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Pursell-Shanks Type Theorem
for Free G-Manifolds

By

Kazuhiko FUKUI*

Introduction

Let M and N be connected paracompact C>-manifolds and X (M)
and X (IN) the Lie algebras of all C=-vector fields with compact support
on M and N respectively. A well-known theorem of Pursell-Shanks [6]

may be stated as follows.

Theorem. There exists a Lie algebra isomorphism @ of X (M)
onto X (N) if and only if there exists a C -diffeomorphism ¢ of M
onto N such that 0=dp.

The above result still holds for Lie algebras of all infinitesimal
automorphisms of several geometric structures on M and N. Indeed,
Omori [3] proved the corresponding result in case of volume structures,
symplectic structures, contact structures and fibering structures with
compact fibers, and Koriyama [2] proved that this is still true for
submanifolds regarding a submanifold M’ as a geometric structure on M.

Our purpose of this paper is to show that the above result still
holds for free G-manifolds under a certain condition.

More precisely, let G be a compact connected semi-simple Lie group
and M and N be paracompact connected free G-manifolds without
boundary. Let X;(M) and X4;(IN) be the Lie algebras of all G-invariant
C=-vector fields with compact support on M and N respectively. Then

we obtain the following theorem.

Communicated by N. Shimada, March 28, 1980. Revised May 23, 1980.
* Department of Mathematics, Kyoto Sangyo University, Kyoto 603, Japan.



250 KAzUHIKO FUKUI

Theorem 3.2. Suppose that the automorphism group of the Lie
algebra of G is connected. Then Xo;(M) is algebraically isomorphic to
X;(N) if and only if M is G-equivariantly diffeomorphic to N.

If Aut(g) is not connected, our theorem is no longer true (see § 4).
Moreover if G is not semi-simple, our theorem does not hold (see §5).
The first part of the proof of our theorem is parallel to that of Pursell-
Shanks. In the rest, we discuss equivalences of principal G-bundles.

All manifolds, actions and diffeomorphisms considered here, are
differentiable of class C*.

The author would like to express his gratitude to Professors M.
Adachi and H. Imanishi for their helpful advices.

§ 1. Preliminaries

Let M be a connected paracompact C*-manifold and G a compact
connected Lie group and #:GX M—M C=free (left-)action. We denote
by By the orbit space. In our case, By is a connected C*-manifold.

Then we have the following theorem.

Theorem 1.1 (Bredon [1]). The orbit map n:M—By is the
projection in a fiber bundle with fiber G and structure group G (act-
ing by right translation on G). Conversely every principal G-bundle

comes from such an action.

Thus, we remark that the notions of a principal G-bundle and of a
free G-action are canonically equivalent.

If geG, peM, we write g-p to denote the result of letting ¢
act on p. We shall also write ¢ to denote the diffeomorphism p—>g-p.
An action of G on M induces an action of G on TM, the tangent
bundle of M. If g=G, we write Tg(v) for the result of acting on
vETM by g. The resulting diffeomorphism of TM is Tg:TM—->TM
and is just the tangent of ¢: M— M.

Definition 1.2. A vector field v on M is called G-invariant
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vector field (simply, G-vector field) if Tgov=wog for all gG. We
denote by Xg(M) the Lie algebra of all C~-G-vector fields with compact

support. The following two lemmas are easily obtained.

Lemma 1.3. For any coordinate chart (U; (xy, *+, x,)) of By
such that n is trivial on U, every vEXe(M) is described as follows:

_a—‘_{— ibf(xla Tt xn)Xj on ”'I(U)a

n
v= ) a;(xy, ***, Zn)
=1 0x; J=1

where a; and b; (1<i<n,1<j<m) are C>-functions on U and {X,,
-, X} is a basis of the Lie algebra g of G.

Lemma 1.4. If veXy;(M) satisfies drn(v)(mw(p))#0, then there
is a coordinate chart (U; (xy, -+, x,)) at nw(p) such that

'UE_@@*‘!‘ i bi(xy, -+, xa) X; on w(U).
i=i

X

§ 2. Characterization of Maximal Ideals of Xg(M)

By Lemma 1.3, we see that the natural mapping dn:X;(M) —¥(By)
is a surjective homomorphism as Lie algebras, where X (Bj) denotes the
Lie algebra of C=-vector fields on By with compact support. Let a (M)
be its kernel. Note that a(M) is an ideal of X4(M).

