
Publ. RIMS, Kyoto Univ.
17 (1981), 311-330

A Generalization of Vanishing Theorems
for Weakly 1- Complete Manifolds

By

Kensho TAKEGOSHI*

§ 1. Introduction

Let X be a connected complex manifold of complex dimension n. X

is called weakly 1- complete if there exists an exhaustion function 0 on

X which is C°° and plurisubharmonic. In [9] S. Nakano established the

following.

Theorem 1. Let B be a positive line bundle on a -weakly 1-

complete manifold X, then

Q for

Recently, O. Abdelkader obtained

Theorem 2 (cf. [1]). Let B be a semi-positive line bundle over

a -weakly ^-complete Kdhler manifold X and assume that the curvature

form of B has at least ;z — &H-1 positive eigenvalues, then

Hp(Xc,Q
q(B)) =0 for any real member c -with p + q^>ti + k,

where Xc = {jc e X\ 0 (or) <c} .

In these theorems, the positivity of eigenvalues of the curvature

form of B is assumed on the whole space A". In this paper, we shall

prove that these vanishing theorems still hold, if the positivity of eigenval-

ues of the curvature admits a compact exceptional subset K^X. We

shall prove the following.

Communicated by S. Nakano, July 1, 1980.
Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.
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Main Theorem* Let B be a semi-positive line bundle over a

connected -weakly \-complete Kdhler manifold X -with a metric along

the fibres such that its curvature form has at least n — <? + ! positive

eigenvalues on X\K, -where K is a proper compact subset of X. Then

Hp (X, 0 (B®KJ ) = 0 for any p^q,

where Kx is the canonical line bundle of X.

In particular, when g = l, we obtain

Corollary. Let X be a connected -weakly \-complete Kdhler

manifold and let B be a semi-positive line bundle on X zvhich is

positive on X\K for some proper compact subset K of X. Then

Hp (X, 0 (B®KJ) - 0 for any p^l.

Since a positive line bundle over a complex manifold induces a

Kahler metric on it, this is not only a direct generalization of Theorem

1 for q = n but also a generalization of the vanishing theorems for the

semi-positive line bundle on 1-convex Kahler manifolds and compact Kahler

manifolds by Grauert and Riemenschneider (cf. [4], [11]).

This work is inspired b}^ Ohsawa's article [10] and the author would

like to express his hearty thanks to Dr. A. Fujiki and Professor S. Nakano

for their kind advices and encouragement during the preparation of this

paper.

§ 2. Notations and Definitions

We denote by X a connected paracompact complex manifold of

dimension n. Let 7t: F—>X be a holomorphic line bundle over X. Let

^U = {Ut}iei be a covering of X by coordinate neighborhoods such that

on each Ui9 F\Ut is isomorphic to the trivial line bundle. We denote

local coordinates on Ut by (z{, •">*?)• If $*: UtX C-*F\Ui (z'el) are

these trivializations of F, we denote by fi5\ Ut D Uj-^C* the system of

transition functions defined by the conditions:
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where Si denotes the fibre coordinates over Ut.

An F-valued differential form cp on X is a system {q>i} a=i of differential

forms defined on C7f, satisfying cpt =fij(pj in Ut H Uj. We denote by

Cp'q(X,F) the space of F-valued differential forms on X, of class C°°

and of type (p, q) , and by Q>q(X, F) the space of the forms in Cp'q (X, F)

with compact supports.
n

Let ds2= Jj gfia:/| dZi-dzj be a hermitiaii metric on X and let {a£}
<*,# = !

be a hermitian metric along the fibres of F, that is, a system of positive

valued function a,- in Ui satisfying \fij\=ai-a}1 in [/* f) [//.

Remark. In this paper, we use the notation of a system of metrics

along the fibres in the sense of Kodaira [7] , page 1268, (1) .

For <?, 0eCp'9(X, F), we set

where yt= XI <PiAp,Bqdz}' /\dz?q and Ap= (al9 -"9ap) and SQ= (ft, • • • , j8
4p,Sg

run through the sets of multi-indices with l<S#i<O"<C#p^w and

respectively. Then

where * is the star operator and <r/V is the volume element with respect

to the metric ds*.

If either q> or 0eCf-Q (X, F) , we define

(2.1) (P,0)r= f <^,0>"^F
Ji'

for any real-valued C°° -function W.

