
Publ. RIMS, Kyoto Univ.
17 (1981), 267-296

Left Transformation Languages

By

Hidetaka TANAKA*

Abstract

A subfamily LFT of the family CS of context-sensitive languages is investigated.
Elements of LFT are called left transformation languages. Any context-sensitive language
is represented in the form h(Li OLf) where Li, Z^eLFT, h is a length-preserving
homomorphism, and I/f is the mirror image of Z/2. This fact implies that the "LBA-
problem" is equivalent to the problem whether LFT can be accepted by deterministic
linear bounded automata. It is remarkable that LFT is an intersection-closed AFL and
the emptiness problem for LFT is effectively solvable. Also LFT is shown to have the
quasi-prefix property, and we can see that LFT and the family CF of context-free
languages are incomparable.

§ 1. Introduction

The LBA-problem is an important problem yet open in formal

language theory. This problem is concerned with the inclusion relation

between the family CS of context-sensitive languages and the family

DCS of deterministic context-sensitive languages (i.e., languages accepted

by deterministic linear bounded automata). To consider the problem this

paper introduces and investigates a subfamily LFT of CS, elements of

which are called left transformation languages. The importance of the

family LFT is assured by the fact that any context-sensitive language

can be represented in the form h (Lj fl Lf) where L2 and L2 are left

transformation languages, h is a length-preserving homomorphism, and

Lf is the mirror image of L2. Because this fact implies that the LBA-

problem is equivalent to the problem whether LFT is included in DCS

or not.

The equivalence of context-sensitive grammars and one-sided ones

was proved by Penttoneii [1]. He simulated derivations of context-

Communicated by S. Takasu, April 1, 1980.
* Department of Information Science, Faculty of Science, University of Tokyo,

Bunkyo-ku, Tokyo 113, Japan.



268 HlDETAKA TANAKA

sensitive grammars by left context-sensitive productions in two stages.

The first stage is executed by applications of length-increasing linear

context-free productions, and the second stage is executed by applications

of length-preserving left context-sensitive productions. He called the

second stage a length-preserving left context-sensitive transformation.

We are concerned with this transformation in this paper.

In Section 2 we state the formal definitions of length-preserving left

context-sensitive transformation (abbreviation: llcst) and left transforma-

tion language (abbreviation: Itl), and show some examples. LLCS is

defined to be the family of domains of llcst's, and for each family X of

languages LLCST (X} is the family of languages obtained by applying

llcst's to elements of X. Then the family LFT of ItFs is defined to

be LLCST (REG), where REG is the family of regular languages.

Section 3 provides representation theorems for LLCST (_£), LFT,

and CS. Also we show some closure properties of LLCS and LFT

under operations. LFT is an intersection-closed AFL and it equals to

the least semi-AFL containing LLCS.

In Section 4 we introduce a new type of automaton called traverse

automaton (abbreviation: tra). For each tra M the language L(M}

accepted by M and the language A (M) associated with M are defined.

L(Af) is a simple Itl and A(M) is an Itl, and so in later sections we

study LFT by means of tra's. Especially traverses of a tra M, which

are finite sequences of words of a special form, play an important role.

In Section 5 we prove elementary lemmas related to traverses of
tra's. These lemmas are lately used in proofs of main results of this

paper.

One of main results of this paper is that the emptiness problem for

Itl's is effectively solvable. This is proved in Section 6 by using the

result of Haines [3] which is concerned with the partial order of words

by embedding. Since LFT is an intersection-closed AFL incomparable

with the family CF of context-free languages, this result gives us

another reason to study LFT.

In Section 7 we prove that LFT satisfies the quasi-prefix property

and show some examples of languages not in LFT. This implies that

LFT and CF are incomparable. Also we can show non-closure properties



LEFT TRANSFORMATION LANGUAGES 269

of LFT under some operations. These assures us that LFT is a small

subfamily of CS.

§ 2. Left Transformation Language

In this section we introduce the definitions of length-preserving left

context-sensitive transformation (llcst) , left transformation language (Itl) ,

and domain language of llcst. These are objects of this paper.

An alphabet is a nonempty finite set 2, whose elements are called

symbols. By 2* we denote the free monoid generated by 2. Elements

of 2* are called 'words. The identity of 2* is called the empty zvord

and denoted by L Subsets of 2* are called languages. A stands for

the language {A}. For a language Z/, L* denotes the submonoid of 2*

generated by L, which is called the Kleene closure of L. The K-free

Kleene closure of L, in symbols L+, is defined by L+ = L* — A.

The concept of llcst was first introduced by Penttonen [1]. Our

definition differs from the original one, but this alternation was shown

not to change the ability (Lemma 1 of [1] ) .

Definition 2. 1. A length-preserving left context-sensitive trans-

formation (abbreviation: llcst) is a quadruple T= (V, 2, Q, P) where

(i) F, 2, and Q are alphabets with F=)2UQ,
(ii) P is a set of productions whose forms are A->B or AB~>AC

where A, B, and C<EE V.

2 and Q are called the input alphabet and the output alphabet of T

resp. We usually denote V, 2, Q, and P by VT, 2^, QT, and PT resp.

The binary relation =$T on V* is defined as the usually way. Formally

if u, t/eV* and .r— >y^P, then we write uxv=$T uyv. Let =^^ denote

the reflexive and transitive closure of =^r. We define a relation from

2* into Q*, also denoted by T, as follows. For each word w in 2*,

The relation T is called an llcst relation. The domain and range of

T, in symbols D(T) and R(T) resp., are defined by



270 HIDETAKA TANAKA

We note that the inverse T~l of the relation T is also an llcst relation.

For T'1 is defined by an llcst T":

Obviously R(T~l) =D(T) and D(T~l) =

For each language L over E, let

and for each family JL of languages, let

LLCST (J?) = {T(L) \L^JH and T is an llcst}.

By LLCS we denote the family of domains of llcst relations.

For well-known families of languages we use the following notations.

RE: recursively enumerable languages,

CS: context-sensitive languages,

DCS: deterministic context-sensitive languages,
CF: context-free languages,

LIN: linear context-free languages,

REG: regular languages.