Lemma 2. 1. Suppose that m is an ideal of Xg(M) such that
for any point pE M, there is ucm such that (dru)(w(®)) 0. Then

Proof. Let v be an arbitrary element of Xg(M). From the as-
sumption, for any pEsupp v, there are a vector field #€m and a coordi-

nate chart (U; (xy, ***, x,)) at w(p) such that 7 is trivial on U and
z%-}-jZ;bj(xl, ) X; on w7 (U). (See Lemma 1. 4.)

Zy
Since supp v is compact, there are u;€m, v;€X4(M) and coordinate

charts (U;; (zt, ---, x%)),i=1,2, ---,  such that

T
U UiDsupp v, v=v;+ - +v,, supp 2:C7~" (Us)
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and

m
Z .f(x:) Tty JC:.,)X; ’

n . N o
E; (xia R x;)ax;+§ ,UZ(.’E;Z, Tty xZ.)Xt

on #~'(U;). If we want to prove that vem+a(M), it suffices to

prove that v,&m+a (M) for each i. Hence we may assume that there

is a coordinate chart (U; (x,, >+, x,)) (of Bjy) such that v is written

as

6 +éﬂj(x1’ A xn)Xj on ”-1(U>

n
‘UEZ E‘i ($1, Tty xn)
i=1 63:1',

with supp §;CU, supp 4,CU for i=1,2, .-, n, j=1,2, ---, m and a suit-

m
able extension of ~Q—+ij (z, »**, 2,) X; is contained in m. Thus a
v J'=1

suitable extension of 0 is contained in m+a(M). We use the same
X,
notation for the extended vector fields because all argument is local.
Since —a——ém—i-a(M) and —1—[—-——, () 2— 0 ] xl—a—, xlﬁ—em-l—a(M).
0z, 0z, 0z, 0x; 0z

For & (x)g—, we have the following relations:
Ty

[i xfl(x)—g—] (51(@ +xlgi‘>b——em+a(M)

a 1 x] xl

and
A Dl 0
|29 6@ | = (w2t~ )5 - m+a (a0,
Hence we have

1 <[6 = xlfl(x)——l] [ ;%—1, $I(x)£:])=51(x)-é%em+a(M).

On the other hand, for Eib@——, i=2, we have the following rela-
Zx;
tions:

[_@__, x,?i_q_] = (éi + 1, 0&)—— em+a(M)

0x/ 0x;
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and

= 6’5 0
[ . éiaxi] —em+a(M).

ax,; axi

Hence we have Ei—a—a—Em+a(M ). Therefore we have
5}

Ei g wX;em+a(M).

This completes the proof.

Lemma 2.2. Suppose that m is an ideal of %e¢(M) such that
Sor any point p= M, there is uem such that (drnu)(w (p))#0. Then
m>Da(M).

Proof. Let v be an arbitrary element of a(M) and (U; (x, -,
x,)) be a coordinate chart of By such that 7 is trivial on U. Let V, W
be open subsets of U such that WcWcVcVcU We may assume

m

that supp v is contained in W and that v=3)] & (xy, -, 2,) X; on U.
Jj=1

0

From the assumption, there is a vector field #Em such that u=—_—
Z1

-{—%b, (X, o, 2) X; on w7 (U). Let f,9:U—-R be C=-non-negative
i=1 '
functions on U such that f=1 on W, f=0 outside of V and g=1 on V,

9=0 outside of U. Since

S R M CHDNENS Y ERLR

axl Jj=1 axl
— it 1) e,
0x; i=1 0x,

1_29_+ S(xy) = 0b, X; is contained in m. We have following relations:
0x, =1 0x,

[~*+ 316, (2, e ) Xy, xlf(x)__@_]

0x, Ji=1 0z,

(f(x) +xlgf)5—1+xf(x)2 ab’X

and
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l:xl_.Q_+ i (xl)za_bin, f(x)_?__:l
5.2:1 J=1 axl axl

= (@3l r @)+ F@ F @) 3 X em.

0x,

Thus we have

f(x)a—i—l+ pEe (xl%—a%(wz%))xfem :

axl axl

Put

t5(2) =§-(xl%—%(<xo2-g—g)) =12, m.

