Publ. RIMS, Kyoto Univ. 17 (1981), 311-330

A Generalization of Vanishing Theorems for Weakly 1-Complete Manifolds

By

Kensho TAKEGOSHI*

§1. Introduction

Let X be a connected complex manifold of complex dimension n. X is called weakly 1-complete if there exists an exhaustion function $\boldsymbol{\Phi}$ on X which is C^{∞} and plurisubharmonic. In [9] S. Nakano established the following.

Theorem 1. Let B be a positive line bundle on a weakly 1complete manifold X, then

 $H^p(X, \mathcal{Q}^q(B)) = 0$ for p+q > n.

Recently, O. Abdelkader obtained

Theorem 2 (cf. [1]). Let B be a semi-positive line bundle over a weakly 1-complete Kähler manifold X and assume that the curvature form of B has at least n-k+1 positive eigenvalues, then

 $H^{p}(X_{c}, \mathcal{Q}^{q}(B)) = 0 \quad for \ any \ real \ number \ c \ with \ p+q \ge n+k,$ where $X_{c} = \{x \in X | \mathcal{O}(x) < c\}.$

In these theorems, the positivity of eigenvalues of the curvature form of B is assumed on the whole space X. In this paper, we shall prove that these vanishing theorems still hold, if the positivity of eigenvalues of the curvature admits a compact exceptional subset $K \subseteq X$. We shall prove the following.

Communicated by S. Nakano, July 1, 1980.

^{*} Research Institute for Mathematical Sciences, Kyoto University, Kyoto 606, Japan.

Main Theorem. Let B be a semi-positive line bundle over a connected weakly 1-complete Kähler manifold X with a metric along the fibres such that its curvature form has at least n-q+1 positive eigenvalues on X\K, where K is a proper compact subset of X. Then

 $H^p(X, \mathcal{O}(B \otimes K_x)) = 0$ for any $p \ge q$,

where K_x is the canonical line bundle of X.

In particular, when q=1, we obtain

Corollary. Let X be a connected weakly 1-complete Kähler manifold and let B be a semi-positive line bundle on X which is positive on $X \setminus K$ for some proper compact subset K of X. Then

$$H^p(X, \mathcal{O}(B \otimes K_X)) = 0$$
 for any $p \ge 1$.

Since a positive line bundle over a complex manifold induces a Kähler metric on it, this is not only a direct generalization of Theorem 1 for q=n but also a generalization of the vanishing theorems for the semi-positive line bundle on 1-convex Kähler manifolds and compact Kähler manifolds by Grauert and Riemenschneider (cf. [4], [11]).

This work is inspired by Ohsawa's article [10] and the author would like to express his hearty thanks to Dr. A. Fujiki and Professor S. Nakano for their kind advices and encouragement during the preparation of this paper.

§ 2. Notations and Definitions

We denote by X a connected paracompact complex manifold of dimension n. Let $\pi: F \to X$ be a holomorphic line bundle over X. Let $\mathcal{U} = \{U_i\}_{i \in I}$ be a covering of X by coordinate neighborhoods such that on each U_i , $F|U_i$ is isomorphic to the trivial line bundle. We denote local coordinates on U_i by (z_i^1, \dots, z_i^n) . If $\boldsymbol{\varphi}_i: U_i \times \boldsymbol{C} \to F|U_i$ $(i \in I)$ are these trivializations of F, we denote by $f_{ij}: U_i \cap U_j \to \boldsymbol{C}^*$ the system of transition functions defined by the conditions:

$$\boldsymbol{\varPhi}_{j}^{-1} \circ \boldsymbol{\varPhi}_{i}\left(\boldsymbol{z}_{i}, \boldsymbol{\xi}_{i}\right) = \left(\boldsymbol{z}_{i}, f_{ij}\left(\boldsymbol{z}_{j}\right) \boldsymbol{\xi}_{j}\right)$$

where ξ_i denotes the fibre coordinates over U_i .

An *F*-valued differential form φ on *X* is a system $\{\varphi_i\}_{i \in I}$ of differential forms defined on U_i , satisfying $\varphi_i = f_{ij}\varphi_j$ in $U_i \cap U_j$. We denote by $C^{p,q}(X, F)$ the space of *F*-valued differential forms on *X*, of class C^{∞} and of type (p, q), and by $C_0^{p,q}(X, F)$ the space of the forms in $C^{p,q}(X, F)$ with compact supports.

Let $ds^2 = \sum_{\alpha,\beta=1}^{n} g_{i,\alpha\bar{\beta}} dz_i^{\alpha} \cdot dz_i^{\bar{\beta}}$ be a hermitian metric on X and let $\{a_i\}$ be a hermitian metric along the fibres of F, that is, a system of positive valued function a_i in U_i satisfying $|f_{ij}| = a_i \cdot a_j^{-1}$ in $U_i \cap U_j$.

Remark. In this paper, we use the notation of a system of metrics along the fibres in the sense of Kodaira [7], page 1268, (1).

For φ , $\psi \in \mathbb{C}^{p,q}(X, F)$, we set

$$\langle \varphi, \psi \rangle = a_i^{-1} \sum_{A_p, B_q} \varphi_{iA_p, \overline{B}_q} \cdot \overline{\psi}_i^{\overline{A}_p, B_q}$$

where $\varphi_i = \sum_{A_p, B_q} \varphi_{iA_p, B_q} dz_i^{A_p} / \langle dz_i^{B_q} \rangle$ and $A_p = (\alpha_1, \dots, \alpha_p)$ and $B_q = (\beta_1, \dots, \beta_q)$ run through the sets of multi-indices with $1 \leq \alpha_1 < \dots < \alpha_p \leq n$ and $1 \leq \beta_1 < \dots < \beta_q \leq n$ respectively. Then

$$a_i^{-1}\varphi_i \wedge *\overline{\psi}_i = \langle \varphi, \psi \rangle dV$$

where * is the star operator and dV is the volume element with respect to the metric ds^2 .

If either φ or $\psi \in C_0^{p,q}(X, F)$, we define

(2.1)
$$(\varphi, \psi)_{T} = \int_{X} \langle \varphi, \psi \rangle e^{-\Psi} dV$$

for any real-valued C^{∞} -function Ψ .

In particular we set

(2.2)
$$(\varphi, \psi) = (\varphi, \psi)_0$$

and

$$\|\varphi\|_{\mathbf{y}}^2 = (\varphi, \varphi),$$

 $\|\varphi\|^2 = (\varphi, \varphi).$

We have the operator $\overline{\partial}: C^{p,q}(X, F) \to C^{p,q-1}(X, F)$ defined by $(\overline{\partial}\varphi)_i$

 $=\overline{\partial}\varphi_i$. With respect to (2.1) and (2.2), the formal adjoint operator of $\overline{\partial}$ are defined, we denote them by ϑ_{Ψ} and ϑ respectively. We denote by $L^{p,q}(X, F, \Psi)$ (resp. $L^{p,q}(X, F)$) the space of the measurable *F*-valued forms φ of type (p,q), square integrable in the sense that $\|\varphi\|_{\Psi}^2 < \infty$ (resp. $\|\varphi\|^2 < \infty$). Then, they are Hilbert spaces with respect to the inner product $(\varphi, \psi)_{\mathfrak{q}}$ (resp. (φ, ψ)). We denote again by $\overline{\partial}$ the operator from $L^{p,q}(X, F, \Psi)$ to $L^{p,q+1}(X, F, \Psi)$ extending the original $\overline{\partial}$; thus a form $\varphi \in L^{p,q}(X, F, \Psi)$ is in the domain of $\overline{\partial}$ if and only if $\overline{\partial}\varphi$, defined in the sense of distribution, belongs to $L^{p,q-1}(X, F, \Psi)$. Then $\overline{\partial}$ is a closed, densely defined operator, so the adjoint operator $\overline{\partial}_{\Psi}^*$ (resp. $\overline{\partial}^*$) can be defined. We denote the domain, range and nullity of $\overline{\partial}$ in $L^{p,q}(X, F, \Psi)$ by $D_{\overline{\partial}}^{p,q}$, $R_{\overline{\partial}}^{p,q}$ and $N_{\overline{\partial}}^{p,q}$ respectively. $D_{\overline{\partial}_{\Psi}}^{p,q}$, $R_{\overline{\partial}_{\Psi}}^{p,q}$ and $N_{\overline{\partial}_{\Psi}}^{p,q}$ are defined similarly.

