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§ 1. Introduction

Bochnak and the author showed a necessary and sufficient condition for

the ring of analytic functions on a real analytic manifold to be a unique factor-

ization ring [1] and [8]. In this paper we consider the Nash function case.

We say that a semi-algebraic set in Mn is a Nash manifold if it is an analytic

manifold, and that an analytic function on a Nash manifold is a Nash function

if the graph is semi-algebraic. We define a Nash mapping in the same way.

The definition of Nash manifold is different to that of Palais [6]. He added

moreover the compactness in the conditions, but we don't need the assumption

when we consider the unique factorization property of the Nash function ring.

We remark the following fact the compact case of which is a result of Nash [6],

Let M be a C1-manifold. M is C^diffeomorphic to a Nash manifold if and

only if M is compact or there exists a compact C1-manifold M' with boundary

such that M is C^-diffeomorphic to M' — dM'. This follows from [6] and the

results in Section 2.

Theorem. The ring of Nash functions on a Nash manifold M is a unique

factorization ring if and only if M is connected and satisfies H1(M; Z2) = Q.

We write this ring as N(M). Bochnak proved essentially the sufficiency

and the necessity in the case when M is of dimension 2 [2]. The proof of tne

necessity in the general case is based on a theorem of Thorn about the reali-

zation of homology classes [9]. As we shall consider the non-compact case,

we need a well imbedding of Nash manifold into a Euclidean space. The im-

bedded manifold has a Nash tubular neighborhood. That will shows the
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existence of Nash approximation of any C°°-mapping between Nash manifolds.

§ 2. Well Imbedding of Nash Manifold

Lemma (Mostowski). Let X be a closed semi-algebraic set in R". Let

Y be its complement. Then there exists a continuous function defined on Rn

such that the restriction on Y is a Nash function and the zero points set is X.

The author's correction of the proof of this lemma is quoted in Bochnak-

Efroymson "Real algebraic geometry and the 17th Hilbert problem", Math.

Ann., 251 (1980), 213-241.

We remark that the graph of the function in the above lemma is semi-

algebraic.

Proposition 1. Let MaR" be a connected Nash manifold. Then there

exist a regular compact algebraic set AcRN, a closed semi-algebraic subset

B of A and a connected component Mf of A-B such that

1) M is Nash diffeomorphic to M',

2) B is locally everywhere normal crossings in A, and

3) if x is a point of B, M' is connected in an arbitrarily small solid

sphere centered at x.

Condition 2) means that for every point £ e A, there exists a local coordinate

system (zl5..., ZN,) for A centered at £ such that B is the zero points set of a

monomial of those zt.

Proof of the proposition. If M is compact, we know already the propo-
sition in [6] Section 14. Hence we consider the non-compact case. Since Rn

is Nash diffeomorphic to an open half space of the sphere Stt, we assume that M

is contained in Sn. Hence the closure M is compact. By the fundamental

properties of semi-algebraic sets, the boundary dM = M—M is closed semi-

algebraic, but it is not necessarily algebraic. We want to modify the imbedding

of M in Rn+1 so that dM is a point. By the above lemma there exists a con-

tinuous function / on Rn+1 such that the restriction on Rn+1 — dM is a Nash

function and that the zero points set of/is dM. Consider the image of M by

the mapping x = (xl5..., xn+1)-*(f(x)xl9...,f(x)xn+l). Then it is Nash dif-

feomorphic to M, and the boundary is {0}. Therefore we can assume from the

beginning that dM is a point. Let K be the smallest algebraic set containing M.
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Considering in S"+1 if necessary, we assume the compactness of K. By the

normalization of K, we reduce the problem to the case when each point of M

is a regular point of K (see [6]). We apply the desingularization in [4] to

(K, dM). Then we have A, B and M' in the proposition except for the con-

dition 3).

Now we want to modify B and M' to satisfy 3). We will find a neighbor-

hood of B and a semi-algebraic set contained in it so that A, the semi-algebraic

set and the intersection of the exterior of the neighborhood with M' are what we

wanted. Let £ be any point of B. The condition 2) means the existence of a

neighborhood U of £ in A such that (17, 17 n 5) is diffeomorphic to

(Rm
9 {z1-»z, = 0}) for the coordinate system (zl5..., zj of Rm. Let a: Rm-*Rm

be defined by

a(z1?..., zm) = (z?-zlv.., z?-zz, zz+1,..., zj.