In particular we set

(2. 2) (y, </>) = (p, 0) 0

and

(2.3) | |p||V=(^0r

iMr=(^,^).
We have the operator 9: Cp'q(X, F) -^C"'^l(X, F) defined by



314 KENSHO TAKEGOSHI

= d<pi. With respect to (2.1) and (2.2), the formal adjoint operator of

d are defined, we denote them by $f- and -9- respectively. We denote by

Lp'q(X,F,¥) (resp. Lp'q(X,F)) the space of the measurable F-valued

forms 9 of type (/>,#), square integrable in the sense that H^Hr^ 0 0

(resp. ||<^||2<oo). Then, they are Hilbert spaces with respect to the inner

product (^, 0) y (resp. (^, (//) ) . We denote again by d the operator from

Lp'q(X,F,¥) to Lp'q+1(X,F,¥) extending the original d; thus a form

cp e Lp' q (X, F, ¥) is in the domain of d if and only if dq>, defined in the

sense of distribution, belongs to Lp'q~1(X, F, ¥) . Then d is a closed,

densely defined operator, so the adjoint operator 9f (resp. 9*) can be

defined. We denote the domain, range and nullity of d in Lp>q(X, F, ¥)

by Zf9, Rfq and Nj'q respectively. D$f, R&q and Nj^q are defined

similarly.

Definition 2« 1. X is called weakly 1- complete if there exists a

C°°-plurisubharmonic function 0 on X such that for any real number £,

Xc= {x^X\$(x) <^c} is relatively compact in X.

Remark 2.1. Let A(£) : (— oo, oo) -> (— oo? oo) be a C°° -increasing

convex function such that &(£) =0 for £<^0, then the composition A (0)

is again C°°-plurisubharmonic and exhausts X. So we may assume that

0 is non-negative on X. Then, for any ce (0, oo) , Xc= {x^X\0(x) <^c}

is weakly 1- complete with respect to the exhaustion function - .
c — 0

Remark 2. 2. Any connected compact complex manifold is weakly

1-complete, any real constant function being taken as the exhaustion

function.

Definition 2. 29 A holomorphic line bundle n\ F—>X is said to be

positive (resp. semi-positive) on a subset YdX, if there exist a coordinate

cover QJL = {Ui}iei of X such that n~1(Ui) are trivial and a metric {a{}

along the fibres of F such that

(2.4) ° _ > 0 (resp. ^0) on UtC]Y for every iel.
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Definition 2. 3. A holomorphic line bundle n: F—>X is said to be

(/-semi-positive (1<I<7^0 on a subset YdX, if F is semi-positive on Y

and the hermitian matrix (2.4) has at least ?? — <7 + l positive eigenvalues

dl each point of Y.

§ 3B A. Formulation of jL2- Estimates and Existence

Theorems for the 3 Operator

Let X be a paracompact complex manifold of dimension n which is

not necessarily connected.

Theorem 3. 1. Let F be a holomorphic line bundle over X. If

I he re exist in I lie degree (p, q)

(3. 1) a complete hermitian metric ds2 on X,

(3. 2) a hermitian metric {at} along the fibres of F,

(3. 3) a con stan I

and

(3. 4) a compact subset K of X xvhich does not contain any con-

nected component of X, such that

(3. 5) Wi\^C1{||9p||>+ ||9>||2} for any <?± Of" D

Then, there exists a constant C2>0 such that

(3.6) li^||2^C2{||^||24-||^||2} for any

Proof. Take any sequence {<pm} such that (pm^D^^D^\ ||̂ ||2^1,

lim ||9(^TO||2 = 0 and lim ||9*^TO||2 = 0. Then we assert that there exists a
m-H -o wi-»+c.o

subsequence {#>„,,} of {cpm} which converges strongly on X. Since ds2

is complete, CS>q(X,F) is dense in Dfq (1 Df,Q with respect to the norm

(9q>, d<p) + (9*9, d*(p) + (9, V)

([12], Theorem 1.1). Hence we may assume (pm^C^'q(X, F) . Therefore

we obtain that
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is bounded by the assumption. Since 9$ 4- $9 is an elliptic differential

operator of order 2, this means that ((pm) t and their first derivatives

with respect to the coordinate of Ut are bounded in the sense of the

integral || , \\Z
K,, where K! is a compact subset of X with Kdlnt K' (see

for example [3], (2. 2. 1) Theorem). Combining this with Rellich's lemma

(see for example [3], Appendix), it follows that {<pm} has a subsequence

{(pmk} which is strongly convergent on compact subsets. By (3. 5) , we

conclude that {(pm^ converges strongly on X. Therefore, by Hormander

[5] Theorem 1. 1. 2 and Theorem 1. 1. 3, there exists a positive constant

C2 such that

(3.7) lb

for any <p GE Dfq H DfS with <p JL Np' q =

By the same theorems we obtain the following strong orthogonal

decomposition :