Definition 2.1. X is called weakly 1-complete if there exists a C^{∞} -plurisubharmonic function \emptyset on X such that for any real number c, $X_c = \{x \in X | \emptyset(x) < c\}$ is relatively compact in X.

Remark 2.1. Let $\lambda(t): (-\infty, \infty) \to (-\infty, \infty)$ be a C^{∞} -increasing convex function such that $\lambda(t) = 0$ for $t \leq 0$, then the composition $\lambda(\emptyset)$ is again C^{∞} -plurisubharmonic and exhausts X. So we may assume that \emptyset is non-negative on X. Then, for any $c \in (0, \infty)$, $X_c = \{x \in X | \emptyset(x) < c\}$ is weakly 1-complete with respect to the exhaustion function $\frac{1}{c-\emptyset}$.

Remark 2.2. Any connected compact complex manifold is weakly 1-complete, any real constant function being taken as the exhaustion function.

Definition 2.2. A holomorphic line bundle $\pi: F \to X$ is said to be positive (resp. semi-positive) on a subset $Y \subset X$, if there exist a coordinate cover $\mathcal{Q} = \{U_i\}_{i \in I}$ of X such that $\pi^{-1}(U_i)$ are trivial and a metric $\{a_i\}$ along the fibres of F such that

(2.4)
$$\left(\frac{\partial^2 \log a_i}{\partial z_i^{\alpha} \partial \overline{z}_i^{\beta}}\right) > 0 \text{ (resp. } \geq 0) \text{ on } U_i \cap Y \text{ for every } i \in I.$$

Definition 2.3. A holomorphic line bundle $\pi: F \to X$ is said to be q-semi-positive $(1 \leq q \leq n)$ on a subset $Y \subset X$, if F is semi-positive on Y and the hermitian matrix (2.4) has at least n-q+1 positive eigenvalues at each point of Y.

§ 3. A Formulation of L^2 -Estimates and Existence Theorems for the $\overline{\partial}$ Operator

Let X be a paracompact complex manifold of dimension n which is not necessarily connected.

Theorem 3.1. Let F be a holomorphic line bundle over X. If there exist in the degree (p,q)

 $(3.1) \quad a \ complete \ hermitian \ metric \ ds^2 \ on \ X,$

(3.2) a hermitian metric $\{a_i\}$ along the fibres of F,

 $(3.3) \quad a \text{ constant } C_1 > 0$

and

(3.4) a compact subset K of X which does not contain any connected component of X, such that

$$(3,5) \qquad \|\varphi\|_{X\setminus K}^2 \leq C_1\{\|\bar{\partial}\varphi\|^2 + \|\bar{\partial}^*\varphi\|^2\} \quad for \ any \ \varphi \in D^{p,q}_{\bar{\partial}} \cap D^{p,q}_{\bar{\partial}^*}.$$

Then, there exists a constant $C_2 > 0$ such that

$$(3.6) \qquad \|\varphi\|^2 \leq C_2 \{ \|\overline{\partial}\varphi\|^2 + \|\overline{\partial}^*\varphi\|^2 \} \quad for \ any \ \varphi \in D^{p,q}_{\overline{\partial}} \cap D^{p,q}_{\overline{\partial}^*}.$$

Proof. Take any sequence $\{\varphi_m\}$ such that $\varphi_m \in D^{p,q}_{\bar{\mathfrak{g}}} \cap D^{p,q}_{\bar{\mathfrak{g}}}, \|\varphi_m\|^2 \leq 1$, $\lim_{m \to +\infty} \|\bar{\partial}\varphi_m\|^2 = 0$ and $\lim_{m \to +\infty} \|\bar{\partial}^*\varphi_m\|^2 = 0$. Then we assert that there exists a subsequence $\{\varphi_{m_k}\}$ of $\{\varphi_m\}$ which converges strongly on X. Since ds^2 is complete, $C^{p,q}_{\mathfrak{g}}(X, F)$ is dense in $D^{p,q}_{\bar{\mathfrak{g}}} \cap D^{p,q}_{\bar{\mathfrak{g}}}$ with respect to the norm

$$(\overline{\partial}arphi,\overline{\partial}arphi)+(\overline{\partial}^{*}arphi,\overline{\partial}^{*}arphi)+(arphi,arphi)$$

([12], Theorem 1.1). Hence we may assume $\varphi_m \in C_0^{p,q}(X, F)$. Therefore we obtain that

$$egin{aligned} & (ar{\partial}arphi_m, ar{\partial}arphi_m) + (ar{\partial}^*arphi_m, ar{\partial}^*arphi_m) + (arphi_m, arphi_m) \ & = ((ar{\partial}artheta + artheta ar{\partial})arphi_m, arphi_m) + (arphi_m, arphi_m) \ \end{aligned}$$

is bounded by the assumption. Since $\bar{\partial}\vartheta + \vartheta\bar{\partial}$ is an elliptic differential operator of order 2, this means that $(\varphi_m)_i$ and their first derivatives with respect to the coordinate of U_i are bounded in the sense of the integral $\|$, $\|_{K'}^2$, where K' is a compact subset of X with $K \subset \text{Int } K'$ (see for example [3], (2. 2. 1) Theorem). Combining this with Rellich's lemma (see for example [3], Appendix), it follows that $\{\varphi_m\}$ has a subsequence $\{\varphi_{m_k}\}$ which is strongly convergent on compact subsets. By (3. 5), we conclude that $\{\varphi_{m_k}\}$ converges strongly on X. Therefore, by Hörmander [5] Theorem 1. 1. 2 and Theorem 1. 1. 3, there exists a positive constant C_2 such that

$$\|\varphi\|^2 \leq C_2 \{\|\bar{\partial}\varphi\|^2 + \|\bar{\partial}^*\varphi\|^2\}$$

for any $\varphi \in D^{p,q}_{\overline{a}} \cap D^{p,q}_{\overline{a}^*}$ with $\varphi \perp N^{p,q} = N^{p,q}_{\overline{a}} \cap N^{p,q}_{\overline{a}^*}$.

By the same theorems we obtain the following strong orthogonal decomposition:

(3.8)
$$L^{p,q}(X,F) = R^{p,q}_{\overline{\rho}} \oplus N^{p,q} \oplus R^{p,q}_{\overline{\rho}}.$$

Each element φ in $N^{p,q}$ is a solution of the Laplace-Beltrami operator $\Box = \overline{\partial} \vartheta + \vartheta \overline{\partial}$ with respect to (3.1) and (3.2). Now we refer to the unique continuation theorem for harmonic forms with values in a hermitian vector bundle.

Theorem 3.2 (Aronszajn [2], Riemenschneider [11]). Let E be a hermitian vector bundle over a connected complex hermitian manifold X. Then a harmonic form $\varphi \in \mathcal{H}^{p,q}(E)$ vanishes identically on X if it vanishes on a non-empty open subset U of X.