We consider the following system of differential equations on U:

st Y h @@ cle=8,(2), i=1,2, -, m,
6x1 i, k=1

where {c{ .} denote the structure constants with respect to the basis
{X,, -, Xin}. This system of differential equations can be solved on U.
Indeed,

rmem( 7 ) [ oo [ i) .

where
A1 (x) £ (x)
Moo= |, E@=| : |,
ln (x) 51:. (x)
p(x) is an 7z X n-matrix (g U () el w),
and C=C(x, *+, x,) denotes a vector.

Put I(v) =¢(x) Zn: 4 (x)X;. Then we have
i=1

[f(x) (5%—14'2 ,aj(x)X,), 1(«0)] —v

on V. Since suppfC 7V, the above equality holds on U. This com-
pletes the proof.
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Proposition 2.3. Let m be a proper ideal of ¥%q(M). Then
there is a point p< By such that every element dnu of dmm vanishes

at p with all of its derivatives.

Proof. From Lemma 2.1 and 2.2, it is easy to see that there is
a point p& By such that every element dnu of dmm vanishes at 2.
Let (U; (x4, ', x,)) be a coordinate chart at p such that 7 is trivial

on U and dnuszn: a;(x) 66

i=1

on U. Suppose that for some function g;
x;
0" a,

and some integer 7 >0,
ax,;l---axgr

($)=40. Then we have the following

relation:

[dﬂu,~ 9 ]= ~i—a—‘f—’—(x)—a~ednm .

0z, i=1 0x;, x;

Therefore [dnu, ] has at least one component with non-vanishing

Zi,
derivatives of order »—1 at p. This procedure leads to give an element

of dnm not all of whose components vanish at . This completes the

proof.

Proposition 2.4. Every maximal ideal of Xq(M) contains the
ideal a(M). Moreover, this must be equal to dn~'m; for a point
P E By, where m; is the maximal ideal of X(By) corresponding to
the point p.

Proof. The first part of this proposition follows from Lemmas 2.1
and 2.2, Let m be a maximal ideal of X4(M). It is easy to see that
dmnm is a maximal ideal of X (By). Hence there exists a unique point
pE By corresponding to dmm which is denoted by mj; (for the proof,
see [3] and [6]). This completes the proof.

Remark 2.5. The ideal a(M) is given by the intersection of all
maximal ideals of ¥5(M).

Theorem 2.6. Let G be a compact connected Lie group and
M, M’ be free G-manifolds. If Xq(M) is algebraically isomorphic
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to Xg(M'"), then the orbit manifold By is diffeomorphic to By..

Proof. Since a (M) and a(M’) are ideals of X4(M) and X4 (M)
respectively, the quotient Lie algebras X;(M) /a (M) and X4(M") /a (M)
are isomorphic to X (By) and X (Bj) respectively. Let @: ¥4(M)
—¥4(M’) be a Lie algebra isomorphism. We have

0 (a(M)) =@(_QB drn~'mz) = N {0 dn'm;); 0(dr'my):
maximal ideal of ¥,(M”")} =a(M").

Thus we can see that X4(M)/a(M) is isomorphic to ¥q(M')/a(M’).
Hence X (Bj) is isomorphic to X (By). By Pursell-Shanks theorem ([3],
[6]), there is a diffeomorphism ¢:By— By, such that dy is the above
isomorphism of X (By) to ¥ (By). This completes the proof.

§ 3. Proof of Main Theorem

Let 7: M— By be the principal G-bundle over By. By a system of
coordinate transformations in B, with values in G is meant an indexed
covering {U;}ic; of By by coordinate charts and a collection of contin-

uous maps ¢;;: U; N U;—G such that
07 () <951 (%) =gre(x) for €U NU,NU,.

