Publ. RIMS, Kyoto Univ.
17 (1981), 267-296

Left Transformation Languages

By

Hidetaka TANAKA¥*

Abstract

A subfamily LFT of the family CS of context-sensitive languages is investigated.
Elements of LFT are called left transformation languages. Any context-sensitive language
is represented in the form A(L: NLF) where L, L: €LFT, & is a length-preserving
homomorphism, and L¥ is the mirror image of L:. This fact implies that the “LBA-
problem” is equivalent to the problem whether LFT can be accepted by deterministic
linear bounded automata. It is remarkable that LFT is an intersection-closed AFL and
the emptiness problem for LFT is effectively solvable. Also LFT is shown to have the
quasi-prefix property, and we can see that LFT and the family CF of context-free
languages are incomparable.

§ 1. Introduction

The LBA-problem is an important problem yet open in formal
language theory. This problem is concerned with the inclusion relation
between the family CS of context-sensitive languages and the family
DCS of deterministic context-sensitive languages (i.e., languages accepted
by deterministic linear bounded automata). To consider the problem this
paper introduces and investigates a subfamily LFT of CS, elements of
which are called left transformation languages. The importance of the
family LFT is assured by the fact that any context-sensitive language
can be represented in the form A(L,NLF) where L, and L, are left
transformation languages, A is a length-preserving homomorphism, and
L% is the mirror image of L,. Because this fact implies that the LBA-
problem is equivalent to the problem whether LFT is included in DCS
or not.

The equivalence of context-sensitive grammars and one-sided ones

was proved by Penttonen [1]. He simulated derivations of context-

Communicated by S. Takasu, April 1, 1980.
* Department of Information Science, Faculty of Science, University of Tokyo,
Bunkyo-ku, Tokyo 113, Japan.

268 HIDETAKA TANAKA

sensitive grammars by left context-sensitive productions in two stages.
The first stage is executed by applications of length-increasing linear
context-free productions, and the second stage is executed by applications
of length-preserving left context-sensitive productions. He called the
second stage a length-preserving left context-sensitive transformation.
We are concerned with this transformation in this paper.

In Section 2 we state the formal definitions of length-preserving left
context-sensitive transformation (abbreviation: llest) and left transforma-
tion language (abbreviation: 1tl), and show some examples. LLCS is
defined to be the family of domains of llest’s, and for each family [of
languages LLCST (L) is the family of languages obtained by applying
llcst’s to elements of . Then the family LFT of 1tl’s is defined to
be LLCST (REG), where REG is the family of regular languages.

Section 3 provides representation theorems for LLCST (), LFT,
and CS. Also we show some closure properties of LLCS and LFT
under operations. LFT is an intersection-closed AFL and it equals to
the least semi-AFL containing LLCS.

In Section 4 we introduce a new type of automaton called traverse
automaton (abbreviation: tra). For each tra M the language L (M)
accepted by M and the language A (M) associated with M are defined.
L(M) is a simple 1tl and A (M) is an Itl, and so in later sections we
study LFT by means of tra’s. Especially traverses of a tra M, which
are finite sequences of words of a special form, play an important role.

In Section 5 we prove elementary lemmas related to traverses of
tra’s. These lemmas are lately used in proofs of main results of this
paper.

One of main results of this paper is that the emptiness problem for
1tl’s is effectively solvable. This is proved in Section 6 by using the
result of Haines [3] which is concerned with the partial order of words
by embedding. Since LFT is an intersection-closed AFL incomparable
with the family CF of contextfree languages, this result gives us
another reason to study LFT.

In Section 7 we prove that LFT satisfies the quasi-prefix property
and show some examples of languages not in LFT. This implies that

LFT and CF are incomparable. Also we can show non-closure properties

LEFT TRANSFORMATION LANGUAGES 269

of LFT under some operations. These assures us that LFT is a small
subfamily of CS.

§ 2. Left Transformation Language

In this section we introduce the definitions of length-preserving left
context-sensitive transformation (llcst), left transformation language (Itl),
and domain language of llecst. These are objects of this paper.

An alphabet is a nonempty finite set X, whose elements are called
symbols. By X* we denote the free monoid generated by X. Elements
of X* are called words. The identity of X* is called the empty word
and denoted by A. Subsets of X* are called languages. A stands for
the language {A}. For a language L, L* denotes the submonoid of X*
generated by L, which is called the Kleene closure of L. The A-free
Kleene closure of L, in symbols L™, is defined by L*=L*—A,

The concept of llest was first introduced by Penttonen [1]. Our
definition differs from the original one, but this alternation was shown

not to change the ability (Lemma 1 of [1]).

Definition 2. 1. A length-preserving left context-sensitive trans-
formation (abbreviation: llcst) is a quadruple 7= (V, Z, Q, P) where

(i) V, X, and Q are alphabets with VDX|JQ,

(i) P is a set of productions whose forms are A—Bor AB—AC

where A, B, and CeV.

Y and Q are called the input alphabet and the output alphabet of T
resp. We usually denote V, £, Q, and P by Vy, £, Qr and Py resp.
The binary relation = on V* is defined as the usually way. Formally
if u,veEV* and x—yE P, then we write uxv =7 uyv. Let =% denote
the reflexive and transitive closure of =7 We define a relation from

Z* into Q¥, also denoted by 7, as follows. For each word w in X*,
T (w) = {xeQ*|lw=}x}.

The relation T is called an llcst relation. The domain and range of
T, in symbols D(T') and R(T) resp., are defined by

D(T) = {weZ*|T (w) #0},

270 HIDETAKA TANAKA
R(T) =T (Z%).

We note that the inverse 7! of the relation T is also an llest relation.
For T7' is defined by an llest 77:

T'=(V,Q,%, {y>zlz—yEPF}).

Obviously R(T™Y) =D(T) and D(T™" =R(T).
For each language L over X, let

TL) = Y Tw),

and for each family [of languages, let
LLCST (L) ={T(L)|Le L and T is an llest}.

By LLCS we denote the family of domains of llest relations.

For well-known families of languages we use the following notations.
RE: recursively enumerable languages,
CS: context-sensitive languages,
DCS: deterministic context-sensitive languages,
CF: context-free languages,
LIN: linear context-free languages,
REG: regular languages.
The following proposition proved by Penttonen [1] is the starting
point of this paper.

