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Introduction

1. As the title indicates, the main purpose of the present paper is to give

a unification of the following two basic theories for coherent sheaves on

analytic varieties: (1) a type of cohomology theory, in which what we call

polynomial growth ( = p.g.) conditions on cochains and coverings are involved

and (2) completion theory along subvarietles of a given analytic variety. Our

theory is given to (algebraic) afrine varieties and their analytic analogues (n.l,

§ 1.2), which are more general than the affine varieties. The main body of this

paper is devoted to certain explicit uniform estimations on p.g. and what we call
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algebraic division ( = a.d.) properties of coherent sheaves on such varieties

(n.2). Our main application of such uniform estimations is to give:

(1) an analogue of Theorems A, B of H. Cartan in our unified cohomology

theory for the two theories mentioned just above, which we simply call 'coho-

mology with p.g. in completion theory* (cf. Theorems 2.5, 2.6 and Theorems

1.5, 1.6).

We will apply such a result to generalize, to varieties with singularities, the well

known theorems of A. Grothendieck on algebraic and analytic de Rham theory

(cf. [5]). This paper is originally developed*} to provide an analytic base of

the generalization as above, in such a manner that the Stein and algebraic

properties, which may be the most important properties of the varieties as above,

reflect closely in getting the generalization. Our explicit formulations in (1)

and in our uniform estimations are so chosen, to certain degrees, that they are

convenient for the applications to the de Rham theory.

2. Concerning the two quantitative properties mentioned in n.l, the first

one 'p.g.' is a synonym for 'rational' or 'meromorphic\ when the degree q of

the cohomology groups is zero (Theorem 1.5), and such a property concerns

most basic properties of algebraic and analytic varieties. When q^l, our

treatments of the p.g. cohomology ( = cohomology with p.g.) theory may be a

sharpening of purely algebraic treatments of coherent sheaves (§ 1). By the

second one, algebraic division ( = a.d.) property, we mean such a property

that concerns the degrees of zeros of cochains etc. along (imbedded) subva-

rieties of an analytic variety. As we learn from the classical Hilbert zero point

theorem, such a property concerns basic properties of the imbedded varieties,

and is important for investigations of analytic varieties. Now our studies of

the a.d. properties will be focussed on what we call open map properties (Defi-

nition 2.1) of geometric filtered complexes, such as Cech and de Rham com-

plexes of global nature (§ 2, § 3) as well as certain local complexes formed from

homomorphisms of coherent sheaves (§4), where the filtered structures are

defined by the powers of the ideals of the subvarieties. The open map property

concerns that property of the degree one map in question (§2.1), and implies

standard comparison theorems in completion theories (cf. [13]). In particular,

it insures:

*> Cf. [15]!.
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(2) exactness of complexes-^that of the completion of the complexes.
V

The open map property for the Cech complexes will insure the analogue of

Theorems A, B mentioned in (1), n.l, while that for the other complexes will

concern interesting a.d. properties of analytic varieties (§3, §4 and §5). Our

main task in the uniform estimations is to combine those on open map properties

with those on the p.g. properties of the above complexes.

Now letting the type of our cohomology theories be as above, we summarize

briefly the content of this paper.

3. Chapter I contains the basic notions and the main results of this paper.

First, in Section 1.1, we summarize basic notions which are used in our p.g.

cohomology theory. In Section 1.2 we give our main results in the p.g. uniform

estimations (Theorems 1.1-1.4), and we derive from them an analogue of

Theorems A, B in our p.g. cohomology theory (Theorem 1.5, Theorem 1.6).

The cohomology theory in Section 1 concerns the p.g. properties of the com-

plexes but not with the a.d. properties, and Theorem 1.5, Theorem 1.6 may be

regarded as a prototype of the result mentioned in (1), n.l. Our proof of

Theorems 1.1-1.6 will be given by using a p.g. version of standard tools for

treatments of coherent sheaves, syzygies, imbedding of analytic varieties as well

as extensions of cochains, and a p.g. uniform estimation on Cousin integrals (cf.

Lemma 1.2-Lemma 1.4 and Theorem 1.7 in § 1.3).

Cohomology theories with p.g. conditions were studied by P. Deligne-

G. Maliotionist [11] and by M. Cornalba-P. A. Griffiths [2] for locally free

sheaves over smooth algebraic varieties, by using the 5-estimations. The

situation in our p.g. cohomology theory, where we work with what we call

'p.g. coherent sheaves (Definition 1.5)' over the analytic varieties as in n.l, is

more general than theirs. Our method depending on Cousin integrals differ

from theirs. Next, in Section 2, we generalize the p.g. uniform estimations by

combining them with uniform estimations on the a.d. properties of the complexes

in question. The main results in this generalization, which we call d.p. ( = a.d.

-\-p.g.) uniform estimation, as well as in the uniform estimation of this paper

are given in Theorems 2.1-2.4. Such results insure the open map properties of

the complexes, and our analogue of Theorems A, B in the p.g. cohomology in

the completions (cf. (1), n.l) is a formal consequence of them.

4 In the first part of Chapter II, we summarize our non cohomological

uniform estimations on homornorphisms of coherent sheaves (cf. §4.1). We
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then give a cohomological version of those estimations, and we derive, from

such cohomological results, all the lemmas in Chapters I, II which concern the

uniform estimations on the sheaf homomorphisms (§4.2). The uniform esti-

mations in Section 4.1 contain results on the open map property of certain

Koszul complexes, which provide a cohomological generalization of Hilberl

zero point theorem and are a non cohomological version cf the main lemma,

Lemma 2.5, in the d.p. uniform estimations in Section 2 (cf. Lemma 4.2-Lemma

4.4). Such a fact, together with an open map property of the de Rham complex

(Lemma 4.7), is our main result on the open map property of the sheaf homo-

morphisms, and may be worthwhile pointing out in connection with our treat-

ments of completion theories.

5. Finally, in Chapter III, we prove the key theorem, Theorem 1.7, for

the geometric arguments in Section 1, Section 2 (as was indicated in Section 3),

which concerns a p.g. uniform estimation of the structure sheaves of the complex

euclidean spaces. We prove Theorem 1.7, by reducing it to rather elementary

p.g. estimations on Cousin integrals (on the euclidean line). Our reduction

depends on certain filtrations defined for the sets of the cochains (in question)

and some algebraic machineries for the filtrations, which imply a strong sharpen-

ing of the standard degerency theorem in the spectral sequence theory. The

algebraic arguments and the p.g. estimations on Cousin integrals in Chapter III

may owe their own interests, aparting from the applications to Chapters J, II.

(For the content of Chapter III indicated soon above, see the beginning of

Chapter III. We add a brief outline of Chapters I-III in the beginning of each

chapter. Such an introduction may be useful for understanding of the content

of each chapter and of the whole line taken in this paper.)

6. In giving the application of the cohomology theories in Section 1, Sec-

tion 2 to the analytic de Rham theory (§ 3), we should quote our results on the

C^-de Rham theory for certain stratified spaces, whose outline was given in

[15]2_4 and in [17]. The details of [15]2_4 and [17] will be published else-

where in a near future. Except the part of the application to the de Rham

theory in Section 3, this paper is completely self contained.

7. The author began the study of the contents of this paper and of the

analytic de Rham theory in 1971, and the very early versions of the content of

this paper were given in [15] t and [16]. Considerable parts of the explicit

computations in the uniform estimation of the present paper depend on [16].
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However, the present paper is written entirely newly from [16]. Finally, the

contents of the present paper seem to deserve to be generalized in more general

situations: our p.g. cohomology theory is given in a more or less categorical

form. Generalizations of the content of Section 1 seems to be very desirable in

that line (cf. n.6, §1.2). Assuming the p.g. cohomology theory in Section 1,

the most important facts in giving the d.p. cohomology theory are the open map

properties of the geometric complexes mentioned hitherto. From the scope

of the arguments in Section 2, the validity of the open map property as well as

the clarifications of their geometric meanings seems to be desirable for more

general classes of geometric complexes. Finally, our explicit p.g. uniform

estimations and the algebraic machinaries in Chapter III seem to deserve to be

tried their applicabilities for more general types of 'cohomology with growth

conditions". The author hopes that he will try possible generalizations about

what are mentioned above. We also hope that the contents of the present paper

provide a basis for possible generalizations.

Chapter I. Cohomology with Polynomial Growth Completion Ttieory

Here, for convenience of reading of Chapter I, we illustrate the basic notions

and the styles of the formulations in our p.g. uniform estimations. For this we

first let C" be a complex euclidean space and z coordinates of it. We set

g: =|z| + l, O: = structure sheaf of C", and, for an element a = (a1? a2

we define:

\ O; 0)a: ={9eF(C\ O); \<p(P)\<*ig(P)** inC"},

\ O; 0)p.g: = Wa6«+2#°(C", O; </),.

We then recall that a classical consequence of Cauchy integral formula implies:

(0)'t H°(C", £>; #)p .g^ {polynomials in r}.

Next letting X be a complex space, we may say that

I Coh (X) } ( coherent sheaves over X
(0)2 < : = collection of all <

( Cov (X) ) I open coverings of X

and the cochain map

(0)3 Cq : Coh (X) x Cov (X) 3 (ft, O - > Cq(^ ft)

constitute the underlying data for the cohomology theories of coherent sheaves
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over X. Now our first task in Section 1 is to give p.g. versions of (0)2, (0)3, which

yield a generalization of the sets in (0)l5 with respect to the underlying varieties,

coherent sheaves and cohomology degrees. Our main results in Section 1 for

the case of the degree = 0 are a generalization of (0)i, while those for degree^ 1

insures the vanishing property of the cohomology groups^: in Section 1.1 we

introduce some abstract notions, p.g. filtration, q-structure**^ of abelian

sheaves and p.g. functions', we see that such notions suffice to generalize the

sets as in (0^ to general abelian sheaves (Definition 1.45) and to give a p.g.

version of Coh(Jf), denoted by Coh(JQpg, to reduced complex spaces. Also,

using the p.g. and a 'distance function' of a topological space X, we define for

each subset Y of X what we call 'p.g. covering of Y in X\ in a concrete p.g.

fashion (Definition 1.7).

In the first part of Section 1.2, we attach, to our analytic varieties in the

main body of Chapter I (cf. n.l, § 1.2), a p.g. version of Cov(Jf), denoted by

Cov(X)pg, by using the arguments in Section 1.1. Next take a p.g. sheaf §

eCoh(Z)pg. Then, using a p.g. version of the cochain map as in (0)3, we

attach to § what we call 'p.g. cochain collection", C*(X, §)p g in symbol. Such

a p.g. collection contains all necessary sets of p.g. cochains in our p.g. uniform

estimations, and may be the most basic underlying data for our p.g. cohomology

theory. We note that the above p.g. collections, CovQOpg and C*(X, §)p.g,

are parametrized in a certain concrete fashion, where the main part of the

parameter space is a product R+s (s>0); we define what we call p.g. estimation

maps, which are a concrete transformation of R+s (s>0). The main results in

Section 1, Theorems 1.1-1.6, are given to the p.g. cochain collections. We use

the p.g. estimation maps for the explicit estimations in those results.

In Section 2 we generalize the p.g. cohomology theory in Section 1 to what

we called the d.p. cohomology theory (cf. Introduction). We give a generali-

zation of the p.g. cochain collection, which we call d.p. cochain collection (§ 2.2).

The main uniform estimations, Theorems 2.1-2.4, of Section 2 as well as of this

paper are formulated in terms of the latter cochain collections (§2.2). The

content of Section 2 is more general than the one of Section 1, by the introduction

of the new factor of what we called the a.d. estimations (cf. Introduction).

