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A Generalization of Vanishing Theorems
for Weakly 1-Complete Manifolds

By

Kensho TAKEGOSHI*

§1. Iniroduction

Let X be a connected complex manifold of complex dimension 7. X
is called weakly l-complete if there exists an exhaustion function @ on
X which is C* and plurisubharmonic. In [9] S. Nakano established the

[ollowing.

Theorem 1. Let B be a positive line bundle on a weakly 1-
complete manifold X, then

H (X, 82(B)) =0 for p+g>n.
Recently, O. Abdelkader obtained

Theorem 2 (cf. [1]). Let B be a semi-positive line bundle over
a weakly 1-complete Kiihler manifold X and assume that the curvature

Sorm of B has at least n—k+1 positive eigenvalues, then
H? (X, 297(B)) =0 for any real number ¢ with p+q=n+k,

where X,= {reX,0(x) <c}.

In these theorems, the positivity of eigenvalues of the curvaturc
form of B is assumed on the whole space X. In this paper, we shall
prove that these vanishing theorems still hold, if the positivity of eigenval-
ues of the curvature admits a compact exceptional subset K& X. We
shall prove the following.

Communicated by S. Nakano, July 1, 1980.
* Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.
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Main Theorem. Let B be a semi-positive line bundle over a
connected weakly l-complete Kihler manifold X with a metric along
the fibres such that its curvature form has at least n—q-+1 positive

eigenvalues on X\K, where K is a proper compact subset of X. Then
HY(X,0(B®Ky)) =0 for any p=q,

where Ky is the canonical line bundle of X.
In particular, when g=1, we obtain

Corollary. Let X be a connected weakly 1-complete Kihler
manifold and let B be a semi-positive line bundle on X which is

positive on X\K for some proper compact subset K of X. Then
H (X, 0 (BRKy)) =0 for any p=>1.

Since a positive line bundle over a complex manifold induces a
Kihler metric on it, this is not only a direct generalization of Theorem
1 for g=7 but also a generalization of the vanishing theorems for the
semi-positive line bundle on 1-convex Kihler manifolds and compact Kéhler
manifolds by Grauert and Riemenschneider (cf. [4], [11]).

This work is inspired by Ohsawa’s article [10] and the author would
like to express his hearty thanks to Dr. A. Fujiki and Professor S. Nakano

for their kind advices and encouragement during the preparation of this

paper.

§ 2. Notations and Definitions

We denote by X a connected paracompact complex manifold of
dimension 7. Let #: F—X be a holomorphic line bundle over X. Let
U = {U} icr be a covering of X by coordinate neighborhoods such that
on each U, F|U; is isomorphic to the trivial line bundle. We denote
local coordinates on U; by (zi, -+, 2%). If @;: U X C—>F|U; (i€I) are
these trivializations of F, we denote by fiy: U;NU,;—C* the system of

transition functions defined by the conditions:

QJTl of;(2i, &) = (=i, S (21) &)
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where £; denotes the fibre coordinates over U..

An F-valued differential form ¢ on X is a system {¢;};=; of differential
forms defined on U, satisfying ¢;=fy¢; in U;NU;. We denote by
C?%(X, F) the space of F-valued differential forms on X, of class C*
and of type (2, q), and by C»?(X, F) the space of the forms in C*? (X, F)
with compact supports.

Let ds*= f"’_, Oi.ap dzi-dzf be a hermitian metric on X and let {a;}
be a hermitiana,f;étric along the fibres of F, that is, a system of positive

valued function a; in U; satisfying |f;;l=a;-a;' in U;NU,.

Remark. In this paper, we use the notation of a system of metrics

along the fibres in the sense of Kodaira [7], page 1268, (1).