The following proposition proved by Penttonen [1] is the starting

point of this paper.

Proposition 2.2 (Penttonen). CS = LLCST (LIN) . Especially

there exists a linear context-free language LQ in the least semi-AFL,

containing {anbn\n2>l} such that

CS = LLCST (L0) U LLCST (L0 U A) .

Now we define left transformation language.

Definition 2.3. Let LFT = LLCST (REG). A left transforma-

tion language (abbreviation: Itl) is an element of LFT. Trivially LFT

is a subfamily of CS. The close relation between CS and LFT shall

be shown in the next section. Also we can see that LFT is the least



LEFT TRANSFORMATION LANGUAGES 271

semi-AFL containing LLCS.

In the rest of this section we show some examples of languages in

LLCS. First we note the following fact.

Lemma 2. 4. For each language L, define

Pref(U) = {u\uv^L for some v}.

For any language L in LLCS, L = Pref(L)*.

Proof. Assume L = D(T). Since T is left context-sensitive, in a

derivation xy =»* uv with |o:| = |w| the transformation of x to u is

independent upon y. Therefore xy€ED(T) implies x^D(T), and L

= Pref(L). On the other hand, if x =>* u and y =>* v, then xy =>* uv

by the definition of =$. Therefore x,y&D(T) implies xy^D(T) , and

L = L*. Hence

L = L* = Pref(Lf . Q.E.D.

Example 2.5. For any regular language Jf?, Pref(R)*&LLCS.

For assume that a regular grammar G— (VN, 2, XQ9 P) generates R — A.

Elements of P are of the form X-*aY or X->a where X, Y^ VN and

a<E2. An llcst T with JD(T) =Pref(R)* can be defined as follows.

( i ) T=(Y*U2,2,Q,P'),
(ii) Q={X<=EVN\X=$G* w for some w in 2*},

(iii) Pr consists of the following productions.

(1) If XQ->a^P, then a-*X0<=P',

(2) if X0-»aX<=P, then a-*X<=P',

(3) if X-*a<=P, then Xa-»XX0<=P'9
(4) if X~>aYeP, then Xa-*XY^P'.

To show other examples, we introduce flow diagram representing

derivations of llcst's. In derivations, when a production AB—>AC is

applied, then we write it as in Figure 1 (a), and when a production

A-+B is applied, it is written as in Figure l(b). For instance, if XY

•>Xa, aZ-^ab, Xa->Xb, and X->c are productions, then the derivation:



272 HIDETAKA TANAKA

XYZ => XaZ => Xab => XW> =>

can be represented as in Figure 1 (c) .

A-f t w
c .-z

b b

Figure 1 (a) (b) (c)

We note that the length of a derivation is equal to the number of verti-

cal lines in the corresponding flow diagram. From flow diagrams one

can construct derivations corresponding to flow diagrams.

Example 2. 6. {anbm\n:>m:>Q}*&LLCS. We define an llcst

T=(V,{*,*},Q,P) by

F= {a, &, A, A', 3, £'},

Q=ia,A9A',B,B'}9

P= {aa-^aA, ab-*aB, AA-+AA', A'A'-»AfA, AB-+AB',

A'B'-*A'B, B'b-»B'B, BB-+BB' , BfB'-^BfB}.

Then D(T) =Pre/({aV|^0})*= {anbm\n:>m^Q}*. For instance the

flow diagram for <z5£5eD(T) is shown in Figure 2.

— Q — a — a — a — b
i i i i i

A-f-B-B

A1— B1— B1— b

B — B— B
Figure 2 3* — B'— b

i i
B-B

B'— b
B

Example 2. 7. The notation Nc (w) means the number of occur-

rences of a symbol c in a word w. Let



LEFT TRANSFORMATION LANGUAGES 273

,b}*\ for any x in Pref(w)9 Na(x):>Nt(x)}.

We define an llcst T= ({a, b, A}, {a, b}9 {a, A}, F) by

P = {aa-^aA, ab-^aA, AA-^Aa}.

Then we have

D (T) = Pref(Dl} * = Pref(Dl} = L €= LLCS ,

where D1 is a 1-Dyck language over {a, b}. For instance the flow

diagram for a*ba2b2ab* e D (T) is shown in Figure 3.

G—a—a—b
i i i
A—A—A

a—a—a—a—b
t i l l
A-A-A-A

a—a—a — b
i i i
A—A—A

I I
a — a — a — bi i i

A — A — A
Figure 3 I I

a—a — bi i
A—A

a —b

A

Example 2. 8. L= {a*&*|2*^w^O}*eLLCS. An llcst T with

Z)(T) =L can be defined by

T= ({a, b, A,, Az, B,, B2, D,, D,} , {a, b}, {Alt A» A, A}, P) ,

P= {a-*Alt ab-^aD,, A^A^A^, AjA-^iA,

B,-*^,, B.A^B.B,, A.A

Bt-*A>, AA-^AA, AA

For instance the flow diagram for <z8£8e.D(T) is shown in Figure 4.



274 HIDETAKA TANAKA

a a a— b

Eh Br-Dr-b
A2

NA2-Di-Di
B2-D2-D2-b

D2-D2-D2-D2-b

DI-DI-DI-DI
D2-D2-D2-b

D2-b

01

We note that in Examples 2. 5-2. 8 the length of a derivation from

w£:D(T) with \iv\=n is at most n2. In the next example an llcst

T makes very wasteful moves and the length of a derivation is expo-

nential.

Example 2. 9. Define an llcst T= (V, {a, b}9 Q, P) by

F= {a, b, A19 A29 B19 B29 Cl9 C2, Dl9 D2}9

29 B2D2-*B2C29

^ D2b-*D2Dl9 A D,-> D1C19

Then D(T) = (ob*)*. For instance the flow diagram for ab*<=D(T)

is shown in Figure 5. We note that for each n the length of the

derivation for abn is at least 2n+1 + 2w — n — 3.