Proposition 2.2 (Penttonen). CS=LLCST (LIN). Especially
there exists a linear context-free language L, in the least semi-AFL
containing {a"b"|n=1} such that

CS=LLCST (L,) ULLCST (L,U 4).
Now we define left transformation language.

Definition 2.3. Let LFT=LLCST (REG). A left transforma-
tion language (abbreviation: /tl) is an element of LFT. Trivially LFT
is a subfamily of CS. The close relation between CS and LFT shall

be shown in the next section. Also we can see that LFT is the least

LEFT TRANSFORMATION LANGUAGES 271

semi-AFL containing LLCS.

In the rest of this section we show some examples of languages in
LLCS. First we note the following fact.

Lemma 2.4. For each language L, define
Pref(L) = {uluve L for some v}.
For any language L in LLCS, L= Pref(L)*.

Proof. Assume L=D(T). Since T is left context-sensitive, in a
derivation xy =* yv with |z|=|«| the transformation of x to u is
independent upon y. Therefore xye D(T) implies x&D(T), and L
=Pref(L). On the other hand, if x =*u and y =* v, then zy =* uv
by the definition of =. Therefore x,y&€ D(T") implies xye D(T), and
L=L* Hence

L=L*=Pref(L)*. Q.E.D.

Example 2.5. For any regular language R, Pref(R)*<LLCS.
For assume that a regular grammar G= (Vy, Z, X,, P) generates R— A.
Elements of P are of the form X—aY or X—a where X, Y& Vy and
acXZ. An llest T with D(T) =Pref(R)* can be defined as follows.

(i) T=(VyUZ,Z,Q P),

(ii) Q={XeVyX=¢* w for some w in Z*},

(iii) P’ consists of the following productions.

1) If Xy—aeP, then a—>X,e P,
) if X;—aXeP, then a—>Xe P/,
3 if X—acP, then Xa—->XX,eP,
4 if X—>aYeP, then Xa—-XYe P,

To show other examples, we introduce flow diagram representing
derivations of llest’s. In derivations, when a production AB—AC is
applied, then we write it as in Figure 1(a), and when a production
A—B is applied, it is written as in Figure 1(b). For instance, if XY

»>Xa, aZ—ab, Xa—Xb, and X—c¢ are productions, then the derivation:

272 HIDETAKA TANAKA

XYZ = XaZ = Xab = Xbb = cbb

can be represented as in Figure 1(c).

A—B A X—Y
I l I\
C B c T—-—%
b b
Figure 1 (a) (b) (¢)

We note that the length of a derivation is equal to the number of verti-
cal lines in the corresponding flow diagram. From flow diagrams one

can construct derivations corresponding to flow diagrams.

Example 2. 6. {a"b"|n=m=0}*<LLCS. We define an llcst
T=(Vi{a,b},Q, P) by

V=1A{a,b, A, A’, B, B'},
Q=1{a, A, A, B, B},
P={aa—aA,ab—aB, AA—-AA',A’A'>A’"A, AB—> AR,
A’'B'—-A’B, Bb—B’'B, BB—~>BB’, BB’ B’B}.
Then D(T) =Pref ({a"8"|n=0})*= {a"b™|n=m=0}*. For instance the

flow diagram for a*6°= D(T) is shown in Figure 2.

aqa—q —qaq—Qq—qQ—

Figure 2

Example 2.7. The notation N,(w) means the number of occur-

rences of a symbol ¢ in a word w. Let

LEFT TRANSFORMATION LANGUAGES 273
L= {we {a, b}*| for any x in Pref(w), N,(x) =N,(x)}.
We define an llest T'= ({a, b, A}, {a, b}, {a, A}, P) by
P={aa—aA,ab—aA, AA— Aa}.
Then we have
D(T) =Pref(D,)*=Pref(D,) =LcLLCS,

where D, is a 1-Dyck language over {a,b}. For instance the flow
diagram for a*ba*b*ab*<= D(T) is shown in Figure 3.

a—a—a—b
] 1 I

A—pd
a—g—q—9—
A—i—A—
a=¢—q—b
A=i—
a=¢—¢—b
Figure 3 A_'?‘-'?
a—g—b
At
a—b>b

Example 2.8. L= {a"0"|2"=2m=0}*=LLCS. An llest T with
D(T) =L can be defined by

T= ({a, b, A, Ay, B,, B,, Dy, Dy}, {a, b}, {Ay, A;, D,, D;}, P),
P={a—A,, ab—aD,, A|/A,—A,B,, A\D,—A,D,,
B,—A,, B/A,—B\B,, A,A,—A,B,, B,A,—B;B,,
B,— A,, B,D,—B,D,, B,D,— B,D,, D,b—D,D,,
A,D,—A,D,, A,D,— A,D,, D,D,— D,D,, D,D,—D,D;}.

For instance the flow diagram for &*4*< D(T) is shown in Figure 4.

274 HIDETAKA TANAKA

? u a—b
A—Ar—Al—Dl

B B1—Dz—l|)

Az\Az—'D1 —b
52—02—‘,32 —b
A=D1 D1~
By—Dy—Dy—Dp—b

A2-01-—01—D1—D1

D—D1—Dr—D1
Dy—D2—R2—b
D1—D1—Dy
D,—Dp—b
Figure 4 61—4:)1
D,—b
D1

We note that in Examples 2.5-2. 8 the length of a derivation from

weD(T) with |w|=n is at most #°. In the next example an llcst

T makes very wasteful moves and the length of a derivation is expo-
nential.

Example 2.9. Define an llest T'= (V, {a, b},Q, P) by
V=A{a,b, A, A, B, B,,C,, C,, D,, D},
Q={A, A, D, D,},
P={a—A,, A;> B, B—A,, A,—B,, B—A,,
Ab—A,D,, B,D,—B,C,, A,C,— A,D,, B,D,—B,C,,
A,C,— A,D,, D,b— D,D,, D,D,— D,C,, D,C,— D,D,,
D,D,—D.C,, D,C,—D,D;}.
Then D(T) = (ab*)*. For instance the flow diagram for ab‘eD(T)

is shown in Figure 5. We note that for each 7z the length of the
derivation for ad” is at least 2"*'4+2"—n—3.