Any form φ in $N^{p,q}$ vanishes on the open subset $X \setminus K$ by (3.5). Since each connected component of X is not contained in K by the assumption, from Theorem 3.2, φ vanishes identically on each connected component. Hence φ vanishes identically on X. Therefore $N^{p,q}$ is the null space. Combining this with (3.7), our theorem follows. q.e.d.

From the above theorem, we obtain (cf. [5], Theorem 1.1.4)

Corollary 3.1. Let X, F and others be as above. Let $\varphi \in L^{p,q}$

(X, F) satisfy the equation $\overline{\partial} \varphi = 0$, then there exists a $\psi \in L^{p, q-1}(X, F)$ such that $\overline{\partial} \psi = \varphi$. Moreover, if $\varphi \in C^{p, q}(X, F)$, then ψ can be taken from $C^{p, q-1}(X, F)$ (cf. [6], p. 115, Theorem 5.2.5).

§ 4. The Basic Estimate

Let X be a connected paracompact complex manifold of dimension n and let $\pi: B \to X$ be a holomorphic line bundle over X. Let $\mathcal{U} = \{U_i\}_{i \in I}$ be a coordinate cover of X such that $\pi^{-1}(U_i)$ are trivial and let $\{a_i\}$ be a hermitian metric along the fibres of B with respect to \mathcal{U} . We set

(4.1)
$$\Gamma_{i,\alpha\bar{\beta}} = \frac{\partial^2 \log a_i}{\partial z_i^{\alpha} \partial z_{\bar{j}}^{\bar{\beta}}} \,.$$

We assume that X is provided with a Kähler metric

(4.2)
$$ds^{2} = \sum_{\alpha,\beta=1}^{n} g_{i,\alpha\bar{\beta}} dz_{i}^{\alpha} \cdot dz_{i}^{\bar{\beta}}$$

The canonical line bundle K_x of X is defined by a system of transition functions $\{K_{x,ij}\}$ on $U_i \cap U_j$, where $K_{x,ij} = \frac{\partial (z_j^1, \dots, z_j^n)}{\partial (z_i^1, \dots, z_i^n)}$. Then we see that

(4.3)
$$|K_{X,ij}|^2 = g_i \cdot g_j^{-1}$$
 on $U_i \cap U_j$,

where

$$(4. 4) g_i = \det \left(g_{i, \alpha \overline{\beta}} \right)$$

Hence $\{g_i\}$ determines a metric along the fibres of K_x . Then $\{A_i\}$ defined by

determines a metric of $B \otimes K_x$.

With the notations (2.1), (2.2) and (2.3), the following inequality has been shown by K. Kodaira (cf. [7], pp. 1269-1270).

(4.6)
$$\int_{\mathcal{X}} \frac{1}{A_i} \sum_{\overline{B}_{p-1}} \sum_{\beta, \overline{\gamma}=1}^n \Gamma_{i,\beta\overline{\gamma}} \varphi_i^{\beta} \overline{B}_{p-1}} \cdot \overline{\varphi_i^{\gamma \overline{B}_{p-1}}} dV \leq \|\overline{\partial}\varphi\|^2 + \|\overline{\partial}^*\varphi\|^2$$

for any $\varphi \in C_0^{0,p}(X, B \otimes K_X)$ with $p \ge 1$.

From now on, we let X be a connected Kähler manifold, weakly 1-complete with respect to an exhaustion function Φ and let $\pi: B \to X$ be a holomorphic line bundle which is semi-positive on X and q-semi-positive on $X \setminus K$ for some proper compact subset K of X. We fix a constant $c > c_* = \sup_{x \in K} \emptyset(x)$. Then $X_c = \{x \in X | \emptyset(x) < c\}$ is weakly 1-complete with respect to the exhaustion function $\frac{1}{c - \emptyset}$.

We take a Kähler metric

(4.7)
$$ds_0^2 = \sum_{\alpha,\beta=1}^n g_{i,\alpha\overline{\beta},0} dz_i^{\alpha} \cdot dz_i^{\beta}$$

on X. We set

$$G_{i,0} = (g_{i,\alpha\bar{\beta},0})$$

Let $\{a_{i,0}\}$ be a fibre metric of B which corresponds to the assumption and we set

(4.8)
$$\Gamma_{i,0} = (\Gamma_{i,\alpha\bar{\beta},0}) \text{ where } \Gamma_{i,\alpha\bar{\beta},0} = \frac{\partial^2 \log a_{i,0}}{\partial z_i^{\alpha} \partial z_i^{\bar{\beta}}}$$

We can assume that $\inf_{x\in X} \varPhi(x) = 0$. Then we take a C^{∞} increasing convex function $\lambda(t)$ such that

(4.9)
i)
$$\lambda(t) : (-\infty, \infty) \to (-\infty, \infty),$$

ii) $\lambda(t) = \begin{cases} 0 & \text{if } t \leq \frac{1}{c} \\ >0 & \text{if } t > \frac{1}{c}, \end{cases}$
iii) $\int_{0}^{+\infty} \sqrt{\lambda''(t)} dt = +\infty.$

We replace the metric along the fibers of B by

(4.10)
$$a_i = a_{i,0} \cdot \exp(\Psi) \text{ where } \Psi = \lambda \begin{pmatrix} 1 \\ c - \overline{\Phi} \end{pmatrix}.$$

We set

(4.11)
$$\Gamma_i = (\Gamma_{i,\alpha\bar{\beta}}) \text{ where } \Gamma_{i,\alpha\bar{\beta}} = \frac{\partial^2 \log a_i}{\partial z_i^\alpha \partial z_{\bar{\beta}}^\alpha}$$

Then we have

(4.12)
$$\Gamma_i \geq \Gamma_{i,0}.$$

We define a Kähler metric ds^2 by

(4.13)
$$ds^{2} = \sum_{\alpha,\beta=1}^{n} (g_{i,\alpha\overline{\beta},0} + \Gamma_{i,\alpha\overline{\beta}}) dz_{i}^{\alpha} \cdot dz_{i}^{\overline{\beta}} .$$

Remark. By the choice of λ as in (4.9) iii), ds^2 is a complete Kähler metric on X_c (cf. [8], Proposition 1).

We set

$$G_i = (g_{i, \alpha \overline{\beta}}) \quad \text{where} \quad g_{i, \alpha \overline{\beta}} = g_{i, \alpha \overline{\beta}, 0} + \Gamma_{i, \alpha \overline{\beta}}$$

We replace the metric along the fibres of $B \otimes K_x$ by

(4.14) $A_i = a_i \cdot g_i$ where $g_i = \det G_i$.

We replace (4.1), (4.2) and (4.5) by (4.11), (4.13) and (4.14), then from (4.6) we obtain

(4.15)
$$\int_{\boldsymbol{x}_{c}} \frac{1}{A_{i}} \sum_{\boldsymbol{B}_{p-1}} \sum_{\boldsymbol{\beta},\boldsymbol{\gamma}=1}^{n} \Gamma_{i,\,\boldsymbol{\beta}\boldsymbol{\overline{\gamma}}} \varphi_{i\,\boldsymbol{\overline{B}}_{p-1}}^{\boldsymbol{\beta}} \cdot \varphi_{i}^{\boldsymbol{\gamma}\boldsymbol{\overline{B}}_{p-1}} dV \leq \|\bar{\partial}\varphi\|^{2} + \|\bar{\partial}^{*}\varphi\|^{2}$$

for any $\varphi \in C_0^{0,p}(X_c, B \otimes K_X)$ with $p \ge 1$.