However, the algebraic style of the formulations in Section 2 will be given

*} Cf. Theorem 1.5 and Theorem 1.6. Also see Introduction.
**} This is an obvious abstraction of the 'absolute value' as in (0)! to general abelian sheaves

(cf. Definition 1.40.
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parallelly to the one in Section 1 .

Terminologies and Notations

Here we summarize some terminologies and notations, which are used

throughout the present paper.

1. First letting X be a topological space, we set

Ouv(X)} f open sets of X \
> : = collection of all I >

Ab(Z) J Ubelian sheaves over X\

Cov0(X): = 2°UVW.

For an element $£ = {A^} e Cov0 (X) we set \&?\= n ^A^. We use the symbol
(q ^ 1) for the q -nerve of $# :

2. For a positive number a, we set:

We use the set JJJ" frequently in the uniform estimations in this paper. Also we
use the symbol R+, as usual, for the set {reJ?; r>0]. Moreover, for a subset

T of H, we use the set :

(2)2 T:-

We use such a set for the case T = Z=set of all integers (cf. Chapter II). Next,

for an element <7 = (<7i5 cr2)6H|2, we define:

When (7 = (1, 1), we use the symbol jRjf2 also for HJ2. (This symbol is con-
cordant to R$2=R£ xR^ (cf. (2)^). Thirdly, for elements a = (a1? a2)^R+2

and aeR+, we set:

Moreover, for elements ^" = ((7!, (T2), a' = (a[9 tr^el?4"2, we write (T^or7, if a^a\

and o-2^(T2. When (71>a'l or C72>a2, we write a>af.
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§ 1. Cohomology with Polynomial Growth

§ 1.1. Polynomial Growth Conditions

1. Cochain collection. First letting X be a topological space and (j< 5)

an element of Cov0 (X) x Ab (X), we make

Definition 1.1. By q-th cochain (resp. cocycle) collection for (j&, g), we

mean the collection of all subsets of Cq(^ g) (resp. Zq(sf, $)). We use the

symbols Cq(s/9 5), Zq(j*, g) for such collections.

Here we check

Proposition 1.1. The following two facts are equivalent:

(i . i)i
(1.1)2 For eac/1 0 eZ*(X 5), ffiere is an element &' eCq~l(jif9 g) so

(l.l)i @<=:d@'.

Proof. Taking ^ to be Zq(A, $)eZq(j*9 5), (l.l)i insures (l.l)2. Con-

versely setting ®' = Cq-l(j*9 %)eCq~l(j*9 &), we have (l.l)2 from (l.l) lB

In our later arguments, we do not work with the 'whole spaces' Cq(s/> $),.-.

but with what we call p.g. subgroups, Cq(jtf, J5)p.g in symbol,... of Cg(j/, ff ),...,

which are characterized by concrete p.g. conditions (cf. § 1.2. See also n.2 soon

below). We will derive corresponding facts to (l.l)i ('vanishing property5 in

p.g. cohomology theory) from correspondences of (1.1)2. In the later argu-

ments, the former is also a formal consequence of the latter, but the converse is

not true. Our main subject in Section 1 will be to get similar inclusions to

(1.1)2 in our p.g. cohomology, by making explicit similar correspondences to

the one: @-+S>' in (1.1)2- Our main results in such a direction are given

in Theorems 1.1-1.6 in Section 1.2. The remainder of Section 1.1 will be

devoted to define what we call p.g. cochain collection, which is a family of

elements of Cq(jtf, 5) (characterized by concrete p.g. conditions), by making

clear basic notions in the definition of such collections. The arguments will be

given in a somewhat abstract fashion.

2. P.g. filtration. We begin n.2 by making a definition, which will play

a basic role to define the collection mentioned at the end of n.l.
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Definition 1.2X. (1) By b-(resp. p. g.~)*> filtration for an abelian group

&, we mean a map 0: R.+ —>2^J (resp. T: E!f2-»2^) satisfying:

(1 .2)i Q(a) 3 0 for each a e R+ (resp. !F(a) 3 0 for each a e R+2) .

(1.2)2 0(a')=>0(fl) if a'^a (resp. ^(a') ID ̂ (a) if a'^a).

( 1.2)3 (Archimedian property") For any a, a' eR+ (resp. a, a7 ell"4"2), there is

an element a" eJR+ (resp. o^'eK"1"2) so that

\(b, b ' ) e 9 ( a ) x 9 ( a ' ) } (resp. lF(cx")^ (b±b'\

(2) We call \JaeR+ 9(a\ Uaei?+2 «P(a) respectively 0-bdd*> and V-p.g.

subgroups of 3$. (When no confusions occur, we drop the terms 'bdcP and

'p.g/ from the terminology just above.)

Definition I022a We say that b-fihrations Ol9 92: R+-*2® are equivalent,

if 0j(R+) (/= I, 2) are cofinal wilh respect to the increasing inclusion as in (l.2)2.

Definition 1.23. Letting ^' be a subgroup of & (resp. co: £$-*<%" a horno-

morphism of abelian group), we call the b-filtration 0': R+ 3 a-»2®' 3 6(a) fi £%'

(resp. CL>;:,0: U+ a a~>2®" B coO(a)) the one Induced from & to ^' (resp. to Si" by

CD). Moreover, letting 0, 0" be b-filtrations of ^, ^" we say that; 0, 5" are c0m-

patible with co, if, for each b eM f , we have:

(1 .2)4 (D9(b)<=.6"(b'\ with a suitable 6' eIS+ .

The 'induced filtraiions\ 'equivalence" and 'compatibility'' as above are

defined for p.g. filtrations in the similar manner to Definition L22. Now taking

^ to be Cq(jtf, 5) in n. l , let '/ be the p.g. filtration in Definition \.2l.

Definition 1.3. By q-th W-p.g. cochain and cocycle collections for (j&9 g),

we mean

C'W, 0f; V)p.g:
( ' }l Z"(^, g; «P)M:

where ? is the induced filtration of V to Z9(X g) (Definition 1.23). Also we

set

(1.3)', C«(j/, 3f; lP)p.g: = «?-p.g. subgroup of C»(X g) (Definition 1.2,) .

( i . 3);' z*(j*, 5 ; «op.g : = c*(jf, R ; !P)p.. n z%ar, g) .
Moreover, when a^ consists of the single element X (i.e. ^ = {X}), we set

*' 'b'=initial of 'bounded' and 'bdd'=abbreviation of 'bounded'.
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(1.3)7 r(x, 3f; f)P.g:
Now we will construct p.g. filtration in a geometric manner. For this we

first make a definition, which is a slice abstraction of 'absolute value' for analytic

functions etc. in the standard meaning.

Definition 1.4 IB (1) By q-structure of geAb(X), we mean a family

0 = {0l/; C/eOuvpQ} of b-filtrations 0^: K+->2^, # = r(L7, 55), satisfying:

(1.3)2 p0|7<fl)^0|/(fl) for any [/'ID C7 and a el?+, where p = restriction : r(l/'; 5)

(1.3)3 The stalk 0P of 0 at P e X (i.e. 9P : R+ 3 a-»0P(a) : = lim 0v(d)) satisfies

(1.3)3 Op is a b-filtration for gp, and $P= Ua&R+ 0P(a) .

(2) For an element <pp e 3> we call inf (a eR+ ; 0P(0) 9 <Pp)( e^+ U 0) the

0-absolute value of <pp.

We call the pair (g, 6) simply q-sheaf. When there is no fear of confusions,

we write the symbol '(S% OY also as 'g-'. Letting (X, Ox) be a reduced complex

space, we define a q-structure Ox = {0vi U eOuv(X)} by

(1.3)4 Ov:R
+3a^r(U,Sx\:={<per(U9Ox)',\<p(P)\<a on I/},

where | | denotes the absolute value (in the standard sense).

Definition 1.42. We call Bx the standard q-structure of Dx. One check

easily that the absolute value defined by the standard q-structure coincides with

that in (1.3)4. For D| we define the standard q-structure by 9^ = {61lj}u, where

0$ assigns to each aeR+ the /c-times direct sum of the subset in (1.3)4 (of

F(U, Ox)). We define q-structures for general coherent sheaves in n.3. Now

returning to the pair (j^, 5) m Definition 1.4 j, take a subsheaf g' of g and a

homomorphism co: g->g/;.

Definition 1.4S. By q-structure for g', J5" induced from g, (g, co), we

mean

( ' J5 ^

where 0 is the q-structure of g as in Definition 1.4^

Next the following simple definition plays basic roles not only in our geo-

metric construction of p.g. filtrations but also in many aspects of later arguments :

Definition 1.44. By a defining function of p.g. structure of X (or, simply, a
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p. g. function), we simply mean a map g: X-+R4{. We call (X, g) simply a

p.g. pair.

Now, using the p.g. pair (X, g) and the q-sheaf (5, 9) as in Definition 1.4l5

we define p.g. filtration for (j/, 5) in the following fashion.

Definition 1.45. (1) We say that an element cp e C*(X g) is (g, 0)-a-

growth (a eU"1"2), if for each ja/' e*/T q+1jtf, we have

U-3J6 I<?v(6)l0<a'0(6) on l^'l* where | |0 = 0-absolute value (Definition

1.4t).

(2) By (0, 0)-vp.#. filtration for C«(X g)? we mean

(1.3)7 *Fgj: JK
+2aa->the subset of Cg(X g) consisting of all (g, 0)-a-growth

cochains.

The following notation will be used in the later arguments (cf. n.3, § 1.1 and

§1-2):

nsv( ' )6 c*(j*, 5; Vgte)M: = W«^(a)' where a runs through R+2.

Letting the subsheaf g' of g and the homomorphism CD: 3f->J5" be as in

Definition 1.4 l5 we use the symbols 0', a)*0 for the q-structures for g', g",

which are induced from 0 to Jy' (resp. 0 to g" by co). Then we easily have

Proposition 1.2. lFgie, = (Wg}9y and Wg^e = o}^gjQ, where the right sides

are induced from Wgj6 to C9(X g') and to Cg(X g") bv «*.

In n.3 soon below we define a p.g. filtration for certain coherent sheaves in

a more explicit manner.

3. P.g. coherent sheaf. Letting (X9 £)x) be a reduced complex space, take

a p.g. function g of X (Definition 1.44). We begin n.3 by giving a p.g. condi-

tion on coherent sheaves over X, which is used in the remainder of this paper.

Definition 1.5. By a (g)-p.g. resolution of an O^-coherent sheaf 51, we

mean a pair jf = (co, {JC/}j=i) consisting of an Dx-homomorphism CD and

matrices K; (lgjgp-1) with entries in F(X, Dx', ̂ ,0x)p.g. The pair jr

must satisfy a resolution as follows:

.! 0 _ p Kp~l

(For later convenience we call O^1 in (1.4)A the TZrsf resolution part' of ft.)
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Convention 1.1. (1) By a p.g. coherent sheaf over X, we mean a pair

§ = (ft, JT) as above; starting with the sheaf ft, our explicit uniform estimations

depend not only on ft but also on a resolution like (1.4)!. The terminology

'p.g. sheaf as above is convenient for later purposes.

(2) When there is no fear of confusions we use the symbol '§' for also

'ft'.

We arrange here some data which are useful in later arguments: first, writing

(X, g) as X, we set

(1.4)2 Coh (X)p.g: = collection of all p.g. coherent sheaves over X .

