{k,l}^{(i)}): U_l \to \operatorname{Aut}(\mathfrak{g})$  is differentiable of class  $C^{\infty}$ . For  $x \in U_i \cap U_j$ , we have the following formulae:

$$(b_{k,l}^{(i)}(x)) \cdot \operatorname{ad}(g_{ji}'(x)) = \operatorname{ad}(g_{ji}(x)) \cdot (b_{k,l}^{(j)}(x)), \quad k=1, 2, \dots, m.$$

From these formulae and Lemma 3.2 of [7], we obtain that  $E(M, \mathfrak{g})$  is isomorphic in  $\operatorname{Aut}(\mathfrak{g})$  to  $E(M', \mathfrak{g})$ . This completes the proof.

**Theorem 3.2.** Supppose that G is a compact connected semi-

simple Lie group with  $\operatorname{Aut}(\mathfrak{g}) = \operatorname{Aut}_{\mathfrak{g}}(\mathfrak{g})$ . If  $\mathfrak{X}_{\mathfrak{g}}(M)$  is algebraically isomorphic to  $\mathfrak{X}_{\mathfrak{g}}(M')$ , then M is G-equivariantly diffeomorphic to M'.

Proof. Let  $\mathfrak{O}: \mathfrak{X}_{\mathfrak{G}}(M) \to \mathfrak{X}_{\mathfrak{G}}(M')$  be a Lie algebra isomorphism. From Theorem 2.7, the orbit manifolds  $B_M$  and  $B_{M'}$  are diffeomorphic, via  $\varphi$ . And by the above argument, we may assume  $B_M = B_{M'}$  and  $\varphi = \text{identity}$ . From Proposition 3.1 and  $\text{Aut}(\mathfrak{g}) = \text{Aut}_{\mathfrak{g}}(\mathfrak{g})$ , that  $\mathfrak{g}(M)$  is isomorphic to  $\mathfrak{g}(M')$ , via  $\mathfrak{O}$ , implies that  $E(M,\mathfrak{g})$  is isomorphic in  $\text{Aut}_{\mathfrak{g}}(\mathfrak{g})$  to  $E(M',\mathfrak{g})$ . From Lemma 3.2 of [7], there exist  $C^{\infty}$ -maps  $\tilde{\lambda}_j: U_j \to \text{Aut}_{\mathfrak{g}}(\mathfrak{g})$  such that

$$\operatorname{ad}(g'_{ji}(x)) = \tilde{\lambda}_j^{-1}(x) \cdot \operatorname{ad}(g_{ji}(x)) \cdot \tilde{\lambda}_i(x) \quad \text{for } x \in U_i \cap U_j$$

where  $\{ad(g_{fi})\}$  and  $\{ad(g'_{fi})\}$  denote the coordinate transformations for  $E(M, \mathfrak{g})$  and  $E(M', \mathfrak{g})$  respectively.

On the other hand, it is known that if G is semi-simple, then  $\operatorname{Aut}_0(\mathfrak{g})$  is equal to the adjoint group  $\operatorname{Ad}(G)$ , which is isomorphic to G/Z, where Z is the centor of G. Therefore there exist  $C^{\infty}$ -maps  $\bar{\lambda}_j \colon U_j \to G/Z$  such that

$$g'_{ii}(x) = \bar{\lambda}_i^{-1}(x) \cdot g_{ii}(x) \cdot \bar{\lambda}_i(x) \quad (x \in U_i \cap U_i) \quad \text{in} \quad G/Z.$$

We can easily lift the maps  $\bar{\lambda}_j$  to maps  $\lambda_j : U_j \rightarrow G$  such that

$$g'_{ji}(x) = \lambda_j^{-1}(x) \cdot g_{ji}(x) \cdot \lambda_i(x) \quad (x \in U_i \cap U_j).$$

Hence using Lemma 3.2 of [7] again, we may see that two principal G-bundles  $\pi: M \to B_M$  and  $\pi': M' \to B_{M'}$  are G-equivalent. This completes the proof.