We rewrite the left hand side as

(4.16)
$$\int_{x_c} \frac{1}{A_i} \sum_{B_{p-1}} \sum_{\alpha, \gamma=1}^n (\sum_{\beta=1}^n g_i^{\overline{\alpha}\beta} \cdot \Gamma_{i,\beta\overline{\gamma}}) \varphi_{i,\overline{\alpha}\overline{\beta}_{p-1}} \cdot \varphi_i^{\gamma B_{p-1}} dV.$$

We can choose a matrix T_i which depends, together with T_i^{-1} , differentiably on $x \in U_i$, satisfying $G_{i,0} = {}^tT_i \cdot \overline{T}_i$. Since $G_i = G_{i,0} + \Gamma_i$, we have $G_i = {}^tT_i \{E + {}^tT_i^{-1} \cdot \Gamma_i \cdot \overline{T}_i^{-1}\} \overline{T}_i$. The eigenvalues of the hermitian matrix ${}^tT_i^{-1} \cdot \Gamma_i \cdot \overline{T}_i^{-1}$ (resp. ${}^tT_i^{-1} \cdot \Gamma_{i,0} \cdot \overline{T}_i^{-1}$) are continuous functions on X_c (resp. X). From (4.12), we have

(4.17)
$${}^{t}T_{i}^{-1} \cdot \Gamma_{i} \cdot \overline{T}_{i}^{-1} \geq {}^{t}T_{i}^{-1} \cdot \Gamma_{i,0} \cdot \overline{T}_{i}^{-1}$$
 on $X_{c} \cap U_{i}$.

Let K' be a compact subset of X_c with $K \subset \operatorname{Int} K' \subset K' \subseteq X_c$. Since the closure of X_c is compact, (4.17) implies that the first n-q+1 eigenvalues of the matrix ${}^{i}T_{i}^{-1} \cdot \Gamma_{i} \cdot \overline{T}_{i}^{-1}$ taken in the order of decreasing magnitude, are positive and stay away from zero on $X_c \setminus K'$. Let $x_0 \in X_c \setminus K'$ and choose a system of local coordinates (z_i^1, \dots, z_i^n) around x_0 as follows:

(4.18)
$$G_{i,0}(x_0) = (\delta_{\alpha\beta}) \text{ and } \Gamma_i(x_0) = (v_\alpha \cdot \delta_{\alpha\beta}),$$

where $\{v_{\alpha}\}_{1 \leq \alpha \leq n}$ are eigenvalues of the matrix ${}^{t}T_{i}^{-1} \cdot \Gamma_{i} \cdot \overline{T}_{i}^{-1}$ at x_{0} and

satisfy $v_1 \geq v_2 \geq \cdots \geq v_{n-q+1} > 0$ and $v_{n-q+2} \geq \cdots \geq v_n \geq 0$. Then there exists a positive constant ε , independent of the choice of $x_0 \in X_c \setminus K'$, such that $v_{n-q+1} \geq \varepsilon > 0$. Therefore we have

(4.19)
$$G_i(x_0)^{-1} \cdot \Gamma_i(x_0) = \begin{pmatrix} v_1 \\ 1+v_1 \end{pmatrix}, \\ \ddots \\ , \frac{v_n}{1+v_n} \end{pmatrix} \ge \varepsilon' \begin{pmatrix} E_{n-q+1} & 0 \\ 0 & 0 \end{pmatrix}$$

where $\varepsilon' = \frac{\varepsilon}{1+\varepsilon}$ and E_{n-q+1} is the (n-q+1, n-q+1) unit matrix.

We apply (4.19) to (4.16), then at x_0

(4. 20)
$$\sum_{B_{p-1}} \sum_{\alpha, \tau=1}^{n} (\sum_{\beta=1}^{n} g_{i}^{\overline{\alpha}\beta} \cdot \Gamma_{i, \overline{\beta}\tau}) \varphi_{i, \overline{\alpha}\overline{B}_{p-1}} \cdot \overline{\varphi_{i}^{IB_{p-1}}}$$
$$\geq \varepsilon' \sum_{B_{p-1}} \sum_{\beta=1}^{n-q+1} \varphi_{i, \overline{\beta}\overline{B}_{p-1}} \cdot \overline{\varphi_{i}^{\beta}}^{B_{p-1}}.$$

If $p \ge q$, then $p+n-q+1 \ge n+1$, thus any block B_p of p indices taken from $\{1, 2, \dots, n\}$ must contain one of the indices $\{1, 2, \dots, n-q+1\}$, i.e. one of the indices corresponding to the positive eigenvalues $v_1, v_2, \dots, v_{n-q+1}$. It follows that

(4. 21)
$$\sum_{\overline{B}_{p-1}} \sum_{\beta=1}^{n-q+1} \varphi_{i, \overline{\beta}\overline{B}_{p-1}} \cdot \overline{\varphi_i^{T\overline{B}_{p-1}}} \ge \sum_{\beta_1 < \cdots < \beta_p} \varphi_{i, \overline{B}_p} \cdot \varphi_i^{\overline{B}_p} \cdot \varphi_i^$$

Since the matrix $G_i^{-1} \cdot \Gamma_i$ is positive semi-definite on X_c , from (4.15), (4.16), (4.20) and (4.21) we have

(4.22)
$$\|\varphi\|_{X_{\varepsilon}\setminus K'}^{2} \leq C_{1}\{\|\overline{\partial}\varphi\|^{2}+\|\overline{\partial}^{*}\varphi\|^{2}\} \quad \left(C_{1}=\frac{1+\varepsilon}{\varepsilon}\right)$$

for any $\varphi \in C_0^{\mathfrak{g},p}(X, B \otimes K_X)$ with $p \ge q$.

§ 5. Proof of the Main Theorem

Step 1. Vanishing Theorems on Each Sublevel Set X_{c} . Let the situations be as above. By Remark in Section 4, our base metric ds^2 is complete. Hence, by the same argument as in the proof of Theorem 3.1 and (4.22), we have

(5.1)
$$\|\varphi\|_{\mathcal{X}_c\setminus K'}^2 \leq C_1\{\|\bar{\partial}\varphi\|^2 + \|\bar{\partial}^*\varphi\|^2\}$$

for any $\varphi \in D^{0,p}_{\overline{\mathfrak{g}}} \cap D^{0,p}_{\overline{\mathfrak{g}}}$ with $p \ge q$.

Any connected compact complex manifold X is weakly 1-complete with respect to the real constant functions. Then we have $X_c = X$. If X is non-compact, $X_c = \{x \in X | \emptyset(x) < c\}$ has countable connected components. If one of them is contained in the compact subset K', it must be a compact connected component (or manifold) of X. Since X is connected, this is a contradiction. Therefore, in our situation, the conditions of Theorem 3.1 are satisfied. Hence there exists a constant $C_2 > 0$ such that

(5.2)
$$\|\varphi\|^2 \leq C_2 \{\|\bar{\partial}\varphi\|^2 + \|\bar{\partial}^*\varphi\|^2\}$$

for any $\varphi \in D^{0,p}_{\overline{\partial}} \cap D^{0,p}_{\overline{\partial}}$, with $p \ge q$.

Take any $\varphi \in C^{0,p}(X_c, B \otimes K_x)$ with $\overline{\partial} \varphi = 0$. We can choose a C^{∞} -function λ with the condition (4.9) such that

i) the Kähler metric ds^2 induced by (4.13) is complete,

ii) $(\varphi, \varphi) < +\infty$ (cf. [9], §2, Proof of Theorem 1).

Hence, by Corollary 3.1, we have $\varphi = \overline{\partial} \psi$ for some $\psi \in C^{0, p-1}(X_c, B \otimes K_x)$. Therefore we have proved that for any $c > c_* = \sup_{x \in K} \Phi(x)$,

(5.3)
$$H^{p}(X_{c}, \mathcal{O}(B \otimes K_{X})) = 0 \quad \text{for any } p \geq q.$$

Step 2. Approximation Lemmas. We fix two constants d and e such that

- (5.4) i) $d > e > c_*$,
 - ii) the boundary ∂X_e of $\{x \in X | \emptyset(x) \leq e\}$ is smooth.