LEFT TRANSFORMATION LANGUAGES 275

h

pn—7r

Bi— Dy

Ap—Cy

! |

8 —t—b

M—C2 l

o — o

82— |

B —Br—C:

M2

B — By —0,—®

M—G |

Bz—D2—C2

m—C |

lB|—?1—D1—D1

Ar—G l
Dz-—'(l:1

D2 —Ci
Figure 5 D2—b

§ 3. Representation Theorems

In this section first we give a representation theorem for LLCST (.[),
and next we show some closure properties of LLCS and LFT under
operations., Then we can see that LFT is an intersection-closed AFL
and also it is equal to the least semi-AFL containing LLCS. Finally we
show two representation theorems for CS. These theorems assure us
that LFT is an important subfamily of CS.

A homomorphism %4 of monoids from X* to 4* is called a homo-
morphism over Z.

Zlh(a)|=1.

It is called length-preserving iff for all a in

Notation 3.1. For each family _[of languages, let
H*'(L)y={r"*(L)|Le L and h is a homomorphism},
H'(L)={r""(L)|Le L and h is length-preserving},

276 HIDETAKA TANAKA
H,(L)={h(L)|Le L and h is length-preserving},
and for families [, and _[, of languages, let

-fl/\-£2= {L,:N L2|L1€-C1 and Lze-fz}-
Lemma 3.2. LLCST (L) Cc H,(H,*(.L) /\LLCS).

Proof. Assume L& and T is an llest (V,Z,Q, P). Define
length-preserving homomorphisms f: (ZX Q)*—X* and ¢: (ZXQ)*—>Q*
by f((X,a)) =X and ¢((X,a)) =a for each (X,a) in £XQ. Then

T(L)=g(f (L) NS(T)),
where S(T) is a language over Z X Q defined by

S(T) = {we (ZXQ*|f(w) =%g (w)}.
Thus to prove the lemma, it suffices to show S(T)LLCS. Now de-
fine a new llest 7= (VXQ,2ZXQ,Q’, P") by

(i) Q'={(a,a)lacQ},
(i) P’ consists of the following productions.
(1) If A—»BeP, then (4,a)— (B,a) €P’ for all a in Q,
(2) if AB->ACe&P, then (A,a) (B,b)—(A4,a) (C,b) is in
P’ for all a, b in Q.
Clearly D(T") =S(T), and the lemma holds. Q.E.D.

A renaming is an injective length-preserving homomorphism. If ./
is closed under renaming, we have a representation theorem for

LLCST(.L).

Theorem 3.3. If [is closed under renaming,

LLCST (L) = H, (EH;*(L) /ALLCS).

Proof. By Lemma 3.2 it suffices to show the inclusion:
LLCST (L) D H,(H,*(.L) /\LLCS).

Assume f:Z*—4* and ¢g:Z*—I'* are length-preserving homomor-
phism, Le [with LC4* and T=(V,Z,Q, P) is an llest. We show

LEFT TRANSFORMATION LANGUAGES 277
g(f (L) ND(T)) €eLLCST(L).

Since [is closed under renaming, without loss of generality we can
assume dNI"=@. Define a new llest T"=UTUVXIT, 1, I, P) as
follows.

Q1) If aed, XeZ, and f(X) =a, then a— (X, ¢g(X)) €P’.

(2) If A-»BeP, then (A,c)—>(B,c) P for all ¢ in I

@) If AB>ACeP, then (4,¢) (B,d)—(A,c) (C,d) P for all

c,din T.

4) If A€Q, then (A,c)—>ce P’ for all cin I

Clearly T" (L) =g (f~*(L) N D(T)) which establishes the theorem.

Remark. If [is not closed under renaming, then the equation
above does not necessarily hold. For example let [= {a*}. Since
H;'([L) contains {a, b}*, by Example 2.6,

H,(H,' (L) /\LLCS) = {a"6™|n=m =0} *.
But this language L is not in LLCST (). For assume T (a*) =L for

some llest T. Since T is length-preserving, a’=%*a’%* and a*=*a®.

Then a*=*a’b*=*a’bb*=a*t*cT (a*). This is a contradiction.

To state a corollary of the theorem above, we recall the definitions
of semi-AFL and AFL. A homomorphism % over X is called A-free iff
h(a)s~A for any a in Z. A family of languages is called a semi-AFL
iff it is closed under union, A-free homomorphism, inverse homomorphism,
and intersection with regular languages. An AFL is a semi-AFL closed
under Afree Kleene closure. For instance RE, CS, DCS, CF, and REG
are AFL’s. LIN is a semi-AFL but it is not an AFL. Later we shall
show that LFT is an AFL closed under intersection. We note that
LLCS is not a semi-AFL, because it is not closed under A-free homo-

morphism or union.

Corollary 3.4. If [is a semi-AFL, then
LLCST (L) =H,(L/\LLCS) = H,(_L /ALFT).

Proof. Since a semi-AFL is closed under inverse homomorphism,

278 HIDETAKA TANAKA
LLCST (L) = H,(L/\LLCS).
Also REG is an AFL, LFT=H,(REG/\LLCS). Then
LLCST (/L) cH,(L/\LFT)
=H,(L/\H,(REG/ALLCS))
C H,(H,(H,;'(L) AREG/\LLCS))
=H,(L/\LLCS) =LLCST ().
This completes the proof. Q.E.D.

Next we consider the closure properties of LLCS under operations.
It is clear that LLCS is closed under length-preserving homomorphism,

but it is not closed under A-free homomorphism or union.

Lemma 3.5. H*(LLCS) =LLCS.

Proof. Assume T=(V,Z,Q,P) is an llest and h: 4*—>2X* is a
homomorphism. We show A~ '(D(7T)) €LLCS. Since LLCS is closed

under renaming, without loss of generality we can assume 4NX=4.

Let
k=max{|h(a)|| a in 4},
W= {we V*||w|<k}.

Define a new llest 77= (V’, 4, Q’, P’) as follows.
(i) V'=4U{G, w)|i=0,1 and we W},
(i) Q'=A(0, w)|lweWNQO*},
(iii) P’ consists of the following productions. Let x,y,2z€W.
@A) a—(©,h(a)) €P’ for all a in 4.
2) If x=ry, then (0,2)—> (0,y) €P’.
B) If xy=rxz, then (7, x) (0,y) > (Z,x) (0,2) is in P’ for
i=0,1.
@ (@x) 0,)—>GEx)A,x) P for i=0,1.
G Qax)—-0,)eP.
Then we have D(T") =h"(D(T)). Q.E.D.