LEFT TRANSFORMATION LANGUAGES 275

a

A2-C1

I2~lrii—S—D,
B2_D2

C2

D,— D2 —
 b

A, — Cti i 1B2 — D2 — C2

B,— D, — D,— D,

A2 — <p
D2 — I

D2"

Figure 5

§ 3. Representation Theorems

In this section first we give a representation theorem for LLCST (J^) ,

and next we show some closure properties of LLCS and LFT under

operations. Then we can see that LFT is an intersection-closed AFL

and also it is equal to the least semi-AFL containing LLCS. Finally we

show two representation theorems for CS. These theorems assure us

that LFT is an important subfamily of CS.

A homomorphism h of monoids from Z* to J* is called a homo-

morphism over 2. It is called length-preserving iff for all a in

Notation 3. 1. For each family Jl of languages, let

= {h~l (L) \L^X and h is a homomorphism},

and h is length-preserving},



276 HlDETAKA TANAKA

H9(X) = {h(L) |Le X and h is length-preserving},

and for families X\ and Xz of languages, let

{L1KL2\L1^X1 and

Lemma 3. 2. LLCST CO c H9 (H-l(X) ALLCS) .

Proof. Assume L^X and T is an llcst (Y,2,Q, P). Define

length-preserving homomorphisms /: (2 X Q)*-»2* and g: (2xQ)*-^(2*

by f ( ( X , a ) ) =X and g((X,a)) =* for each (X, a) in ZxQ. Then

where 5(T) is a language over ExQ defined by

Thus to prove the lemma, it suffices to show S(T) eLLCS. Now de-

fine a new llcst T' = (VxQ, 2xQ, Q', P') by

(i) Q'={(«,«)keQ},.

(ii) P' consists of the following productions.

(1) If A->£€EP, then ( A, a) -> (B, a) e P' for all a in Q,

(2) if AB-^ACeP, then (A, a) (B, b) -> (A, a) (C, i) is in
P' for all a, 3 in Q.

Clearly D(T') =5(T), and the lemma holds. Q.E.D.

A renaming is an injective length-preserving homomorphism. If J?
is closed under renaming, we have a representation theorem for

LLCST ( X ) .

Theorem 3. 3. If X is closed under renaming,

LLCST (X) = Hp (H-1 (X) ALLCS) .

Proof. By Lemma 3. 2 it suffices to show the inclusion:

LLCST (X) ^H,(H?(X)/\UJCS).

Assume /: E*-»J* and g: S*-*/'* are length-preserving homomor-

phism, L&X with Z,CJ*, and T=(V,2, Q, P) is an llcst. We show



LEFT TRANSFORMATION LANGUAGES 277

L) nD(T))eLLCSTCr).

Since JC is closed under renaming, without loss of generality we can

assume JHT = 0. Define a new llcst T = (4U FU Fx r, J, T, P') as

follows.

(1) If a€EJ, X<E2, and /(X) =a, then a->(X,ff(X)) eJP'.

(2) If A->£eP, then ( A, c) -* (JB, c) e P' for all c in T.

(3) If A£-^ ACe JP, then (A, c) (B, J) -» (A, c) (C, d) e Px for all

c9 d in T.

(4) If AeQ, then (A, c)->cePx for all c in T.

Clearly T' (L) =g(f~1(L) HD(T)) which establishes the theorem.

Remark. If X is not closed under renaming, then the equation

above does not necessarily hold. For example let _£*={#*}. Since

H~l(X) contains {a, &}*, by Example 2.6,

But this language L is not in LLCST (JT). For assume T(fl*) ~L for

some llcst T. Since T is length-preserving, a8=£*a3&8 and as=^*a2^.

Then aB=**aV=$*a2bbs = a2b4<ET(a*) . This is a contradiction.

To state a corollary of the theorem above, we recall the definitions

of semi-AFL and AFL. A homomorphism h over 2 is called \-free iff

fi(a)=fc% for any a in 2. A family of languages is called a semi-AFL

iff it is closed under union, A-free homomorphism, inverse homomorphism,

and intersection with regular languages. An AFL is a semi-AFL closed

under A-free Kleene closure. For instance RE, CS, DCS, CF, and REG

are AFL's. LIN is a semi-AFL but it is not an AFL. Later we shall

show that LFT is an AFL closed under intersection. We note that

LLCS is not a semi-AFL, because it is not closed under A-free homo-

morphism or union.

Corollary 3. 4. If X is a semi- AFL, then

LLCST(X) =HPU/\LLCS) =HP(_£ALFT).

Proof. Since a semi-AFL is closed under inverse homomorphism,



278 HIDETAKA TANAKA

LLCST OT) =H3,(JTALLCS).

Also REG is an AFL, LFT = HP(REGALLCS). Then

LLCST co CH,U:ALFT)
= Hp C£ AH, (REGALLCS) )

c H9 (Hp (H? (X) AREGALLCS) )

= Hp (X ALLCS) = LLCST CO .

This completes the proof. Q.E.D.

Next we consider the closure properties of LLCS under operations.

It is clear that LLCS is closed under length-preserving homomorphism,

but it is not closed under A-free homomorphism or union.

Lemma 3. 5. H~l (LLCS) = LLCS.

Proof. Assume T= (V, S, Q, P) is an llcst and h: J*-»2* is a

homomorphism. We show h~l(D(T}} eLLCS. Since LLCS is closed

under renaming, without loss of generality we can assume

Let

|| a in J},

Define a new llcst jP= (V , A, Q'9 P') as follows.

(i) yr = JU {(f,w)|« = 0,l and te;€EW},

(ii) Q /={(0,w)|weW rnQ*},
(iii) /" consists of the following productions. Let x, y, z£=W.

(1) a->(Q,h(a)) eP' for all <z in J.

(2) If x =» P y, then (0, ar) ^ (0, y) e P'.

(3) If xy=»r3:z, then (i, x) (0, y) -* (i, x) (0,2) is in P' for

(4) (i, x) (0, A) -» (*, *) (1, x) e P' for « = 0, 1.

(5) (l,a:)-»(0,A)eF'.

Then we have Z)(7V) =h~1(D(T)). Q.E.D.



LEFT TRANSFORMATION LANGUAGES 279

Lemma 3. 6. LLCS is closed under intersection.