For ¢, y=CPr1(X, F), we set
o, 0 =ai* X Qu,.5, o™,
4p, By

where ;= AZ;'; go,-Ap’quzg‘P/\dz?! and A,= (ay, -, &) and By= (8, =+, 3y)

run throughﬁlc};e sets of multi-indices with 1<, <---<<a,<n and 1=5,<
-+ <8,<n respectively. Then

ai'oi \xgi =g, ppdV

where * is the star operator and 4V is the volume element with respect
to the metric ds”
If either ¢ or Y=CPI(X, F), we define

@1 @, 9= | <o, pperav

{or any real-valued C*function .

In particular we set

2.2) @ ) = (@, 9o

and

(2.3) lele= (¢, @) r
lel®= (¢, ¢).

We have the operator 9: C**(X, F) »C?" (X, F) defined by (@¢);
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=0¢;. With respect to (2.1) and (2.2), the formal adjoint operator of
0 are defined, we denote them by ¥, and ¥ respectively. We denote by
LY X, F,¥) (resp. L% (X, F)) the space of the measurable F-valued
forms ¢ of type (p,q), square integrable in the sense that [¢|%<Coo
(resp. |¢||*<o0). Then, they are Hilbert spaces with respect to the inner
product (@, ¢), (resp. (¢, ¢)). We denote again by 0 the operator from
LPY(X, F, %) to L*" (X, F,¥) extending the original #; thus a form
pelPY(X, F,¥) is in the domain of @ if and only if 9y, defined in the
sense of distribution, belongs to L (X, F,¥). Then 8 is a closed,
densely defined operator, so the adjoint operator 9% (resp.0*) can be
defined. We denote the domain, range and nullity of 8§ in L**(X, F, ¥)
by D¢ RZ? and NP respectively. D!, RE! and Nf? are defined

similarly.

Definition 2.1. X is called weakly 1-complete if there exists a
C~-plurisubharmonic function @ on X such that for any real number c,

X, ={xe X0 (x) <c} is relatively compact in X,

Remark 2.1. Let A(2): (—oo, 00) —>(—o0, ) be a C -increasing
convex function such that A(¢) =0 for £<0, then the composition A (@)
is again C=-plurisubharmonic and exhausts X. So we may assume that
@ is non-negative on X. Then, for any c€ (0, 00), X, = {x € X|0 (x) <c}

is weakly 1l-complete with respect to the exhaustion function

c—

Remark 2.2. Any connected compact complex manifold is weakly
l-complete, any real constant function being taken as the exhaustion

function.

Definition 2. 2. A holomorphic line bundle 7: F—X is said to be
positive (resp. semi-positive) on a subset YC X, if there exist a coordinate
cover QL = {U;};er of X such that 77'(U;) are trivial and a metric {a;}
along the fibres of F such that

2
2.4 <M>>O (resp. =0) on U;NY for every il
02208
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Definition 2. 3. A holomorphic line bundle 7: F—X is said to be
q-semi-positive (1<¢g<<n) on a subset YCJX, if F is semi-positive on Y
and the hermitian matrix (2. 4) has at least 7—q¢ -1 positive eigenvalues

al cach point of Y.

§3. A Formulation of L’-Estimates and Existencc

Theorems for the 9 Operator

Let X be a paracompact complex manifold of dimension 7 which is

not necessarily connected.

Theorem 3.1. Let F be a holomorphic line bundle over X. If

there exist in (he degree (p,q)
3.0 a complete hermitian metric ds* on X,
(3.2) a hermitian metric {a;} along the fibres of I,

3.3 a constan! C;>0
and
3.4) a compact subset K of N which does not contain any con-

nected component of X, such that
3.5 olw=CidIBglt+ [0%0]%  for any g< Dpin Dy
Then, there exists a constant C,>0 such that

(3.6) lel’ < Ca{llopl® + [0*¢l?s  Sor any ¢ DyN Dy

Proof. Take any sequence {¢,} such that ¢, D2IN D2, | @, |><1,

lim |0¢,)?=0 and lim ||#*¢,|?=0. Then we assert that there exists a
m—>+

m-+ o

subsequence {@,,} of {@,} which converges strongly on X. Since ds’

is complete, CP7(X, I") is dense in D270 D& with respect to the norm
00, 0p) + (0*¢,0%¢) + (¢, ¢)