Let  $G_i$  be compact connected simple Lie groups  $(1 \leq i \leq k)$  and G be the product  $G_1 \times \cdots \times G_k$ . Let  $\mathfrak{g}_i$  denote the Lie algebra of  $G_i$ . Then the Lie algebra  $\mathfrak{g}$  of G is isomorphic to  $\mathfrak{g}_1 \oplus \cdots \oplus \mathfrak{g}_k$  (direct sum). We remark that any principal G-bundle M is decomposed as a sum of principal  $G_i$ -bundles,  $M(G_1) \oplus \cdots \oplus M(G_k)$ .

**Definition 3.3.** Two principal G-bundles M and M' are essentially isomorphic if there are a diffeomorphism  $f: M \to M'$  and an automorphism  $\mu: G \to G$  such that  $f(g \cdot x) = \mu(g) \cdot f(x)$  for  $x \in M$ ,  $g \in G$ .

Then we have the following theorem.

**Theorem 3.4.** Let  $G_i$  be compact connected simple Lie groups  $(1 \le i \le k)$  such that  $\operatorname{Aut}(\mathfrak{g}_i)$  is connected. Let G be the product  $G_1 \times \cdots \times G_k$  and M, M' be free G-manifolds. If  $\mathfrak{X}_{\mathfrak{g}}(M)$  is algebraically isomorphic to  $\mathfrak{X}_{\mathfrak{g}}(M')$ , then M is essentially isomorphic to M'.

Proof. By the same argument as in the first part of the proof of Theorem 3. 2, we may see that the vector bundle  $E(M,\mathfrak{g})$  is isomorphic in  $\operatorname{Aut}(\mathfrak{g})$  to  $E(M',\mathfrak{g})$ . We denote this isomorphism by  $\Psi$ . Note that  $E(M,\mathfrak{g})$  and  $E(M',\mathfrak{g})$  are isomorphic to the Whitney sum  $\bigoplus_{i=1}^k E(M,\mathfrak{g}_i)$  and  $\bigoplus_{i=1}^k E(M',\mathfrak{g}_i)$ , where  $E(M,\mathfrak{g}_i)$  and  $E(M',\mathfrak{g}_i)$  denote vector bundles over  $B_M$  with fiber  $\mathfrak{g}_i$   $(1 \leq i \leq k)$ . Thus we can split the isomorphism  $\Psi$  into  $\bigoplus_{i=1}^k E(M,\mathfrak{g}_i) \xrightarrow{k} E(M',\mathfrak{g}_{j_i})$ . From the assumption,  $E(M,\mathfrak{g}_i)$  is isomorphic in  $\operatorname{Aut}_0(\mathfrak{g}_i)$  to  $E(M',\mathfrak{g}_{j_i})$  for each i. Thus by the same argument as in the last part of the proof of Theorem 3. 2,  $M(G_i)$  is  $G_i$ -equivariantly diffeomorphic to  $M'(G_{j_i}) \oplus \cdots \oplus M'(G_{j_k})$  which is essentially isomorphic to M'. This completes the proof.

**Remark 3.5.** Let  $A_k$   $(k \ge 1)$  denote the local isomorphism class of SU(k+1);  $B_k$   $(k \ge 2)$ , that of SO(2k+1);  $C_k$   $(k \ge 3)$ , that of Sp(k);  $D_k$   $(k \ge 4)$ , that of SO(2k), and  $G_2$ ,  $G_4$ ,  $G_6$ ,  $G_7$  and  $G_8$  denote "exceptional" simple Lie groups. These form a complete list, without repetition, of the local isomorphism classes of the compact simple Lie group. Let  $G_8$  be the Lie algebra of  $G_8$ . The orders of the quotient groups  $G_8$  Aut  $G_8$  are given by the following table.