Proof. Assume T, = (Vl9 S, Ql9 P,) and T2 = ( Y2, 2, Q2, P2) are

Host's. We show D(Ti) flD(T2) eLLCS. Define a new llcst T as

follows. T=(F1XF2UZ,S,Q1XQ2 ,P) and

(i) if A-»BeP,, then (A,X)->(B,X)eP for all X in Y2,

(ii) if AB-*ACe P1? then (A, X) (B, Y) -> (A, X) (C, Y) e P

for all X, Y in F2,
(iii) if X->ye=Pf, then (A,X)-^(A, Y) eP for all A in V,,

(iv) if XY-*XZ£i P2, then (A, X) (5, Y) -»(A, X) (B, Z) e P

for all A, B in Vl9

(v) a—» (a, a) ^P for all a in Z.
Clearly we have Z>(T) =Z?(T1) HD(T2). Q.E.D.

Theorem 3.7. LLCS £5 closed under length-preserving homo-

morphism, inverse homomorphism, intersection, and

LLCST (LLCS) = LLCS.

J3&£ LLCS is not closed under union, X-free homomorphism, intersec-

tion with regular languages, or reversal.

Proof. Clearly LLCS is closed under length-preserving homomor-

phism, and by Lemmas 3. 5 and 3. 6, it is closed under inverse homomor-

phism and intersection. By Theorem 3. 3,

LLCS c LLCST (LLCS) = H9 (H~l (LLCS) A (LLCS) )

= Jffp(LLCSALLCS) = Hp(LLCS) -LLCS ,

and hence LLCST (LLCS) = LLCS. a* e LLCS but (a2) *<£ LLCS.

Therefore LLCS is not closed under A-free homomorphism. Also since

a* U b* is not in LLCS, LLCS is not closed under union or intersection

with regular languages. By Example 2. 6,

L= {anbm\n^m^Q}*^LLCS,

but by Lemma 2. 4 the reversal LR of L is not in LLCS. Q.E.D.

Now we consider closure properties of LLCST (X) and LFT.



280 HIDETAKA TANAKA

Lemma 3. 8. If X is closed under renaming and union, then

(i) H-1 (LLCST GO) = H, (LLCST GO) = LLCST GO,

(ii) LLCST GO is closed under union,

(iii) LLCST GO ALLCS = LLCST GO,

(iv) LLCST (LLCST (X)) = LLCST ( X ) .

Proof, (i) and (ii) are easily seen.

LLCST (X) c LLCST GO ALLCS = Hp (J^
1 (_f) ALLCS) ALLCS

c ff, (If;1 GO ALLCS A-Hj1 (LLCS))

= H, (H-1 (£) ALLCSALLCS) = H, (H;1 (X) ALLCS)

= LLCST GO

and (iii) holds. Then

LLCST (_O c LLCST (LLCST (X))

= Hp (H;1 (LLCST (X)) ALLCS)

= H, (LLCST GO ALLCS)

= Hp (LLCST (X)) = LLCST (X)

and (iv) holds. Q.E.D.

Theorem 3. 9. If £ is a semi-AFL (AFL), so is LLCST (X) and

(i) LLCST (_T)ALFT = LLCST (X),

(ii) LLCST (LLCST (X)) = LLCST (X).

Furthermore if X is closed under intersection, so is LLCST (X) •

Proof. Assume X is a semi-AFL. Note that X A LLCS is closed
under inverse homomorphism. For

XALLCScJT'GTALLCS) ^H~l(X) AH'1 (LLCS) = _f ALLCS.

Then we have

LLCST (£) = H, (X ALLCS) = Hp (X ALLCS AREG)

= Hp (H-1 (X ALLCS) AREG).



LEFT TRANSFORMATION LANGUAGES 281

Recall the representation theorem for principal semi-AFL proved by
Ginsburg et al [2]. This theorem says that for each nonempty language
L the least semi-AFL containing L is represented in the form:

By this theorem LLCST (X) is the union of principal semi-AFL's gen-

erated by languages in X /\LLCS. Hence LLCST (X) is closed under
Mree homomorphism, inverse homomorphism, and intersection with

regular languages. By (ii) of Lemma 3.8 LLCST (X) is closed under

union. Consequently LLCST (X) is a semi-AFL.

It is easily proved that if X is an AFL, then LLCST (X) is closed

under Mree Kleene closure, and LLCST (J?) is an AFL.
(ii) is implied by (iv) of Lemma 3. 8. And by Corollary 3. 4, (ii)

implies (i) .
Finally assume that X is a semi-AFL closed under intersection.

LLCST (X) c LLCST (X) ALLCST (_£) •

= H9 U ALLCS) ALLCST (X)

c H9 (X ALLCS AH;1 (LLCST (X) ) )

= H9 (.£ ALLCS ALLCST (X) ) = H, (X ALLCST (X) )

/\X ALLCS))

/\X ALLCS) =H9(X/\X ALLCS)

= H, (X ALLCS) - LLCST (X) ,

and LLCST (X) is closed under intersection. Q.E.D.

Theorem 3. 10. LFT is an AFL closed under intersection and

A- free substitution. Also LFT is equal to the least semi-AFL con-

taining LLCS.

Proof. LFT = LLCST (REG) and REG is an AFL closed under
intersection. Hence LFT is an AFL closed under intersection. Since
an intersection-closed AFL is closed under A-free substitution, so is LFT.



282 HlDETAKA TANAKA

The latter statement is clear, because

LFT = LLCST (REG) = Hp (REGALLCS) . Q.E.D.

Finally in this section we show two representation theorems for

CS. The first one is directly implied by Proposition 2. 2 and Theorem
3.3.

Theorem 3. 11. CS = H9 (LINALLCS) = H9 (LINALFT) .

For each word zv9 ZVR denotes the reversal (mirror image) of w.

For each language L and family JH, let

Then LLCS5 is equal to the family of domains of length-preserving

"right" context-sensitive transformations, and LFT5 is equal to the

family of "right" transformation languages.

Theorem 3. 12. CS = H9 (REG A LLCS A LLCS5) = Hp (LFT

ALFT5).