Then a is transversal to the hyper surfaces {z1 =0},..., {zf = 0}, the restriction on

{|zf|>l for i=l , . . . , /} is diffeomorphic onto {z^O for z = l,...,/}, and the

restriction on {|zf|>2/3 for / = !,..., /} is an immersion. Let <pv: U-+U be the

mapping invited by a. We can easily joint cpv and (pv, for a neighborhood 17'

of another point £'. Thus we have a C00 mapping <p: A-*A and small neigh-

borhoods Vl c K2 of B such that 9 is transversal to B, that the restriction on the

complement of V1 is an immersion and that the restriction on VC
2 is closed to the

identity in C00-topology and diffeomorphic to A — B. Let \l/\ A-+A be a Nash

approximation of cp (see [6]). Then \l/ has the same properties as <p. Hence

ij/~1(B) is semi-algebraic and locally everywhere normal crossing in A, and the

restriction of ^ on a union of connected components of A — \jj~l(B) is Nash

diffeomorphic to A — B. These show that A, 4/~1(B) and a connected com-

ponent of A — \j/~l(B) satisfy the conditions 1), 2) and 3). Thus the proposition

is proved.

Remark. We don't know if B in the above proposition is algebraic. By

[6], we can approximate a C^-mapping between compact Nash manifolds by

Nash mappings in the C°°-topology, in the same way, using the proposition

above we prove this in the compact open C°°-topology without the compact

assumption.

The following proposition follows immediately.

Proposition 2. Let M be a non-compact Nash manifold. Then there
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exist Nash manifolds Mlc:M2 in a compact regular algebraic set Ac:RN

such that

(1) Ml and M2 are analytically diffeomorphic and open in A,

(2) M is Nash diffeomorphic to Ml9

(3) the closure M2 is a Nash manifold with boundary,

(4) a collar of dM2 in M2 contains dMl, and

(5) M lC=M2

The problem whether Ml and M2 in the proposition above are Nash

diffeomorphic is open. Moreover, are any two C°°-diffeomorphic Nash mani-

folds Nash diffeomorphic?

§ 3. Proof of the Theorem

Proof of the sufficiency. By Proposition 1 M has a Nash tubular

neighborhood U in a suitable Euclidean space. Let "p be the ideal of Nash

functions on U which vanish on M. There is a natural surjective homomorphism

from N(U) to N(M) whose kernel is <p. As N(U) is Noetherian [3], [7], so is

JV(M). If M is connected and satisfies Hl(M; Z2) = 0, then U satisfies the

same conditions. Hence, from the result of Bochnak [2] N(U) is a Noetherian

unique factorization ring. Consider naturally N(M) as a subring of N(U).

Then the sufficiency follows from the next easy lemma.

Lemma, Let A^B be Noetherian rings, a be an ideal of A such that A

is the direct sum of B and a. If A is a unique factorization ring, so is B.

Proof of the necessity. The results of Thorn about the realization of

homology classes [9] are valid also in the case of manifold with boundary, like

the following lemma. The author was pointed out this by Professor Adachi.

Lemma. Let L be an m-dimensional compact C™-manifold with boundary

such that Hl(L\ Z2)^0. Then there exists a compact C^-submanifold Lf

in L of codimension 1 such that

(1) if L' has a boundary, dL' is contained in dL,

(2) the fundamental homology class of L' in Hm_i(L'\ Z2) is not zero in

//m_1(L, dL', Z2) (here we consider the relative homology class in

place of homology class if L' has a boundary], and

(3) L' is transversal to dL.
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Now we prove the necessity. Assume N(M) to be a unique factorization

ring. The connectedness of M is trivial. At first we assume that M is compact

and of dimension m and satisfies H1(M; Z2)^0. From the realization of

homology classes we have a one codimensionai, compact, connected and C°°-

submanifold M' in M such that [M']^0 in Hm_1(M;Z2). It follows that

M —M' is connected. Let / be a C°°~function defined on M such that /-1(0)

= M',/^0 and for any point x of M',/is the square of a regular C°°-function

round x. We will approximate Mr by a suitable zero points set of Nash

functions. We can prove this more easily. But the author shall need a strong

form in another paper. Let Gn > f c be the Grassmanian manifold, c,a the naturally

defined vector bundle over G?a with fibre Rk. Here n is the dimension of the

Euclidean space containing M. Then these are Nash manifolds and the

projection £„,/,-»Gn</£ is a Nash mapping. Define a Nash mapping nl: M-»Gnjm

by

nl(x)=TxM for x in M.