We define a map (length map)

(l.4)3 Ig: Coh (X)p.g 3 §-»Z+ a pft ( = length of the resolution of §)

(cf. (1.4)!), and we also define an increasing filtration of Coh CX)p>g:

(1.4)4 Coh*(X)p.g: =

Our coherent sheaves in later arguments are in Coh(X)p<g. Next letting the

p.g. sheaf § be as in (1.4)j, we mean by standard q-structure of § the one in-

duced from CD: Ofcl-»§ (cf. Definition 1.42 and (1.4)!). This q-structure 0% is

determined by co, while that of O*1 is uniquely determined by the analytic

structure of X (cf. n.2); we may say that 9$ is determined 'uniquely' by the

analytic structure of (§, X). Now letting *F0 * denote the (g, 0§)-p.g. filtration

for Cq(j&9 §) (cf. Definition 1.45), we get ^fl -p.g. cochain collection etc.,

which are obtained by applying Definition 1.3 to ¥gtes- For later notational

convenience we arrange here some notation for such collections. (The key

point in the arrangement is: (1) to drop the term 9$ from ^^ ,... and (2) Lo

write Vg: = *F(Jt0f_ simply as *g\ when no notational ambiguities take place.)

Thus we have :

„. fcochaim
1 V<H ̂  a \ f : = ^ ~ P-S- 1 i f collection for(Zq(j3/, §; 0)p igJ IcocycleJ

(1.4)7 C^(^ §; 0)p.g: =^-p.g. subgroup of

jCq(jtf, §; gf)j _ jset of (0, 0§) —a — growth cochains with value in
( ' )s tz«(j / ,§;^)J : = lc«(XS;^).nz*(j af ;S) .

(For the above sets, collections and subgroup, see (JL3)g and (1.3)^) Also we

will abbreviate S|Fg-p.g.' and \g, 9^)-' in the above terminologies simply as
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V- The data as in (1.4)6_8 will be frequently used in the remainder of Section 1

(cf. § 1.2, § 1.3). Using the above notation we have the following easily from

Proposition 1.2.

Proposition 1.3. Cq(j*, §; g)a = coCq(^ £)£; g\ (cf. Definition 1.43).

(The similar relation to the above holds for Cq(A, §; #)pig and Zq(A, §;

g)p-g.) We finish n.3 by the following remark for convenience of later arguments

(cf. §13).

Remark 1.1. (1) For O^ (fe>0) one can attach the p.g. coherent sheaf in

the following manner: O-^O^ —^O^-^O, with the identity /. This trivial

realization of O£ as the p.g. coherent sheaf is useful in later arguments. Unless

we soy otherwise, we mean by the 'p.g. coherent sheaf Dx" the above (trivial) one.

(2) Next we define a subcollection of Coh (X)ppg:

0.4)9 Coh'(AOp.g: = {&eCoh(X)p.g,

where the first resolution co: £)£-»§> (cf. Definition 1.5) is defined by a matrix

K (i.e. a) = K), with entries in F(X, OT; $)p.gj. Note that § is a subsheaf of

OJr, with k' = length of columns of K, and we have a p.g. filtration for § by

means of the inclusion: S^O^' (Definition 1.42 and Proposition 1.3). Writing

this filtration as ¥^, the set of ^-a-growth cochains with value in § (cf. (1.4)8)

is explicitly as follows:

(1.4),o C'te §; ¥%)« = CW, Oi-; ff). n C"(^, §) (cf. (1.4)3).

In Section 1.3 we give a comparison of Wg and the standard p.g. filtration ¥g,

which is a key fact in our p.g. uniform estimations (Lemma 1.2).

4. P8g, covering. Here we assume that the p.g. pair (X, g) is as in n.2,

and we fix a map rf: Xx X-»[05 co), to which we impose the single condition:

d — 0 on the diagonal Ax of X. We define a type of p.g. covering, which is used

in the main body of this paper. For this letting P be a point of X we use the

symbol ffr(P): ={QeX; d(P, Q)<r]. Then taking a subset Y of Jf and an

element (reK|2 we make

Definition L618 By g-p.g. covering of Y of size a in X, we mean the fol-

lowing collection of elements of 2X

(1.5). XX^sOr^li/.XP^Pey},

where Oa(P; g): =0,.(P), with r={rr0(P)!-1. Next lake subsets X', Y' of X
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satisfying 7'c: Y n X' and an element a' eR^2 satisfying a'^a.

Definition 1.62. We call the map

(1.5)2 s: 09.(T\ g)3U'ff(P; g) — > <(7; g^Ua(P; g)

p.g. refining map (from the left side to right side). Here the left side denotes

the g-p.g. covering of Y' of size a in X', and U'a(P\ g} : = Va(P\ g) n X'. Fixing

Y (resp. X', Y'), the p.g. covering in (1.5)! (resp. the p.g. map in (1.5)2) is de-

termined uniquely by a (resp. a, v'). This fact will be useful to fix our ideas

and to simplify arguments in later explicit uniform estimations (cf. §1.3 and

§ 4). Also such coverings and maps are suitable for our geometric applications

of the uniform estimations to geometric situations (cf. §1.2, §2.2 and §3).

The coverings and the refining maps in the main body of this paper will be the

ones in (1.5)1)2.

Now, by Definitions 1.6lj2 we have introduced all necessary basic notions

to define what we call ''p.g. cohomology theory for analytic varieties"; the first

basic datum is the p.g. function g: X-+R^ which is used to measure the p.g.

properties of cochains and coverings. The q-structure for abelian sheaves is

used to define the p.g. condition on cochains (cf. Definition 1.4!). Finally

'distance function d' is used to define the p.g. condition of the coverings. As

was checked in n.3, the q-structure for coherent sheaves may be regard as de-

termined by the underlying analytic structure of the varieties ; we may regard the

p.g. function g and the 'distance function' d are most basic 'additional data' to

the analytic varieties, which are used to define what we call p.g. cohomology for

those varieties. In order to emphasize this, we will sometimes call (X, g) and

(X, g, d) as just above 'p.g. pair' and 'p.g. triple'.

5. Finally we arrange here certain concrete maps, which are used in later

explicit estimations: first, by a positive monomial, we mean M(t) = atb (a, b>0),

where t is a variable. We call a map & : R+2 3 (vl9 cr2)-*JR+2 3 (<7l5 <72) to be of

'exponential linear type' (or, simply, 'el-map'), if al =M(c71)expM'(02),

(72 = L(cr2), with a positive monomial M, a finite sum M' of positive monomials

and a linear function L(t) = ct', c>0. It is easily checked that a composition of

el-maps is also an el-map. Next making a notational convention :

(1.6)0 a-(a l5 a2) = (aa1, a2) for any a, o^ and a 2eH+ ,

we set
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(1.6)', Er
p.g:={E':R+xR+23(r,a) - >R+xR23(rr, a')},

where r'^M^r), a' = M2(r-1)'^i(a) 9

where (/•', a') = E'(r9 a), with an element

S'eEp.g, and a' = M3(r-
1)^2(a + <7). (R+xR+2)xR+2 - > (R+xR+2)

(Here M/5 j£f; are positive monomials and IE E'

el-maps.) We write the correspondence: (jj+ xH+2) xR+2 _ > (R+ xR+2)

Ep>g 9 £-»I£pig 9 E' as n, where £, £' are as Figure I.

in (1.6)2 (cf. Figure i).

Definition 1.7. We call an element EeEptg an estimation map for p.g.

cohomology (or, simply, p.g.c. map) and E' = n(E)eEp_g its first part.

In the later estimations, the map £' concerns J/?ose <m coverings, while the

map £ concerns t/?ose on both coverings and cochains (§ 1.2): letting the element

(r; cr; a) be as in (1.6)2, the estimation: (r; a)-*(r'; cr') = E/(r; a) concerns that

of coverings, while the element a concerns that of cochains. Note that the

factorization in Figure I insures that the term 'a' has no influences on the cor-

respondence: (r; cr)->(r'; cr'). We use this fact in Section 1.2. Next take

p.g.c. maps £15 E2eEp^. Then the composition E2°E1 is not, in general, in

Ep>g. However, define an order in R+ xR+2 xR+2 by

(1.6)3 (r; cr; a)>(r'; or'; a /)<=>r<r / , (7>a' and oc>a'.

Then the set JE^ g is closed under the composition in the sense that there is a

p.g.c. map E3 e Eptg satisfying

(1.6)3 £3(r; cr; a)>£2°£1(r; <r; a) for each (r; cr; a)e(0, 1] xU+2 xl?f2 .

We use this fact in later p.g. estimations frequently, without mentioning it ex-

plicitly (cf. § 1 .3). Also we use the symbol: E3>E2°E1 to indicate the inequality

in (1.6)3.

Finally, the p.g.c. maps as above will be used in our main results in the

p.g. uniform estimations (cf. Theorem 1.1 and Theorem 1.2). Our explicit form

of the p.g.c. maps are chosen in such a manner that (1) the p.g. estimations ob-

tained by such maps insure our p.g. analogues of Theorems A, B of H. Cartan

and (2) the p.g.c. maps are concordant to more elementary p.g. estimations on

sheaf homomorphisms and on Cousin integrals (cf. §4 and §6). Fixing the
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explicit forms of the p.g.c. maps as above, considerable parts of the arguments

will be reduced to those of p.g.c. maps, which are essentially algebraic and

elementary (cf. § 1.3. Also see, in particular, §4.2.).

§1.2.

Here we summarize our main results on the p.g. cohomology theory in

Section I: in n.l-n.4 we introduce some basic data, which will underlie the

arguments in the cohomology theory in the remainder of Chapter I. Using such

data, we give our main results on the uniform estimations in the p.g. cohomology

in Theorems 1.1-1.4 (cf. n.4, n.5). Also dropping the explicit estimations in

these results, we give analogues of Theorems A, B of H. Cartan in our coho-

mology theory in Section 1 (cf. Theorems 1.5, 1.6 in n.6).

L Geometric iata0 As was mentioned, our analytic varieties in Chapter I

will be Stein varieties with suitable algebraicity (and will have similarities to

affine varieties). Here we introduce such varieties.

(i) First, by a coordinated complex euclidean space, we mean a pair

(€", z) of a complex euclidean space C" and its coordinates z. When there is

no fear of confusions, we use the terminology 'complex euclidean space C"(z)5

(or, simply, 'euclidean space €n(z)') as a synonym for 'coordinated euclidean

space (<C", z)\ We then introduce a geometric datum:

(].?){, 1: =(C«(z) x C"'(z')9 X = C»(z) x U^ />{,),

where €fl(z), Cn'(z') are euclidean spaces and U'O(BPQ) is an open set of €"',

and we set

(1.7)0 AEO : = collection of all geometric data as in (1,7)o.

The underlying variety of X will be X = CnxU'Q. We regard CnxCn' as the

ambient space of X = Cnx U'Q and the point P'0 as the center of X. As we

will see in later arguments, the uniform estimations, which are given to varieties

in An03 are most basic among the ones in Section 1.2. (In Section 1.2 we in-

troduce two another types of varieties (cf. (J.8)0 and (1.11)0). The p.g. esti-

mations for such varieties will be derived from the ones for varieties in Aa0, by

using explicit relations of the former varieties to the latter; see Corollary 1.4

and Lemma 1.3 in Section 1.3.)

(ii) Next, by a (smooth) local analytic variety of affine type, we mean a
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geometric datum

U-8)o X = (C«(z), l/o, X0, /7, P0, §x),

where X0(=) P0) is an analytic variety in an open set L/0 of C", and h is an ele-

ment of r(l/0, OLr0), O{;0 being the structure sheaf of U0. Moreover, setting

( i . 8 ) S D0 -divisor of /? (in l/0), D-X0 n D0 and X-A'0-D,

the final datum §x in (1.8)JJ is a l / fM-P-g- resolution of £\Y over (/0 — D0 (cf.
(1.4),), where Dx is the structure sheaf of X and the first term of £>x is of the

form: DC/0_^0~^->DA ' (cf. (1.4),), with the natural hornomorphism co. (Here

^UO-DO 's l-hc structure sheaf of U0 — D0.) The datum X must satisfy

(1.8), DBP0, and X is smooth,

( 1.8)2 the germs of X0, D at P0 have no common irreducible components.