(3. 8) Z/' q (X, F) - R%q® Np' q

Each element <p in Np'q is a solution of the Laplace-Bel trami operator

with respect to (3.1) and (3.2). Now we refer to the

unique continuation theorem for harmonic forms with values in a hermitian

vector bundle.

Theorem 3.2 (Aronszajn [2], Riemenschneider [11]). Let E be

a hermitian vector bundle over a connected complex hermitian

manifold X. Then a harmonic form <p GE JKP> q (E) vanishes identically

on X if it vanishes on a non-empty open subset U of X.

Any form <p in Nv'q vanishes on the open subset X\K by (3.5).

Since each connected component of X is not contained in K by the as-

sumption, from Theorem 3. 2, (p vanishes identically on each connected

component. Hence cp vanishes identically on X. Therefore Np'q is the

null space. Combining this with (3. 7) , our theorem follows. q.e.d.

From the above theorem, we obtain (cf. [5], Theorem 1.1.4)

Corollary 3. 1. Let X, F and others be as above. Let <p<E:Lp'q
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(X9 F) satisfy the equation d(p = Q, then there exists a (fj^.Lp'q~1 (X, F)

such that d(jj — (p. Moreover, if (p^Cp'q(X, F) , then </> can be taken from

C**-\X,F) (cf. [6], p. 115, Theorem 5.2.5).

§ 4?. The Basic Estimate

Let X be a connected paracompact complex manifold of dimension

n and let TT: B-*X be a holomorphic line bundle over X. Let U — {L^}ie/

be a coordinate cover of X such that 7l~l (£/$) are trivial and let {a^ be

a hermitian metric along the fibres of B with respect to <:U. We set

(4 i) r- ,-2
^ / •*• *»«tf

We assume that X is provided with a Kahler metric

(4.2) ^2=

The canonical line bundle .K^ of .X is defined by a system of transition

functions {Kx tj} on UtC(Uj9 where Jjr r < /= '"'*"), Then we see

that

(4.3) l^.vl^flfi-^1 on tffHC/,,

where

(4.4) gi = det(g i f a?).

Hence {g^} determines a metric along the fibres of Kx. Then {A>}

defined by

(4.5) Ai^a^Qi

determines a metric of B§§KX.

With the notations (2.1), (2.2) and (2.3), the following inequality

has been shown by K. Kodaira (cf. [7], pp. 1269-1270).

(4.6)

for any yELCl'p (X, B®KX) with

From now on, we let X be a connected Kahler manifold, weakly

1-complete with respect to an exhaustion function 0 and let n\ B-^X be
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a holomorphic line bundle which is semi-positive on X and ^-semi-positive

on X\K for some proper compact subset K of X. We fix a constant

£>£*=sup $(.r). Then Xc= {x^X\0(x)<^c} is weakly 1-complete with

respect to the exhaustion function —.

We take a Kahler metric

(4.7)

on X We set

Let {tfs.o} be a fibre metric of 5 which corresponds to the assumption

and we set

(4.8) rl |0=(rWf0) where r lffl jM =

We can assume that inf 0 (x) = 0. Then we take a C°° increasing convex

function A(£) such that

(4.9) i) l(t) : (-00, oo)->(-oo, oo),

0 if t<^—
c

>0 if O>—,
c

m) r
Jo

We replace the metric along the fibers of B by

(4.10) «£ = fl£0-exp(5r) where F = ^f l-
\c —

We set

(4.11) r«=(r,,0j) where r«,8 j= a f l"

Then we have

(4.12)
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We define a Kahler metric dsz by

(4.13) ds2= i; (ff i i aj,0 + /-,

Remark. By the choice of A as in (4.9) iii) , ds~ is a complete

Kahler metric on Xc (cf. [8] , Proposition 1) .

We set

Gt= (Qi,a&) where gi>a$ = (7i , a 0.o~ 4 ~ A,^ •

We replace the metric along the fibres of B(^)KY by

(4. 14) Ai = at • Qi where g{ = det G* .