Proof. Since LFT is an AFL, LFT* is also an AFL. Then

Hp (LFTALFT5) = LLCST (LFT5) = LLCST ((H9 (REGALLCS))5)

= LLCST (Hp (REG5 ALLCSfi) )

= LLCST (H9 (REGALLCS5) )

= H9 (H9 (REGALLCS5) ALLCS)

c Hp (Hp (REGALLCS5 AH-1 (LLCS) ) )

= H9 (REGALLCS5 ALLCS) c Hp (LFT ALFT5) .

Therefore

CS D HP(REG A LLCS ALLCS5)=£fp(LFT ALFT5) = LLCST(LFT5) ,

and by Theorem 3.9 LLCST (LFT5) is an AFL. To complete the

proof, it suffices to show that the linear language L0 in Proposition 2. 2



LEFT TRANSFORMATION LANGUAGES 283

is in ^(REGALLCSALLCS*), because

LLCST (LLCST (LFT*) ) - LLCST (LFT*) .

By Example 2. 6,

and {an

Therefore L= {â 71 1 ;*:>()} *GE LLCS A LLCS*. Since L0 is in the least

semi-AFL containing L, LQ is in LLCST (LFT*) . Since LLCST (LFT*)

contains A and is closed under union, L0 U A is also in LLCST (LFT*) .

Therefore

CS => LLCST (LFT*) z> LLCST (L0) U LLCST (L0 (JA)=CS.

Hence the theorem holds. Q.E.D.

Corollary 3. 13. If X is a semi-AFL, closed under intersection

and reversal, then J?DCS iff X D LLCS (LFT).

The complexity class DSPACE(/) with space bound f such that

f(ri)^n for all n is an AFL closed under intersection and reversal.

Therefore by the corollary above

DSPACE(/)=>CS iff DSP ACE (/)z> LLCS (LFT).

Especially DSP ACE (n) is equal to DCS, and hence the LBA-problem is

equivalent to the problem whether DCS 3> LLCS (LFT) or not.

Also the nondeterministic complexity class NTIME(g) with step

bound g is an AFL closed under intersection and reversal. Therefore

NTIME(g)=>CS iff NTIME (g) => LLCS (LFT) .

These equivalence of inclusion problems assures us that LLCS and LFT

are important subfamilies of CS. Then naturally there arises a question

whether LFT is much smaller than CS. In later sections we consider

this problem.

§ 4. Traverse Automaton

To study LFT we introduce a subfamily SLFT of LFT, whose

elements are called simple Itl's. Any Itl is a length-preserving



284 HIDETAKA TANAKA

homomorphic image of some simple Itl. Next we define a new type of

automaton called traverse automaton. A traverse automaton can be

considered as both a recognizer and a transducer. As a recognizer it

accepts a simple Itl, and as a transducer it results an Itl.

Let # be a special symbol only used as an endmarker. In the

sequel we assume that any "alphabet" does not contain #.

Definition 4. 1. A language R over 2 is called a local language

iff there exists Cc (2U {#})2 such that

#£# = #£*#- (2U {#})*((2U {#})2-C) (2U {#})*,

that is, R^tv iff #w# =a1a2-*-an and for all i a^+jGEC. We denote

C by CR. Let LOG denote the family of local languages. It is well-

known that REG = HP(LOG).

Let SLFT denote the family LOCALLCS. Elements of SLFT are

called simple ItVs.

Corollary 4. 2. SLFT is closed under intersection and inverse

homomorphism.

Proof. For both LOG and LLCS are closed under these operations.

Corollary 4. 3. LFT = H9 (SLFT) = LLCST (LOG).

Proof. Since LOG is closed under renaming,

LFT D LLCST (LOG) = H9 (LOCL /\ LCS) = H9 (SLFT).

Since REG = H9 (LOG),

LFT = H9 (REG A LLCS) = H9 (H9 (LOG) A LLCS)

c H9 (Hp (LOG A H~l (LLCS)) )

= Hp (LOG A LLCS) = H9 (SLFT),

and the corollary holds. Q.E.D.

Now we define traverse automaton. We use the term "automaton"



LEFT TRANSFORMATION LANGUAGES 285

because its states and next state function are given by a local language

and its storage operations shall be given by its traverse relation defined

later.

Definition 4. 4. A traverse automaton (abbreviation : trd) is a

pair Af = (T, R) where

(i) T=(V,S,Q,P) is an llcst with PC Vx (V-2) U V2X V(V

— 2), that is, productions A—*B and AC— >AD of T satisfy

(ii) R is a local language over Z.

The language accepted by M9 in symbols L(M), is defined by

and the language associated with M, in symbols A(M), is defined by

A(M}=T(R).

Trivially L(M) is a simple Itl and A(M) is an Itl.

Corollary 4. 5. A language is a simple Itl iff it is accepted by

a tra. A language is an Itl iff it is associated with a tra.

Definition 4.6. Let M= (T, R) be a tra with T= (V, 2, Q, P).

The set of admissible words of M, in symbols Ad^m (Af ) , is defined by

Adm (M) =S (F-S)* fl

The traverse relation ~^M on A(fw(Af) is defined as follows. Let

<r = a1«2"*^n and y — bj}^"bm be in Arfm(M). We define ^H^^V '& albl

eCfi and there exists a partial function

#:{l,2,-,«-l}-»{l,2,-,»}

such that

(i) if z<j and both ^>(z) and p ( j ) are defined, then p (i) <>p (j) ,

(ii) if p(f) is defined, then apWb

(m) if £(£) is undefined, then bt

If m = 1, then /> is interpreted as 0 and .r-̂  My iff a^j e Cjg. To empha-

size p we shall write x-^My via />. Let -^M* denote the reflexive and



286 HlDETAKA TANAKA

transitive closure of —^jf.

We say an admissible word x^a^-a^ is initial and write #<-x iff

#al^CR and for all z, ai-*ai+1^P. We write #<<*.r iff #<5.r or for

some y #<:y and y— l*x.

We say an admissible word y = b1b2"
>bm is ^z#a/ and write y-># iff

fti#eCB. We write y->*# iff yi># or for some £ y— <J*£ and £•>#.

The traverse language of M, in symbols Tra(M), is defined by

Tra(M} = {*e AJw(M) !#<**>*#}.