Any principal G-bundle over By determines such a set of coordinate
transformations. In case of our principal G-bundles, each coordinate
transformation gy (x) :G—->G(x<U;NU;) is given by right translation
and ¢;;:U; N U;—G is differentiable of class C~. Let g denote the Lie
algebra of G consisting of left invariant vector fields on G. Consider
the adjoint of g;(x),ad(gs;(x)):g—>g. Then the map ad(gy):U,NU;
—>Aut(g) is differentiable of class C=, where Aut(g) denotes the group
of all automorphisms of g which is a subgroup of GL (m, R), m=dim G.
Since G is connected, the image of ad(g;;) is contained in the identity
component of Aut(g) which is denoted by Aut,(g). Furthermore we
may see that. for any 7,7, %k in I, ad (gs;(x)) -ad (g;;(x)) =ad (gs;(x)) for
z€U;NU;NU,. Hence from N. Steenrod ([7, Existence theorem]),
there exists a bundle E(M, g) with base space By, fiber g, group Aut,(g)
and the coordinate transformations {ad (g;;)}. Since each fiber of E (M, g)
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has the Lie algebra structure, the space of global C*-sections of E(M, @),
I'(E(M, g)), has a natural Lie algebra structure. Then we may identify
the space I'(E(M, g)) with the ideal a (M) as Lie algebra. Let E(M’, g)
denote the bundle corresponding to the principal G-bundle 7n’: M’'— By..
Suppose that X;(M) is algebraically isomorphic to %Xs(M’). From
Theorem 2.6, the space By is diffeomorphic to By, via ¢. Since the
pull-back of ¢, p*M’, is equivalent to M’ via a bundle isomorphism @
and the Lie algebra ¥;(¢*M’) (resp. a(¢*M’)) is isomorphic to ¥4(M")
(resp. a(M’)) via the differential of @, it is sufficient to consider for
By= By, ¢=identity.

Proposition 3.1. If the Lie algebras I' (E(M,q)) and I' (E(M',
g)) are isomorphic, then the vector bundle E(M, ) is isomorphic in
Aut(g) to E(M',q).

Proof. Let ¥:I'(E(M,q))—I'(E(M’,g)) be the Lie algebra iso-
morphism and {U;} be the common covering of By by coordinate charts
with respect to E(M,g) and E(M', g).

For each U, the local constant sections ¢’:U;—X{ (k=1,2, ---, m)
are bases for I'(E(M, g)|U;) and I'(E(M’, g) |U;), where {X{?, .-, XP}
denotes the appointed basis of g with respect to U;. Then we have the

following formulae:
{T|z) (@)} (=) =i b (x)o® (zx€U,k=12,--,m).
I=1

Since for each x&€ By, ¥l;um is a Lie algebra isomorphism of g,
(62) (x) is contained in Aut(g). Furthermore the map (5{’): U;—Aut (g)
is differentiable of class C*. For x€U,NU,, we have the following

formulae:

(082, (x)) -ad (g5:(x)) =ad (9, (x)) - ({1 (), k=1,2,--,m.

From these formulae and Lemma 3.2 of [7], we obtain that E(M,g) is
isomorphic in Aut(g) to E(M’,g). This completes the proof.

Theorem 3.2. Supppose that G is a compact connected semi-
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simple Lie group with Aut(g) =Auty(g). If Xs(M) is algebraically
isomorphic to Xg(M"), then M is G-equivariantly diffeomorphic to M.

Proof. Let 0:%;(M)—%;(M’) be a Lie algebra isomorphism.
From Theorem 2.7, the orbit manifolds By and By are diffeomorphic,
via ¢. And by the above argument, we may assume By=DB,; and
¢ =identity. From Proposition 3.1 and Aut(g) =Aut,(g), that a(M) is
isomorphic to a(M’), via @, implies that E(M, g) is isomorphic in
Auty(g) to E(M’,g). From Lemma 3.2 of [7], there exist C*~-maps
1;:U;—Auty(g) such that

ad (¢5:(2)) =17 (z) -ad (0. (x)) - 1;(x) for zeU;N T,

where {ad(g;;)} and {ad(g};)} denote the coordinate transformations for
E(M,g) and E(M’, g) respectively.

On the other hand, it is known that if G is semi-simple, then
Aut,(g) is equal to the adjoint group Ad(G), which is isomorphic to
G/Z, where Z is the centor of G. Therefore there exist C*-maps
1;: U;—G/Z such that

95 (x) =27" (@) - 95(x) - Xi(x) (z€UNU,) in G/Z.
We can easily lift the maps 1, to maps 4;: U;—G such that

g,ji () =27 (x) -9 (x) - X:(x) (x€U,NUy).

Hence using Lemma 3.2 of [7] again, we may see that two principal
G-bundles 7: M— B, and 7n’: M’— By. are G-equivalent, This completes
the proof.

Let G; be compact connected simple Lie groups (1=i<{k) and G
be the product G;X - XG,. Let g; denote the Lie algebra of G;. Then
the Lie algebra g of G is isomorphic to g,@--@Pg, (direct sum). We
remark that any principal G-bundle M is decomposed as a sum of
principal Gi-bundles, M (G, @---PM(G,).