We set

(1.8)0 Ae l a : = collection of all smooth analytic varieties of affine type

(cf. (1.8)o).

The underlying variety of X will be X = X0 — D. We regard U0 — D0 as the

ambient space of X and the point P0eX0 as the center of X0,... . The p.g.

uniform estimation for XE An l a will play basic roles in semi-global estimations

in later arguments (cf. §2). (Note that we include the p.g. resolution |SX of the

structure sheaf Ox in (l.8)0. The resolution §x is used to give an explicit uni-

form estimations for the sheaf Dx; see § 1.3.)

In the remainder of Section 1.2 we will fix geometric data JCeAn0 and

XeAe l a of the form in (1.7)o and (1.8)0. In (iii) soon below we fix some

additional data and notations for such varieties.

(iii) First, to X, X", we attach the following p.g. and distance functions :

where z = (z, z'). When there is no fear of confusions, we write df, dx also as

c/£, d,. In our framework, p.g. and distance functions have basic meanings to

define what we call p.g. cohomology theory for analytic varieties (cf. n.4, §1.1).

The p.g. and distance functions for X, X as above may reflect closely the analytic

structures of X, X and may be natural ones for studies of p.g. properties of co-

10 Natural distance of C"(r) is defined lo be cL:—\z r'| for -, ~:'c.C".
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herent sheaves over X, X. Our p.g. and distance functions for XeAn0,

XE An la in the remainder of Chapter I will be the ones in (1.9)0 (cf. also n.4,

§1.1).
Next, gx, dx as above are determined by X. We will use the symbol X

also for the p.g. pair and triple: (X, gx) and (X9 gx, dx) (cf. n.4, §1.1). Also

when there is no fear of confusion, we use X for its underlying variety X. For

the variety Xe An0 we use the similar notational convenience to the above.

2. P.g. parametrization. Letting the analytic varieties XeAn0 and

XE An l f l be as hitherto, we attach to them what we call "p.g. cochain collections*.

Such collections will contain all necessary sets of cochains in our p.g. uniform

estimations. The arguments will be given parallelly to X, X. For this we set

(1.9);, (X*, X*, P§) : = (X, X, Pi>) or (X, X, P0) (cf. (1.7)^, (1.8)J) ,

and DQX*: =U'0 or D. We construct the p.g. collection in the following three

steps.

First we define a parametrization of open submanifolds of X* by

where Ur(P'), Ur(P) are the discs in €"', C" of center P', P and radius r, and we

set

(The manifolds in Ouv' (X*)p g do not share particular p.g. properties. But the

use of the suffix 'p.g.' will be concordant to the arguments henceforth.)

Next forming a parameter space f£x* : = vx~ x U^2, we define the following

parametrization of elements of Cov0 (X*) :

(1.9)i ux*:tAx« = »x,xR¥=)^(v- a) - > <(Xr*(P*)) ,

where X*(P*) = Xr(P') or Xr(P) is as in (1.9)l5 and

(1 .9)5 j*rff(X*(P*)): =flfx*-p.g. covering of X*(P*) of size a in X* (cf. (1.6)0 •

We then set

(1.9)2 Cov0(X*)p.g: = Wx,(/ix,).

Thirdly taking an element §eCoh(X*)p<g (Definition 1.5), we define a

parametrization of sets of p.g. cochains with values in § by
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(1.9)3 C%: lx.: = /!,, x R f 2 9 A = (/i ;a) - > C«(X,(X*(P*), §)„):= set of all

a-growth cochains with value in § (cf. (1 .4)8),

and we set

(1-9)3 C*(X*,$)p.g:=C£(^).

We define a paramctrization Z| by changing 'C*' to 'Zq\

P.g. parametrlzation table

= Oi; a) -^L C'(X*, S)piB3

> Ouv' (X*)p.g9X*(P*) .

The manifolds, their coverings and the sets of the cochains in our p.g.

uniform estimations for X* will be taken from Ouv'(X*)pig, Cov0(X*)p>g and

Cq(X*9 §>)p.g. The last collection contains all necessary data in our p.g. uniform

estimations. In order to emphasize the role of such a collection in our uniform

estimation, we make

Definition 1.8. We call Cq(X*, §)p>g q-th p.g. cochain collection for §.

3. Estimation data. In the uniform estimations in n.4, we use the p.g.c.

estimation map E e Ep -g and its first part

E' E Ep. g (Definition 1.7). Next note (R+ x R+2 x R+2) - > (U+ x R+)

that our uniform estimation does not IE £'

work for all elements of 2X* (cf. (1.9)3) (JR+ x R
+2 x R+2) - > (R+ x R+2)

but for elements of a suitable subset Figure I.

of 2X*. More precisely, take subsets

C/i (3 Pi) of C/i and C/^sPo) of C70 (cf. (1.7)0, (1.8%), and we set Di§x, = L/i or

(D n I7t) (c=^o,x*)- Also taking elements 7~ = rx,el?+ and a = ax* e Ri2, we set*}

(1.9)4 p^: =01;X*x(0, r), ̂  : =^> xU^ and ̂  = /ix,

We fix this restricted parameter space in the remainder of Section 1. Our

p.g. uniform estimations for X* in Section 1 will work for all elements of 2f
x*.

4. Main results. Now, using the sets of the coverings and the cochains in

(l.9)1_3 and the estimation maps as in n.3, we will give our main results on the

^ff] (cf. the end of Introduction of Chapter J).
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p.g. uniform estimations for X* = XEAn0 or Xe An lf l. First we will be con-

cerned with Cech coboundary operator.

Theorem 1.1 (P.g. uniform estimation for Cech operator d = dx^). There is

a map*) sd: Coh (X*)piga $-*Ep g9 E$ (g>0), with which we have:

(1.10), j*Z*(X,(X?(P*)), SO.cSC'-'^CJW*)), §).-,

ii '///f (/•' ; a' ; a') = £^(r ; cr ; a) .

Here the parameter (P*; /•; a; a) /5 zw ̂ i+ (<=£>, . x* xU+ xH:J"2 x JSJ'2). More-

over, s = p.g. refining map***: ^(X^fP^^^X^P*)) (c/. Definition 1.62).

Next we will be concerned with the resolution of § e Coh (X*)p>g (cf. also

(i.4)2).
Theorem 1.2 (P.gr. uniform estimation for resolution}. There is a map

ex, : Coh(X*)p<g9j)->l?p.g9jE j& (g^O), w/r7? which we have

irz/A (V; a'; a) =E$(r; cr; a) ,

w/iere £/?e parameter (P*; r; a; a) /s r/5 /n Theorem 1.1. Moreover, co^: Ox>

->§ z's the first resolution part of § (Definition 1.5).

For the proof of Theorem 1.1, Theorem 1.2, see Section 1.3. Also we give

applications of Theorem 1 . 1 , Theorem 1.2 in n.6, Section 1.2 and in Section 3.

Here we add the following

Corollary 1.1. There is a map &'d\ Z
+-^E'p g,

which satisfies the factorization in Figure II. (/n C o n ( A < ) p - g ^ ^P.g

Figure II 4lg' denotes the length map (cf. (1.4)2), ^lg i*
iy~{- ^ ° TiT1 f

and the projection n is as in Figure I, n.6, §1.1). ^ > p-g
Figure II.

The similar factorization to Figure II holds also

for the map ex* in Theorem 1.2. (Corollary 1.1 is not a consequence of

Theorem 1.1. But the proof of the latter will also insure the former; see § 1.3.)

Now in accordance to the parametrization table in n.2, we rewrite Theorem

l.l in the following diagram:

*} Strictly, the map ss in Theorem 1.1 depends also on g^cohomology degree. But the
influence of q on the estimation is small; we do not mention the cohomology degree in
question in Theorem 1.1 and in the other estimations in Section 1.

**} por tjle p_g_ refining map Sj see n.4, Section 1.1. We use the symbol s for the p.g. re-
fining map in question, without mentioning it in the later arguments.
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1X*3A : > Zq(X*, $)p.g3Z?,(A)

/*x'
Figure III. P.g. uniform estimation for Cech operator.

(The similar diagram also holds for Theorem 1.2.) Next we assume that the

variety X* in Theorem 1.1, Theorem 1.2 is in Ae l a: X*=XeAn l a (cf. (1.8)0),

and take a point PeD1 ; X = (l/1 fl D). We then set ftx: = (0, f) xl^2 (cf.

(1.9)4). For an element p = (r; a) e $x (= (0, r) x U|2), we write the p.g. cover-

ing jtfff(Xr(P)) (cf. (1.9)2) as j^(P). Moreover, we set

(1.10)3 C«(j^(P), >3)p.g: = VjaeRlH2 Cf/(^fP), §)a (= ^jf-p.g. subgroup*^ of

Then, from the explicit formulations of Theorem 1.1, Theorem 1.2 and from

the factorization in Figure I, n.3, Section 1.2 (of the p.g.c. maps E%eE^\ we

easily have

Corollary 1.2.**) We have the inclusions:

where \JL' is a suitable element of p,x.

Corollary 1.2 is given in terms of the p.g. subgroups as in (1.10)4, and may

be more suitable for geometric applications than Theorem 1.1, Theorem 1.2,

where we used the sets of the cochains, C9(j/;/(P), §)a,.... We use Corollary

1.2 in n.6.

Here we make a remark on the explicit estimation in Theorem !.!***>.

Remark \.2L. As may be clear from its formulation, the estimation map

*> Cf. (1.4)7.
**) The similar fact to Corollary 1.2 holds also for Xe Ao0. But we do not use such a fact

(cf.n.6, §1.2).
***> The similar remark also holds for Theorem 1.1.



392 NOBUO SASAKURA

E% e Ep>g is taken independently from the point P*, which is the origin of the

manifold Xf(P) in question. When the variety X* = XeAn l f l, the divisor

Dl.x^ (aP*) has, in general, singularities, and the above independence is never

of obvious nature. As we will see in Section 1.3, Section 4.2 and in Section 5.1,

this independence is insured by certain uniform estimations on Weierstrass

polynomials and the coherency theorem of K. Oka (or, more precisely, the

structure of the proof of his theorem). From its formulation, we may regard

that the coherency theorem insures a uniform structure of the coherent sheaves

with respect to the points on the analytic varieties. The independence mentioned

just above plays a very basic role in our treatments of the cohomology theories

in this paper (cf. § 2, § 3). As in the case of theories of coherent sheaves, where

no explicit estimations are involved, the coherency theorem of K. Oka will

play the basic role in our cohomology theory in this paper. Next Corollary 1.1

and Corollary 1.3 concern a type of uniform estimations with respect to the

p.g. sheaves on the analytic varieties in question. Though we do not use those

results in this paper, the factorizations in Corollary 1.1 and Corollary 1.3 may

be useful, when one concerns a family of p.g. coherent sheaves.

Remark 1.22. The remark here is of technical nature for the proof of

Theorem 1.1. Letting X* be a variety in An l f l or An0, we use the phrase

'Theorem 1.1 holds for Cx/ as a synonym for that (1.10)! holds for Dx*, with a

suitable p.g.c. map £x*. Next, letting ^ be a collection of p.g. coherent sheaves

over X*, we use the phrase 'Theorem 1.1 holds for ^" as a synonym for '(1.10)!

holds for each £> e #' (by changing Coh(X*) in Theorem 1.1 by <&). When we

use this terminology, we assume that the factorization in Corollary 1.1 holds

for ^. We use the similar terminology for Theorem 1.2, Theorem 1.3 and

Theorem 1.4.