We replace (4.1), (4.2) and (4.5) by (4.11), (4.13) and (4.14), then

from (4. 6) we obtain

(4. is) f -1- 1] £ r^^^^
J*c Ai Bp-i P,r=i

for any <p(EC°0>
p (Xc, B®KZ) withal.

We rewrite the left hand side as

. 16) f -1- 2 £ (£ g?'-rt,^
JXc Ai By-! a,r=l 0 = 1

(4

We can choose a matrix Tt which depends, together with T^"1,

differentiably on x^U{, satisfying GiiQ = tTi'Ti. Since G* = G€> 0 -f 7"^, we

have Gi =
 tTi{E-^tTi1-ri'TT1}Ti. The eigenvalues of the hermitian

matrix *'F^1-/T
i- T^1 (resp. i /ZY1-/\0- T^"1) are continuous functions on Xc

(resp. X) . From (4. 12) , we have

(4. i?) Tr1 • r, • Tr^Tr1 • rif 0 • Tr1 on xc n c/t .

Let £7 be a compact subset of Xc with .Kclnt K' c:K'£^Xc. Since

the closure of Xc is compact, (4. 17) implies that the first n — q-\-\ eigen-

values of the matrix 'T^'/VTY1 taken in the order of decreasing magni-

tude, are positive and stay away from zero on Xc\K
f . Let xQ^Xc\K' and

choose a system of local coordinates (zj, • • • ,£? ) around XQ as follows:

(4. 18) Gi(0(.r0) = (Oa/s) and Fi(x^ = (va-oa0),

where {^a}i^a^ri are eigenvalues of the matrix tT^"1-/ l
i-Tf1 at .r0 and
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satisfy t;1^t;2^---^t;n_afl>>0 and t;n_9+2^---^z;n^O. Then there exists

a positive constant e, independent of the choice of xQ^Xc\K' ', such that

. Therefore we have

\
(4.19) G,

\

where £' = and En^q+1 is the (n — #4-1, TZ—-#4-1) unit matrix.
14-s

We apply (4. 19) to (4. 16), then at XQ

n n
(4. 20)

If P^LQj then £4-7? — g4-12>7z4-l, thus any block Bp of p indices

taken from {1, 2, • • • , n} must contain one of the indices {1, 2, • • • , n —

i.e. one of the indices corresponding to the positive eigenvalues vl9 v2,

vn-q+1. It follows that

(4.21) S "llfl ,- l /J=l

Since the matrix Gt
l - FI is positive semi-definite on Xc, from (4. 15),

(4. 16), (4. 20) and (4. 21) we have

(A OO\ l l x / i l l 2 **T** rHSL.112 , II S*,. I I21 I/~* 1 4" S
(4.64) \\<P\\XC\

for any ^eC0°-p (X, B®KX) with

§ 5. Proof of the Main Theorem

Step 1. Vanishing Theorems on Each Sublevel Set JCC. Let

the situations be as above. By Remark in Section 4, our base metric ds2

is complete. Hence, by the same argument as in the proof of Theorem 3. 1

and (4. 22) , we have

(5.1) Wi.\*'^
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for any y>^D%* ft DfyP with p^q.

Any connected compact complex manifold X is weakly 1- complete

with respect to the real constant functions. Then we have XC = X. If

X is non-compact, Xc— {x^X\Q)(x) <ic} has countable connected com-

ponents. If one of them is contained in the compact subset K' , it must

be a compact connected component (or manifold) of X. Since X is con-

nected, this is a contradiction. Therefore, in our situation, the conditions

of Theorem 3. 1 are satisfied. Hence there exists a constant C2>0 such

that

(5.2) II^

for any <p e £>| p fl L%? with

Take any cp^C0'p(Xc, B(&KX) with 90> = 0. We can choose a

function /I with the condition (4. 9) such that

i) the Kahler metric dsz induced by (4. 13) is complete,

ii) (<p, 0>)< + oo (cf. [9] , § 2, Proof of Theorem 1) .

Hence, by Corollary 3.1, we have y^d^ior some 0eC0<

Therefore we have proved that for any c^>c% = sup @(x) ,

(5. 3) Hp (Xc, 0 (S(g)Xz) ) - 0 for any />^g .

Step 2a Approximation Lemmas. We fix two constants d and

£? such that

(5. 4) i)

ii) the boundary dXe of {x^X\fl)(x) <^e} is smooth.