A finite sequence (a^, ••• , .£„) of admissible words is called a traverse

of .M iff Xi-^xi+1 for all x<^. Furthermore it is called complete iff

TI and xni># .

Let £0£ and bottom be functions for words defined by

= bottom (A) = A ,

= a, and bottom (wb) — b ,

where a and b are symbols. Then top and bottom are extended for

finite sequences of words as follows.

—top(xn),

bottom (xl9 ••• , j:n) — bottom (x^) •• 'bottom (xn).

Corollary 4. 7. Le^ M be a tra and w=^=L L ( M ) ^w iff iv

= top(xl9 •••,^n) /^^* 5ome complete traverse (xl9 ~-,xn) of M. A(M)

^w iff w — bottom (xi) •••,^rw) /or some complete traverse (xl9 •••,xn)

of M.

Example 4. 8. Let T be the llcst defined in Example 2. 6. Let

M=(T,a*£*). Then

Tra (M) = a (A A')* U a ( AA')* A U ̂ > (J35')+ U ft (BB')*B .

For instance the complete traverse corresponding to the flow diagram

for a5b*<=L(M) in Figure 2 is:



LEFT TRANSFORMATION LANGUAGES 287

§ 5. Partial Order by Embedding

In this section we introduce a partial order <] for words defined by

embedding, and next we prove elementary lemmas which play an impor-

tant role in later sections.

Definition 5. 1. Let x and y be words. We say x is embedded

in y and write x<\y (or yt>x) iff x = x1-~xr and y = yQX1y1'-xryr for

some words xjs and y/s. For each language L, define

Emb (L) — {x €E L \ for any y in L, y <\x implies y = x} .

Since <] is a partial order, Emb(L) is the set of elements of L that

are minimal in L with respect to the partial order <J. Haines [3]

proved the following proposition.

Proposition 5. 2 (Haines) . For any language L, Emb (L) is

finite.

Lemma 5. 3. Let M be a tra and x,y,z& Adm (M) .

(i) If x-^z and x<\y, then y-^z.

(ii) If x:># and x<]y9 then y->#.

Proof, (ii) is obvious, and we prove (i) only. Let x = a1a2"-an,

y = b1b2-"bm, and z = c1c2'"Cs. Since x<\y, there exists an in jective func-

tion /: {1, •••,»}->{!, • • • , m} such that /(!)<•••</(#) and at — bfw for

all /. We note /(I) =1 and a1 = b1, because al9 ̂ eZ and ^, iy^V— 2

for all ij^2.

Assume x-^z via p. If 5 = 1, then ^> = 0 and a1z = b1zE:CB and also

y— -^z via 0. Now assume 5>1. Then alcl~blc1^CR and y— \z via ^>/.

Thus (i) holds. Q.E.D.

Corollary 5.4. If (x^ • • • , j;n) a/z^? (y0, y1? • • • , ym) are traverses

and xnt>y0, then so is (xl9 —9xmyl9—9y^.

Corollary 5.5. If #<^-^ ---- \xw yo-^y^ ---- j^m>#, and



288 HIDETAKA TANAKA

xnt>yo, then (xi,"-9xwyi,-~,ym) is a complete traverse.

Next we introduce a partial order <C* which is a subset of <d.

Definition 5. 6. Let x and y be words over 2. We define x

(or y^>x) iff x = Xi<zxz and y = ^r1ay1a^r2 for some words xl9 yl9 x2 and

<ze2. Let <*(>*) be the reflexive and transitive closure of < (» .

Obviously x<^*y implies x<ly.

Lemma 5. 7. Let M be a tra and x,y,z& Adm (M) .

(i) If x-^z and z^>*y, then

(ii) If #<•£ and z^>*y, then

Proof. We prove (i) only. The proof for (ii) is easier. To

prove (i) , it suffices to show that if x-^z and z^>y, then x— ̂ y. Assume

x-^z via p, z = a1a2'~an9 z<j, ai — ah and y = a1'-ai-1aj~-an. Define a

partial function p':{L92, • • • , n—j+i — !}—>{!, •• • , \x\} by

P(*+J-i) if

Then it is clearly seen that x-^y via p' . Q.E.D.

Lemma 5.8. Let M= (T, R) be a tra with T=(F,2,Q, P).

Let kM be the number of elements of V. Let u,v^Adm(M).

(i) If u—^v, then there exists z^Adm(M) such that

(1) «>**, \z\<kM\vl and z-^v9

(2) for any x with x-^u, x-^z,

(3) if #<u, then #<z.

(ii) If u:>#, then there exists z^Adm(M) such that

(1) *>**, \z\<J** and *>#,

(2) for any x ivith x-^u, x~^z,

(3) if #<u, then #<z.

Proof. We only prove (i). The proof for (ii) is easier. Define

X= {y\u^>*y and



LEFT TRANSFORMATION LANGUAGES 289

Let z be a minimal element of X with respect to <3. Then u^*z,

z-^v, and both (2) and (3) hold by Lemma 5. 7. Hence to complete

the proof it suffices to show |# I <=&*/! t>|. Let z — a^^^a^ v = b1b2'"bm9

and z-^v via p.

First assume p = 0 and \z\^>kM. There exist l<^f<O'SS^ such that

ai = aj. Set 2:/ = a1*"ai_1%"-aw. Since z-^v via 0, a-fr^C^ and thus

z1 —{v via 0. Since z^>zf ', &^>*#' and 2'--^. Therefore #'eX which

contradicts to the choice of #. Hence p~Q implies \

Next assume p^=0 and |«|>^|v|. Let

{*!<*,<••<*,} = {/>(*)!/>(*) is defined}.

Since /> is a partial function from {1, • • • , m — 1} into {1, • > > , ^} , we have

1<5S<^ — 1. Let ^0 = 0 and ts+l — n. Since

for some q tq+i-~tq^>kM, and hence there exist tq<^i<^j^tq+1 such that

a$ = %. Set z' =a1"-ai-.1aj-~an. Define a partial function £':{!, •• • , m

-!}->{!, -,n-j + f} by

w if
P'(t)=p(t)-j+i if

undefined if ^> (^) is undefined .