([12], Theorem 1.1). Hence we may assume ¢, =CP*(X, F). Therefore

we obtain that
(OPm, 002) - (0% Qn, 0% 0n) | (O, @n)
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is bounded by the assumption. Since 9% +90 is an elliptic differential
operator of order 2, this means that (¢,); and their first derivatives
with respect to the coordinate of U; are bounded in the sense of the
integral |, ||k, where K’ is a compact subset of X with KCInt K’ (see
for example [3], (2.2.1) Theorem). Combining this with Rellich’s lemuna
(see for example [3], Appendix), it follows that {g,} has a subsequence
{¢n,} which is strongly convergent on compact subsets. By (3.5), we
conclude that {¢,} converges strongly on X. Therefore, by Hérmander
[6] Theorem 1.1.2 and Theorem 1. 1. 3, there exists a positive constant
C, such that

3.7 lolP<C:{|00|*+ [10*¢ ]
for any g€ D%?N D&* with ¢ | N”%=N2?N NL2.
By the same theorems we obtain the following strong orthogonal

decomposition:
3.8 L?(X, F) = RE‘@QN” PRz

Each element ¢ in N™? is a solution of the Laplace-Beltrami operator
[1=09+90 with respect to (3.1) and (3.2). Now we refer to the
unique continuation theorem for harmonic forms with values in a hermitian

vector bundle.

Theorem 3.2 (Aronszajn [2], Riemenschneider [11]). Let E be
a hermitian wvector bundle over a connected complex hermitian
manifold X. Then a harmonic form o& 4" (E) vanishes identically

on X if it vanishes on a non-empty open subset U of X.

Any form ¢ in N™? vanishes on the open subset X\K by (3.5).
Since each connected component of X is not contained in K by the as-
sumption, from Theorem 3.2, ¢ vanishes identically on each connected
component. Hence ¢ vanishes identically on X. Therefore N™? is the

null space. Combining this with (3. 7), our theorem follows. q.e.d.

From the above theorem, we obtain (cf. [5], Theorem 1.1.4)

Corollary 3.1. Let X, F and others be as above. Let o= L™?
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(X, F) satisfy the equation 0¢p=0, then there exists a p= L (X, F)
such that 8p=¢. Moreover, if p=C**(X, F), then ) can be taken from
C**" (X, F) (cf. [6], p. 115, Theorem 5. 2. 5).

§4. The Basic Estimate

Let X be a connected paracompact complex manifold of dimension
7 and let 7: B—X be a holomorphic line bundle over X. Let U = {U}er
be a coordinate cover of X such that 7#7'(U;) are trivial and let {a;} be

a hermitian metric along the fibres of B with respect to Q. We set

0% log a;
4.1 Igg=—2"
. 1) T 92502F

We assume that X is provided with a Kihler metric
n =
4.2) ds'= 3 0:.5d2F-d28 .
a, =1

The canonical line bundle Ky of X is defined by a system of transition
_ a(z%h ) Zt;)

functions {Ky,;} on U;NU;, where K_Y,ij-m. Then we see
that

4. 3) |Kxyl’=g:97"  on UNUGj,

where

4. 4) gi=det (9; «p) -

Hence {g;} determines a metric along the fibres of K,. Then {A;}
defined by
(4. 5) Ai=a;-g;

determines a metric of BRKj.
With the notations (2.1), (2.2) and (2. 3), the following inequality
has been shown by K. Kodaira (cf. [7], pp. 1269-1270).