We take a C°°-increasing convex function r(/0 such that

(5.5) i) r(0 : (-00, oo)-*(-oo, oo),

U II £!^—
n

ii)

o if /;

>o if t:

iii)

We set
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We define the metrics of B on Xd by

(5. 6) i) Ui — aitQ- exp (¥) ,

ii) amii = ai-Qx.p(m¥) for any n£>Q.

We set

N , d2 log a^
i) J i= (l i,a$) where / i,a0 = —-—^-^-,

ii) /V«= (/"*„,£,«$) where rm>lf^= n°f.^!t>' for any

We define a Kahler metric (5?52 on Xd by

(5.7) ^S2-

Remark. By the choice (5. 5) , <$fo2 is a complete Kahler metric as

in Remark in Section 4.

We set

Gi = (gi9ttp) where git a$ = gif «^t 0 + T,-, a$ .

Using (5.6), we define the metrics of B®KX on Xd:

(5.8) i) A£ = fl|-flft,

ii) Am^ = am,r(7i for any w^O, where g^detG*.

For any integer ml>Q, we define

(5.9) (^0)»=(^0)»r

for any ^, <//eL0>p(Xd, B®Kx, mW) . We denote the formal adjoint of 9

with respect to the inner product (<p, (//) m by &m and the adjoint operator

in L°" (Xtf, 5(g)^, w5T) by 9*.

Now we have
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Gi1- Fi<^Gil • rm,i for any m>$ .

Hence by the same argument as in Section 4, we have, for any ;?z^>0,

(5. 10) IMrU\

for any ^ e £)§• p 0 £)§/ with P^q, where Cj>0 is independent of m and

K.' is a compact subset with Kdlnt Kf C.K'^Xd. Then, for each ;;z,

we have a positive constant such that (5. 2) holds. In general, this constant

depends on m. The basic idea of the following lemma is due to Hormander

[5]. (Compare with [10], Proposition 4.2.)

Lemma 5. 1. There exists ;?z0 and C0>0 such that for any

and

provided <pEL D^ 0 D|'| c L°'p (Xd, B®KA-, mW) .

Proof. Assume that the assertion is false. There would be a

sequence {<pk} such that

(5.11) i) (p^D¥r\D^^L«>»(XA,B®Kx,k¥},

ii) ||̂ ||i = l,

iii) ||9p,|||, ||̂ *||i-»0 as ^^ + 00.

Let gt = e~™ • qk, then we have

(5.12) i) 9*ff. = «-*r9?pt,

ii) ||9*fli.||-*=||^Vfc|U.

By (5. 11) , we have

ll<7*«^! l<7*IU=ll%IU = l.

Therefore choosing a subsequence if necessary, we may assume that {gk}

has a weak limit g in L°'p (X, B(£)Kx) . On the other hand, it follows

that

IIMi,v*^ll?*l^
By (5.11)
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Km <7

Hence we have g\Xd\K,==Q. Then it follows that

(5.13) suppgClK'.

From (5.11), (5.12) and (5.13)5 we have dg = 0 and d*g = 0 in

L°'p+1(Xe,B(S)Kx) and LQ'p~l (Xe, B®KX) respectively. Since any con-

nected component of Xc is not contained in K' , by Theorem 3. 2, we have

(5.14) g = 0.

By (5. 11) , we may assume that {gk} is strongly convergent on Kr .

(5. 14) implies that the limit is zero on K'. From (5. 10) and (5. 11) ,

we obtain a contradiction. q.e.d.

Lemma 5.2. If </j^L°'p(Xe, B®KX) with P^q-l and d([) = Q,
then for any e>0, there exists $^L°'p(Xd, B®KX) such that

Proof. It suffices to show that if u&LQ'*(Xe, B®KX) and

(5.15) f </,«XF = 0
Jxe

for any f£EL°'p(Xd,B®Kx) with 9/=0, then we have

(5.16) f <g,«
Jxe

if g<=LQ'p(Xe,B(S)Kx} and dg = Q.

Extend the definition of u by setting u = 0 on Xd\Xe. We denote

it by ur. Then (5.15) implies that uf is orthogonal to M * C L°' p (Xdt B

'.x,m¥) for any m, we have u' ^R°^/c:L0'p (Xd, B(g)Kx, mW). The

condition R*f/ = R*j? is equivalent to R%*+1 = R***1 (cf. [5], Theorem

1. 1. 1) . By (5. 10) , we have JJJ^1 = ̂ pfTC L°'p+1 (Xd, B®KX, mV) for

;7z2>0 and ^^(? — l. Hence, from Lemma 5. 1, for any m^>mQ we have

(5.17) a'=9Sw»

for some vHsLt-p-1(Xi,B(^K2,mF) with ||w»||

We set
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wm = e~m*' -vm for m^>m0,

then

lltM'^llw.llUHI^X^C.-KII'.

