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Arithmetical Completeness in First-Order
Dynamic Logic for Concurrent Programs

By

Hirokazu NlSHIMURA*

Abstract

We extend Harel's [4] arithmetical axiomatization P of regular first-order dynamic
logic so as to include concurrent programs a///?, and then establish its arithmetical com-
pleteness.

§ 1. Introduction

Following Floyd's [3] invariant assertion method. Hoare [4] provid-

ed a finitary axiom system for proving the partial correctness of simple

sequential, iterative programs. Cook [2] introduced the notion of rela-

tive completeness as a certain kind of measure of the adequacy of such

systems. Cook's approach was to add the valid formulas of the under-

lying assertion language to the system as axioms, and then to check

whether in each universe of discourse for which the assertion language

is expressive, the resulting axiom system can prove any true partial

correctness assertion.

Among many approaches which followed Cook, it is Owicki's [7, 8]

system for the partial correctness of concurrent programs and Harel's

[4] first-order dynamic logic that are most relevant to this paper. Owicki

extended Hoare's system to concurrent programs, while Harel extended

Hoare's system so that programs themselves are syntactical entities and

so we can express the equivalence of two apparently distinct programs

formally.

In this paper we generalize Harel's system P to concurrent programs

directly rather than incorporate Owicki's system into Harel's one. In

our opinion, Owicki's system, though being popular and interesting, fails
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to understand concurrency in its most aesthetic and structured level.

Among many axioms and inference rules of P, the most central ones are

(I*) and (C*), which deal with programs of the form a* (i.e., iteration

programs) . Similarly, any worthwhile extension of P to concurrent

programs must contain inference rules which deal with programs of the

form a*//? (i.e., combination of iteration and concurrency) in a structured

manner. However it is such rules that are almost lacking in Owicki's

system.

After presenting the exact syntax and semantics for concurrent

dynamic logic in Section 2, our axiomatization CP for concurrent dynamic

logic is given in Section 3. The arithmetical soundness and completeness

of CP will be established in Sections 4 and 5 repectively. Throughout

this paper we assume the reader to be familiar with Harel [4] .

§ 2« Concurrent Dynamic Logic

Roughly speaking, concurrent dynamic logic (CDL) can be obtained

from regular first-order dynamic logic (DL) simply by admitting a//?

(cobegin-'coend) to be also a program. Specifically we define by

simultaneous induction the set CRG of first-order concurrent regular

programs and the set of CDL-wffs:

(1) For any variable x and any term e, x<— e is in CRG.

(2) For any program-free (see below) CDL-wff P, P? is in CRG.

(3) For any a and 0 in CRG, (a;/?), («U/9) , (a Iff) and a'* are

also in CRG.

(4) Any atomic formula is a CDL-wff.

(5) For any CDL-wffs P and Q, a in CRG and variable x, IP,

(PVQ), 3xP and <tf>P are CDL-wffs.

A CDL-wff which contains no occurrence of a program in CRG is

called program-free, a first-order formula, or simply an L-wff*. Pro-

grams of the form indicated in (1) and (2) are called indivisible pro-

grams. We shall use most of the conventions of Harel (4) freely (e.g.,

|>]P for l<a>!P). CDL-wffs P0/\-/\Pn and P0V-"VPn are often
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n 11

abbreviated to /\ Pi and V PI respectively.
i=0 i-O

Let N be the set of all nonnegative integers. We define a function

c from NxN to N as follows:

+ j) +j for each (i? j} ejVxJY.
£

We know well in elementary mathematics that ^ is a one-to-one

correspondence of JYxJVonto JV and if i + j<i' + j', then 0>(i, j) <0>(i', j') .

We denote by 0 and % the functions from N to N satisfying the follow-

ing conditions:

any

We define a function d from CRG to N as follows:

(1) d (a) = 1 for any indivisible program a.

(2) d(a;/i) =d(aU/?) = 2(max{d(a) , d( /9)> +1) .
(3) d(a*) =d(a) +1.
(4)

We denote by 0 the program (Vx (x = x) ) ? (a program for "do

nothings") . We define two functions init and rest from NX CRG to

CRG as follows:

(0) init(0, a) =0 and rest (0, a) = a for any

(1) init (i -hi, a) =a and rest (i-f-1, a) =0 for any indivisible pro-

gram a..