LEFT TRANSFORMATION LANGUAGES 279

Lemma 3.6. LLCS is closed under intersection.

Proof. Assume T,=(V,Z,Q, P) and T,=(V,ZX, Q, P, are
llest’'s. We show D(T) ND(T,) €LLCS. Define a new llest 7T as
follows. T=(V,;XV,UZ, X, Q;XQ,, P) and

(i) if A»Be€P, then (A,X)—>(B,X)eP for all X in V,,

(ii) if AB>ACeP, then (A, X)(B,Y)»(AX)(C,Y)eP

for all XY in V,,
(i) if X—»>YeP, then (4,X)—>(A,Y)EP for all A in V,,
(iv) if XY—>XZeP,, then (A, X)(B,Y)—>(A,X)(B,Z2)eP
for all A4, B in V,,

(v) a—(a,a)€P for all a in X.

Clearly we have D(T) =D(Ty,) N D(T,). Q.E.D.

Theorem 3.7. LLCS is closed under length-preserving homo-

morphism, inverse homomorphism, intersection, and
LLCST(LLCS) =LLCS.

But LLCS is not closed under union, A-free homomorphism, intersec-

tion with regular languages, or reversal.

Proof. Clearly LLCS is closed under length-preserving homomor-
phism, and by Lemmas 3.5 and 3. 6, it is closed under inverse homomor-

phism and intersection. By Theorem 3. 3,
LLCScLLCST (LLCS) = H, (H,;*(LLCS) /A (LLCS))
=H,(LLCSALLCS) = H,(LLCS) =LLCS,
and hence LLCST(LLCS)=LLCS. a*<LLCS but (a®)*&LLCS.

Therefore LLCS is not closed under A-free homomorphism. Also since
a*Ub* is not in LLCS, LLCS is not closed under union or intersection

with regular languages. By Example 2. 6,
L= {a"b"|\n=m=0}*<LLCS,
but by Lemma 2.4 the reversal L® of L is not in LLCS. Q.ED.

Now we consider closure properties of LLCST () and LFT.

and

and

HIDETAKA TANAKA
Lemma 3.8. If [is closed under renaming and union, then
(i) H*(LLCST(L)) =H,(LLCST (L)) =LLCST (L),
(ii) LLCST([) is closed under union,
@i) LLCST (L) /ALLCS=LLCST([L),
@v) LLCST(LLCST(L)) =LLCST(JL).

Proof. (i) and (ii) are easily seen.
LLCST (L) cLLCST (L) ALLCS= H, (H,*(.L) /A\LLCS) ALLCS
C H,(H,'(L) ALLCSAH,*(LLCS))

= H,(H;* (L) ALLCSALLCS) = H, (H;* (L) ALLCS)
=LLCST ()

(ili) holds. Then

LLCST (L) cLLCST (LLCST (.[))
= H,(H,'(LLCST (L)) /AALLCS)
= H,(LLCST (L) /ALLCS)
=H,(LLCST (L)) =LLCST ()

(iv) holds. Q.E.D.

Theorem 3.9. If L is a semi-AFL(AFL), so is LLCST (L) and
(i) LLCST (L) /A\LFT=LLCST([),
Gi) LLCST(LLCST([))=LLCST ().

Furthermore if [is closed under intersection, so is LLCST ().

Proof. Assume [is a semi-AFL. Note that £ /ALLCS is closed

under inverse homomorphism. For

LALLCSCH (L A\LLCS) cH (L) \NH'(LLCS) = L /ALLCS.

Then we have

LLCST (L) = H,(.L ALLCS) = H, (L ALLCS/\REG)
= H,(H™ (L /\LLCS) AREG).

LEFT TRANSFORMATION LANGUAGES 281

Recall the representation theorem for principal semi-AFL proved by
Ginsburg et al [2]. This theorem says that for each nonempty language
L the least semi-AFL containing L is represented in the form:
H,(H"'(L) AREG).

By this theorem LLCST () is the union of principal semi-AFL’s gen-
erated by languages in [/\LLCS. Hence LLCST (/) is closed under
J-free homomorphism, inverse homomorphism, and intersection with
regular languages. By (ii)) of Lemma 3.8 LLCST (/) is closed under
union. Consequently LLCST (L) is a semi-AFL.

It is easily proved that if [is an AFL, then LLCST (£) is closed
under Afree Kleene closure, and LLCST (/) is an AFL.

(i1) is implied by (iv) of Lemma 3.8. And by Corollary 3.4, (i)
implies (i).

Finally assume that [is a semi-AFL closed under intersection.

LLCST (L) CLLCST (L) /\LLCST () -
= H,(L /\LLCS) ALLCST (L)
C H,(L /\LLCSAH;*(LLCST (£)))
=H,(L/\LLCSALLCST (L)) = H,(.L/\LLCST (.0))
=H,(L/\H,(L/\LLCS))
C H, (H, (H;' (L) /\L/\LLCS))
=H,(H;* (L) /\.L /ALLCS) = H,(L /\.L /A\LLCS)
= H,(L/\LLCS) =LLCST (L),
and LLCST () is closed under intersection. Q.E.D.

Theorem 3.10. LFT is an AFL closed under intersection and
A-free substitution. Also LFT is equal to the least semi-AFL con-
taining LLCS.

Proof. LFT=LLCST(REG) and REG is an AFL closed under
intersection. Hence LFT is an AFL closed under intersection. Since

an intersection-closed AFL is closed under A-free substitution, so is LFT.

282 HIDETAKA TANAKA

The latter statement is clear, because

LFT=LLCST (REG) = H,(REGALLCS). Q.E.D.

Finally in this section we show two representation theorems for
CS. The first one is directly implied by Proposition 2.2 and Theorem
3.3.

Theorem 3.11. CS=H,(LIN/\LLCS) = H,(LINALFT).

For each word w, w® denotes the reversal (mirror image) of w.

For each language L and family _[, let
LE = {wf|lwe L},
LE={LE|Le [}.