Hence {wm} has a subsequence which is weakly convergent in L?'p~l (Xa, B

. Let the weak limit be w. On the other hand, for every £>0

f
J{.r

f <™m,
J{x^Xd\¥(x)^}

and we have

It follows that I (wm, w-m^dV tends to zero, and hence wm-^0
J{*eJTd I r (*)£«}

almost everywhere in {x^Xd\W (x) ^>e}. Hence zv = Q on {x^Xd\¥ (x)

l>s} for every £>0. Therefore we have

(5.18) supp zvClXg and d*zv~u',

Since Xe is compact and 9Xe is smooth, from [5] Proposition 1. 2. 3, there

exists a sequence {wk} such that {wk} cC2j3)+1(^e, B®KX} and ||^fc-ze;||xe,

||0*w*-9*w||i^0 as ^-> + oo.

We have, for any v^D»^ ClU>p (Xe, B®KX},

(dv, w\Xe)Xc= lim (9v, wf t)^- lim (^,a*wfc)ze
fc-» + 00 fc->+00

= (f,^*(u;|O)J...

Hence

(5.19) 9*(w|x.)=«.

Therefore, if g^L°'p(Xe, B&KJ and % = 0, we have

f <g,«>rfVr= f <0ff,te;>dVr = 0. q.c.d.
J^c Jxt

If in particular ^ = 1, replacing L°>p (Xd,B®Kx)(resp. L°'P(XC9

by r(Xd, 0 (S(g)^))(resp. r(Ze, 0 (J5(g)XT))), we can prove the follow-

ing in the same way as we proved Lemma 5. 2.

Lemma 5. 3. Let Xd and Xe be as above and lei a holomorphic



326 KENSHO TAKEGOSHI

line bundle B be positive on X\K and semi-positive on X. Then for

any holomorphic section (p^F (Xe, 0 (B(£)Kx)), Xe being the closure

of Xe in X, and for any £>0, there exists a section cp^F (Xd, 0

such that \\<p — ̂ ||jfc<£-

Let C be a compact subset of Xd. We set |<^|c = sup V<^, <p) (x)

for (p^F(Xd,0(B®Kx)), where O, p> = Ar>il2 (see (5.8)). Then,

using Cauchy's integral formula in each local coordinate Ut with Ut ,0 C

=7^=0, we can find a positive constant M such that

Hence we obtain the following.

Lemma 5. 4. Let Xd and Xe be as above. Let a holomorphic

line bundle B be positive on X\K and semi-positive on X. Then for

any holomorphic section ( p ^ F ( X e , 0 (B®KX)) and for any e^>Qy there

exists a section (p €E F (Xd, 0 (B(x)Kx) ) such that \<p — (p\xe<^£-

Step 3. Global Vanishing Theorems. By Sard's theorem, we

can choose a sequence {cv}v=0tlt...t of real numbers such that

(5. 20) i)

ii) cv^.^>cv and cv->oo as v-» + oo ,

iii) the boundary dXCv of {x^X\ti)(x)<^cv} is smooth for

any J^O .

For any pair (cy+2, cy} (v^O) , we choose a C°° increasing convex

function rVT2 such that

(5. 21) i) rv+2 (0: (- oo, oo) -* ( - oo, oo),

u n gy^-—

«) - ,T- V X

>0 if t> ~

iii)
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We set

for any J^O. Then, for any pair (ry+2, cy} , Lemma 5. 2 and Lemma 5. 4

hold.

o i-s a covering of X. For any 1^>1, we

set 3£v = {^f}/£^v, then 3CV is a covering of Xv. By (5. 3), ^ (resp. 3CV)

is a Leray covering for the sheaf 0 (B®KX) on X (resp. Xv) . Then we

have, for any z^>l and v]>l,

H l (X, 0 (B®KX) ) = Hl (X, 0 (S® ̂ ) )

and

) - Hz' (Xy, 0 (B®KX} ) - 0 .