We take a C^{∞} -increasing convex function $\tau(t)$ such that

(5.5) i) $\tau(t): (-\infty, \infty) \to (-\infty, \infty)$,

ii)
$$\tau(t) = \begin{cases} 0 & \text{if } t \leq \frac{1}{d-e} \\ >0 & \text{if } t > \frac{1}{d-e} \end{cases}$$

iii) $\int_{0}^{+\infty} \sqrt{\tau''(t)} dt = +\infty$.

We set

$$\Psi = \tau \Big(\frac{1}{d - \varPhi} \Big).$$

We define the metrics of B on X_d by

(5.6) i) $a_i = a_{i,0} \cdot \exp(\Psi)$,

ii)
$$a_{m,i} = a_i \cdot \exp(m \Psi)$$
 for any $m \ge 0$.

We set

i)
$$\Gamma_{i} = (\Gamma_{i,\alpha\bar{\beta}})$$
 where $\Gamma_{i,\alpha\bar{\beta}} = \frac{\partial^{2} \log a_{i}}{\partial z_{i}^{\alpha} \partial z_{i}^{\bar{\beta}}}$,
ii) $\Gamma_{m,i} = (\Gamma_{m,i,\alpha\bar{\beta}})$ where $\Gamma_{m,i,\alpha\bar{\beta}} = \frac{\partial^{2} \log a_{m,i}}{\partial z_{i}^{\alpha} \partial z_{i}^{\bar{\beta}}}$ for any $m \ge 0$

We define a Kähler metric ds^2 on X_d by

(5.7)
$$ds^{2} = \sum_{\alpha,\beta=1}^{n} \left(g_{i,\alpha\overline{\beta},0} + \Gamma_{i,\alpha\overline{\beta}}\right) dz_{i}^{\alpha} \cdot dz_{i}^{\overline{\beta}},$$

Remark. By the choice (5, 5), ds^2 is a complete Kähler metric as in Remark in Section 4.

We set

$$G_i = (g_{i,\alpha\bar{\beta}})$$
 where $g_{i,\alpha\bar{\beta}} = g_{i,\alpha\bar{\beta},0} + \Gamma_{i,\alpha\bar{\beta}}$.

Using (5.6), we define the metrics of $B \otimes K_X$ on X_d :

(5.8) i) $A_i = a_i \cdot g_i$,

ii) $A_{m,i} = a_{m,i} \cdot g_i$ for any $m \ge 0$, where $g_i = \det G_i$.

For any integer $m \ge 0$, we define

(5.9)
$$(\varphi, \psi)_{m} = (\varphi, \psi)_{m\mathfrak{P}}$$
$$\|\varphi\|_{m}^{2} = (\varphi, \varphi)_{m}$$

for any $\varphi, \psi \in L^{0,p}(X_d, B \otimes K_X, m\Psi)$. We denote the formal adjoint of $\overline{\partial}$ with respect to the inner product $(\varphi, \psi)_m$ by ϑ_m and the adjoint operator in $L^{0,\cdot}(X_d, B \otimes K_X, m\Psi)$ by $\overline{\partial}_m^*$.

Now we have

GENERALIZATION OF VANISHING THEOREMS

$$G_i^{-1} \cdot \Gamma_i \leq G_i^{-1} \cdot \Gamma_{m,i}$$
 for any $m \geq 0$.

Hence by the same argument as in Section 4, we have, for any $m \ge 0$,

(5.10)
$$\|\varphi\|_{m X_d \setminus K'}^2 \leq C_1 \{\|\bar{\partial}\varphi\|_m^2 + \|\bar{\partial}_m^*\varphi\|_m^2\}$$

for any $\varphi \in D_{\delta}^{n,p} \cap D_{\delta_m}^{n,p}$ with $p \ge q$, where $C_1 > 0$ is independent of m and K' is a compact subset with $K \subset \operatorname{Int} K' \subset K' \subseteq X_d$. Then, for each m, we have a positive constant such that (5.2) holds. In general, this constant depends on m. The basic idea of the following lemma is due to Hörmander [5]. (Compare with [10], Proposition 4.2.)

Lemma 5.1. There exists m_0 and $C_0 > 0$ such that for any $m \ge m_0$ and $p \ge q$,

$$\|\varphi\|_m^2 \leq C_0 \{\|\overline{\partial}\varphi\|_m^2 + \|\overline{\partial}_m^*\varphi\|_m^2\},\$$

provided $\varphi \in D^{0, p}_{\overline{\delta}} \cap D^{0, p}_{\overline{\delta} \underline{m}} \subset L^{0, p}(X_d, B \otimes K_x, m \Psi).$

Proof. Assume that the assertion is false. There would be a sequence $\{\varphi_k\}$ such that

(5.11) i) $\varphi_k \in D^{0,p}_{\overline{\delta}} \cap D^{0,p}_{\overline{\delta}k} \subset L^{0,p}(X_d, B \otimes K_x, k \Psi),$ ii) $\|\varphi_k\|_k^2 = 1,$ iii) $\|\overline{\partial}\varphi_k\|_k^2, \|\overline{\partial}_k^*\varphi_k\|_k^2 \to 0$ as $k \to +\infty$.

Let $g_k = e^{-k \cdot t} \cdot \varphi_k$, then we have

(5.12) i)
$$\overline{\partial}^* g_k = e^{-kT} \overline{\partial}^*_k \varphi_k$$
,
ii) $\|\overline{\partial}^* g_k\|_{-k} = \|\overline{\partial}^*_k \varphi_k\|_k$

By (5.11), we have

$$||g_k|| \leq ||g_k||_{-k} = ||\varphi_k||_k = 1$$
.

Therefore choosing a subsequence if necessary, we may assume that $\{g_k\}$ has a weak limit g in $L^{0, p}(X, B \otimes K_X)$. On the other hand, it follows that

$$\|g_k\|_{X_d\setminus K'}^2 \leq \|\varphi_k\|_{kX_d\setminus K'}^2 \leq C_1\{\|\bar{\partial}\varphi_k\|_k^2 + \|\bar{\partial}_k^*\varphi_k\|_k^2\}.$$

By (5.11)

 $\lim_{k\to+\infty} \|g_k\|_{X_d\setminus K'}^2 = 0.$

Hence we have $g|_{X_d\setminus K'}\equiv 0$. Then it follows that

(5. 13)
$$\operatorname{supp} g \subseteq K'$$

From (5.11), (5.12) and (5.13), we have $\bar{\partial}g=0$ and $\bar{\partial}^*g=0$ in $L^{0,p+1}(X_e, B\otimes K_X)$ and $L^{0,p-1}(X_e, B\otimes K_X)$ respectively. Since any connected component of X_e is not contained in K', by Theorem 3.2, we have

$$(5.14)$$
 $g=0$

By (5.11), we may assume that $\{g_k\}$ is strongly convergent on K'. (5.14) implies that the limit is zero on K'. From (5.10) and (5.11), we obtain a contradiction. q.e.d.

Lemma 5.2. If $\psi \in L^{0,p}(X_{\epsilon}, B \otimes K_{x})$ with $p \ge q-1$ and $\overline{\partial}\psi = 0$, then for any $\varepsilon > 0$, there exists $\widetilde{\psi} \in L^{0,p}(X_{d}, B \otimes K_{x})$ such that $\|\widetilde{\psi}\|_{X_{\epsilon}} - \psi\|_{X_{\epsilon}}^{2} < \varepsilon$ and $\overline{\partial}\widetilde{\psi} = 0$.