(2a) init (2i -f 1, a ; /?) = init (i, a) and

rest (2i + 1, a\ /9) = rest (i, a) ; /?.

(2b) init (2 (i + 1) , a- /9) - a ; init (i, /9) and

rest (2 (i + 1) , a ; #) = rest (i, #) .

(3a) init (2i -h 1, a U /?) = init (i, a') and

rest (2i + 1, a U /ff) = rest (i, a} .

(3b) init (2 (i + 1) , a' U /9) = init (i, ^) and

rest (2 (i -f 1) , a U /3) = rest (i, /9) .
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(4) init (i 4-1, a/0) = init (0 (i), a) /wit ft (i), tf) and

rest (i +1, a/0) = rest (0 (i) , a) //rest ft (i) , 0).

(5) init (i 4-1, a*) = a*; ink (i, a) and

rest (i -f 1, cr*) = rest (i, a) \ a*.

Our notations cp, (p, %, d, init and rest are slightly modified versions

of Nishimura's [6] J2, ( )1? ( )2, Iw, comp and lete respectively. We de-

fine the resi-closiu'e of a program or in CRG, written rest-cl (a), as the

set

{rest (i, a) |0<i<d(a)}.

The following proposition justifies the name.

Proposition 2.1. For any a^CRG, any 0^ rest-cl (a)

ieJV, we have rest (i, /S) GErest-cl (a). I.e., rest-cl (a) 25 closed zvith

respect to the operation rest.

Proof. By induction on the construction of a.

Some examples of rest-cl (a) may be helpful to the reader.

(1) rest-cl (a) = {a,6}.

(3) rest-cl (a/0) = {a/0, 6/0, a/0, 6/6}.

In the above examples, a and 0 are assumed to be indivisible.

We now turn our attention to semantics. In the rest of this paper,

an arithmetical universe A shall be fixed. An ordered pair (/, J) of

states I and Jin A is called a move. A finite sequence (Il9 «7i) ••• (/n, «7n)

of moves is called a path, while /i and «/„ are called the initial and

final states of the path respectively. The number n is called the

length of the path. We denote by H(A) the set of all paths. For any

heH(A), we denote the initial state, final state and the lenght of h by

is(h), f s (h) and lh(h) respectively. A path (I19 Ji) • • • (/n, Jn) is called

legal if Jri = / i l , for any l<i<n —1. We denote by Hr(A) the set of

all legal paths. Given two subsets S and T of H(A), we define:



FIRST-ORDER DYNAMIC LOGIC 301

(1) S; T is the set of all concatenations of h^S and

(2) S* is the least subset of H(A) which contains S and {(/, I) \I

E=A} and which is closed under concatenation.

(3) S/T is the set of all interleaving sequences of h^S and

We now define a subset p(a)CIH(A) for each aeCRG and a rela-

tion 7|=P between /€EA and a CDL-wff P by simultaneous induction.

(1) For any variable x and term e,

(2) For any program-free CDL-wff P,

p (P?) = {(/,/) 1 7(=P}.

(3) For any a and /31 in CRG,

p ( a ; f f ) = p ( a ) ; p ( f i ,

p (a*) = (p (a) ) *, and

p (a// ^=p(a) Up (ft).

(4) For any atomic fomula p(e l5 • • • , e k ) ,

Jt=p(ei, • • • j C k ) whenever p/(elj? • • - , ekj) is true.

(5) For any CDL-wffs P and Q, a in CRG and variable x,

7[=~1P iff it is not the case that 1\==P,

Ib=(P\/Q) iff either I\=P or J(=iQ,

J|=:3xP iff there exists an element d in D/

such that [d/x]/|=P,

J[=z<a>P iff there exists a path hep (a:) such that is (h) = /,

h is legal and f s (h) f=P.

We say that a CDL-wff P is A-valid, notation: 1= ,̂ if for every

, we have 7[=P.

§ 3. Axiomatizatioii of CDL

The main objective of this section is to present our formal system

CP for CDL, which is an extension of Harel's [4] P for DL. First of

all, we recall the formal system P, which consists of the following-

axioms and inference rules:
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Axioms:

(T) All tautologies of prepositional calculus.