## § 4. Counter Example

In this section, we show that if Aut(g) is not connected, then

Theorem 3. 2 does not hold.

Let U(n) and PU(n) be the *n*-dimensional unitary group and the projective group and  $i:U(1) \rightarrow U(n)$  be the canonical inclusion, that is,

$$i\left(e^{2\pi it}\right) = \begin{pmatrix} e^{2\pi it} & & \\ & 1 & \\ & \ddots & \\ & & 1 \end{pmatrix} \quad \text{for } e^{2\pi it} \in U(1)$$

and  $j: U(n) \to PU(n)$  be the projection map and  $c: U(n) \to U(n)$  be the conjugation map, that is,  $c(A) = \overline{A}$  for  $A \in U(n)$ , where  $\overline{A}$  denotes the conjugate matrix of A. Let  $L(n) = S^{2m-1}/\mathbb{Z}_n$   $(n \geq 3)$  be the Lens space and  $h: \pi_1(L(n)) \cong \mathbb{Z}_n \to U(1)$  be a homomorphism defined by  $h(1) = e^{2\pi i/n}$  where 1 denotes the generator of  $\mathbb{Z}_n$ . Then the homomorphisms  $j \circ i \circ h$  and  $c \circ j \circ i \circ h$  induce principal PU(n)-bundles  $\mathfrak{F}$  and  $\overline{\mathfrak{F}}$  over L(n) which possess foliatins  $\mathfrak{F}$  and  $\overline{\mathfrak{F}}$  transverse to the fibers. (See Milnor [4, Lemma 1].)

**Proposition 4.1.** The principal PU(n)-bundles  $\xi$  and  $\overline{\xi}$  over L(n)  $(n \ge 3)$  are not trivial and not isomorphic in PU(n)-bundles.

Proof. Let  $\eta$  and  $\overline{\eta}$  denote principal U(1)-bundles over L(n) induced by the homomorphisms h and  $c \circ h$ . Then using Lemma 2 of [4] we can compute the Euler classes  $c_1(\eta)$ ,  $c_1(\overline{\eta}) \in H^2(L(n); \mathbb{Z}) \cong \mathbb{Z}_n$  and prove that  $c_1(\eta) = -c_1(\overline{\eta}) \neq 0$ . Since  $\xi = \eta \times_{\overline{U(1)}} PU(n)$  and  $\overline{\xi} = \overline{\eta} \times_{\overline{U(1)}} PU(n)$ ,  $\xi$  and  $\overline{\xi}$  are not trivial. Furthermore the mod n characteristic classes  $X(\xi)$  ( $\equiv c_1(\eta) \mod n$ ) and  $X(\overline{\xi})$  ( $\equiv c_1(\overline{\eta}) \mod n$ ) are not equal in  $H^2(L(n); \mathbb{Z}_n) \cong \mathbb{Z}_n$ . More precisely, let f and  $c \circ f$ :  $L(n) \to BPU(n)$  be the classifying map representing  $\xi$  and  $\overline{\xi}$  respectively, where the map  $c:BPU(n) \to BPU(n)$  is the map induced from the conjugation map c. Let 1 be a generator of  $H^2(BPU(n); \mathbb{Z}_n) \cong \mathbb{Z}_n$ . Then we have the relations:  $X(\xi) = f^*(1)$  and  $X(\overline{\xi}) = (c \circ f)^*(1) = -f^*(1)$ . Hence this completes the proof.

**Remark 4.2.** Let  $\mathfrak{gu}(n)$  denotes the Lie algebra of SU(n) and  $\operatorname{Aut}(\mathfrak{gu}(n))$  its automorphism group. We know that the connected component of  $\operatorname{Aut}(\mathfrak{gu}(n))$ , which is denoted by  $\operatorname{Aut}_0(\mathfrak{gu}(n))$ , is

isomorphic to PU(n). So  $\xi$  and  $\overline{\xi}$  are the principal  $\operatorname{Aut}_0(\mathfrak{gu}(n))$  bundles. Then using the conjugation map c, we can construct a bundle isomorphism  $C: \xi \to \overline{\xi}$  as follows: for  $(p,v) \in \xi, p \in L(n), v \in \xi_p \cong PU(n),$   $C(p,v) = (p,c(v)) \in \overline{\xi}$ . Hence  $\xi$  is isomorphic in  $\operatorname{Aut}(\mathfrak{gu}(n))$  to  $\overline{\xi}$ , via the map C.