Clearly z'—$v via />' and u^>*z^>z'. This is a contradiction. Therefore

implies kl^^kl. Q.E.D.

Definition 5. 9. The partial order <] is extended for finite se-

quences of words. We define (xl9 • • • , xn) <l(yi, ••• , ym) iff m^>n and

there exist l^^i<^2<*"<^^^ such that xt<]ytei for all /.
Let M be a tra and z€=Adm(M). A traverse (xl9 '"9x^ is called

thrifty for z iff ^-^{2: and (xl9 •••,^rr l) is minimal with respect to <d in

the set of traverses (yl9 •••,ym) with yi<\xl and ym-^z. A traverse (xl9

•••,j:w) is called thrifty for # iff x^># and (#1, ••• , -rn) is minimal
with respect to <3 in the set of traverses (y^ •••,ym) with y\<\xl and

Lemma 5.10. Let ~^+ be the transitive closure of — ̂ . If



290 HIDETAKA TANAKA

x-^y (•£>>*# resp.) , then there exists a thrifty traverse (zl9 • • • , zn)

for y (# resp.) such that

Proof. A minimal element with respect to <3 in the set of

traverses (yi, ••• , yTO) with yi<\x and ym,—^y(ym:># resp.) is a desired

one. Q.E.D.

Lemma 5. 11. Let M be a tra and z^Adm(M).

(i) If (xl9 "-yXn) is a thrifty traverse for z9 then

(1) Xi<^Xj implies i^j,

(2) for each i<ny \Xi\<>kM\xi+1\9

(3) \xn\^kM\z\.

(ii) If (xl9 -~9x^) is a thrifty traverse for #, then

(1) Xi<!xj implies i<*j,

(2) for each i<n, \Xi\<,kM\xM\,

(3) \xn\^kM.

Proof. We only prove (i). First assume Xi<\xs and z>j. By

Lemma 5.3 (xl9 ••• , x^ xi+1, • • • , ̂ ) is also a traverse and xn— ̂ z (xj-^z

if i — n). This is a contradiction. Thus (1) holds. (2) and (3) are

easily established by Lemma 5. 8. Q.E.D.

§ 6. Emptiness Problem

This section proves that the emptiness problem for left transforma-

tion language is effectively solvable. We note that given xl and xz it

is effectively determined whether xl-^xz or not. Also given z and (xl9

•-,Xn) it is effectively determined whether (xl9 •••9xn) is a thrifty tra-

verse for z or not.

Lemma 6. 1. Let M be a tra and z^Adm(M) U {#}. Define

Thr(z) = {(xl9 ••• , xn) | (xl9 "'9xn) is a thrifty traverse for z}.

Thr(z) is finite and it is effectively determined.

Proof. Assume z^Adm(M). The proof for the case of z = # is



LEFT TRANSFORMATION LANGUAGES 291

similar. For each n*>l, define Nn as follows.

krt+il^^jwknl, and a^+jp^i for any i<&} .

Nn is finite and we note that Nn is effectively determined. By Lemma

5.11,

Thr(z) c U Nn .
»=1

Next we show Nn = 0 for some n. Assume Nn^=0 for any n. Then

there exists an infinite sequence xl9 x^ "'9xn> ••• such that

(i) ..H*,H--H*2-̂ H*,
(2) for all f, k«+1|^*jrk«l, and k,|^*jr|*| ,

(3) for any f</, o:t-<^^ .

But (3) contradicts to Proposition 5. 2. Therefore

is effectively determined. We note that Nn = 0 implies JVn+1 = 0. Thus

Thr(z) is a subset of IJ JVW. Since it is effectively determined whether
»<«o

a traverse (^n, •••,^1) is thrifty for 2: or not, Thr(z) is effectively

determined. Q.E.D.

Lemma 6.2. Le£ M- (T, R) be a tra and z^Adm(M). The
following conditions are equivalent.

(1) #<**.

(2) Either #<^z, or there exists a thrifty traverse (xl9 •••,^n)

for z such that xl — ala^-am^ #al^CRf and ai=$*ai+1 for all

Proof. Assume #<^*z and #<f-z. There exists y such that #<-.y

and y~^+z. By Lemma 5.10 there exists a thrifty traverse (x^ •••,#»)

for z with Xi<\y. Let x1 = ala2~-am. Since Xi<& and #<-y, #al^CR

and a<=»+ai+1 for all i<m. Therefore (1) implies (2). The converse

implication is clear. Q.E.D.



292 HlDETAKA TANAKA

Lemma 6. 3. Given z <E Adm (M) , it is effectively determined

whether #<-*z or not.

Proof. By Lemma 6. 1 Thr(z) is effectively determined. Thus it
can be determined whether the condition (2) of Lemma 6. 2 holds or

not. Q.E.D.

Lemma 6. 4. Let M be a tra. The following conditions are
equivalent.

(1) A(M) is not empty.

(2) L(M) is not empty.

(3) Either CR=>##, or there exists z^Adm(M) such that

#<i*£ and #>># and \z\<LkK.
(4) Either CBB##, or there exists a thrifty traverse (xl9 • • • ,

x^) for # such that X1 = a1a2"-am9 #al^CR, and ai=^>+a{+1 for

all i<m.

Proof. The equivalence of (1) and (2) is trivial. Note that

A(M) contains A iff C#B##. Hence by Lemma 5.8 (1) is equivalent
to (3) . The equivalence of (3) and (4) can be easily proved by the
way similar to the proof of Lemma 6. 2. Q.E.D.

Now we prove the main theorem of this section.

Theorem 6. 5. The emptiness problem for LFT is effectively
solvable.

Proof. Suppose T(R) eLFT, where T is an llcst and R<=REG.
If a system generating or accepting R such as a regular grammar, a

finite automaton etc., is given, then one can easily construct a length-

preserving homomorphism h and a local language R' such that h(R')

~R. Hence by combining T with h an llcst Tf satisfying

is obtained. Let M=(T / ,^ /)« Then Mis a tra with A(M)=T(JR).