Definition 3.3. Two principal G-bundles M and M’ are essentially
isomorphic if there are a diffeomorphism f: M— M’ and an automorphism
4:G—G such that f(g-x) =u(g) -f(x) for xeM,gcG.
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Then we have the following theorem.

Theorem 3.4. Let G; be compact connected simple Lie groups
(AZiLk) such that Aut(g;) is connected. Let G be the product
G, X - XGyand M, M’ be free G-manifolds. If ¥4(M) is algebraically
isomorphic to Xq(M'), then M is essentially isomorphic to M.

Proof. By the same argument as in the first part of the proof of
Theorem 3.2, we may see that the vector bundle E(J, g) is isomorphic
in Aut(g) to E(M’,g). We denote this isomorphism by ¥. Note that

k
E(M,q) and E(M’, g) are isomorphic to the Whitney sum @ E (D, g,
i=1

and éE(M’, g:), where E(M,g;) and E(M’, g;) denote vector bundles
overtgﬂ, with fiber g; (1=X¢<k). Thus we can split the isomorphism &
into @@'i:i(-iDlE(M 1) ﬁéE(M’, g;). From the assumption, E(M, g,)
is isomorphic in Aut,(g;) to E(M’, q;) for each i. Thus by the same
argument as in the last part of the proof of Theorem 3.2, M(G),) is
Gi-equivariantly diffeomorphic to M’ (G;,). Hence, M is G-equivariantly
diffeomorphic to M’ (G;) @@ M’ (G;,) which is essentially isomorphic
to M’. This completes the proof.

Remark 3.5. Let A, (k=1) denote the local isomorphism class
of SU(k+1); B, (k=2), that of SO 2k+1);C, (k=3), that of Sp(k);
D, (k=4), that of SO(2k), and G,, F,, E, E; and E; denote “excep-
tional” simple Lie groups. These form a complete list, without repetition,
of the local isomorphism classes of the compact simple Lie group. Let
g be the Lie algebra of G. The orders of the quotient groups Aut(g)
/Auty(g) are given by the following table.

I D i
G 4. B.| G| D, f(kg'%)i G | F.| E | E | E,
Order of

Aut(g)/Auto(g)'lell‘esg 2 |1]112\1{1

i

§4. Counter Example

In this section, we show that if Aut(g) is not connected, then
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Theorem 3. 2 does not hold.
Let U(n) and PU(n) be the n-dimensional unitary group and the
projective group and 7:U(1) -»U(n#) be the canonical inclusion, that is,

ezrrit

i (ezmh‘,) — 1.

. for = U(1)

1

and j: U (n)—>PU (n) be the projection map and c¢: U(n) »U(n) be the
conjugation map, that is, c(A) =A for AU (n), where A denotes the
conjugate matrix of A. Let L(n) =8*""'/Z, (n==3) be the Lens space
and A:m(L(n)) =Z,—U(1) be a homomorphism defined by A(1) =é&*™™
where 1 denotes the generator of Z,. Then the homomorphisms joioh
and cojoioh induce principal PU(z)-bundles & and & over L(n) which
possess foliatins & and & transverse to the fibers. (See Milnor [4,
Lemma 1].)

Proposition 4.1. The principal PU (n)-bundles & and & over
L (n) (n=3) are not trivial and not isomorphic in PU (n)-bundles.

Proof. Let 7m and % denote principal U(1)-bundles over L (n)
induced by the homomorphisms 2 and coh. Then using Lemma 2 of
[4] we can compute the Euler classes ¢, (1), ¢; () € H*(L(n) ; Z) = Z, and
prove that c,(7)= —c(7)#0. Since §=79X yq,PU(n) and & =7 X gy PU(n),
& and & are not trivial. Furthermore the mod 7 characteristic classes
X&) (=c;(9) modn) and X(€) (=c,(§) modzn) are not equal in
H*(L(n); Z,) =Z, More precisely, let f and cof: L(n) >BPU(n) be
the classifying map representing ¢ and & respectively, where the map
¢:BPU (n) —->BPU (n) is the map induced from the conjugation map c.
Let 1 be a generator of H*(BPU);Z, =Z, Then we have the
relations: X (&) =f*(1) and X&) = (cof)*(1) = —fF*(1). Hence this

completes the proof.