(4.6) j L D R N S Y e [ RS I
x A, Bpy 8i7=1

for any ¢ Cy? (X, BRKy) with p=>1.
From now on, we let X be a connected Kihler manifold, weakly

l-complete with respect to an exhaustion function @ and let 7: B—>X be
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a holomorphic line bundle which is semi-positive on X and g-semi-positive

on X\K for some proper compact subset K of X. We fix a constant

c>cy=sup@(x). Then X,={xeX|0(x)<c} is weakly 1-complete with
zEK

respect to the exhaustion function

c—
We take a Kihler metric

n
(4.7) dsi= ;gi,aﬁ,udz?-(lz{?’
o, B=1

on X. We set
Gio= (9s,25.0) -
Let {a;,} be a fibre metric of B which corresponds to the assumption

and we set

2
(4.8) Foo=(Tsa50) Where T'yope=" 108 %o
02702¢

We can assume that inf @ (x) =0. Then we take a C™ increasing convex
rEX

function A(#) such that

4.9 ) A(8): (—o00,00)—(—00,00),
0 if i<t
0D A= ¢
>0 if £>1,
c

) ﬁM«/T’(T)dt: +oo.

We replace the metric along the fibers of B by

(4.10) a;=a;, exp(¥) where W:l( 10 >
c—0
We set
(4.11) [i=(T'yes) where I'yo—0 108a:
0270278

Then we have

(4.12) I'2I,.
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We define a Kahler metric ds* by

(4 13) dS2: ;': (gi’aﬁ’o’{“ri,aﬁ)dzg'dz,f .

[2% 1

Remark. By the choice of 1 as in (4.9) iii), ds® is a complete
Kéhler metric on X, (cf. [8], Proposition 1).
We set
Gi= (Gi.ap) where (iag=0iapo+ 10z -
We replace the metric along the fibres of BRKy by
(4. 14) A;=a;-g; where g¢;=detG;.

We replace (4.1), (4.2) and (4.5) by (4.11), (4.13) and (4. 14), then

from (4.6) we obtain

(4.15) LS ST ots, G AV ||+ %)

Xe Ai Bp_y B,r=1

for any e Cy?(X,, BK,) with p>1.

We rewrite the left hand side as

(4.16) j 1 2 20 (L 0F T 6r) iap,., P77V
X. A; Bpoy ar=1 B=1

We can choose a matrix 7; which depends, together with 777,
differentiably on x&U;, satisfying G, ,='T;-T;. Since G;=G;,+I;, we
have G,="T{E+'T;'-I";-T;}T, The eigenvalues of the hermitian
matrix T3 ;- T (vesp. ‘T - Tyo-T7Y) are continuous functions on X,
(resp. X). From (4.12), we have
(4.17) i T T =T Ty T on X, NU;.

Let K’ be a compact subset of X, with KCInt K'C K'CX,. Since
the closure of X, is compact, (4.17) implies that the first z—q+1 eigen-
values of the matrix *T;'-I';-T;! taken in the order of decreasing magni-

tude, are positive and stay away from zero on X\K’. Let z,&X\K’ and

choose a system of local coordinates (zj, -+, 2F) around z, as follows:
(4.18) Gio(1o) = (0ap) and  I';(xg) = (Va-0ap) ,

where {v.}ica<s are eigenvalues of the matrix I - T at o, and
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satisfy ©v,20,2>+" 20, , >0 and v,_ 44222 =20,=20. Then there exists

a positive constant ¢, independent of the choice of x,&X,\K’, such that
Up-gr1226>0. Therefore we have

U
1'1'-'01’ En—q-H O\
(4.19) Gi(xo) ' Ti(xy) = =’
v, o o0/
1+v,
where &' = T and E,_,., is the (n—¢g+1,7—¢g+1) unit matrix.
e
We apply (4.19) to (4.16), then at x,
(4. 20) > X (X950 T a,) 0i,a5,., 0
By, ar=1 £=1

>’ 5 S gm0
By, B8=1
If p=q, then p+n—qg+1=n+1, thus any block B, of p indices
taken from {1, 2, ---, #} must contain one of the indices {1,2, :-, n—qg-+1},
i.e. one of the indices corresponding to the positive eigenvalues v, v,, ++*,
Up—gq+r- 1t follows that

n—g+1

(4.21) 3 Y gm0 = Y us,¢Fr.
B,<, -, <Bp

By, B=

Since the matrix Gj'-7"; is positive semi-definite on X,, from (4.15),

(4.16), (4.20) and (4.21) we have

4.22) lolae C:tIBel + 1%l (Ci=2T%)

for any peCp? (X, BQK;) with p=gq.