LEFT TRANSFORMATION LANGUAGES 293

By Lemma 6. 3 and (3) of Lemma 6. 4, it is effectively determined

whether A(M) is empty or not. Q.E.D.

§7. Quasi-Prefix Property

Let P be a property possessed by languages. We say a family X

of languages has the property P iff all elements of X have P.

A language L has the prefix property iff L = Pref(L) . By Lemma

2. 4 LLCS has the prefix property. But LFT does not, because REG

does not have the prefix property. In this section we introduce the

quasi-prefix property, which is proved to be possessed by LFT. As a

corollary we can see that LFT and CF(LIN) are incomparable.

First we note that LFT is closed under the operation Pref. In

general we can prove that LFT is closed under right quotient by any

languages.

Definition 7. 1, The right quotient of Lt by L2, in symbols Z/i/L2,
is defined by

L1/jL2= {u\ for some

If LcZ*, then

Notation 7. 2. Let M be a tra. For a language I/, Rgh (M; L)

denotes the set of traverses (z9 yly ••• ,<yw) of M such that ym-># and

top (yl9 • • •, ym) e L. Then define

Min(M; L) ̂ Emb({z\ (z,yl9 -, y

By Proposition 5. 2 Afz'ft (.M ; L) is finite.

Lemma 7. 3. Le£ M be a tra and a language LqbL If

then the following conditions are equivalent.

(1) L(M)/L=>w.

(2) There exists a traverse (x^ •••,o;n) of M such that

w = top(jc1, • • • , J:B), a«<f ^:TCI>^ for some z in Min(M\L).

Proof. First assume (2). Since z&Min(Mm,L), there exists



294 HlDETAKA TANAKA

(X y i> ' * ' > ym) e J?g& (M; L) . Then (^j, • • • , xny yl9 • • • , yTO) is a complete
traverse of M because xj>z. Since top(yl9 • •• , ym) is in L, L(M)/L
contains ta Therefore (2) implies (1) .

Next assume L(M)/L^3w. There- exists a complete traverse (xl9

•"> Xn, yi> '">ym) of Af such that w = top(jcl9 ••• , ^w) and L contains
top(yl9—,ym). Then fo, y^ --,yTO) <=Rgh(M; L) and there is some *
in Min(M;L) with xw|>2:. Hence (1) implies (2). Q.E.D.

Theorem 7. 4. LFT is closed under right quotient by any

languages.

Proof. We sketch the proof. If h is a length-preserving homo-
morphism, then

Since LFT = Hp (SLFT) , to prove the theorem it suffices to .show that
L (M ) /L €E LFT for any tra M and language L. If L contains A,

L(M)/L = L(M) \JL(M)/(L-A).

Since LFT is closed under union, without loss of generality we can
assume L^L Also LFT contains A, and hence it suffices to prove that

Let M=(T, jR) and let $ be a new symbol. Pref(R)$ is also a
local language. Note that if z is an element of Min (M; L) , then z has
no sub words of the form aa where a is a symbol. For if Rgh (M; L)

contains a traverse (z^aaz^ yl9 • • • , ym) , then (z^z^ yl9 • •• , ym) is also in
J?g"A (Af ; Z/) . Then, since Min (M'9 L) is finite, one can construct a

traM /=(T /, Pref(R)$) such that (xl9 • •• , xw, y) is a complete traverse

of Af for some y iff (xl9 •••,o;n) is a traverse of M, #<^Mxl9 and
for some z in .Mm (M; L) . Then by Lemma 7. 3,

L(Af) = ((L(M)/L) ~yl)$eLFT.

Since LFT is an AFL, (L(M)/L) -A is also in LFT. Q.E.D.

Corollary 7. 5. LFT is closed under the operation Pref.



LEFT TRANSFORMATION LANGUAGES 295

Definition 7. 6. A language L has the quasi-prefix property iff

there exists a nonnegative integer k such that uv^L implies ux^Lfox

some x with |.r|<[&. We call k the prefix constant of L. If & = 0, then

L has the prefix property.

Theorem 7. 7. LFT has the quasi-prefix property.

Proof. Suppose LeLFT. There is a tra M with L = A(M).

Since Thr(#) is finite, define

& = max{^| (xl9 -",xn} eTAr(#)}

We prove that k is the prefix constant of L. Assume uv^L with

|t;|>&. There exists a complete traverse (xl9-"9x^) of Af such that

bottom (XL •••, #„) =&t> and bottom (xl9 • • • , ̂ ) = &. Then there is a thrifty

traverse (^i, •••,2;TO) for # such that ^i+1D>^i. Then also (xl9 •••, xi+1,
Z2> *">^m) is a complete traverse and

where z = bottom (xi+l9z29 • • • , zm) and H=m<[&. Q.E.D.

Example 7. 8. Let L= {anbm\Q<,n<,m} . L is in LIN, but it is

not in LFT. Because it does not have the quasi-prefix property.

Example 7.9. L= {am\m = 2n for some n} is not in LFT.

By the theorem above we can see that LFT is a very small sub-

family of CS.

Corollary 7.10. LFT and CF(LIN) are incomparable.

Proof. The language L in Example 7. 8 is in CF (LIN) , but it is

not in LFT. On the other hand the language L in Example 2. 8 is in

LFT, but it is not in CF. Q.E.D.

Corollary 7. 11. LFT is not closed under reversal nor comple-

ment.



296 HlDETAKA TANAKA

Proof. Let L = {anbm\n^m^>0} . By applying semi-AFL operations

to the language D(T) in Example 2. 6 L can be obtained, and thus

Z/eLFT. Since LR does not have the quasi-prefix property, LR is not

in LFT, and LFT is not closed under reversal. Also by applying semi-

AFL operations and complement to L, LR can be obtained. Hence LFT

is not closed under complement. Q.E.D.

References

[1] Penttonen, M., One-sided and two-sided context in formal grammars, Information
and Control, 25 (1974), 371-392.

[2] Ginsburg, S. and Greibach, S. A., Principal AFL, J. Comput. System Set., 4 (1970),
308-338.

[3] Haines, L. H., On free monoids partially ordered by embedding, J. Combinatorial
Theory, 6 (1969), 94-98.