Remark 4.2. Let 3u(n) denotes the Lie algebra of SU(n) and
Aut(8u(n)) its automorphism group. We know that the connected
component of Aut(8u(n)), which is denoted by Aut,(8u(n)), is



PURSELL-SHANKS TYPE THEOREM FOR G-MANIFOLDS 261

isomorphic to PU@®). So & and & are the principal Aut,($u(n))
bundles. Then using the conjugation map ¢, we can construct a bundle
isomorphism C:é—& as follows: for (p,v) €, pEL(n),veé,=PU(n),
C(p,v) = (p,c(v)) €&. Hence & is isomorphic in Aut(3u(n)) to &,
via the map C.

Remark 4.3. Let M, and M, be the total space of & and &
respectively. Then we have already known that M, and M, possess
foliations & and F transeverse to the fibers. Then the isomorphism C
maps < to G.

Remark 4.4. Let E() and E#) denote associated bundles
with fiber 8u(n) of & and & respectively and I'(E(€)) and I'(E(§))
denote the C=-section space of E(§) and E(§) which have natural Lie
algebra structures. Then the isomorphism C:£§—& induces the isomor-
phism C:E(&) —E(€) and so the isomorphism C:I"'(E(§)) —»I'(E()) as
Lie algebras.

Theorem 4. 5. Xpp(M,) is algebraically isomorphic to Xpyq(M,).

Proof. We have exact sequences of Lie algebras:
0—a (M) =Xpym (M) >X(L(n)) >0 (=1,2).

Then we define Lie algebra splittings s;: ¥ (L (7)) >%pym (M;) using the
foliation as follows: for each u=X¥(L(n)), the vector field s;(x) is
tangent to the leaves of the foliation F (resp. &F) and dros;=identity.
Thus using these splittings s; (=1, 2), we see that Xpym (M;) is iso-
morphic to a(M;) DX (L (n)) (direct sum) and for (X, u), (Y,v) €a(M,)
DX (L)),
[X,0), (Y, )] =X, Y]+ [« Y]+ [X, v], [#,v])

where [,] denotes the Lie bracket. Since the ideals a(M;) and a (M)
are identified with I"(E(€)) and I" (E(§)) respectively, we define a map
V: Xpyay (M) >Xppy (M) by (X, w)) =(C(X),w) for any (X, u)
el EE))PX(L@m). It is easy to see that this map is an isomorphism.

And moreover by easy computations, we have the relation: C([X, «])
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=[C(X),u]. Therefore for any (X, u), (Y,v) € (E&)) DXL x)),
P(IXw, (Y, 9]) =X, Y]+ [u Y]+[X, v], [ v])
= (C(X, YD +C([», Y]) +C([X, v]), [#,v])
= ([CX), C(Y)]+[u, C(Y)]+[C(X),v], [« v])
=¥ (X, w),¥(Y,v)].

This completes the proof.

Remark 4.6. These free PU(n)-manifolds M, and M, are essen-

tially isomorphic via the map C.

Theorem 4.7. Let G=SU((n) n=3), Spin(2n) n=2), E; or
SO (2n) (n=3) and M, and M, be free G-manifolds. If ¥Xs(M,) is
algebraically isomorphic to Xo(M,), then M, is essentially isomorphic
to Mg.

Proof. First we consider the case G=SU@m). Let E(M;) be
associated bundles with fiber 8u(nz) of M;(z=1,2). Then Proposition
3.1 says that E(M,) is isomorphic in Aut(@u()) to E(M,). TUsing
the conjugation map c¢: SU () —->SU(n), we can construct another princi-
pal SU(n)-bundle M, which is essentially isomorphic to M, (see Re-
mark 4.6). Furthermore E(M,) is isomorphic in Aut(8u(z)) but
not in Auty(3u(n)) to E(M,. Since Aut(8u(n)) is not connected
and the order of the quotient group Aut(8u(z))/Aut,(8u(n)) is
equal to 2, if E(M,) is not isomorphic in Aut,(8u(n)) to E(M,),
then E(M), is isomorphic in Aut,(8u(n)) to E(M,. Thus by the
same way as in the proof of Theorem 3.2, we can prove that M, is
SU (n) -equivariantly diffeomorphic to M,.