**Remark 4.3.** Let  $M_1$  and  $M_2$  be the total space of  $\xi$  and  $\overline{\xi}$  respectively. Then we have already known that  $M_1$  and  $M_2$  possess foliations  $\mathcal{G}$  and  $\overline{\mathcal{G}}$  transeverse to the fibers. Then the isomorphism C maps  $\mathcal{G}$  to  $\overline{\mathcal{G}}$ .

**Remark 4.4.** Let  $E(\xi)$  and  $E(\overline{\xi})$  denote associated bundles with fiber  $\mathfrak{gu}(n)$  of  $\xi$  and  $\overline{\xi}$  respectively and  $\Gamma(E(\xi))$  and  $\Gamma(E(\overline{\xi}))$  denote the  $C^{\infty}$ -section space of  $E(\xi)$  and  $E(\overline{\xi})$  which have natural Lie algebra structures. Then the isomorphism  $C: \xi \to \overline{\xi}$  induces the isomorphism  $C: E(\xi) \to E(\overline{\xi})$  and so the isomorphism  $C: \Gamma(E(\xi)) \to \Gamma(E(\overline{\xi}))$  as Lie algebras.

**Theorem 4.5.**  $\mathfrak{X}_{PU(n)}(M_1)$  is algebraically isomorphic to  $\mathfrak{X}_{PU(n)}(M_2)$ .

Proof. We have exact sequences of Lie algebras:

$$0 \rightarrow \mathfrak{a}(M_i) \rightarrow \mathfrak{X}_{PU(n)}(M_i) \rightarrow \mathfrak{X}(L(n)) \rightarrow 0 \quad (i=1,2).$$

Then we define Lie algebra splittings  $s_i: \mathfrak{X}(L(n)) \to \mathfrak{X}_{PU(n)}(M_i)$  using the foliation as follows: for each  $u \in \mathfrak{X}(L(n))$ , the vector field  $s_i(u)$  is tangent to the leaves of the foliation  $\mathfrak{T}$  (resp.  $\overline{\mathfrak{T}}$ ) and  $d\pi \circ s_i = \text{identity}$ . Thus using these splittings  $s_i$  (i=1,2), we see that  $\mathfrak{X}_{PU(n)}(M_i)$  is isomorphic to  $\mathfrak{a}(M_i) \oplus \mathfrak{X}(L(n))$  (direct sum) and for (X,u),  $(Y,v) \in \mathfrak{a}(M_i) \oplus \mathfrak{X}(L(n))$ ,

$$[(X, u), (Y, v)] = ([X, Y] + [u, Y] + [X, v], [u, v])$$

where  $[\,,\,]$  denotes the Lie bracket. Since the ideals  $\mathfrak{q}(M_1)$  and  $\mathfrak{q}(M_2)$  are identified with  $\Gamma(E(\xi))$  and  $\Gamma(E(\overline{\xi}))$  respectively, we define a map  $\Psi: \mathfrak{X}_{PU(n)}(M_1) \to \mathfrak{X}_{PU(n)}(M_2)$  by  $\Psi((X,u)) = (C(X),u)$  for any  $(X,u) \in \Gamma(E(\xi)) \oplus \mathfrak{X}(L(n))$ . It is easy to see that this map is an isomorphism. And moreover by easy computations, we have the relation: C([X,u])