§ 5. Proof of the Main Theorem

Step 1. Vanishing Theorems on Each Sublevel Set X,. Let
the situations be as above. By Remark in Section 4, our base metric ds*
is complete. Hence, by the same argument as in the proof of Theorem 3.1

and (4.22), we have

CIY lelxan<C:{l0¢]*+ [0%]}
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for any ¢ D¥? N D%? with p—=g.

Any connected compact complex manifold X is weakly 1-complete
with respect to the real constant functions. Then we have X, =X. If
X is non-compact, X,= {xr€X|0(x) <c} has countable connected com-
ponents. If one of them is contained in the compact subset K’, it must
be a compact connected component (or manifold) of X. Since X is con-
nected, this is a contradiction. Therefore, in our situation, the conditions

of Theorem 3.1 are satisfied. Hence there exists a constant C,>0 such
that

(5.2) lel* < C.{100]* + 15%¢]I*

for any g D}? N DY? with p=>g.
Take any ¢&C"?(X,, BRKy) with 8¢p=0. We can choose a C>-
function A with the condition (4.9) such that

i) the Kihler metric ds® induced by (4.13) is complete,
i) (g, 0) <<+oo (cf. [9], §2, Proof of Theorem 1).
Hence, by Corollary 3.1, we have ¢ =208¢ for some = C*? (X, BRKy).

Therefore we have proved that for any c>c*=itelly{)@(x),
(5.3) H* (X, 0 (BQKy)) =0 for any p=>q.
Step 2. Approximation Lemmas. We fix two constants d and
e such that
(5. 4) 1) d>e>cy,
ii) the boundary 90X, of {reX|0(x)<e} is smooth.

We take a C=-increasing convex function t(¢) such that

(5.5) 1) t(@): (—00,00)—=(— 00, ),
0 if lg_l“_
. d—e
i) @)=
>0 if o> 1,
d—e

it ﬁ TV dt= + oo

We set
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qf=f<diq)>'

We define the metrics of B on X, by

(5. 6) i)  a;=a;,-exp (g{/‘) ’

i) ap:=a;-exp(m¥)  for any m=>0.

We set
2 .
D Ti= (o) where Tigp= 088t
) B 0% log am,:
ll) rm,i‘— (['m,i,aﬁ) where F"hl,ﬂﬁ:—-—— for any 771._20-
027028

We define a Kihler metric ds* on X, by

s

(9s,a8,0+ Ti,ap) A28 -d2F

1

6.7 ds*=

“1

™|
i

Remark. By the choice (5.5), ds* is a complete Kihler metric as

in Remark in Section 4.

We set
Gi= (Giag) Wwhere 0ioz=0iazot 0z .
Using (5. 6), we define the metrics of BQKy on X;:
(5. 8) ) A;=a;0:,
) Api=anmqig; for any m=0, where g¢,=detG;.
For any integer m=0, we define

(5 9) ({9, ¢) m = (‘10’ ‘/’) nE
leln= (@ @) m

for any ¢, ¢ L*? (X, BKy, m¥). We denote the formal adjoint of &
with respect to the inner product (¢, ), by @, and the adjoint operator
in L* (X, BRKy, m¥) by 0.