Then LLCS%® is equal to the family of domains of length-preserving
“right” context-sensitive transformations, and LFTZ® is equal to the

family of “right” transformation languages.

Theorem 3.12. CS=H,(REGALLCSALLCS?) =H,(LFT
/ALFT%).

Proof. Since LFT is an AFL, LFT?® is also an AFL. Then
H,(LFT/\LFT®) =LLCST (LFT?®)=LLCST ((H,(REG/\LLCS))?)
=LLCST (H,(REG®*/\LLCS?))
=LLCST (H,(REG/\LLCS?®))
= H,(H, (REG/\LLCS#) A\LLCS)
C H,(H,(REG/\LLCS* A\ H,*(LLCS)))
=H,(REG/\LLCS®*/\LLCS)c H,(LFT/\LFT%).
Therefore
CSOH,(REG/A\LLCS/A\LLCS®*)=H,(LFT/\LFT®)=LLCST(LFT?),
and by Theorem 3.9 LLCST(LFT#®) is an AFL. To complete the

proof, it suffices to show that the linear language L, in Proposition 2. 2

LEFT TRANSFORMATION LANGUAGES 283
is in H,(REG/\LLCS/\LLCS?), because
LLCST (LLCST (LFT#)) =LLCST (LFT®).
By Example 2.6,
{a"b™|n=m=>0}*cLLCS and {a"b"|0<n<m}*<LLCSF.

Therefore L= {a"b"|n=0}*<=LLCS/\LLCS®. Since L, is in the least
semi-AFL containing L, L, is in LLCST (LFT#). Since LLCST (LFT#?)
contains A and is closed under union, L,U A is also in LLCST (LFT¥%).
Therefore

CSDOLLCST (LFT®) DLLCST (Ly) ULLCST (L,U 4) =CS.
Hence the theorem holds. Q.E.D.

Corollary 3.13. If [is a semi-AFL closed under intersection
and reversal, then [DCS ff L DLLCS(LFT).

The complexity class DSPACE (f) with space bound f such that
Ff(m)=n for all n is an AFL closed under intersection and reversal.

Therefore by the corollary above
DSPACE (f) DCS iff DSPACE(f) DLLCS(LFT).

Especially DSPACE (#) is equal to DCS, and hence the LBA-problem is
equivalent to the problem whether DCSDOLLCS(LFT) or not.
Also the nondeterministic complexity class NTIME(g9) with step

bound g is an AFL closed under intersection and reversal. Therefore
NTIME (g9) oCS iff NTIME (g) DLLCS(LFT).

These equivalence of inclusion problems assures us that LLCS and LFT
are important subfamilies of CS. Then naturally there arises a question
whether LFT is much smaller than CS. In later sections we consider

this problem.

§ 4. Traverse Automaton

To study LFT we introduce a subfamily SLFT of LFT, whose

elements are called simple 1tlI’s. Any 1tl is a length-preserving

284 HIDETAKA TANAKA

homomorphic image of some simple 1tl. Next we define a new type of
automaton called traverse automaton. A traverse automaton can be
considered as both a recognizer and a transducer. As a recognizer it
accepts a simple 1tl, and as a transducer it results an Itl.

Let # be a special symbol only used as an endmarker. In the

sequel we assume that any ‘““alphabet” does not contain #.

Definition 4. 1. A language R over X is called a local language
iff there exists CC (XU {#})? such that

H#R#=#Z*# — QU {#ND*(CU{#})*—=C) EU {#})*,

that is, R w iff #w# =a,a,---a, and for all 7 aa;.,,€C. We denote
C by Cz. Let LOC denote the family of local languages. It is well-
known that REG= H,(LOC).

Let SLFT denote the family LOCALLCS. Elements of SLFT are
called simple Itls.

Corollary 4.2. SLFT is closed under intersection and inverse

homomorphism.
Proof. For both LOC and LLCS are closed under these operations.
Corollary 4.3. LFT=H,(SLFT)=LLCST(LOC).

Proof. Since LOC is closed under renaming,
LFTDLLCST (LOC) = H,(LOCLALCS) = H, (SLFT).
Since REG=H,(LOC),
LFT = H,(REG A\ LLCS) = H, (H,(LOC) ALLCS)
C H,(H,(LOCA H;* (LLCS)))
= H,(LOCALLCS) = H, (SLFT),
and the corollary holds. QE.D.

Now we define traverse automaton. We use the term “automaton”

LEFT TRANSFORMATION LANGUAGES 285

because its states and next state function are given by a local language
and its storage operations shall be given by its traverse relation defined

later.

Definition 4. 4. A traverse automaton (abbreviation: tra) is a
pair M= (T, R) where
(i) T=(V,Z,Q,P) is an llest with PCVX (V=-X) U VIxXV(V
—2), that is, productions A—B and AC—AD of T satisfy
B, DeV-Z,

(ii) R is a local language over X.
The language accepted by M, in symbols L (M), is defined by
LM)=D(T)NR,
and the language associated with M, in symbols A (M), is defined by
AM)=T(R).
Trivially L(M) is a simple 1tl and A (M) is an It

Corollary 4.5. A language is a simple Itl iff it is accepted by

a tra. A language is an Iltl iff it is associated with a tra.

Definition 4.6. Let M= (T,R) be a tra with T=(V, X, Q, P).
The set of admissible words of M, in symbols Adm (M), is defined by

Adm (M) =Z(V=-2Z*NV*Q.

The traverse relation —, on Adm (M) is defined as follows. Let
xr=a,a,*+a, and y=>5,b,-b, be in Adm(M). We define x—yy iff a,b,

&Cp and there exists a partial function
P:{l; 29 "t m_l}_){ls 29 ttty n}

such that
(i) if 2<j and both p(Z) and p(j) are defined, then p (7)) Zp (4),
(ii) if p(2) is defined, then a,wbi—>a,wbi P,
Gii) if p(¢) is undefined, then b,—b;,,EP.

If m=1, then p is interpreted as @ and x—yy iff a,6,€C;. To empha-

size p we shall write x—yy via p. Let —,* denote the reflexive and

286 HIDETAKA TANAKA

transitive closure of —u.

We say an admissible word x=a,a,'--a, is initial and write # <<x iff
#a,€Cy and for all 7, a,—a;,,=P. We write #<c*x iff #<<x or for
some y #<<y and y—*zx.