Proof. It suffices to show that if $u \in L^{0, p}(X_{e}, B \otimes K_{x})$ and

(5.15)
$$\int_{X_{\varepsilon}} \langle f, u \rangle dV = 0$$

for any $f \in L^{0,p}(X_d, B \otimes K_X)$ with $\overline{\partial} f = 0$, then we have

(5.16)
$$\int_{X_{\epsilon}} \langle g, u \rangle dV = 0$$

 $\text{if } g \in L^{\mathfrak{d},p}(X_e, B \otimes K_{\mathfrak{X}}) \text{ and } \overline{\partial}g = 0.$

Extend the definition of u by setting u=0 on $X_d \setminus X_e$. We denote it by u'. Then (5.15) implies that u' is orthogonal to $N_{\bar{g}}^{0,p} \subset L^{0,p}(X_d, B \otimes K_X, m\Psi)$ for any m, we have $u' \in \overline{R_{\bar{g}_m}^{0,p}} \subset L^{0,p}(X_d, B \otimes K_X, m\Psi)$. The condition $R_{\bar{g}_m}^{0,p} = \overline{R_{\bar{g}_m}^{0,p}}$ is equivalent to $R_{\bar{g}}^{0,p+1} = \overline{R_{\bar{g}_m}^{0,p+1}}$ (cf. [5], Theorem 1.1.1). By (5.10), we have $R_{\bar{g}}^{0,p+1} = \overline{R_{\bar{g}_m}^{0,p+1}} \subset L^{0,p+1}(X_d, B \otimes K_X, m\Psi)$ for $m \ge 0$ and $p \ge q-1$. Hence, from Lemma 5.1, for any $m \ge m_0$ we have

$$(5.17) u' = \partial_m^* v_m$$

for some $v_m \in L^{0,p-1}(X_d, B \otimes K_X, m\Psi)$ with $\|v_m\|_m^2 \leq C_0 \cdot \|u'\|^2$.

We set

 $w_m = e^{-mr} \cdot v_m \quad \text{for } m \ge m_0,$

then

$$\|w_{m}\|^{2} \leq \|w_{m}\|_{-m}^{2} = \|v_{m}\|_{m}^{2} \leq C_{0} \cdot \|u'\|^{2}.$$

Hence $\{w_m\}$ has a subsequence which is weakly convergent in $L^{0, p-1}(X_d, B \otimes K_x)$. Let the weak limit be w. On the other hand, for every $\varepsilon > 0$

$$\int_{\{x\in\mathcal{X}_d\mid \Psi(x)>t\}} e^{m\Psi} \langle w_m, w_m \rangle dV \leq C_0 \|u'\|$$

and we have

$$c^{m\varepsilon} \int_{\{x \in X_{\sigma} \mid \Psi(x) \ge \epsilon\}} \langle w_m, w_m \rangle dV \le C_0 \| u' \|.$$

It follows that $\int_{\{x \in X_d \mid \Psi(x) \ge \varepsilon\}} \langle w_m, w_m \rangle dV$ tends to zero, and hence $w_m \to 0$ almost everywhere in $\{x \in X_d \mid \Psi(x) \ge \varepsilon\}$. Hence w = 0 on $\{x \in X_d \mid \Psi(x) \ge \varepsilon\}$ for every $\varepsilon > 0$. Therefore we have

(5. 18)
$$\sup w \subseteq \overline{X}_e \text{ and } \overline{\partial}^* w = u'$$

Since \overline{X}_e is compact and ∂X_e is smooth, from [5] Proposition 1. 2. 3, there exists a sequence $\{w^k\}$ such that $\{w^k\} \subset C_0^{0,p+1}(X_e, B \otimes K_X)$ and $\|w^k - w\|_{X_e}^2$, $\|\overline{\partial}^* w^k - \overline{\partial}^* w\|_{X_e}^2 \to 0$ as $k \to +\infty$.

We have, for any $v \in D^{0, p}_{\overline{\delta}} \subset L^{0, p}(X_{\epsilon}, B \otimes K_{X})$,

$$(\bar{\partial}v, w|_{X_{e}})_{X_{e}} = \lim_{k \to +\infty} (\bar{\partial}v, w^{k})_{X_{e}} = \lim_{k \to +\infty} (v, \bar{\partial}^{*}w^{k})_{X_{e}}$$
$$= (v, \bar{\partial}^{*}(w|_{X_{e}}))_{X_{e}}.$$

Hence

(5.19)
$$\overline{\partial}^*(w|_{X_e}) = u \; .$$

Therefore, if $g \in L^{0,p}(X_e, B \otimes K_X)$ and $\overline{\partial}g = 0$, we have

$$\int_{x_{\epsilon}} \langle g, u \rangle dV = \int_{x_{\epsilon}} \langle \overline{\partial}g, w \rangle dV = 0. \qquad \text{q.c.d.}$$

If in particular q = 1, replacing $L^{0,p}(X_d, B \otimes K_X)$ (resp. $L^{0,p}(X_c, B \otimes K_X)$) by $\Gamma(X_d, \mathcal{O}(B \otimes K_X))$ (resp. $\Gamma(\overline{X}_e, \mathcal{O}(B \otimes K_X))$), we can prove the following in the same way as we proved Lemma 5.2.

Lemma 5.3. Let X_d and X_e be as above and let a holomorphic

line bundle B be positive on X\K and semi-positive on X. Then for any holomorphic section $\varphi \in \Gamma(\overline{X}_{e}, \mathcal{O}(B \otimes K_{x})), \overline{X}_{e}$ being the closure of X_e in X, and for any $\varepsilon > 0$, there exists a section $\widetilde{\varphi} \in \Gamma(X_{d}, \mathcal{O}(B \otimes K_{x}))$ such that $\|\widetilde{\varphi} - \varphi\|_{X_{e}}^{2} < \varepsilon$.

Let C be a compact subset of X_d . We set $|\varphi|_c = \sup_{x \in \mathcal{C}} \sqrt{\langle \varphi, \varphi \rangle(x)}$ for $\varphi \in \Gamma(X_d, \mathcal{O}(B \otimes K_x))$, where $\langle \varphi, \varphi \rangle = A_i^{-1} |\varphi_i|^2$ (see (5.8)). Then, using Cauchy's integral formula in each local coordinate U_i with $U_i \cap C \neq \emptyset$, we can find a positive constant M such that

$$|\varphi|_{c} \leq M \|\varphi\|_{c}$$

Hence we obtain the following.

Lemma 5.4. Let X_a and X_e be as above. Let a holomorphic line bundle B be positive on $X \setminus K$ and semi-positive on X. Then for any holomorphic section $\varphi \in \Gamma(\overline{X}_e, \mathcal{O}(B \otimes K_x))$ and for any $\varepsilon > 0$, there exists a section $\tilde{\varphi} \in \Gamma(X_d, \mathcal{O}(B \otimes K_x))$ such that $|\tilde{\varphi} - \varphi|_{X_e} < \varepsilon$.

Step 3. Global Vanishing Theorems. By Sard's theorem, we can choose a sequence $\{c_{\nu}\}_{\nu=0,1,\dots}$ of real numbers such that

(5. 20) i)
$$c_0 > c_*$$

- ii) $c_{\nu+1} > c_{\nu}$ and $c_{\nu} \to \infty$ as $\nu \to +\infty$,
- iii) the boundary $\partial X_{c_{\nu}}$ of $\{x \in X | \boldsymbol{\mathcal{O}}(x) \leq c_{\nu}\}$ is smooth for any $\nu \geq 0$.