Now we have
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G I''<G;'-I',,; for any m=0.
Hence by the same argument as in Section 4, we have, for any m=0,
(5.10) Il xax<Ci{l00]7+ 05017}

for any ¢eDy?N DyF with p=>q, where C,>0 is independent of m and
K’ is a compact subset with KClInt K'C K'C_ X, Then, for each m,
we have a positive constant such that (5. 2) holds. In general, this constant
depends on m. The basic idea of the following lemma is due to Hérmander

[5]. (Compare with [10], Proposition 4. 2.)

Lemma 5.1. There exists my, and C,>0 such that for any mn=>m,
and p=gq,

lelm=<Co{loelm+ 1051} ,

provided ¢= Dy? (N D32 C L*? (X4, BQKx, m¥).

Proof. Assume that the assertion is false. There would be a

sequence {@;} such that

(5.11) ) ¢.€Dy?*NDYCL" (X4, BRK x, k¥),
i) edi=1,
i) [0peli, 10Feli—>0 as k—+oo.

.o, then we have

Let gr=e"
(5.12) ) 0%gi=e"M0kq.,
i) [0%gs]-v=10%@e]x .
By (5.11), we have
196l =N19ell-x=loalle=1.

Therefore choosing a subsequence if necessary, we may assume that {g,}
has a weak limit g in L"?(X, B®K,). On the other hand, it follows
that

19z on S 0elixan SCi{l00c]i + | 0Fulli} -

By (56.11)
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lim [[ge]Fax- =0
k>t

Hence we have ¢lx,x=0. Then it follows that
(5. 13) supp gC K’ .

From (5.11), (5.12) and (5.13), we have dg=0 and 8*g=0 in
L»*1(X,, BRKy) and L"?7*(X,, BQKy) respectively. Since any con-

nected component of X, is not contained in K’, by Theorem 3. 2, we have

By (5.11), we may assume that {g;} is strongly convergent on K’.
(5.14) implies that the limit is zero on K’. From (5.10) and (5.11),

we obtain a contradiction. g.e.d.

Lemma 5.2. If ¢L"*(X,, BRKy) with p=>qg—1 and 9y=0,
then for any €>0, there exists $<L"?(X,;, BRKy) such that
1§ 1x,—dl%.<e and 8 =0.

Progf. 1t suffices to show that if u€ L"?(X,, B®Ky) and

(5.15) L $F, uddV =0

for any feL"?(X,, BRK;) with 8f=0, then we have
(5.16) f (g, >dV =0
Xe

if ge L*?(X,, BRK,) and 9g=0.

Extend the definition of # by setting #=0 on X,\X,. We denote
it by #’. Then (5.15) implies that #’ is orthogonal to N3?C L*?(X,, B
R Ky, m¥) for any m, we have ZL/E.@CLOJ(X,;, BQRKy, m¥). The
condition R}?= Ry? is equivalent to R}?*'=Ry?*' (cf. [5], Theorem
1.1.1). By (6.10), we have R%p+1=@WC L*?*Y(X,;, BQKy, m¥) for

m=0 and p=~g—1. Hence, from Lemma 5.1, for any m=m, we have
(5.17) u =0%v,

for some v, € L""" (X, BRKy, m¥) with |v,|ZZCo- ||
We set
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wy=e¢"" v, lor m=m,,
then
lwn <l @wnlin=[valn=Co- [a’|".
Hence {w,} has a subsequence which is weakly convergent in L*""'(X,;, B
XKy). Let the weak limit be w. On the other hand, for every ¢>0

j £ (10, WAV SColl |
{r&Xg| v (r)>z}

and we have

eme f G, waddVCllw'| .
{TEX 41T (D) e}

It follows that {wpy, w,>dV tends to zero, and hence w,,—0

Lzeh r@zs
almost everywhere in {rEXy|¥ (x) =¢}. Hence w=0 on {zx€X,|¥ (x)

=¢} for every €>0. Therefore we have
(5. 18) supp wC X, and 0*w=u'.