Let (7eZ*(jlf, 0(B®KX)), z^l. Let (7, be the restriction of (7 to

X9. Then ^eZ'CT,, 0 (B®KX}} so there is an a.eC'-1 (3fM 0

such that ffav = (rj,. As an element of C'"1^-!, 0

and thus av~ay-l^Zi-l(^v^

When z>l. Since a.-^-^Z*"1 (X,-!, 0 (B®KX)) , there is a /?„_!

"2^-!, 0(B®KX)) such that (?&_!- a, -a,-! on X-i- Define

(2C,0(B(g)Kx')) as follows:

It is easily verified that a is well defined. Finally, for any y,

tb=Sav = Gv Hence we have Sa = ff.

When f = l. Since av -a.-^rCX-i, 0 (B®KX}} , by Lemma 5.4

we can find, for any £>0, a f&r(XV9 0 (B®KX)) such that \av — a9^

— Y\zv-z<^£' Therefore, inductively, we have a sequence {Av}^! so that

(5. 22) i) A, €= C° (3f M 0 (B®KX) ) and ^ = a, ,

ii) <My = 6V ,

iii) Uv+i-Ajj,.I<2-\
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For any v, lim A,< defines an element of CQ(2Cy, 0 (B®KX)) and clearly
fl&

this limit is the same as the restriction of lim ̂  for any ^^v + 1. Thus
fl&9

we can define an element A of C°(3f, 0 (B^)KX)} by A = lim Av. For any

v, (J (lim /Q = lim <W/( — ffv. Hence we have <W = 6.
/t^V /l^V

The case g>l. We denote by L?£(X, B®KX) the set of the locally

square integrable (0,/>) forms on X with values in B(^KX. For

there is a natural isomorphism

(5.23) H'(X,0(B®KJ)

; /=9gr for some geL^'^X, B®KX)} '

Therefore, for p^q, it suffices to show that for any (£K=L}£(X,

with 9^9 = 0, there exists a $ & L\£~l (X, B®KX) such that d4> = tp.

In this proof, for any y^jO, we set

(5.24) i) <p, = <p\x,,

ii) L°"(X,+

iii) L'-'CX, B<8>**, 0) =Lt-'(Xn B®KX, y,tf),

iv) ||/||J,,= f <f, f>e-r~dV
JX^Z

for f^LQ>»(Xv+29B®Kx,¥v+2}

where <f, f>= (a^.g^f ft,z,-ff>.

Then ^eL0lll(Xy, S(g>^, r,) and 9^v = 0 (v^2) . Hence there exists

a (fj'v<=L»>*-l(Xv,B®Kx,Wv) such that 9$=^v for any v^2. We now

choose, by induction, a sequence {</>,} ̂ i so that

(5.25) i) ^eLJifC^

ii) 90V = ̂  on

We set

on
01 =

0 on
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Since 0/
26E£>|>''-1cL0'p-1 (Xt,B®Kz,VJ, we have 0>eE D^

(Xl9 B(£)K2', 0) and 00i = ^i. Suppose 0l5 • • • , 0 t f _ 1 are chosen. Then

A", 0)

and

By Lemma 5.2, there exists a geL0'23"1 (Xv¥l, B®KX, Wv^ such that

li(7~ (0vM ~0v-i) HiUi, 2-y.I
<C2"(y l) and 9(7 = 0.

We set

0i+.iU, —(7 | j r y on X
0,=

0 on X\XP.

Then we have

(5.26) i) <

ii) i

iii)

From (5.26), for any v, {([>#} fev converges with respect to the norm

|| || „, and clearly the limit is the same as the restriction of lim 0A for

any ?^>v-fl. Thus we can define an element 0 of LJj,?"1 (X, B®K^) by

0 = lim 0V.

For every vj>l,

(5. 27) i) lim 0A = 0 in L°'p~l (Xy, B®KX, 0),

ii) lim 0^ |,r, = f , in L°' p (X,, B®KX, 0) .

Since 0 is a closed operator in L0'27"1 (X,, B®KX, 0) for every v|>l,

we have, for any y^l,

= ̂  n (

Hence we have

9(/; = p in LJ» (X, B®KX) . q.e.d.
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Added in proof: The author and T. Ohsawa have proved that the global vanish-

ing thheorem of Theorem 2 holds i.e. HP(X, tiq(B)) =0 for p + q^n + k. See "A vanish-

ing theorem for Hv(Xi^
q(B}} on weakly 1-complete manifolds", forthcoming.