(— R) [x«-e]P=P|, where P is an L-wff.

( U R )

Inference rules:

(MP) *

[a]P=>[a]Q

(£«,) RlD3nP(n), P(n + l)D<Q!>P(n), P(0)Z)Q ^ where p ig an

L-wff with free n such that n^var(cc).

Rules (I*) and (C*) are called the rules of invariance and conver-

gence respectively. Strictly speaking, rules (I*) and (C*) of this paper

are introduced as derived ones in Harel [4], but we prefer to regard

them as fundamental ones so as to stress the strong analogy between

them and our new rules which are to be introduced soon.

Our formal system CP for CDL is obtained from P by adding the

following axioms and inference rules;

Axioms:

(/R) [a//^]P=dA[init(i,/?)][a][rest(i,/?)]P , where a is an
i=0

indivisible program.
d(r)

(; CR) [ (a; 0) //r] P=A [a/init (i, r) ] [0/rest (i, r) ] P.
i=o

(U CR) [ (a U 0) lf\ P= ([a/r] PA [0/f] P) -

(//CR) [ (a//5) I f\ P^ [a// (/3/r) ] P.
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Inference rules'.

(CI*) -^T>I!f^?i- , where

(1) P,. is a CDL-wff for each r^rest-cl (/9),

(2) T1={P rD[a/mit(i,r)]Pre.tftril7'erest-cl09) and

0<i<d(r)>, and

(3) T,= {PrD[r]Qirerest-cl

(CC*) RP^nP^n), T^jr, fa

(1) Pr is an L-wff with free n such that n€jtvar(a*j$)

for each f^rest-cl (/?),

d(r)
(2) T, = {Pr (n +1) ID V<a/init (i, r) >Prest<i,r) (n)

i = o

rerest-cl(/9) and 0<i<d(r)}, and

(3) T,= {Pr(0) Xr>Qir^rest-cl (/?)}.

Axioms (/R) and (;CR) are borrowed from Nishimura [6]. Rules

(CI*) and (CC*) are called the rules of concurrent invariance and

concurrent convergence respectively.

CP(A) is CP with the set {P|P is an L-wff and |=AP} taken as

additional axioms. A CDL-wff P is said to be provable in CP (A),

written |-^p(A)P, if there exists a finite sequences S of CDL-wffs, the last

one being P, and such that each formula in S is an axiom or is obtained

from previous formulas of S by one of the rules of inference.

§ -!<» Soundness

The main purpose of this section is to establish the following

theorem:

Theorem 4, I (A-soundness of CP(A)). For any CDL-wff P, if
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Since the A-soundness of P(A) is already established in Harel (4)

and it is rather straightforward to see that axioms (/R) , ( ;CR), (UCR)

and (/CR) are A-valid, it is sufficient to show that rules (CP) and

(CC*) preserve A-validity.

Lemma 4.2. For any a, /SeCRG and any CDL-ivffs R, Q and

Pr(rerest-cl (/?)), if f=ACRz>P,), ^A(PrD [a/init (i, r)]Prest(i,r)) for

each 0<i<d(r) and t=A (Pr => M Q) , then f=A (R D [a*///?] Q) .

Proof. It is sufficient to show that \=.A (R D [an//9] Q) for any

n^N. It is easy to see that [<zn/$]Q *s equivalent to the conjunction

of all formulas of the form

where for some d"l5 • • • , tfn_i in CRG and some il9 •••,in^N such that

0<i2<d (0) , 0<i2<d (d^) , -, 0<in<d (^0 ,

(1) Aj = init (i1? /?) and (J, = rest (ily /?) ;

(2) A2 = init (i2, (J^ and ^72 = rest (i2, (70 ;

(n - 1) An_! = init (in_1? tTn_2) and (Tn_! = rest (in_1? (Tn_2) ;

(n) An = init (in, ^-0 and An+1 = rest (in, 6Tn-i) .

Since (=A(RDP,), f=iA(P,D[aA]Pff l), t=A(Pcn^ [«A+1]Pffi+1)

n-2), ^ACPcrn-i^Ca/^P^i) and [=A (PAn+1 => [4+i] Q) by assumption,

p=A (R D [aA] [a/A2] - • • [a/An] [a/ADTl] Q) . Thus the desired conclusion

follows readily.