We say an admissible word y=58,b,--b, is final and write y># iff
b# €Csp We write y>*# iff y>># or for some z y—*z and z>#.

The traverse language of M, in symbols Tra (M), is defined by

Tra(M) = {x€ Adm (M) |#<<*x=>>*#}.

A finite sequence (x, :--, x,) of admissible words is called a traverse
of M iff x;—xyy, for all i<n. Furthermore it is called complete iff
#<<x, and x,>#.

Let top and bottom be functions for words defined by

top (A) =bottom () =1,

top (aw) =a, and bottom (wb) =b,
where @ and b are symbols. Then top and bottom are extended for
finite sequences of words as follows.

tOP (xb “tTy xn) = tOP (xl) '”top (xﬂ) >

bottom (x, +++, x,) =bottom (x,) ---bottom (x,).

Corollary 4.7. Let M be a tra and w#A LM)>w iff w
=top (xy, **+, X,) Sfor some complete traverse (x;, -+, x,) of M. A(M)

Sw iff w=bottom (xy, -+, x,) Sfor some complete traverse (xi, -+, x,)

of M.

Example 4.8. Let T be the llest defined in Example 2.6. Let

M= (T, a*b*). Then

L (M) = {a"b"|n=m=0},

Tra(M)=a(AAY*Ua(AAY*AUbL(BB)"Ub(BB)*B.
For instance the complete traverse corresponding to the flow diagram
for a**= L (M) in Figure 2 is:

a—aA—=aAA"<LaAA’A<aAA’AA’{bBB’' BB’ B<bBB BB’

—bBB'B—<bBB’'—<bB.

LEFT TRANSFORMATION LANGUAGES 287

§ 5. Partial Order by Embedding

In this section we introduce a partial order <J for words defined by
embedding, and next we prove elementary lemmas which play an impor-

tant role in later sections.

Definition 5.1. Let x and y be words. We say x is embedded
in vy and write x<ly (or y>zx) iff x=x;-x, and y=vyx,y, - x,y, for

some words x;’s and y;’s. For each language L, define
Emb (L) ={x< L] for any y in L, y<Jx implies y=x}.

Since <] is a partial order, Emb (L) is the set of elements of L that
are minimal in L with respect to the partial order <J. Haines [3]

proved the following proposition.

Proposition 5.2 (Haines). For any language L, Emb(L) is
Sinite.

Lemma 5.3. Let M be a tra and x,y,2<= Adm (M).
(1) If x—=z and x<y, then y—z.
G) If x># and x<ly, then y>#.

Proof. (ii) is obvious, and we prove (i) only. Let x=a,a, ' a,,
y=b,by by, and 2=c.c, --¢c;. Since x<]y, there exists an injective func-
tion f: {1, -, n} = {1, ---, m} such that f(1) <---<f(n) and a;=by, for
all . We note f(1) =1 and a,=b,, because a;, 5, €X and a;, b, V—-3I
for all 7, j=2.

Assume xr—z via p. If s=1, then p=0 and a,2=5b,2€C; and also
y—z via §. Now assume s>1. Then a,c;=5b,c,€Cy and y—z via pf.
Thus (i) holds. Q.E.D.

Corollary 5.4. If (xy, -, x,) and (Yo, %, ", ¥Ym) are traverses
and x'nDyD’ then so is (1'1, ty Lay Y1 ym)-

Corollary 5.5. If #<<z,—<—=<xn, Y =<Mm—==Sya>#, and

288 HIDETAKA TANAKA

>V, then (xy, *+, Tny Y1, *** Ym) i a complete traverse.
Next we introduce a partial order €* which is a subset of <.

Definition 5.6. Let x and y be words over . We define 2Ky
(or y>x) iff x=xax, and y=x,ay,ax, for some words x;,y, x, and
acX. Let €*(>*) be the reflexive and transitive closure of < ().
Obviously & *y implies x<1y.

Lemma 5.7. Let M be a tra and z,y,z€ Adm (M).
(i) If x—<z and 2>*y, then x—y.
(i) If #<<z and z*y, then #<<wy.

Proof. We prove (i) only. The proof for (i) is easier. To
prove (i), it suffices to show that if x—2 and 2>y, then x—y. Assume
xr—z via p, 2=a,a,--a,, 1<j, a;=a;, and y=a,---a;_,a;-'a,. Define a

partial function p’:{1,2, ---,n—j+i—1}—{1, ---, [x|} by

, p(?) if 1<,
' (2) ={ e ap s .
p@+j—1) if iZt<n—j+i—1.
Then it is clearly seen that z—y via p’. Q.E.D.

Lemma 5.8. Let M= (T,R) be a tra with T=(V,%,Q,P).
Let ky be the number of elements of V. Let u,ve Adm(M).
(i) If u—v, then there exists z€ Adm (M) such that
@A) uD*z, |2|<Ekylv], and 2w,
(2) for any x with x—u, x—=z,
(3) if #<<u, then #<z.
(i) If us>#, then there exists z€ Adm (M) such that
Q) w>*z, |2z|<ky, and z>#,
@) for any x with x—u, r—z,
(8) if #<<u, then #<<z.

Proof. We only prove (i). The proof for (ii) is easier. Define

X={ylu>*y and y—<v}.

LEFT TRANSFORMATION LANGUAGES 289

Let 2 be a minimal element of X with respect to <J. Then #>*z,
2—v, and both (2) and (3) hold by Lemma 5.7. Hence to complete
the proof it suffices to show |[2|<kylv|. Let z=aa,"+-a,, v=>0:byb,,
and 2—v via p.

First assume p=0 and |z|>ky There exist 1<;<j<#n such that
a;=a;. Set 2'=a,-a;.,a;-+a, Since 2—=v via @, a,b,Cp and thus
2’=2v via §. Since z>2’, u >*2’ and 2’—<v. Therefore 2’€X which
contradicts to the choice of z. Hence p=0 implies |z|<ky.

Next assume p==0 and |z|>kylv]. Let

{6<t, <<t} ={p (@) |p (@) is defined}.