$$\begin{split} &= [C(X)\,,u]. \quad \text{Therefore for any } (X,u)\,,\,(Y,v) \in \varGamma(E(\xi)) \oplus \mathfrak{X}\,(L(n))\,, \\ &\varPsi\left(\big[\,(X,u)\,,\,(Y,v)\,\big]\,\right) = \varPsi\left(\big[X,\,Y\big] + \big[u,\,Y\big] + \big[X,\,v\big],\,\big[u,\,v\big]\right) \\ &= (C(\big[X,\,Y\big]) + C(\big[u,\,Y\big]) + C(\big[X,\,v\big])\,,\,\big[u,\,v\big]) \\ &= (\big[C(X)\,,\,C(Y)\,\big] + \big[u,\,C(Y)\,\big] + \big[C(X)\,,v\big],\,\big[u,\,v\big]) \\ &= \big[\varPsi\left(X,\,u\right)\,,\,\varPsi\left(Y,\,v\right)\,\big]. \end{split}$$

This completes the proof.

**Remark 4.6.** These free PU(n)-manifolds  $M_1$  and  $M_2$  are essentially isomorphic via the map C.

**Theorem 4.7.** Let G = SU(n)  $(n \ge 3)$ , Spin(2n)  $(n \ge 2)$ ,  $E_6$  or SO(2n)  $(n \ge 3)$  and  $M_1$  and  $M_2$  be free G-manifolds. If  $\mathfrak{X}_{\mathfrak{G}}(M_1)$  is algebraically isomorphic to  $\mathfrak{X}_{\mathfrak{G}}(M_2)$ , then  $M_1$  is essentially isomorphic to  $M_2$ .

Proof. First we consider the case G=SU(n). Let  $E(M_i)$  be associated bundles with fiber  $\mathfrak{gu}(n)$  of  $M_i(i=1,2)$ . Then Proposition 3.1 says that  $E(M_1)$  is isomorphic in  $\operatorname{Aut}(\mathfrak{gu}(n))$  to  $E(M_2)$ . Using the conjugation map  $c\colon SU(n)\to SU(n)$ , we can construct another principal SU(n)-bundle  $\overline{M}_1$  which is essentially isomorphic to  $M_1$  (see Remark 4.6). Furthermore  $E(M_1)$  is isomorphic in  $\operatorname{Aut}(\mathfrak{gu}(n))$  but not in  $\operatorname{Aut}_0(\mathfrak{gu}(n))$  to  $E(\overline{M}_1)$ . Since  $\operatorname{Aut}(\mathfrak{gu}(n))$  is not connected and the order of the quotient group  $\operatorname{Aut}(\mathfrak{gu}(n))/\operatorname{Aut}_0(\mathfrak{gu}(n))$  is equal to 2, if  $E(M_1)$  is not isomorphic in  $\operatorname{Aut}_0(\mathfrak{gu}(n))$  to  $E(M_2)$ , then  $E(\overline{M}_1)$  is isomorphic in  $\operatorname{Aut}_0(\mathfrak{gu}(n))$  to  $E(M_2)$ . Thus by the same way as in the proof of Theorem 3.2, we can prove that  $\overline{M}_1$  is SU(n)-equivariantly diffeomorphic to  $M_2$ .

For the cases  $G = \mathrm{Spin}(2n)$   $(n \geq 3)$  or  $E_6$ , the order of  $\mathrm{Aut}(G)$  / $\mathrm{Aut}_0(G)$  is equal to 2. So there exists an automorphism  $\tau: G \to G$  such that  $\tau \notin \mathrm{Aut}_0(G)$ . For the case  $G = \mathrm{Spin}(4)$ , the order of  $\mathrm{Aut}(\mathrm{Spin}(4))$  / $\mathrm{Aut}_0(\mathrm{Spin}(4))$  is equal to 6. So there exist five automorphisms  $\tau_i$ :  $\mathrm{Spin}(4) \to \mathrm{Spin}(4)$   $(i=1,2,\cdots,5)$  such that each  $\tau_i$  and each  $\tau_i \circ \tau_j^{-1}$   $(i \neq j)$  are not contained in  $\mathrm{Aut}_0(\mathrm{Spin}(4))$ . For the case G = SO(2n), we define