Lemma 4.3. For any a, /9eCRG, any CDL-wjfs R and Q, and

any L-tvffs Pr (r^rest-cl (#)) with free n&var(a*/ff) , if ^=A(R

D 3nP, (n) ) , ^:A (Pr (n + 1) D V<a/init (i, r) >Prest(i,r) (n) ) fl»«* ^A (Pr (0)

=3<7>Q), then t=A(R3<

Proof. Similar to that of Lemma 4. 2.



FIRST-ORDER DYNAMIC LOGIC 305

§ 5e Completeness

The main purpose of this section is to establish the arithmetical

completeness of CP. Owing to Theorem 3. 1 of Harel [4], it is sufficient

to show that:

(Cl) L is A-expressive for CDL. I.e., for any CDL-wff P, there

exists an L-wff Q such that {=AP=Q-

(C2) The following inference rule has to be derivable in CP(A) :

(C3) We can prove completeness for formulas of the simple forms

RD[a]Q and RD<a>Q with L-wffs R and Q.

Theorem 5. 1. For any arithmetical universe A, L is P^-expres-

sive for CDL.

Proof. This follows from the closure of regular sets under shuffling

and the A-expressiveness of L for DL established in Theorem 3. 2 of

Harel [4].

Corollary 5. 2. For any CDL-wff of the form <ax*>Q, there

exists an L-wff P(n) -with free n$£var(a) such that j=A

Corollary 5. 3. For any CDL-wff s of the form <<2*/$>Q, there

exists an L-zvff P(n) with free n^var (a* // f$) such that (=AVn «an

The following two lemmas are borrowed form Harel [4],

Lemma 5* 48 The following is a derived rule of CP.
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Lemma 5. 5 (Invariance Lemma) . For any CDL-zvjff of the

form R D [>*] Q, if (=:A (R D [a:*] Q) , then there exists an L-zvff P

such that t=A(Rz>P), |=A(PD[a:]P) and ^=

The following lemma is the concurrent analog of Lemma 5. 6.

Lemma 5. 6 (Concurrent Invariance Lemma) . For any CDL-zvjf

of the form RD[a*//?]Q, if (=A (R D [a*//9] Q) , J&e* */iere exists an

L-zvff Pr for each r^rest-cl (0) such that f=A(Rl)P '^) ,

//init(i,r)]Prest(i,r)) /^ **c/i 0<i<d(r)

Proof. By Theorem 4. 1, there exists an L-wff Pr for each

rerest-cl(#) such that [=A(Pr^ [a*//r]Q) . Since ^=A (R D [a*///?] Q)

and |=A(P0= [o:*//?]Q) , we have f=zA (R ID P^) . It is easy to see that

^=A ( [a*/r] Q =5 [a/init (i, r) ] [a*/rest (i, f) ] Q) for each 0<i<d (r) .

Since f=A(Prs|>*/r]Q) and t=A (Prest(i>r)^ [a*/rest (i, r)]Q) , ^=A(Pr

D[a//init(i, r)]Prest(i,r))- It is easy to see that ^=A ([a*/r]Q=^ MQ) -

Since f=A(Pr=[a*/r]Q), we have (=:A (Pr D [r] Q) . This completes the

proof.

We define two functions c^ and o)2 from CRG to N as follows:

(1) 0)1 (a:) = 1 for any indivisible program a.

(2) ^ («;£)= ̂  (a U 0) = ah (a) + «, (/?) + 1.

(3) a)! (a*) - a>! (a//?) = ̂  (a) + 1.

(4) 6t)2 (CK) =0 for any indivisible program a.

(5) o>2 (a; /9) = o)2 (a U /5) = max {o)2 (a) , a)£ (0) } .

(6) fl),(a*)=ft)I(a).

(7) co2 (a// 'ft = a), (a) + a), (/?) + 1.

We denote by < the usual lexicographic order on NxN. I.e., for

any (ij, iz) , (J1? J2) eiVx TV, (i1? i2) < (jly j2) iff one of the following condi-

tions holds:

(1) i2<J2.