Since X, is compact and #X, is smooth, from [5] Proposition 1. 2. 3, there
exists a sequence {w®} such that {w*} CCp?*'(X,, BRKy) and |w*—w|%,,
[0*w* —8*w|%,—0 as k— + oo,

We have, for any ve D}?C L"?(X,, BOKy),

Ov, w|x,) X, = ,}ilfm(a‘v, w*) x,= kl_{ftc (v, 0*w") 4,
= (v,0*(w|x))x,.
Hence
(5.19) 0*(wlx) =u .
Therefore, if g= L*?(X,, BRK,) and 8g=0, we have

L (g, w>dV = fx (B, w>dAV =0 . q.e.d.

If in particular ¢ =1, replacing L*? (X;, BRKy) (resp. L**(X,, BRKy))
by I'(Xq O (BRKy))(resp. I'(X,, O (BR®Ky))), we can prove the follow-

ing in the same way as we proved Lemma 5. 2.

Lemma 5.3. Let X, and X, be as above and let a holomorphic
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line bundle B be positive on X\K and semi-positive on X. Then for
any holomorphic section oI (X,, O (BRKy)), X, being the closure
of X, in X, and for any ¢>0, there exists a section § <1 (X, O (BRQKy))
such that |@—o|%,.<e.

Let C be a compact subset of X, We set |¢glc=sup V<{¢, ¢) ()

el
for pel' (X, O (BRKy)), where {g¢, p>=A;'¢;|* (see (5.8)). Then,
using Cauchy’s integral formula in each local coordinate U; with U;NC

#0, we can find a positive constant A such that
lple=M|p|c.

Hence we obtain the following.

Lemma 5.4. Let X, and X, be as above. Let a holomorphic
line bundle B be positive on X\K and semi-positive on X. Then for
any holomorphic section I (X,, O (BRKy)) and for any >0, there
exists a section Pl (X4 O (BRKy)) such that |§—plx,<e.

Step 3. Global Vanishing Theorems. By Sard’s theorem, we

can choose a sequence {¢,},o;,.., of real numbers such that
(5. 20) 1) ¢ >cy,
i) ¢,.;>c, and ¢,—>0c0 as y—> 4 oo,

ili) the boundary 0X, of {reX|0@(x)<c,} is smooth for
any y=0.

For any pair (c,:s ¢,) ?==0), we choose a C* increasing convex

function t,., such that

(5.2D) ) Th(8): (— 00, 00) > (— 00, 00),

0 if i< L1
Cpus—C,
i) 7,..0)= +21
>0 if > 1
Cu+2—cu

+oo
iif) f VT @) di= + oo .
0
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We set
X,={zxeX|0(x)<c},

oL )

L‘,,+2— m

for any y=>0. Then, for any pair (c,.,, ¢,), Lemma 5.2 and Lemma 5. 4
hold.

The case q=1. X ={X)},5 is a covering of X. TFor any v=>1, we
set X,={X,},c, then X, is a covering of X,. By (5.3), ¥ (resp. X,)
is a Leray covering for the sheaf O (B@Kjy) on X (resp. X,). Then we

have, for any =1 and y=1,
H' (X, 0(BQKy)) =H (¥, 0(BRKy))

and
Hi (%w O (B®KA')> :Hf (va O (B®KX)) =0 .

Let 0€Z(¥, 0 (BRKy)), i=>1. Let g, be the restriction of ¢ to
X,. Then 6,€Z*(X,, O (BQKy)) so there is an a, € C*1(¥,, O (BRKy))
such that 0, =0,. As an element of C*'(¥,_,, O (B®Ky)), da,=0q,_,,
and thus a,—a,-,€Z"(X,-;, 0 (BRK,)).