5. An affine analogue. Here we give an analogue of the results in n.4 to

affine varieties. The content here is chiefly given for purpose of geometric

application (cf. n.6 soon below and § 3). We do not give corresponding explicit

estimations to Theorem 1.1, Theorem 1.2 to affine varieties*). Our results

here will be given in a similar form to Corollary 1.2. In order to formulate

such results, we first mean by smooth imbedded affine variety a datum X' as

follows

*> For the explicit estimations for Theorem 1.3, Theorem 1.4, see Section 1.3 and Section
4.2, where the proof of these theorems is given.
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(l.ll)o X' = (C»(z),r,&r),

where X' is a smooth affine variety in a euclidean space €"(z) (cf. n.l, §1.2)

and §x> is a (|z| + l)-p.g. resolution of the structure sheaf *) Ox> of X' over Cn.

We then set

( l . l 1)0 Aff": = collection of all smooth imbedded affine varieties.

Letting an element .X'eAff be of the form in (Lll)0, the underlying analytic

variety is the affine variety X'. In this paper, unless we say otherwise, we

regard*} (X, £)x>) as the analytic variety. When we regard it as the algebraic

variety, we write it as (X'alg, Ox/falg), where the underlying topology is that of

Zariski. The p.g. and distance functions for X' will be gX' = \z\ + \, dx.: = in-

duced distance from the natural one dz of Cn(z). We write the p.g. pair (X', gx,)

and triple (X, gx,9 dx) also as X' (cf. also n.l, § 1.2).

Next setting /%,: =jR|2, our coverings will be taken from the family

(1.11)! Cov0(i:')p.g: = {j<(X');<Te/iZ '},

where jtfff(X'): =0x'-p.g. covering of X' of size a in X' (Definition L6J. Taking

an element §' e Coh (X')p g, our underlying datum for the p.g. cohomology (given

to §') will be the following p.g. group:

(1.11)2 C*(j*0(X')9 §')P.g: = ^-subgroup of C*(*0(X'\ §')

(Definition 1.3 and (1.4)8).

Thirdly we will use el-maps £&\ R+2->R+2 (cf. n.5, § 1.1) in our estimations

soon below. We set

(1.11)3 L = collection of all el-maps.

For each q e Z+ U 0 we fix a restricted parameter space fix,: = U|2, with an

element a = ax> 6R^2; our uniform estimations will work for fix, (cf. also n.3,

§ 1.2). Now we give an analogue of Theorem 1.1, Theorem 1.2 to X' in the

following fashion.

Theorem 1.3 (P.g. uniform estimation for Cech operator S = 6X,). There is

a map &d\ Coh(X')p-g3§'-->Zi9.#£, 02>0), with which we have

(1.12)! s*Z^<(X'), §%.gc=<5C«-KXXX'), §%.g, with v'=<?v(a).

Theorem 1.4 (P.g. uniform estimation for resolution). There is a map

As in n.3 we use the symbol X' also for its underlying variety X''.
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(g^O), w/f / i w/nc/7

(U2)2

w/tere co§,: £)£,->§' fs the first resolution o/§' (c/. Definition 1.5).

In the above d is in the restricted parameter space ft'x,. Also, correspond-

ing to Corollary 1 .2, we have

Corollary 1.3. We /?0ue the following factorization

Coh (X')p g ^er£, lg = length map (cf. (1.4)2),
(1.12)3 hi4 -s — s or

- — ,

The proof of the above results is given in Section 1 .3 (cf. also § 4).

68 Peg, complexes. Here we give our analogue of Theorems A, B of H.

Cartan to the p.g. cohomology theory. For this we fix the following data as

in Theorems 1.1-1.4 (cf. also Corollary 1.2):

I the local analytic variety X e Anlfl, the point P e D ,

and the parameter space /fy = (0, f) x&~±2 ,

the affine variety X' and the parameter space p'x, ,

and we set

(1.13)! (X*, rf) = (X, fe) or (X', /4>), and ̂  = <(Xr(P)) or <(JT'),

for each ju = (r; cr)e/«x = (0, ?~)xHJ2 or = t j e / £ x » =JRJ2, where the point PeD

is as in Corollary 1 .2.

Letting the p.g. sheaf §* = § or §' be as in Theorem 1.1, or Theorem 1.3,

we make

Definition 1.9 ̂  By p.g. Cech complex for (^, §*), we mean

(1.13)2 0 - > C0^, S*)p.g - > ---- > C* (^ §*)p.g - > .

We write this complex as C*(ja^, §*)P.g •

Next, assuming that §* is of the form in (1.4)l5 we call the following com-

plex q-th p.g. resolution complex for §*:

(1.13)3 0 — , Z««, 0*«)p.f €ti ..._£u Z'(j^, Ofe)p.B

0.

Thirdly, we regard fix*
 = fix or t*x* as the ordered set in the following
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manner (cf. (l.L3)0):

', and /i =

Then letting J^P denote the germ of X at P we make

Definition 1.92. By p.g. Cec/i complex for (XP, §) or (X', §'), we mean

(1 .13)5 C*(XP, S)p.g : =lim C*«, S)P.B, C*(X', §')p.g : =lim C*(^, §')p.g.
/!-» M-»

We define 'p.0. resolution complex for (XP, f>) or (X7, §')' by operating the

similar limit procedure to (1.13)5 to the complex in (1.13)3.

Writing the q-ih cohomology groups of the p.g. Cech complexes in Defi-

nition 1 .93 as H9(XP, §)p.g, Hq(Xf, §')p.g, we have the following theorem direct-

ly from Corollary 1.2 and Theorem 1.3.

Theorem 1.5. H«(XP, §)p.g^0 and Hq(Xf, $%.g = 0 (?>0).

Next applying the standard syzygy arguments to Corollary 1.2 and Theorem

1.4, we easily have

1.1. The q-th p.g. resolution complexes (q^G) for (XP, §) and

(Kf, §)') are exact (Definition 1.92):

(1.13)6 0 - > lira Z"(^(P), 0^)P.B?£^--5U lim
//-»• /I-*"

-^ lim Z«K(P), §)p.g - - 0,
//-*

we set ^(P): =j<r(XP(P)).

fte similar exact sequence for (X', £)')).

Now, in order to determine F°(XF? §)p-g, H°(X', §')p.g, we let 0P, 0X,

denote the natural homomorphisms from the algebraic objects to the analytic

ones

(1.13)7 0P: 0Xo(*D)p-.//°(Xp, Ox)p.g, 0X

where

(1.13)7 ^x0(*^): = sheaf (over X0) of meromorphic functions with the pole D.

Then we have

Theorem L6le The homomorphisms 9P and 0X, are isomorphic.
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If X' = C" then Theorem 1.61 is a classically well known consequence of

Cauchy integral formula. *} If XQ is smooth, then we get Theorem 1.6! also
easily from Hartogus theorem on removable singularities (in the codimension

one case). For general X, X' we derive Theorem 1 ,61 from what are mentioned

just above (cf. n.4, §1.3). Finally, applying the standard syzygy arguments to

Theorem 1.6! and Lemma 1.1, we easily have**}

Theorem 1.62. The following complexes are exact:

§)p.g — , 0 ,

0 .

Theorem 1.5 and Theorem 1.6 are our p.g. analogues of Theorems A and B

of H. Cartan ([!]). Applications of Theorem 1.5 and Theorem 1.6 will be

given in Section 3.

Remark 1.3 j. In [21], H. Yamaguchi showed an analogue of Theorem

1.5 and Theorem 1.6 to algebraic locally free coherent sheaves over affine

varieties, by using Theorem 1.5 and Theorem 1.6. Next, note that, in Theorems

1.1-1.6, we gave a more or less categorical treatments of the p.g. uniform esti-

mations. At present, we lack the notion of 'p.g. maps1. In this direction,

S. Kamiya ([6]) gave some functorial treatments of our p.g. cohomology theory.

It seems to be quite desirable to give a suitable functorial generalization of our

p.g. cohomology theory in Section 1 .

Remark 1.32. As was mentioned,***) cohomology theories with p.g. con-

ditions were studied by P. Deligne-G. Maliotionist ([11]) and by M. Corbalna-

P. A. Griffiths ([2]) for locally free algebraic coherent sheaves over smooth

algebraic varieties. Our results for p.g. coherent sheaves over the analytic

varieties as in Section 1.2, together with the result of H. Yamaguchi ([21]), are

more general than theirs. In particular, the independence assertions mentioned

in Remark 1.2 are not found in [2], [11]. Also, our proof of Theorems 1.1-1.6

depends on p.g. estimations on the uniform estimations on homomorphisms on

coherent sheaves in Section 1.3 and on Cousin integrals (cf. Chapter III), and is

entirely different from ones in [2], [11], which use the 5-estimations.

*> Cf. (0)j in the introduction of Chapter I.
**3 Cf. also Lemma 1.2 in Section 1.2.

***) Cf. Introduction.
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§ 1.3. A Key Theorem and Key Lemmas

Here we will reduce Theorems 1.1-1.4 in Section 1.2 to a key theorem,

Theorem 1.7, and key lemmas, Lemmas 1 .2-1.4. The latter is proven in Chapter

III and Section 4.

1. A key theorem. First setting

(1.1 4)0 Euc' := collection of all products C"(z) x Cn'(z') of coordinated

euclidean spaces (n.l, § 1.2),

we define a map (dimension map) dim: Eiic/aX = CJn(z)xCJ"'(z')-»Z+ xZ+

3 (n, ri). The p.g. and distance functions for X are g% = \z\ + l9 with z = (z, z'),

and dx '• = ds ( = natural distance of X) (cf. n.l, §1.2). Taking an element
(P; ; r, a; a) e 2% : = C"' x (0, 1] x R^2 x f^2, the set of the cochains in Theorem

1 .7 soon below is as follows :

(1.14)', Cq(j*0(Xr(P'))9 €>x)a: = set of all ^-a-growth cochains with value in

the structure sheaf O* of X (cf. (1.4)8) ,

where

(U4)i jtfff(Xr(P')): = gz-p.g. covering of Xr(P') : = C" x Ur(P
f) of size a in

C»xC»', with Ur(P'): = {Qf eC»'(z')i dz.(Q'9 P')<r} (Definition 1.6J*>

Then the following theorem is most basic among the results in Section 1.3.

Theorem 1.7 (P.g. uniform estimation for Of ;

X = C"xCB '). There is a map £d: Eue'3X-»Ep-g3
EX (g>0), which is factored as in Figure I, and with

which we have the following for each

with (rf, 0-'; a') = Ex(r» er; a), where (P1 \ r, cr; a) is in JZX = CM' x •••

As may be clear from its formulation, Theorem 1.7 will be most basic for

the proof of Theorems 1.1-1.6 (among the p.g. uniform estimations given in

Section 1.3). The proof of Theorem 1.7 will be given in Chapter III in an

independent manner from the contents** > of Chapters I, II. Here we derive a

*} de, — natural distance in Cn' (z').
**> Cf. Introduction
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consequence of Theorem 1.7. For this we first set

(1.14)3 Euc: =collection of all euclidean spaces X/ = Cll(z).