For the cases G=Spin(2n) (n=3) or E; the order of Aut(G)
/Auty(G) is equal to 2. So there exists an automorphism 7:G—G such
that &€ Aut,(G). For the case G=Spin(4), the order of Aut(Spin(4))
/Auty(Spin (4)) is equal to 6. So there exist five automorphisms t;:
Spin (4) »Spin (4) (:=1, 2, -, 5) such that each 7; and each r;o7;' (5j)
are not contained in Aut,(Spin(4)). For the case G=S0 (2n), we define



PURSELL-SHANKS TYPE THEOREM FOR G-MANIFOLDS 263

an automorphism #:SO (2n) —SO (2n) by #(A) =TAT ! for A=SO(2n),
-1
where T=| 1. | Then the differential du:80(2n) —>8p(2n) is
1
not contained in Aut,(80(27n)), where 30(2n) denotes the Lie algebra
of SO(2n). Using 7,7;(z=1,2,+--,5) or u instead of ¢, we can prove
our theorem for G=Spin(2n) n=2), E; or SO(2n) (n=3) similarly.

This completes the proof.

§ 5. Concluding Remarks

In this section, we show that if G is not semi-simple, Pursell-Shanks
type theorem for free G-manifolds is no longer true.

Let B be an oriented closed surface of negative Euler characteristic,
y(B) <0. Let M;=S"XB and 7: M,—B be a non-trivial principal S
bundle with a foliation transverse to the fibers. J. Wood proved the
following theorem ([8]).

Theorem 5.1. Such a bundle § exists iff |y (&) |Z |y (B) |, where
v (§) denotes the Euler class of §.

Then there are canonical free (left-) S'-actions on M, and M,.
Proposition 5. 2. Xu(M,) is isomorphic to Xs (M).

Proof. We have an exact sequence of Lie algebras;
0 - a(My) — Xa(M,) — X(B) — 0.

Then we define a Lie algebra splitting s:¥(B) —Xu (M, using the
foliation as follows; for each u=X (B), the vector field s(ux) is tangent
to leaves of the foliation and dmos=identity. Thus using this splitting
s, we see that X (M,) is isomorphic to a(M,) B X (B) (direct sum) and
for (X, u), (Y,v) €a(M,) PX(B),

[(X7 u)’ (Y’ TI)] = ([X3 Y] +u- Y“‘U'X’ [u9 ’U])

where [,] denotes the Lie bracket. Since the adjoint group Ad(S") is
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trivial, the vector bundles E(M;, R*) and E(M,, R") are trivial. Thus
a (M) is algebraically isomorphic to a(M,). Let ¢:a (M) —a (M) be its
isomorphism. Then we define a map ¥: %5 (M) —=%s (M) by T (X, uw))
= ((X),w) for any (X,u) €a(M,;)P%X(B). This map is an isomor-
phism. For any (X, u), (Y,v) €¥a (M),

Yi({Xw, Y, 0 =¥ X, Y]+u Y—v-X, [4v])
=X YD +¢@ V) —¢(v-X), [u,v])
= (XD, ¢N ] +u-¢p(Y) —v-¢(X), [4,v])
=[@&X),w), W),v)]
=X 0, ¥, 9]

Hence ¥ is a Lie algebra isomorphism. This completes the proof.

Let T? be a 2-torus. Express a point p of T? as (x,y), where x
and y are contained in S'=R/Z. Define a linear action of 17, ¢,:R X T?
—T? by ¢.(¢, (x,¥) =(x+¢t,y+a-t), where a is an irrational num-
ber. Note that ¢, is a free action and each orbit of this action is

everywhere dense.

Proposition 5.3. For any irrational number o, X, (T is

isomorphic to R® as Lie algebra.

Indeed, let Diff g ,., (7% denote the group of equivariant diffeo-
morphisms of T2 which are equivariantly isotopic to the identity. Then

we have that Diff gz ,., (7% is isomorphic to T'* as Lie group.

J. Milnor proved the following proposition ([5, Assertion 8.1]).

Proposition 5.4. Let f° denote the codimension 1 foliation with
constant slope s on T?* If s5s’, then the foliation f° is not C'-
integrably homotopic to f* for any r=2.

Using Proposition 5.4 and the fact that the quotient group
Diff (T?) /Diff, (T'®) is isomorphic to SL (2, Z) (where Diff,(7®) denotes
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the identity connected component of Diff (7'%)), we can prove the follow-

ing proposition.

Proposition 5.5. There are irrational numbers o and [ such

that the action ¢, is not equivariantly diffeomorphic to the action @,.
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