When i>1. Since a,—,., € 2" (¥,_,, O (BRK,)), there is a §,_;
eC (¥, ,, O(BQRKy)) such that 08,.,=a,—a,_, on X, ,. Define
acsC (X, O(BRKy)) as follows:

a=a,—0_hR) on X,.

n<v

It is easily verified that « is well defined. Finally, for any vy, da=
dat,— 00 (3 8,) =0a,=a, Hence we have da=o0.
n<y

When i=1. Since o, —a,_, €1 (X,_;, O (BRK,)), by Lemma 5.4
we can find, for any ¢>0, a yel'(X,, O (BQKy)) such that |a,—a,-,
—7lx,,<e. Therefore, inductively, we have a sequence {A,},», so that
(5.22) i) AeC(X, OBRKy) and h=ai,

iy oA=a,,
i) [Aa—4ly, <27
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For any v, lim 4, defines an element of C°(X,, O (B®Ky)) and clearly
>4
this limit is the same as the restriction of lim 4, for any 7=v+1. Thus
=
we can define an element 1 of C'(¥, O (BQRKy)) by A=lim A. For any

Y+ o0

y, 0(lim 2,) =lim 04,=0,. Hence we have §1=0.

nzy uzy

The case g>1. We denote by L}:2 (X, BRK;) the set of the locally
square integrable (0,p) forms on X with values in BQK,. For p=1,

there is a natural isomorphism
(5.23) H*(X,0(BXKy)

_ (£ € L2 (X, BRK): 01 =0)
{(fe L% (X, BRKy); f=0g for some g L:?' (X, BRK )}

Therefore, [or p=¢q, it suffices to show that for any pe L}2(X, BRKy)
with 0¢=0, there exists a ¢ Li?2"" (X, BRKy) such that §¢=¢.

In this proof, for any y=>0, we set
(5.24) ) e=0¢ls,,
i) LY (X, BRKx, ¥,s) =L (X,,s, BRK x),
i) L%*(X,, BOKy, 0) =L""(X,, BOKx, ¥.:2),

) fla= [ < pear

for feL%"(X,.:, BRKy, ¥,.2)

where {f, f)= (a0 9™ ; fu5, &
Then ¢, L*?(X,, BRK 4, ¥,) and 8¢,=0 (v=>2). Hence there exists
a ¢, e L (X,, BQKy, ¥,) such that 8¢, =g, for any v=>2. We now
choose, by induction, a sequence {,},5, so that
(5.25) ) ¢.eLi(X, BQKy)
i) 0¢4,=¢, on X,
lll) ” ¢H+1 - Sbv” E+2, Xy<2~y .
We set

Sb;lxl on .Xl
501:
0 on X\X,.
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Since e Dy 'C L (X,, BOKy,¥,), we have & DgPtC LM}
(Xi, BRK,0) and 8¢, =¢,. Suppose ¢, ---, ¢,_; are chosen. Then
Wi —=n) s, €LY Y(X, ... BOK, 0)
and
0 (Ye1—Pu-n) lx,, =0,
By Lemma 5.2, there exists a g€ L"*"'(X,,,, BQK,, ¥,.;) such that

lg— (</);+1 ~ 1) ”fﬂ, X,,_1<2_(v " and 50:0-
We set

(/J:+1|A',,'~glz’,, on X,
0 on X\X,.

b=

Then we have

(5. 26) ) ¢,eDy*'CL%'(X,, BQKjy, 0)
i) 0¢,=g¢,
i) 6 — ol x,, <27,

From (5.26), for any v, {¢,},s, converges with respect to the norm

| ., and clearly the limit is the same as the restriction of lizm ¢, for
i)

any 7=y+1. Thus we can define an element ¢ of L}:27' (X, BQKy) by

¢= lim ,.

y->400

For every v=>1,

(5. 27) ) limg,=¢ in L**'(X,, BRKy,0),

r=y

ity limdg,ly,=¢, in L*?(X,, BRKy,0).
nzv

Since 8 is a closed operator in L*?7' (X, BRKy, 0) for every v=>1,
we have, for any v=>1,
0p=¢, in L"?(X,. BRK,,0).
Hence we have

0p=¢ in L%2(X, BRK,). q.e.d.
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