Since p is a partial function from {1, -, m—1} into {1, -, n}, we have

1<s<m—1. Let £,=0 and #.,,=n. Since
2| >kym=ky(s+1),

for some q fq,—2,>ky, and hence there exist £,<i<j<t,.,; such that
a;=a;. Set 2'=a,--a;,a;°+a,. Define a partial function p’:{1, .-, m
—1}—{1, -, n—j+i} by

(@) if p()=¢t,,
@)= p(@®) —j+i if p(t) =ty
undefined if p(¢) is undefined.

Clearly 2’—v via p’ and #»*2>>z’. This is a contradiction. Therefore
P50 implies |2|<kylv|. Q.E.D.

Definition 5.9, The partial order <J is extended for finite se-
quences of words. We define (x, -, x,) <y, ***, ¥n) iff m=n and
there exist 1<k, <k,<---<k,<m such that x;<7y,, for all 7.

Let M be a tra and 2€ Adm (M). A traverse (x,, +**, x,) is called
thrifty for z iff x,—<z and (x,, :*+, x,) is minimal with respect to < in
the set of traverses (yi, *:-, ¥n») with y,<lx, and y,—z. A traverse (x,,
<, x,) is called thrifty for # iff x,># and (x,, ---, x,) is minimal
with respect to <J in the set of traverses (v, -, ¥,) with y, <z, and
Ym >#.

Lemma 5.10. Let —* be the transitive closure of —. If

290 HIDETAKA TANAKA

x=*y (x>*# resp.), then there exists a thrifty traverse (zi, -+, 2,)
Sfor vy (# resp.) such that x>=z,.

Proof. A minimal element with respect to <] in the set of
traverses (vy, ***, ¥n) with y,<lx and y,—y(y,>># resp.) is a desired
one. Q.E.D.

Lemma 5.11. Let M be a tra and z€ Adm (M).
G) If (zy, -, x,) is a thrifty traverse for z, then
Q) x<z; implies i< j,
(2) for each i<n, |z Zkylzi.il,
B |zlZkalzl
G) If (zy, -+, x,) is a thrifty traverse for #, then
Q) =<z; implies i<j,
(2) fSfor each i<n, |z Zkylxiil,
B) |zl =k

Proof. We only prove (i). First assume x;<lx; and i>j. By
Lemma 5.3 (xy, **+, Ty, Tisg, **, Tn) is also a traverse and x,—z (x;z
if i=n). This is a contradiction. Thus (1) holds. (2) and (3) are
easily established by Lemma 5. 8. Q.E.D.

§ 6. Emptiness Problem

This section proves that the emptiness problem for left transforma-
tion language is effectively solvable. We note that given x, and =x, it
is effectively determined whether x;—z, or not. Also given z and (x,,
<o,) it is effectively determined whether (xy, -*-, x,) is a thrifty tra-

verse for z or not.

Lemma 6.1. Let M be a tra and z€ Adm (M) U {#}. Define
Thr(2) ={(xy, -, o) | (x4, >+,) is a thrifty traverse for z}.

Thr(z) is finite and it is effectively determined.

Proof. Assume z& Adm(M). The proof for the case of z=# is

LEFT TRANSFORMATION LANGUAGES 291
similar, For each n=1, define N, as follows.
Ny = {(z) |2,z and || Zkulzl},
Noo1= {(Zns1, Zny =5 Z) | (Zny 25 1) E Ny L1,
|xn+1'§kulxn|» and Zp.lx; for any i<n}.

N, is finite and we note that N, is effectively determined. By Lemma
5,11,

Thr®)< U N, .
n=1

Next we show N,=0 for some 7n. Assume N,5*@ for any n. Then
there exists an infinite sequence xj, &, ***, &, *** such that

Q) o Rre ==z,

@) for all 7, |z |Zkulzil, and |z, |<Zkulz],

(8) for any i<j, x;<Ax;.

But (3) contradicts to Proposition 5.2. Therefore
ny=min {n|N, =0}

is effectively determined. We note that N,=0 implies N,,,;=@. Thus

Thr(z) is a subset of |J N, Since it is effectively determined whether
nlng

a traverse (&, *-,x,) 1is thrifty for 2z or not, Thr(2) is effectively

determined. Q.E.D.

Lemma 6.2. Let M= (T, R) be a tra and z€ Adm(M). The
Sfollowing conditions are equivalent.

Q) #<c*z,
(2) Either #<Cz, or there exists a thrifty traverse (x,, -, x,)

for z such that x,=a,a,--a,, #a,€Cy, and a;=%a,., for all

1<m.

Proof. Assume #<<*z and #<z. There exists ¥ such that #<<y
and y—*z. By Lemma 5.10 there exists a thrifty traverse (xi, -+, x,)
for = with x,<ly. Let x;=aa,-a,. Since x;<ly and #<<y, #a,€C;
and a;=%a;,, for all i<<m. Therefore (1) implies (2). The converse
implication is clear. Q.E.D.

292 HIDETAKA TANAKA

Lemma 6.3. Given z€ Adm (M), it is effectively determined

whether #<<*z or not.

Proof. By Lemma 6.1 Thr(2) is effectively determined. Thus it
can be determined whether the condition (2) of Lemma 6.2 holds or
not. Q.E.D.
Lemma 6.4. Let M be a tra. The following conditions are
equivalent.

Q) AM) is not empty.

(2) L(M) is not empty.

(8) Either Cp>##, or there exists z< Adm (M) such that

#<<*z and 2># and |z|<Zky.

(4) Either CpD##, or there exists a thrifty traverse (x, -,

xn) for # such that x,=a,a, an, #a,€Cs, and a;="%a;y, for

all i<m.

Proof. The equivalence of (1) and (2) is trivial. Note that
A (M) contains A iff Cp,>##. Hence by Lemma 5.8 (1) is equivalent
to (3). The equivalence of (3) and (4) can be easily proved by the
way similar to the proof of Lemma 6. 2. Q.E.D.

Now we prove the main theorem of this section.

Theorem 6.5. The emptiness problem for LFT is effectively

solvable.

Proof. Suppose T(R) €LFT, where T is an llest and REREG.
If a system generating or accepting R such as a regular grammar, a
finite automaton etc., is given, then one can easily construct a length-
preserving homomorphism % and a local language R’ such that A(R’)
=R. Hence by combining 7T with A& an llest 7" satisfying

T'(R)=T{R))=T(R)
is obtained. Let M= (7T',R’). Then M is a tra with A(M) =T (R).