We denote by 'dim0' the map: Euc 3 X'-+Z+ 3 /?, and we also define a map

where §x, denotes the trivial resolution of £>x,: 0-»£)X,~>DX>-*0 (cf. Remark

1.1). By means of I7 we regard an element X/ = C"(z')EEuc as the element of

Aff; we use the terminology for Aff (n.5, § 1.2) for X'. In particular, the p.g.

and distance functions for X' are gx> = \z\ + } and dx/ = natural distance of

Cn(z) (n.4, § 1.2). Next taking an element (a, a)e Jl^ = R^2 x R^2 we set

(1.14)4 Cq(jtfa(X')9 Ox,)a: =set of #x,-a-growth cochains with value in §,

where ja^ff(X'): = 0X'-p.g. covering of X' (in X') of size <r (Definition 1.6j).

We use el-maps for the estimations in Corollary 1.4 soon below. We set

(1.14)^ L = LxL, with L = collection of all el-maps (cf. (l.il)3).

To an element & = (&19 &2) e L = L x L we attach a map

We then have

Corollary 1 A There is a map e : EMC 9 X' = Cn(z) ->

L3J£X, (q>0), \vhichs aiisfies Figure II, and with which we

have the following for each JTeEuc:

(L14)5 S*Z«(^0(X')9 CxO.ci^-KXr'Ci'), Or).- ,

with (cr'; a')=J?X'(<7; a), w/iere (a; a) /s /w JZX, (=R^2 xR+2).

Proof. Letting 17 i denote the disc in the euclid line C(w) with the center

0 ( = oiigin of €) and radus r= l , we identify Ctt with C" xOc€" xU(. We

write the projection: Cn x C/i-»<C" as TTX,. Then, writing the left side of (1.14)5

as Z«, we have n},Zq c Zq(s/ff(C
n x U(), O)a, where O:= structure sheaf of

C'1 x l/i. Apply Theorem 1.7 to the right-hand side of the inclusion just above,

and we restrict the resulting inclusions of the form (1.14)! to ^(^C^xO).

Comparing the explicit estimations in Theorem 1.7 and Corollary 1.4 (cf. also

the explicit form of the p.g.c. maps and el-maps in n.5, §1.1), we get easily

(U4)s. q.e.d.

From (1.14)5 and (1.12)!, Theorem 1.3, we easily have
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Corollary 1.4'. Theorem Ll-^Theorem J.3 for each*} Ox>; X'eEuc.

The right side will be our starting point of the proof of Theorem 1.3 and

Theorem 1.4 (cf. n.2-n.5 soon below).

2. Sheaf homomorphisms. Letting X* be one of Xe Am.0, JCe Anlc or

X'eAff as in Theorem 1.2 or Theorem 1.4, we will give here a lemma on the

title of n.2, which will be most basic in deriving Theorems 1.1-1.4 from Theorem

1.7. For this taking an element £> e Coli'(X*)pig (cf. (J.4)8), we recall that such

a sheaf § is endowed with two natural p.g. filtrations: The first one, W in

symbol, is induced from the first resolution 1C: O|i.-»§ of <r>, where K is a matrix

with entries*** in r(X*, Ox.; 0x+)P.g (cf. (1.4)8), and has been used hitherto in

Section 1. The second one, W, is induced from the inclusion: S^Ofu, k

= length of columns of K, and letting the parameter***) (P; r, <J, a) or (er; a)

e2'x*: = fix xR^2 have the similar meaning to Theorem 1.2 or Theorem 1.4,

the set of a-cochains is defined by 1F' as follows (cf. (1.4)9):

(1.15); C«(X, (Y*), §; ¥").: = C*K(r*), §) n C««(F*), O£.)..

(Here F* denotes the manifold X*(P) or X' as in Theorem 1.2 and Theorem

1.4.) We write the corresponding set to W explicitly as follows (cf. (1.4)8):

Now we give the key lemma, mentioned soon above, in terms of a comparison

of the sets of the cochains in ( I .15) i j 2 -

Lemma 1.2 (P.g. uniform estimations for Ox.- Cob/ (X*)p-g -^» L

homomorphisms).****) There are maps sx*: ig
~ V F.'

w/n'c/z zs

factored as in Figure III, a«J with which we have Figure III.

where the parameter (cr; a) fs as in (l.I5)i.

For the proof of Lemma 1.2, see Section 4. (See also Remark 1.4 at the

end of Section i.3.)

*} Cf. Remark 1.23.
!i!:") ffx^V'S- function for X* = \z\ + l, \lrx

l\ or |z| + l (cf. Theorem 1.2 and Theorem 1.4).
#*#) por ^g sets o(- tjle parameter l^1-, see n.2 and n.5, Section 1.2.

****) por the sets £, I/ of estimation maps, see (1.14)4. Also the set L in Figure III is the
first component of £=L/L, and lg = length map (cf, (1.4)3).
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3. Consequences of Lemma 1.2. First we prove the implication :

Corollary 1.5, Theorem 1.1 + Lemma l.2-*Theorem 1.2 and Theorem 1.1

for An0 .

Proof. Take an element XeAn0. Then, applying Theorem 1.7 to the

right-hand side of (1.1 1)2, Theorem 1.2, we easily have

(1.15)2 Theorem 1.2 for An0 - ^Theorem Li for An0 (cf. n.4, §1.2).

We prove the left side inductively on Cohp(X)p.g O = l, 2,...) (cf. (1.4)2), using

the standard syzygy arguments: if p = l then § = £)£ (Jc>0), and we have directly

Theorem 1.2 from Theorem 1.7 (cf. § 1.2). Assume that (1) p^2, (2) Theorem

1.2 holds*) for Coh^1 (l)p.g and (3) § 6 Coh*> (l)p.g . Writing § as: -->Oj'

-^-»O|-»§-»0, we define an element gj eCoh^1 (X)p.g n Coh'(X)p.B to be:
---- frOj'-^Ug! (c£)|)-»0. Now taking a parameter (P'; r, a: a)c:Xrx(<=:Uf

0

x R+ x K+2 x R+2) (cf. Theorem 1.2), we set

(a) Z'«: = {(? e C««(P; r), Oj)

where we set *<(P; r) = Xr(Xr(P)). Then letting the p.g. filiations iPJ, IP,

for §! have the similar meanings to !P, !P' for § (as in Lemma 1.2), we have

6Z'qcCq+1(j*a(P'9 r), §t; «Pi)a. Applying Lemma 1.2 and Theorem 1.1**) to

the right side, we get

(b) s*6Z'qcZq+i(j*JtP; r), §x; V^

where (er7; a/)=^§(or; a) and (r", or"; a//) = JE,^1(r, o-'; a') are defined as in Lemma

1.2 and Theorem 1.2.

It is clear that (b) insures

(c) s*Z'q = Zq(*0.9 OjV + C'fo.., SO.-,

where jafff« = XT»(P; r"). Finally operating the homomorphism ey to the both

sides of (c), we get the desired inclusion (1.11)13 Theorem 1.2. q.e.d.

For later quotations, we rewrite Corollary 1.5 in the form

(1.15)3 Theorem 1.7 syzygy(Lemma 1 '2)> Theorem 1.2 for An0

- > Theorem 1.1 for An0 .

Next take subsets of A, A' of Anla, Aff (n.l, n.5, §1.2). Then the similar syzygy

*} For this terminology, see Remark 1.22.
**> By the induction hypothesis we have Theoren 1.2 for CohJJ~1(X)p.g; by (1.15)2 we have

Theorem 1.1 for
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arguments to Corollary 1.5 insure

Proposition 1.4. // Theorem 1.1 holds for each Ox; KG A (resp. Theorem

1.3 holds for each £)x,; X'e-4'), then we have Theorem 1.1 and Theorem 1.2

for A (resp. Theorem 1.3 and Theorem IA for A').

Taking A to be Euc (n.l, § 1.3), Proposition 1.4 and Corollary 1.4 insure

Corollary 1.6. Theorem 1.7 -> Theorem 1.3 for each Ox , ;X'eEuc
sy z ygy(Lemmai.2) ) Theorem l<3 anj Theorem IA for Euc.

We give here an analogue of Corollary 1.6 to Anla. For this we define a

subcollection An?fl of Anla as follows:

(1.15)4 An?fl: ={Xe An la; X is of the form: (C"(z), l/0, *o, &* Sx, ^ o)}

(cf. (1.8)0), where X0 coincides with the ambient space [70. Moreover, §x is

the trivial resolution of Dx: 0-»OX-»OX-»0 (Remark 1.1), where X: = X0-D,

with the divisor D of /1X (in X0 = L/0). Thus X coincides with the ambient space

U0 — D. This property is similar to the one of X' = €"'(z)eEiie (ciAff) (cf.

(I.14)3), and Ae?flc:Anla has a similar role to EiiecAff.

Corollary 1.7. Theorem 1.1 and Theorem 1.2 for Am0-»Theorem 1.1 /or

Ox; Xe AitJfl->Theorem 1.1 and Theorem \.2for A.n®a.

The second implication follows from Proposition 1.4. The first is proven

in n.4, by imbedding XeAn?a to higher dimensional euclidean spaces (cf.

Lemma 1.3 in n.4 soon below).

Th. 1.7 (Dx,; Xf 6 Euc') (L™12} > Th. l.l, Th. 1.2forAn0

I
Cor. 1.4 (Ox.; X' sEuc) < '"'"TT^ > Cor. 1.7 (Ox; XeAn?fl)

Th. 1.3, l ^ f o r E M e ^ ^ ^ . ^ T h . 1.1, 1.2 for A<

Diagram I.

(The theorems at the bottom will be the starting point of the final part of the

proof of Theorems 1.1-1.4 (cf. (n.5).)

4o Imbedding. First take a euclidean line €(w). Using the similar no-

tation to (1.15)4, we define a map
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(€(w) x C"(z), X = Cx £70, PQ)

(Cf. 13. 1,§1.2),

where X = X0-D, with X0 = L70. Setting*> hx: = I -hxw (cf. (1.1 5)4), S = locus

of /1£ in X and nx = biregular map: S-*X=t/0 — D, we use the imbedding

Tiy1: X=170-D->S and the p.g. sheaf §s: 0->DX-^DX-*®S->Q over X for

the proof of Lemma 1.3 soon below. (£>£, Cs are the structure sheaves of

X, S.) Letting the parameter (P ; r ; o- ; a) e JZi ( c £/0 x (0, r) x U+2 x l?+2) be

as in Theorem 1.2, we set

, - Jl*- !l { , -
1 of tf:"{|z| + H + iK8rowth cochams

with value in I x 1 (cf. (1.4)7 and Definition 1.45),
(§5 J

where

(Here Xr(P)=X n C7r(P) and Xr(P): =€x t/r(P), with the disc in l/,.(P)c=C»5 are

as in (1.9)2, § 1.2.) Then the following lemma compares the sets in (1.16),.

Lemma 1.3 (P.g. uniform estimation for imbedding). There is an element

ExeEpfg (q*zG), with which we have

wif/i (r'; cr7; a/) = ^x(r5 a'> a)s where CDJJ = natural homomorphism.**) $S-»OS

an^ sx anJ ss are t/ze 'p.gf. refining maps'***) in X, S.

We check Lemma 1.3 in Section 4.2. Corollary 1.7 follows from Lemma

1.3 as follows: apply Theorem 1.1 for Ae0 to §s, which is a p.g. coherent sheaf

over Cx l/0. Then we have the inclusion of the form (1.10)! for the right side

of the second inclusion in (1.16)3. Using the first inclusion in (1.16)3, we pull

back this inclusion to X (by means of nx). Then we have the desired inclusion

in (1.10)! for Dx.

*> Here we understand that Cn(z)xCn'(z') in Theorem 1.2 is C(w)xCw(z) and that

**} Note that $s and D5 are obtained by regarding the structure sheaf of S as the sheaves
over 1", S.

***) por the precise form of the refining maps s5, 5j , see (1.1 3)2 in Proposition 4.7S.
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Finally, we will complete Diagram I in the following fashion.