For any pair $(c_{\nu+2}, c_{\nu})$ $(\nu \ge 0)$, we choose a C^{∞} increasing convex function $\tau_{\nu+2}$ such that

(5.21) i)
$$\tau_{\nu+2}(t): (-\infty, \infty) \to (-\infty, \infty),$$

ii) $\tau_{\nu+2}(t) = \begin{cases} 0 & \text{if } t \leq \frac{1}{c_{\nu+2} - c_{\nu}} \\ >0 & \text{if } t > \frac{1}{c_{\nu+2} - c_{\nu}}, \end{cases}$
iii) $\int_{0}^{+\infty} \sqrt{\tau_{\nu+2}''(t)} dt = +\infty.$

We set

$$\begin{split} X_{\nu} &= \left\{ x \in X | \boldsymbol{\varnothing} \left(x \right) < \! \boldsymbol{c}_{\nu} \right\}, \\ \boldsymbol{\varPsi}_{\nu+2} &= \tau_{\nu+2} \left(\frac{1}{c_{\nu+2} - \boldsymbol{\varnothing}} \right) \end{split}$$

for any $\nu \ge 0$. Then, for any pair $(c_{\nu+2}, c_{\nu})$, Lemma 5.2 and Lemma 5.4 hold.

The case q=1. $\mathfrak{X} = \{X_{\nu}\}_{\nu \geq 0}$ is a covering of X. For any $\nu \geq 1$, we set $\mathfrak{X}_{\nu} = \{X_{\mu}\}_{\mu \leq \nu}$, then \mathfrak{X}_{ν} is a covering of X_{ν} . By (5.3), \mathfrak{X} (resp. \mathfrak{X}_{ν}) is a Leray covering for the sheaf $\mathcal{O}(B \otimes K_{\mathfrak{X}})$ on X (resp. X_{ν}). Then we have, for any $i \geq 1$ and $\nu \geq 1$,

$$H^{i}(X, \mathcal{O}(B \otimes K_{\mathbf{X}})) = H^{i}(\mathcal{X}, \mathcal{O}(B \otimes K_{\mathbf{X}}))$$

and

$$H^{i}(\mathcal{X}_{\nu}, \mathcal{O}(B \otimes K_{\mathcal{X}})) = H^{i}(X_{\nu}, \mathcal{O}(B \otimes K_{\mathcal{X}})) = 0$$

Let $\sigma \in Z^{i}(\mathfrak{X}, \mathcal{O}(B \otimes K_{\mathfrak{X}}))$, $i \geq 1$. Let σ_{ν} be the restriction of σ to X_{ν} . Then $\sigma_{\nu} \in Z^{i}(\mathfrak{X}_{\nu}, \mathcal{O}(B \otimes K_{\mathfrak{X}}))$ so there is an $\alpha_{\nu} \in C^{i-1}(\mathfrak{X}_{\nu}, \mathcal{O}(B \otimes K_{\mathfrak{X}}))$ such that $\delta \alpha_{\nu} = \sigma_{\nu}$. As an element of $C^{i-1}(\mathfrak{X}_{\nu-1}, \mathcal{O}(B \otimes K_{\mathfrak{X}}))$, $\delta \alpha_{\nu} = \delta \alpha_{\nu-1}$, and thus $\alpha_{\nu} - \alpha_{\nu-1} \in Z^{i-1}(\mathfrak{X}_{\nu-1}, \mathcal{O}(B \otimes K_{\mathfrak{X}}))$.

When i > 1. Since $\alpha_{\nu} - \alpha_{\nu-1} \in Z^{i-1}(\mathcal{X}_{\nu-1}, \mathcal{O}(B \otimes K_x))$, there is a $\beta_{\nu-1} \in C^{i-2}(\mathcal{X}_{\nu-1}, \mathcal{O}(B \otimes K_x))$ such that $\delta\beta_{\nu-1} = \alpha_{\nu} - \alpha_{\nu-1}$ on $X_{\nu-1}$. Define $\alpha \in C^{i-1}(\mathcal{X}, \mathcal{O}(B \otimes K_x))$ as follows:

$$\alpha = \alpha_{\nu} - \delta \left(\sum_{\mu < \nu} \beta_{\mu} \right) \quad \text{on } X_{\nu}.$$

It is easily verified that α is well defined. Finally, for any ν , $\delta \alpha = \delta \alpha_{\nu} - \delta \delta (\sum_{\mu < \nu} \beta_{\mu}) = \delta \alpha_{\nu} = \sigma_{\nu}$. Hence we have $\delta \alpha = \sigma$.

When i=1. Since $\alpha_{\nu} - \alpha_{\nu-1} \in \Gamma(X_{\nu-1}, \mathcal{O}(B \otimes K_X))$, by Lemma 5.4 we can find, for any $\varepsilon > 0$, a $\gamma \in \Gamma(X_{\nu}, \mathcal{O}(B \otimes K_X))$ such that $|\alpha_{\nu} - \alpha_{\nu-1} - \gamma|_{\overline{X}_{\nu-2}} < \varepsilon$. Therefore, inductively, we have a sequence $\{\lambda_{\nu}\}_{\nu \ge 1}$ so that (5.22) i) $\lambda_{\nu} \in C^0(\mathfrak{X}_{\nu}, \mathcal{O}(B \otimes K_X))$ and $\lambda_1 = \alpha_1$, ii) $\delta \lambda_{\nu} = \sigma_{\nu}$, iii) $|\lambda_{\nu+1} - \lambda_{\nu}|_{\overline{X}_{\nu-1}} < 2^{-\nu}$. For any ν , $\lim_{\mu \ge \nu} \lambda_{\mu}$ defines an element of $C^{0}(\mathcal{X}_{\nu}, \mathcal{O}(B \otimes K_{X}))$ and clearly this limit is the same as the restriction of $\lim_{\mu \ge \nu} \lambda_{\mu}$ for any $\eta \ge \nu + 1$. Thus we can define an element λ of $C^{0}(\mathcal{X}, \mathcal{O}(B \otimes K_{X}))$ by $\lambda = \lim_{\nu \to +\infty} \lambda_{\nu}$. For any ν , $\delta(\lim_{\mu \ge \nu} \lambda_{\mu}) = \lim_{\mu \ge \nu} \delta \lambda_{\mu} = \sigma_{\nu}$. Hence we have $\delta \lambda = \sigma$.

The case q>1. We denote by $L_{loc}^{0,p}(X, B\otimes K_x)$ the set of the locally square integrable (0, p) forms on X with values in $B\otimes K_x$. For $p\geq 1$, there is a natural isomorphism

(5.23)
$$H^{p}(X, \mathcal{O}(B \otimes K_{X}))$$

$$\cong \frac{\{f \in L^{0,p}_{\text{loc}}(X, B \otimes K_{X}); \overline{\partial}f = 0\}}{\{f \in L^{0,p}_{\text{loc}}(X, B \otimes K_{X}); f = \overline{\partial}g \text{ for some } g \in L^{0,p-1}_{\text{loc}}(X, B \otimes K_{X})\}}.$$

Therefore, for $p \ge q$, it suffices to show that for any $\varphi \in L^{0,p}_{loc}(X, B \otimes K_X)$ with $\overline{\partial} \varphi = 0$, there exists a $\psi \in L^{0,p-1}_{loc}(X, B \otimes K_X)$ such that $\overline{\partial} \psi = \varphi$.