an automorphism  $\mu: SO(2n) \to SO(2n)$  by  $\mu(A) = TAT^{-1}$  for  $A \in SO(2n)$ ,

where 
$$T = \begin{pmatrix} -1 \\ 1 \\ 1 \end{pmatrix}$$
. Then the differential  $d\mu : \mathfrak{go}(2n) \to \mathfrak{go}(2n)$  is

not contained in  $\operatorname{Aut}_0(\mathfrak{So}(2n))$ , where  $\mathfrak{So}(2n)$  denotes the Lie algebra of SO(2n). Using  $\tau, \tau_i (i=1,2,\cdots,5)$  or  $\mu$  instead of c, we can prove our theorem for  $G=\operatorname{Spin}(2n)$   $(n\geq 2)$ ,  $E_6$  or SO(2n)  $(n\geq 3)$  similarly. This completes the proof.

## § 5. Concluding Remarks

In this section, we show that if G is not semi-simple, Pursell-Shanks type theorem for free G-manifolds is no longer true.

Let B be an oriented closed surface of negative Euler characteristic,  $\chi(B) < 0$ . Let  $M_1 = S^1 \times B$  and  $\pi: M_2 \rightarrow B$  be a non-trivial principal  $S^1$ -bundle with a foliation transverse to the fibers. J. Wood proved the following theorem ([8]).

**Theorem 5.1.** Such a bundle  $\xi$  exists iff  $|\chi(\xi)| \leq |\chi(B)|$ , where  $\chi(\xi)$  denotes the Euler class of  $\xi$ .

Then there are canonical free (left-)  $S^1$ -actions on  $M_1$  and  $M_2$ .

**Proposition 5.2.**  $\mathfrak{X}_{S^1}(M_1)$  is isomorphic to  $\mathfrak{X}_{S^1}(M_2)$ .

Proof. We have an exact sequence of Lie algebras;

$$0 \to \mathfrak{a}(M_2) \to \mathfrak{X}_{S^1}(M_2) \to \mathfrak{X}(B) \to 0.$$

Then we define a Lie algebra splitting  $s:\mathfrak{X}(B)\to\mathfrak{X}_{S^1}(M_2)$  using the foliation as follows; for each  $u\in\mathfrak{X}(B)$ , the vector field s(u) is tangent to leaves of the foliation and  $d\pi\circ s=$  identity. Thus using this splitting s, we see that  $\mathfrak{X}_{S^1}(M_2)$  is isomorphic to  $\mathfrak{a}(M_2)\oplus\mathfrak{X}(B)$  (direct sum) and for (X,u),  $(Y,v)\in\mathfrak{a}(M_2)\oplus\mathfrak{X}(B)$ ,

$$\lceil (X, u), (Y, v) \rceil = (\lceil X, Y \rceil + u \cdot Y - v \cdot X, \lceil u, v \rceil)$$

where [,] denotes the Lie bracket. Since the adjoint group  $\mathrm{Ad}(S^{i})$  is

trivial, the vector bundles  $E(M_1, \mathbf{R}^1)$  and  $E(M_2, \mathbf{R}^1)$  are trivial. Thus  $\mathfrak{a}(M_1)$  is algebraically isomorphic to  $\mathfrak{a}(M_2)$ . Let  $\psi \colon \mathfrak{a}(M_1) \to \mathfrak{a}(M_2)$  be its isomorphism. Then we define a map  $\Psi \colon \mathfrak{X}_{S^1}(M_1) \to \mathfrak{X}_{S^1}(M_2)$  by  $\Psi((X, u)) = (\psi(X), u)$  for any  $(X, u) \in \mathfrak{a}(M_1) \oplus \mathfrak{X}(B)$ . This map is an isomorphism. For any  $(X, u), (Y, v) \in \mathfrak{X}_{S^1}(M_1)$ ,