LEFT TRANSFORMATION LANGUAGES 293

By Lemma 6.3 and (3) of Lemma 6.4, it is effectively determined
whether A (M) is empty or not. Q.E.D.

§ 7. Quasi-Prefix Property

Let P be a property possessed by languages. We say a family [
of languages has the property P iff all elements of [have P.

A language L has the prefix property iff L=Pref(L). By Lemma
2.4 LLCS has the prefix property. But LFT does not, because REG
does not have the prefix property. In this section we introduce the
quasi-prefix property, which is proved to be possessed by LFT. As a
corollary we can see that LFT and CF (LIN) are incomparable.

First we note that LFT is closed under the operation Pref. In
general we can prove that LFT is closed under right quotient by any

languages.

Definition 7.1. The right quotient of L, by L,, in symbols L,/L,,
is defined by

L,/L,= {u| for some v L, uvsL,}.

If LCX*, then Pref(L) =L/Z*.

Notation 7.2. Let M be a tra. For a language L, Rgh(M; L)
denotes the set of traverses (2,%;, ***, ¥yn) of M such that y,># and
top (¥y, -+, ¥m) €EL. Then define

Min(M; L) = Emb ({z| (2, v, -+, ¥u) ERgh(M; L)}).

By Proposition 5.2 Min(M; L) is finite.

Lemma 7.3. Let M be a tra and a language LDA. If w3,
then the following conditions are equivalent.
1) L(M)/L>ow.
(2) There exists a traverse (xy, -+, x,) of M such that #<<x,,
w=top(x,, -+, T,), and x>z for some z in Min(M; L).

Proof. First assume (2). Since z&Min(M; L), there exists

294 HIDETAKA TANAKA

(2, 91, ', ¥m) ERgh(M; L). Then (xy, ***, Zp, ¥, ***»Ym) is a complete
traverse of M because x,>2. Since z0p(yy, **,¥n) is in L, L(M)/L
contains w., Therefore (2) implies (1).

Next assume L(M)/L>w. There exists a complete traverse (xi,
“ty Zps Y1y s Ym) of M such that w=top(x;, -+-, x,) and L contains
top (¥, ', ¥m). Then (x,, vi, **, ¥n) ERgh(M; L) and there is some 2
in Min(M; L) with x,0>z. Hence (1) implies (2). Q.E.D.

Theorem 7.4. LFT is closed under right quotient by any

languages.

Proof. We sketch the proof. If 2 is a length-preserving homo-

morphism, then
h(Ly)/Ly,=h (Ll/h_l (Ly)).

Since LFT = H,(SLFT), to prove the theorem it suffices to show that
L(M)/LeLFT for any tra M and language L. If L contains 2,

L(M)/L=L(M)ULM)/(L—4).

Since LFT is closed under union, without loss of generality we can
assume LA Also LFT contains 4, and hence it suffices to prove that
(L(M)y/L) —A<LFT.

Let M= (T,R) and let $ be a new symbol. Pref(R)$ is also a
local language. Note that if 2z is an element of Min(M; L), then z has
no subwords of the form aa where a is a symbol. For if Rgh(M; L)
contains a traverse (2;,aaz,, y;, ***, ¥n), then (élazz, Y1, ***, Ym) is also in
Rgh(M; L). Then, since Min(M;L) is finite, one can construct a
tra M'= (T', Pref(R)$) such that (x;, -+, x,,¥) is a complete traverse
of M’ for some y iff (x;, ---, x,) is a traverse of M, #<<yx,, and x,[>=2
for some 2 in Min(M;L). Then by Lemma 7.3,

LM)=((LM)/L)—A)$<LFT.
Since LFT is an AFL, (L(M)/L) —A4 is also in LFT. Q.E.D.

Corollary 7.5. LFT is closed under the operation Pref.

LEFT TRANSFORMATION LANGUAGES 295

Definition 7.6. A language L has the quasi-prefix property iff
there exists a nonnegative integer 2 such that u'z;EL implies zx € L for
some x with |z|<<k. We call k& the prefix constant of L. If 2=0, then
L has the prefix property.

Theorem 7.7. LFT has the quasi-prefix property.

Proof. Suppose L&LFT. There is a tra M with L=AWM).
Since Thr (#) is finite, define

E=max{n|(x,, -+, x,) €EThr(#)}

We prove that % is the prefix constant of L. Assume zvE L with

|o|>k. There exists a complete traverse (x,, -+, x,) of M such that
bottom (xy, *++, x,) =uv and bottom (xy, *+-, ;) =u. Then there is a thrifty
traverse (2, ***, 2,) for # such that z;.,0>2,. Then also (xi, ***, Zis+1,

2y, ***y Z,) 1s a complete traverse and
Lbottom (xy, *+*y Tis1s 2oy ***s Zn) =UZ,

where z=bottom (£;.1,%s, ***, 2n) and |z|=m<k. Q.E.D.

Example 7.8. Let L={a"6"|0<n<m}. L is in LIN, but it is

not in LFT. Because it does not have the quasi-prefix property.
Example 7.9. L= {a"|m=2" for some n} is not in LFT.

By the theorem above we can see that LFT is a very small sub-
family of CS.

Corollary 7.10. LFT and CF(LIN) are incomparable.

Proof. The language L in Example 7.8 is in CF(LIN), but it is
not in LFT. On the other hand the language L in Example 2. 8 is in
LFT, but it is not in CF. Q.E.D.

Corollary 7.11. LFT is not closed under reversal nor comple-

ment.

296 HIDETAKA TANAKA

Proof. Let L= {a"b™|n=m=0}. By applying semi-AFL operations
to the language D(7") in Example 2.6 L can be obtained, and thus
LeLFT. Since LF does not have the quasi-prefix property, L¥ is not
in LFT, and LFT is not closed under reversal. Also by applying semi-
AFL operations and complement to L, L® can be obtained. Hence LFT

is not closed under complement. Q.E.D.

References

[1] Penttonen, M., One-sided and two-sided context in formal grammars, Information
and Control, 25 (1974), 371-392.

[2] Ginsburg, S. and Greibach, S. A., Principal AFL, J., Comput. System Sci., 4 (1970),
308-338.

[3] Haines, L. H., On free monoids partially ordered by embedding, J. Combinatorial
Theory, 6 (1969), 94-98.