Th. 1 .3, Th. i .4 for Euc Th. 1 . 1 , Th. 1 .2 for An?fl

I extension I
I (Cor 1.8 + Lemma 1.4) " [

Th. 1.3 (Ox,; X'eAff) Th. 1.1 (Ox; XeAn J f f )
1 < syzygy I
I (Lemma 1.2) |

lh. 1.3, Th. I.! for Aff Ih. 1 . 1 , Th. 1.2 for An l f l

Diagram II.

(The second implication is insured by Proposition 1.4; Corollary 1.8 and Lemma

1.4 will be given soon below.) By Diagrams J and II, the remaining task for

the proof of Theorems 1 . 1-1 .4 is to prove

Corollary 1.8. We have the following implications'.

( Theorem 1.1, Theorem 1 .2 for An? J _
1 Theorem 1 .3, Theorem 1 A for Eec 1

[ Theorem 1 . 1 , for each Ox ; X e An l a

\ Theorem 1.3, for each &x. ; X' e AIT .

For the proof of Corollary 1.8, we attach to elements of An la, Aff their

ambient spaces:

(M7)2 /: An? f l3r=(C"(z), £/0, £/0 , /7,§y , P0),

(For the above notation, see (1.8)0 and (1.11)0. In particular, §x is the p.g.

resolution of the structure sheaf (-Ox of X = X0 — D, with D = locus of h on X0,

and §y is the trivial resolution ofs!!) Y=U0 — D0: 0—>Oy-»Oy-*Q, with the pole

D0 of h on U0.) We will piove Corollary 1.8 by extending cochains on X to

its ambient space Y.

SB Extensions of cochains. Letting the variety XeAn l f l and Y=J(X) be

as in (1.17)2 and letting the parameter (P; r; a; (x)a2'x have the similar meaning

to Lemma 1.3, we compare the following sets of the cochains*':

(1.17)i \^cj/ //v
r
/m>/ TX a[: =set of all t/(^l/i'^j-a-growth cochains with

value in

r. (l.4)8and(1.3);.
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where

X=X0-D

Also letting the affine variety X'eAff and Y' = Cn(z) be as in (1.17)2, we will

compare the following sets

a >: = set of all g(=\z\ + l)-a-growth cochains with

value in

where

( [ ' 1 7 > 5 { ̂ 'i™ }: = 0-P-S- ^verings of j J,' 1 of size a in { *' 1.
( J&a (JL ) ) ( I ) ( JL )

(In the above, the parameter (<r; a) is in 2x,(<=.R~t2xR~t2) (cf. Lemma 1.2).

Then we have

Lemma 1.4 (P.g. uniform estimation for extension). Take suitable Ex

and JZ?X e £ (q ̂  0). Then we have

, . -7\ i " ~- v^'erv^—rv //' ^ A / a ^ ^ — I L ~ - ~ \*~^a \— r v* //' '-.'A/ a i /l - J 7 > 3 i.*^/^^,) O ) Cff l -fl,-. /^x « x f wAere

= £x(/-, < j ; a ) i

cox and a)x> are the natural homomorphisms: §X-^OX and : §X'->OX-.

(We prove Lemma 1.4, by extending cochains on X to <L/0 —Z)0 , . . . (cf.

§4.2).)

Now Corollary 1.8 is derived from Lemma 1.4 as follows. First applying

the Theorem 1.1 (for §x) to the first inclusion in (1.17)3, we get the inclusion of

the form (1.10)! for the right side of the former inclusion. Then, operating cox

to that inclusion (of the form (1.10)!), we have the desired inclusion of the form

(1.10)! for Ox. This insures the check of first implication in (1.17)!. The

second implication is checked in the similar manner to the above. Thus we have

Corollary 1.8, and we also finish the proof of Theorems 1.1-1.4 (cf. also the

Ur(P)\ =disc in Cn as in (1.9)l3 Section 1.2.
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remark soon below Corollary 1.8).*)

6. Proof of Theorem 1.6! . First recall that we checked the comparison

of 'meromorphic'' and *p.g.' in Theorem 1.6j for elements of An?fl and Euc

(cf. n.6, §1.2). Then, using the extension of the cochains in Lemma 1.4 for

Aela, Aff, we get Theorem 1.6! for An l f l, Aff from the corresponding facts**}

for An?fl, Euc. Thus we have shown that, for the proof of Theorems 1.1-1.6,

it suffices to prove the key theorem, Theorem 1 .7 and the key lemmas, Lemma

1.2-Lemma 1.4.

For convenience of understanding of the logical structure of Section 1.3,

we summarize Diagrams I, II and the content of n.6, Section 1.3 as follows:

Th. 1-7 ____ Lemm^2 ____ Th. U, 1.2
(for XeAn0) ~* (for!eAn0)

Lemma 1.3
(for X'

Cor. 1.4 Cor. 1.7
(O^X'eEuc) (€>x;XeAn?J

Th. 1.6, forX'eEuc Th. 1.6t forXeAn? f l
I Lemma 1.2 I
| (forX'eEuc, JTeAnJJ * J

Th. 13, 1.4 Th. 1.1, 1.2
(for X' e Euc) (for X e An?J

I , Lemma 1.4 j
| (forX'eAff5XeEAn l a) ' {

Th. 1.3 Th. 1.1
(Ox, ;X' e Aff) (Ox ;X6An l a)

Th. 1.6, forX'eAff Th. 1.6! forXeAE l f l

1 , Lemma 1.2 I
I (forX'eAflF,XeAn l a) j

Th. 1.3, 1.4 Th. 1.1, Th. 1.2
( forX'eAff) (for JTeAn la) .

Diagram III.

We will finish Section 1 .3 by a technical remark for the proof of Lemma 1 .2.

Remark 1.4. Letting the varieties XeAn l f l , X'eAff be as in Lemma 1.2,

we define the following subcollections of Coh'(^)p.g3 Coh'(X')pg (cf. n.2, § 1.3

and (1.4)9):

*) See also Diagrams I, II.
**) Also, in this step, we use Theorem 1.2 and, Theorem 1.4 for AnQ

la, Euc. This follows from
Lemma 1.2 (cf. n.3, §1.3), and our use of those theorems is legitimate (cf. also Diagram
III at the end of §1.3).
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(1.18), Coh"(X*)P.g: ={§eCoh'(X*)p.g (cf. (1.4^)] ,

where X* =X e An l f l or =X' e Aff, and writing § explicitly in the form of (i .4)! ,

(1.18); §: 0 _ > O£* J^» C^r1 _ >-- - -^~> Oj£ -̂ -> § _ > 0,

the element § must satisfy

(I. I8)'( the entries of AT,. (Ogy </?) are in r(,Y0, OYo(*£)) or r(X^lg, OXV.IE)>

according as X* = XeAn l a or = X'eAff .

(Recall that, for an element §eCoh'(X*)ptg, the corresponding condition to

(1 .1 8)'( is 'the entries of Kj are p.g. with respect to the p.g. function gx^ = \z\ + l

Now recall that Lemma 1 .2 was giver to Coh' (X*)p<g . Here we check* }

(1.1 8)2 one can replace 'Coh'(X*)pg' by sCoh"(X*)p.g' in Lemma 1.2.

First, if XeAn?a or X'eEwc, then the comparison of 'p.g.' and 'meromorphic

(or, rational)' in Theorem 1.6, is a well known fact (cf. n.6, §1.2), and (1.18)2

is legitimate. On the other hand, Diagram III insures that 'Lemma 1.2 for

Ae?a, Euc as well as the extension of cochains in Lemma I A' imply Theorem

1.61 for general Xe Aela and X' E Aff. Thus we have (1.18)2.

§ 2, Cohomology with Algebraic Bivisioji Polynomial Growth

This section contains the main results of this paper: First, in Section 2.1,

we summarize some algebraic notions used in Section 2. Using them we give

our main results of Section 2 as well as of this paper in Section 2.2. In Section

2.3 we reduce the results of Section 2.2 to those in Section 1, by using some

uniform estimations on the a.d. and p.g. properties of coherent sheaves (cf. also

Introduction).

§2.1. Algebraic Division Conditions

1. Open map property. We begin Section 2.1 by arranging some termi-

nologies, which will be used in later arguments. First, a filtered group is, as

usual, a decreasing sequence 38 = {B(wi)}™=Q of abelian groups B(m). When

*> Note that Lemma IA follows from an estimation on local parametrization of analytic
varieties, and is independent from Lemma 1.2 (n.5, §4.2). Also we use Lemma 1.3 in
Diagram III. This lemma is also proven independently from Lemma 1.2 (n.6, §4.2).
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there is no fear of confusions we write 5(0) also as B. By a filtered complex we

mean such a one

/"} ] \ Q _ > J? e i (g>0 _ j, . . . __ ^ <$ q Ai > . . .

where dq is a homomorphism of filtered groups and e is that of abelian groups.

Letting <g"*: 0->£ — ̂  <^'°-» ---- >^'q-^ be an another filtered complex, a

homomorphism to: <g7*-><g!"* is a collection co= [_o/, [cogj f /=0] of honicmorphisms

coq:
 <gq—>f$'ci (of filtered groups) and that of abelian groups of: E-*E' satisfying

the standard commutativily condition. Next let <£ = [&*', JJLE p] be a direct

system of filtered complexes. Writing <g* as: 0->EM -̂ -> ^°->----> V*-^

(cf. (2.1)^ and ̂  as {q(m)}m = 0, we make

Definition 2.1 j. We say that ^ has open mt/p property (resp. /s p-exacf)

if, for each g e Z + u Q and /*e/i, there is an element //>^, with which (2.1)2

(resp. (2. 1)3) below holds

(2.1)2 there is a map a: Z+->Z+ so that ^/C2'(7?i)=)pA

where CJ-^CJ-HO) and C;f-Z^oq.
(If #/£ = ! then (2.1)2 is equivalent to say that d^ Cl-*Zq+\C*) is an open map,

with respect to the topology determined by C*,....) The following equivalent

condition io (2.1)2 is useful in later arguments:

(2. 1)2 there is a map b: Z+-*Z+ satisfying limb(m)=oo and d^Cf^bim))

The open map property is important because we have*}

PropositioE 2.1 le // ^ satisfies the open map property and is ££-exact,

then we have

(2J)4

lim Z°(lim C*/C*(/»)) ^lim (lim Z°(C*/C*(/n))) slim (lim ̂ meM^)
-• - - - -- -

where Qlim is the natural homomorphism: C^

Remark 2.1. Take a Noetherian ring D, an ideal 3 of D and a complex

C* of D-modules:**) 0-»C0-*----+Cg-»---. We set ^g: ={3I"C«]^0- Then

*> For the proof of Proposition 2.11 and for roles of the open map property in other standard
comparison theorems in the completion theory, see M. Noumi [13].

**) We understand that the augumentation map e: E-»C° is of ihe form: E=0 and <?=zero
map. We use the similar notations in later arguments (cf. Definition 2.52).
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Artin-Rees theorem insures that if #* is exact then #* satisfies the open map

property. Also it is well known that the above theorem insures the exactness

of the completion of ^* (cf. [12]). In spite of this basic character, the open map

property seems to have been not taken up in general situations. In our con-

text, the open map property was first conjectured for de Rham complexes by

S. Lubkin in 1971 (in our conversations). The open map property for the de

Rham complex is our starting point of our studies in Section 2. The open map

properties will be given for some geometric complexes of local and global nature

(cf. §2 .3 and B, § 4.2). The most substantial part of Section 2 will concern that

property for certain Cech complexes of global nature.