$$\begin{split} \varPsi([(X, u), (Y, v)]) &= \varPsi([X, Y] + u \cdot Y - v \cdot X, [u, v]) \\ &= (\psi([X, Y]) + \psi(u \cdot Y) - \psi(v \cdot X), [u, v]) \\ &= ([\psi(X), \psi(Y)] + u \cdot \psi(Y) - v \cdot \psi(X), [u, v]) \\ &= [(\psi(X), u), (\psi(Y), v)] \\ &= [\varPsi(X, u), \varPsi(Y, v)]. \end{split}$$

Hence  $\Psi$  is a Lie algebra isomorphism. This completes the proof.

Let  $T^2$  be a 2-torus. Express a point p of  $T^2$  as (x,y), where x and y are contained in  $S^1 = \mathbf{R}/\mathbf{Z}$ . Define a linear action of  $T^2$ ,  $\varphi_\alpha : \mathbf{R} \times T^2 \to T^2$  by  $\varphi_\alpha(t,(x,y)) = (x+t,y+\alpha \cdot t)$ , where  $\alpha$  is an irrational number. Note that  $\varphi_\alpha$  is a free action and each orbit of this action is everywhere dense.

**Proposition 5.3.** For any irrational number  $\alpha$ ,  $\mathfrak{X}_{(\mathbf{R}, \varphi_{\alpha})}(T^2)$  is isomorphic to  $\mathbf{R}^2$  as Lie algebra.

Indeed, let  $\mathrm{Diff}_{(R,\, \varphi_\alpha)}(T^2)$  denote the group of equivariant diffeomorphisms of  $T^2$  which are equivariantly isotopic to the identity. Then we have that  $\mathrm{Diff}_{(R,\, \varphi_\alpha)}(T^2)$  is isomorphic to  $T^2$  as Lie group.

J. Milnor proved the following proposition ([5, Assertion 8.1]).

**Proposition 5.4.** Let  $f^s$  denote the codimension 1 foliation with constant slope s on  $T^z$ . If  $s \neq s'$ , then the foliation  $f^s$  is not  $C^r$ -integrably homotopic to  $f^{s'}$  for any  $r \geq 2$ .

Using Proposition 5.4 and the fact that the quotient group  $\operatorname{Diff}(T^2)/\operatorname{Diff_0}(T^2)$  is isomorphic to  $SL(2, \mathbb{Z})$  (where  $\operatorname{Diff_0}(T^2)$  denotes

the identity connected component of  $\mathrm{Diff}(T^2)$ ), we can prove the following proposition.

**Proposition 5.5.** There are irrational numbers  $\alpha$  and  $\beta$  such that the action  $\varphi_{\alpha}$  is not equivariantly diffeomorphic to the action  $\varphi_{\beta}$ .

#### References

- [1] Bredon, G., Introduction to compact transformation groups, Acad. Press, New York and London, 1972.
- [2] Koriyama, A., On Lie algebras of vector fields with invariant submanifolds, *Nagoya Math. J.*, **55** (1974), 91-110.
- [3] Omori, H., Infinite dimensional Lie transformation groups, Lecture Notes in Math., 427, Springer-Verlag, 1976.
- [4] Milnor, J., On the existence of a connection with curvature zero, Comm. Math. Helv., 32 (1958), 215-223.
- [5] —, Foliations and foliated vector bundles, preprint.
- [6] Pursell, L. E. and Shanks, M. E., The Lie algebra of a smooth manifold, Proc. Amer. Math. Soc., 5 (1954), 468-472.
- [7] Steenrod, N., The topology of fiber bundles, Princeton, 1951.
- [8] Wood, J., Bundles with totally disconnected structure group, Comm. Math. Helv.. 46 (1971), 257-273.