Let 17 be a Nash tubular neighborhood of M whose closure is compact. We

can naturally extend n} on U. We use the same n^ for the extension. n1 is

also a Nash mapping. Let n2: M'-»G,U be a C°°-mapping defined by

7T2(x)c:7T1(x) and 7i2(x) JL T^M' for x in M'.

If we take n larger, then we can extend n2 on Rn. Let n3 be a Nash approxi-

mation of the extension such that they are sufficiently close on U in the C°

topology. Let n\\ l/-»GBjni_n and 713: U-^G^^^ be the Nash mapping such
that

7T1(x)J_7ii(x) and 7c3(x) _L n'3(x) for any x in 17.

For each /= 1,..., /?, we write as Xi the vector field d/dxt on U where (xl5..., xn)

is the coordinate system of Rn. Then there are vector fields X\, X$9 /=!,..., n,

on 17 such that

Xj — X i H~ A,- j

Jf[xci7r3(x) and X^an^x) for any x in U.

We call X\ as the 7r3-component. It is easy to see that X\ are Nash mappings

from U to 7T7. Let Yt be the 7rt-component of X\ with respect to TTJ and n(,

and Zf be the restriction of Yt on M. Then Zt are Nash mapping from M to TM.

ft follows moreover that for any point x in M' there exists i such that Z i je^Q

and Z/ = Z £ x(a Nash function) around x for each 7 = !,..., n. This means that
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at least one of fi=ZJ is regular at each point of M' and M' is a connected

component of F(/1?. ..,/„) the zero points set of/? H ----- h/J (*). Let g beaNash

approximation of / on M in the C2-topology . We put gt = Ztg . From the prop-

erties of / and Z,-, (*) remains valid after the approximation, that is, at least

one of QI is regular at each point of Vl the connected component of F(g1?..., gn)

which is close by M'(**). Therefore the pairs (M, M') and (M, Fj) are dif-

feomorphic. We consider a prime ideal ^} = {/eN(M)|/|Fl = 0}. By the fact

that N(M) is of Krull dimension m, we see easily the height of ^ is one. From

the assumption of the unique factoriality ^P is a principal ideal, that is, there is a

Nash function h on M that generates ^p. The property (**) means that h is

regular on Fx and that Vl is a connected component of V(h). Moreover we

know in [5] that V(h) is connected and then equal to V1. Hence we have

where JR+ = {f>0}, K_ = {f^0}.

This contradicts the connectedness of M—V1. Thus we proved the compact

case of M.

It remains to prove the non-compact case. We assume that H1(M'9 Z2)¥
:®

and M is connected. We use the same notation as in Proposition 2. By the

realization lemma above we can find Nash functions hl9...,hk on M2 in the

same way as above such that

1) M2— Fis connected and Fis not empty where F= F(/71?..., hk),

2) at least one ht is regular at each point of F, and

3) V is the product <9Fx [0, 1) in a collar Wof dM2 in M2 where W contains

Let ht be the restrictions of ht on M\ for i = l,..., k, Fx be the connected com-

ponent of FnM\ which contains V—W. By *$ we denote the prime ideal of

Nash functions on Ml which vanish on V^. Then the height of ^3 is one and

the common zero points set of ^S is Vl. The conditions 1), 2) and 3) means that

F! — Wis not empty and M1—(V1 u W) is connected. Hence for any two points

al9 a2 in M1—(Vl u W), there is a continuous path from at to 02
 nl ^i~(^i

U W). If ^P is generated by a function, then the restriction of the function on

the path is a positive or negative function. This contradicts the condition

2). Hence ^B is of height one but not a principal ideal. Therefore N(M1) is

not a unique factorization ring. This completes the proof of the theorem.
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