(2) i2 = j2 and i^jj.



FIRST-ORDER DYNAMIC LOGIC 307

We decree that ti (a) = (cOj. (a), o)2 (a)) for any a e CRG. To

establish the box-completeness and diamond-completeness, we need the

following lemma.

Lemma 5* 7«

(1) Q (a) <£ (a; 0) and Q (0) <@ (a; 0).

(2) fi (or) <£ (a U 0) flHrf fl (/?) <fi (a U /?).

(3) £(«)<£(<**).

(4) a (a) <Q (a/0), fl (init (if /?)) <Q (a/0) and

fl (rest (!,/?))<£ (a//?) /or a?zy i(E]V.

(5) fi (a/init (i, r) )<# ( (a; /9) //?") a^ rf J? (/9/rest (i, r) )

for any i^JV.

(6) J2(a/r) <^2((aU/9)//r) ^«^ $ t f / f )

(7) £ (a/init (i, r)) <^2 (a*///S) «"^ Q (r)

/or any fGrest-cl (/?) a«<^ am' 0<i<d (7") .

(8)

The above lemma follows immediately from a simple inspection and

the following lemma.

Lemma 5. SL i^or a??v aeCRG «??</ a;?y ieJV, o)2(init(i, a))<

o)2 (rest (i, a) ) <o)2 (a) .

Proof. By induction on the construction of a..

Now we are ready to establish the box-completeness theorem for

CP(A).

Theorem 5.9 (Box-completeness Theorem). For any

and any L-wffs R and Q, if f=A (R z> [a] Q) , 2 ;̂? -^p^ (R z> [a] O) .

Proof. We proceed by induction on Q (a) . Since the proof is

similar to that of Theorem 3. 9 of Harel [4] , we deal only with the

case that a is of the form /3*/7", leaving other cases to the reader. By

Lemma 5.6, there exists an L-wff P^ for each 5erest-cl (r) such that
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^A(Rl3Pr), ^A(P8^[0//imt(i9d)]PTestM) for each 0<i<d (ff) and

f=A (Ps ̂  [ol Q) • By Lemma 5. 7, we can apply induction hypothesis to

these formulas, so that |-^p^ (R =) Pr) , |-^p^ (P,=) [#/init (i, fi) ] Prest(ifs))

and |-cp(5)(PffD [ff]Q) for each 5EErest-cl (r) and each 0<i<d (0) . Hence

by rule (CP) , we have -^p^ (R D [a] Q) .

The following lemma is borrowed from Harel [4].

Lemma 5. 10 (Convergence Lemma) . For every CDL-wff of the

form RZ)<a*>Q, if [=A(R=)<a*>Q) , then there exists an L-zvffP(n)

with free n£var(a), such that [=A (R D 3nP (n) ) , [=A (P (n 4- 1)

:Xa>P(n)) and f

The following lemma is the concurrent analog of Lemma 5. 10.

Lemma 5. II (Concurrent Convergence Lemma). For every CDL-

wff of the form RD<a*//9>Q, if i=A(R^<^*//?>Q) , then there exists

an L-wff Pr(n) -with free n^var (a* / '/?) /or ^ac/z /erest-cl (/9) ,

rAa^ ^=A (R D 3nP, (n) ) , ^=A (Pr (n + 1) Z> V<a/init (i, f) >Prest(i,r) (n) ) and

f=A(P r(0)D<r>Q) for each r erest-cl(/9).

Proof. By Corollary 5.3, there exists an L-wff Pr (n) with free

n&var(a*/ff) for each r^rest-cl (/9) such that ^Vn (Pr (n) =<a/r>Q) .

Since ^=A(R=)<a*//9>Q) by assumption, \=A (R D 3nP^ (n) ) . Similarly,

it is easy to see that the other A-validities hold too.

Theorem 5. 12 (Diamond-Completeness Theorem) . For any a

GECRG and any "L-wff s R and Q, if [=A(RD<a>Q) , then

Proof. Similar to that of Theorem 5. 9.

Thus we have just established the following.

Theorem 5. 13 (Arithmetical Soundness and Completeness for

CDL) . For any CDL-wff P, ^=AP iff i-^p^P.
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