In this proof, for any $\nu \geq 0$, we set

(5. 24)
i)
$$\varphi_{\nu} = \varphi|_{X_{\nu}}$$
,
ii) $L^{0,p}(X_{\nu+2}, B \otimes K_X, \Psi_{\nu+2}) = L^{0,p}(X_{\nu+2}, B \otimes K_X)$,
iii) $L^{0,p}(X_{\nu}, B \otimes K_X, 0) = L^{0,p}(X_{\nu}, B \otimes K_X, \Psi_{\nu+2})$,
iv) $\|f\|_{\nu+2}^2 = \int_{X_{\nu+2}} \langle f, f \rangle e^{-\Psi_{\nu+2}} dV$
for $f \in L^{0,p}(X_{\nu+2}, B \otimes K_X, \Psi_{\nu+2})$

where $\langle f, f \rangle = (a_{i,0} \cdot g_i)^{-1} \sum_{\overline{B}_p} f_{i,\overline{B}_p} \cdot f_i^{\overline{B}_p}$.

Then $\varphi_{\nu} \in L^{0,p}(X_{\nu}, B \otimes \widetilde{K}_{X}, \Psi_{\nu})$ and $\overline{\partial} \varphi_{\nu} = 0$ $(\nu \geq 2)$. Hence there exists a $\psi'_{\nu} \in L^{0,p-1}(X_{\nu}, B \otimes K_{X}, \Psi_{\nu})$ such that $\overline{\partial} \psi'_{\nu} = \varphi_{\nu}$ for any $\nu \geq 2$. We now choose, by induction, a sequence $\{\psi_{\nu}\}_{\nu \geq 1}$ so that

(5.25) i)
$$\psi_{\nu} \in L^{0,p}_{loc}(X, B \otimes K_{X})$$

ii) $\overline{\partial} \psi_{\nu} = \varphi_{\nu}$ on X_{ν}
iii) $\|\psi_{\nu+1} - \psi_{\nu}\|^{2}_{\nu+2, X_{\nu}} < 2^{-\nu}$.

We set

$$\psi_1 = \left\{ egin{array}{ccc} \psi_2' \mid_{X_1} & ext{on} & X_1 \ & & \\ 0 & ext{on} & X ackslash X_1 \ . \end{array}
ight.$$

Since $\psi'_2 \in D^{0, p-1}_{\bar{\delta}} \subset L^{0, p-1}(X_2, B \otimes K_X, \Psi_2)$, we have $\psi_1 \in D^{0, p-1}_{\bar{\delta}} \subset L^{0, p-1}(X_1, B \otimes K_X, 0)$ and $\bar{\partial} \psi_1 = \varphi_1$. Suppose $\psi_1, \dots, \psi_{\nu-1}$ are chosen. Then

$$(\psi_{\nu+1}' - \psi_{\nu-1}) \mid_{X_{\nu-1}} \in L^{0, p-1}(X_{\nu-1}, B \otimes K_X, 0)$$

and

$$\overline{\partial} \left(\psi_{\nu+1}' - \psi_{\nu-1} \right) \Big|_{X_{\nu-1}} = 0 .$$

By Lemma 5.2, there exists a $g \in L^{0, p-1}(X_{\nu+1}, B \otimes K_X, \Psi_{\nu+1})$ such that $\|g - (\psi'_{\nu+1} - \psi_{\nu-1})\|^2_{\nu+1}, X_{\nu-1} \leq 2^{-(\nu-1)}$ and $\overline{\partial}g = 0.$

We set

$$\phi_{\nu} = \begin{cases} \phi_{\nu+1}'|_{X_{\nu}} - g|_{X_{\nu}} & \text{on } X_{\nu} \\ 0 & \text{on } X \backslash X_{\nu} . \end{cases}$$

Then we have

(5. 26) i)
$$\psi_{\nu} \in D^{0, p-1}_{\bar{\theta}} \subset L^{0, p-1}(X_{\nu}, B \otimes K_{X}, 0)$$

ii) $\bar{\partial} \psi_{\nu} = \varphi_{\nu}$
iii) $\|\psi_{\nu} - \psi_{\nu-1}\|^{2}_{\nu+1, X_{\nu-1}} < 2^{-(\nu-1)}.$

From (5.26), for any ν , $\{\psi_{\mu}\}_{\mu \geq \nu}$ converges with respect to the norm $\| \|_{\nu}$, and clearly the limit is the same as the restriction of $\lim_{\mu \geq \eta} \psi_{\mu}$ for any $\eta \geq \nu + 1$. Thus we can define an element ψ of $L^{0,p-1}_{loc}(X, B \otimes K_X)$ by $\psi = \lim_{\nu \to +\infty} \psi_{\nu}$.

For every $\nu \geq 1$,

(5. 27) i)
$$\lim_{\mu \ge \nu} \psi_{\mu} = \psi \quad \text{in } L^{0, p-1}(X_{\nu}, B \otimes K_{X}, 0),$$

ii)
$$\lim_{\mu \ge \nu} \overline{\partial} \psi_{\mu}|_{X_{\nu}} = \varphi_{\nu} \quad \text{in } L^{0, p}(X_{\nu}, B \otimes K_{X}, 0).$$

Since $\overline{\partial}$ is a closed operator in $L^{0,p-1}(X_{\nu}, B \otimes K_x, 0)$ for every $\nu \ge 1$, we have, for any $\nu \ge 1$,

$$\bar{\partial}\psi = \varphi_{\nu}$$
 in $L^{0,p}(X_{\nu}, B \otimes K_{\lambda}, 0)$.

Hence we have

$$\bar{\partial}\psi = \varphi$$
 in $L^{0,p}_{\text{loc}}(X, B \otimes K_X)$. q.e.d.

References

- Abdelkader, O., Vanishing of the cohomology of a weakly 1-complete Kähler manifold with value in a semi-positive vector bundle, C. R. Acad. Sci. Paris, 290 (1980), 75-78.
- [2] Aronszajn, N., A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order, J. Math. Pur. Appl., 36 (1957), 235-249.
- [3] Folland, G. B. and Kohn, J. J., The Neumann problem for the Cauchy-Riemann complex, Ann. Math. Studies, 75, 1972.
- [4] Grauert, H. and Riemenschneider, O., Kähler Mannigfaltigkeiten mit hyper-qkonvexem Rand, in Gunning, G. C.: Problem in analysis, paper in honor of S. Bochner, Princeton Univ. Press, 1970, 61-79.
- [5] Hörmander, L., L^2 estimates and existence theorems for the $\bar{\partial}$ operator, Acta. Math., 113 (1965), 89-152.
- [6] Hörmander, L., An introduction to complex analysis in several variables, D. Van Nostrand, Princeton, N. J., 1966.
- [7] Kodaira, K., On a differential-geometric method in the theory of analytic stacks, Proc, Nat. Acad. Sci., U. S. A., 39 (1953), 1268-1273.
- [8] Nakano, S., On the inverse of monoidal transformation, Publ. RIMS, Kyoto Univ.,
 6 (1970-71), 483-502.
- [9] Nakano, S., Vanishing theorems for weakly l-complete manifolds, II, Publ. RIMS, Kyoto Univ., 10 (1974), 101-110.
- [10] Ohsawa, T., Finiteness theorems on weakly l-complete manifolds, Publ. RIMS, Kyoto Univ., 15 (1979), 853-870.
- [11] Riemenschneider, O., Characterizing Moisezon spaces by almost positive coherent analytic sheaves, Math. Z., 123 (1971), 263-284.
- [12] Vesentini, E., Lectures on Levi convexity of complex manifolds and cohomology vanishing theorems, Tata Institute of Fundamental Research, Bombay, 1967.

Added in proof: The author and T. Ohsawa have proved that the global vanishing theorem of Theorem 2 holds i.e. $H^p(X, \mathcal{Q}^q(B)) = 0$ for $p+q \ge n+k$. See "A vanishing theorem for $H^p(X, \mathcal{Q}^q(B))$ on weakly 1-complete manifolds", forthcoming.