Finally, letting #* = {<g7*; ue fi} be as in Definition 2.1l5 take an another

direct system V = {<&'* \ pe p} of filtered complexes. Writing <#*, <$"* as

O-frEj,-*^-* ---- >#{!-> and O-^-^;0-* ---- >^-»---, we ) assume that the

complexes (of abelian groups) 0-*£^-^CJ->----*C2 and 0-^-^CJ,0-* ---- *C*
-> coincide. (Here C* = C«(0),...)

Definition 2.12. We say that #, <<?' are equivalent, if for each qeZ+ u 0

and fie /£, there is an element /i '>ju, with which we have the following for each

m»0:

(2.1)5 p^CjKm) c C^(m'), with an element m' e Z+ satisfying lim m' = oo ,
w-»oo

and if the converse relation to this holds.

Proposition 2.12. Assume that &, &' are equivalent. If ^ satisfies the

open map property, then <&' satisfies that condition.

2. A.d. filtration. Let X be a topological space, O a sheaf of ring over

X, ft an D-module and /S = (fj)
s
j=i a subset of F(X, D). We write {fj}s

j=i as

^rm. By m-th standard homomorphism for /, we mean the homomorphism

Fm: Ds3(p = ( ( p j ) - ^ D 3 ^ j f J ( p j ( i ^ j ^ s ) , and we write the image FMOsczC

also as XWD. We use the symbol XW5\ for the O-submodule of 5\, which is

spanned by elements cpm - (p, with cpm e y/mD and cp e 5\.

Next take an element s& eCov0(X).*) We then make the following

definition for later terminological convenience.

Definition 2.2. By &-a.d. filtered group of Cq(jtf, ft) (or, q-th /-a.d-

filtered cochain group for (jf, ft)), we mean the following:

Cov0 (JiO=20uv(jr) (cf. the end of the introduction of Chapter I).
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(2.2) {OW, /« ft)}^, with /°ft = ft .

In n.3 soon below we will combine Definition 2.2 with the p.g. filtration in

Definition 1.2 1.

3. D.p. filtration.*} First taking an abelian group 8% and a map $:

(Z+ u O ) x H + 2 3 ( m , a)->2*, we denote by #m the restriction of <P to m x R + 2

(^Jl+2). Setting 8(m\ 4>)p.g = WaeR+24>m(a)(cz^), we make

Definition 2.319 We say that <P is a d./?. filtration of &, if we have

(2.3)! <Pm: «+2->2* is a p.g. filtration for each m e Z+ u 0 (Definition 1 .2^ .

(2. 3)2 &(m\ ^p.gCi^ra'; <£)pg for any m':gm, and <Pm9 <Pm, are com-

patible with the inclusion: ^(m; ^Op.g0-* 38 (m1 \ #)p.g (Definition 1.23).

Next letting the datum (X, 0, 5\, /) be as in n.2, we take a p.g. function g: X

-+KI" (Definition 1.44). We will define a d.p. filtration for Cq(s/> ft) by means

of (/, $). For this we assume that ft is a homomorphic image of O* : Ofc

— ̂ -» ft-»0 and that O is endowed with a q-structure 0 (Definition 1.4^. We

endow 5\ with the induced q-structure, G® in symbol, from (6, co) (Definition

1.43). Recall that (g, 9), (g, 0ft) define p.g. nitrations for C*(X Ofe), C9(X ft)

(Definition 1.45). For an element aeU|"2 we set

(2. 3) 3 I C"(j/' ^ ' , a 1 : =set of i ^' °} a-growth cochains with valve;3 «

in < > (cf. (I.6)3), where
( 5\ J

(2.3)3 C«(X 5^; g)x = o)Cq (j*, Ofc; ̂ )a (cf. Proposition 1.3).

We use the symbol Fm ( = m-th stan-

dard homomorphism for /): OS-^O &(•*> ®sk> ff)* -^ CK^ /m&\ ff)*

(cf. n.2) for its /c-times direct sum

D + • • - 4- O. Assuming that/ c T(X, Figure I.

O, flf)p.g, we make

Definition 2.3S. By left and right (^, gf)-d.p. filtration of B = €"(&?, ft), we

mean the following maps :

'd.p' = 'a.d.' + 'p.g.' (cf. n. 2., §2.1 and §1.1).
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We use the following notation for the first set in the right side of (2.3)3:

(2.3)4 C?(X /"ft; 0)«: =,*,.. (m; a), Z?(sf, /">&; g).:

= ,*,..(«;«) ns-'(0).
Note that (2.3)3 implies

(2.3)s C?(X /"ft; 0).: = coCf(j*; /"O*; 0). (cf. also Figure 1).

(Here and in Figure I, we regard O* as the trivial p.g. sheaf: O-^O*—^-»O*-»0,

with the identity / (Remark 1.1).) We use the notation C*(jtf, /'"ft; 0)a,... for

the second set of (2.3)3. Moreover, we set

(2.3)6 CIO* /"ft; 0)p.f: = W«««C?(j/, /"ft; a), (cf. (2.3)4),

where the symbol c indicates the symbol T or V.

The left filtration ^hg makes use of informations of the left side of the

homomorphism co-Fm: Os/c-»§ and the definition of the sets in (2.3)4 is con-
cordant to the similar sets in the p.g. cohomology theory in Section 1 (cf. (1.4)8).

The left filtration is suitable for later explicit uniform estimation (cf. § 2.2). The

right filtration r$t.g is, as we will see soon later, suitable for applications to the

completion theory.

Definition 2.33. By g~p.g. subgroup of CQ(J&, 5\A0, ̂ A/: = Mm R//7'"^, we
<-//l

mean

(2.3), CV, ftA'; ff)p.g: =lim C«(j/, ft, g)pJC'f(^, /"ft; ff)p.g.
<-WJ

The word 'subgroup1 is justified by the following

Propositioo 2.210 There is a natural injection

(2.3)8 /: C«(X 51A/. g)pmg c_> C«(X «A /).

Proof. First, from (2.3)3, we have the exact sequence:

(a) 0 >C?te/™a;0)p.g > C«(X 5^; ̂ )p.g^^i C^(^5 ^)/C^(^5 /»ft) ,

where the homomorphism /.*,„ is induced from the natural one: it-»5l/^/mSl and

i = inclusion: Cq(^y 51; ̂ )p.g
c->Cq(j^y 5\). (Thus we use the information of the

right side of (a) in the definition of the right filtration r^/;ff.) It is easy to get

(2.3)8 from (a). q. e. d.

Concerning the right and left filtrations, we remark:*)

*> If we replace the symbol 'Cf in (2.3)7 by 'Cf, then the corresponding fact to (2.3)8 fails
in general; the right filtration is more suitable than the left one for application to the
completion theory.
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Proposition 2.2a. C?(X /""ft ; g)M => CJ(j*9 /»»& ; 0)p.g .

This follows directly from the definition of the both sides; see (2.3)^. In

Lemma 2.2l9 §2.2, we show that the above two filtrations arc 'equivalent' for

the varieties of the type in Section i.

4. D.p.c. estimation map. Finally we introduce an estimation map, which

will be used in the main estimations in Section 2 (cf. Theorems 2.1-2.22s §2.2).

Definition 2.4. By a d.p.c. estimation map, we mean a collection E = (E,

expM, L), where E is a p.g.c. estimation map el£p>g (Definition 1.5), M is a

positive monomial (n.5, §1.1) and L is a linear map: R+ B m->R+Bcm; c>0.

Recall that £ is a map : D : = (IT x «+2 x R+2) B (r ; a ; a)->D = (JR+ x H+2 x JT 2)

9 (r'; a'; a'). We regard E as the map:*)

(2.4), E: D x (Z+ U 0) a (r; <r; a) x m-*D x (Z+ u 0) 9 (r'; *'; a' • a') x [L(m)] ,

where a' = exp M(m).

(In the later estimations, we write the parameter space D x (Z+ u 0) as (R+ x R+2)

x(Z + uO)xl? + 2 ; see §2.2.) Note that the correspondence: (r; <7)->(r'; d')

is given by the first part E' of £ ( e J£p.g) (cf. Definition 1 .5). We call E' also the

first part of E. The correspondence : (Z+ u 0) 9 m-»(Z+ u 0) 9 [L(m)] will

concern the 'a.d. parC of the cochains (cf. §2.2). We call this correspondence

'the a.d. part of E\ The map E is factored as follows:

(2.4); (R+ x R+2) x (Z+ u 0) x IT2 -^ (K+ x M+2) x (Z+ u 0)

x (Z"- U 0) - E ' X L > (R* x R+2) x (Z-1- x 0)

(Here 'L' denotes the a.d. part of E.)

We set:

(2.4) 2 Ed>p-= collection of all d.p.c. estimation maps.

Concerning the decomposition E^E2 of the elements E{eEd^ (i = i, 2) the

similar 'associativity law1 to (i.6)3 (given for the p.g.c. maps) holds. We use

this fact frequently in the sequel of this paper, without mentioning it.

Writing a'eHl2 as «, aj), we set aa': =(aa'» a£) (cf. (1.6)J).
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§2.2. Main Results

1. Case of local variety. Letting the local variety X = (CM(z), U0) X09

ft,...) be as in Theorem 1.1 (cf. also (1.8)0), we fix a finite subset /* = (fj)*=i

Cr(*0, 0Xo) satisfying (1) //P0) = 0 (l£j£S) and (2) fj$Q(X0.pQ.J (l£j£s)

for each irreducible component XQ.Po.v of the germ of X0 at P0. Here we

generalize Theorem 1.1, Theorem 1.2 lo the present d.p. cohomology theory,

which is given to the pair (X, </). As in Section 1, the underlying variety for the

arguments here is X = X0 — D, where D = locus of ft. The p.g. properties of co-

chains etc. are measured, as in Section 1, by the p.g. function gx: =|ft~1 |, while

the a.d. properties of the cochains will be measured by ^. As in Section 1 we

use the symbol X also for X and (X, gx). When there is no fear of confusion,

we use 'X' also for (X, gx, /} and (X, /').

(i) D.p. parametrization. Here we generalize the p.g. parametrization in

n.2, § 1 .2 to the present d.p. cohomology theory. First the parametrization of

the coverings here is same as that in n.3, § 1.2 (cf. (1.8)2):

(2.5)! ux:fix: = DxxR+ xR^3^ = (P; r; a)

- > Cov0 (X)p.g9^: = <(*,(/>)) ,

where we write D as Dx. Also the manifold Xr(P) and its p.g. covering ja^ are

as in (1.9)2.

Next, we form a product rx: =/ixx(Z+ u 0)xHf2, and, for an element §e

Coh(X)pg (Definition 1.5), we define the following parametrization of sets of
cochains :

(2.5)2 TX: = / i x x(Z + uO)xH: + 2 9T = ( / / ;m;a )

-^CK^X-g;^). (cf.(2.3)4).

We define a parametrization Z| by changing 'Cf to 'Zf (cf. (2.3)4). Then,

we generalize the p.g. cochain collection in (1.9)3 as follows:

(2.5)3

We call Cf(X, §)J.g the g-rft (/, 5f)-^.p. cochain collection for §. We define

(/, ^^J.p. cocycle collection Z\(X, §)£g by changing the symbol C| in (2.5)3

to Z|. Such collections contain all necessary sets of cochains in the d.p. uniform
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estimations in n.l. We will fix the p.g. sheaf § as above in the remainder of

Section 2.

+ u 0) x R^si = (n; m; a) -fL C?(X, $)£„

= (P; a, y) ̂  Cov0

D.p. parametrization table

(ii) Estimation data. We will use the d.p.c. estimation maps Eel£dip

(Definition 2.4) for the uniform estimations in n.l. As in Section 1.2 our

uniform estimations will work for a subset of the parameter space TX: letting

D1;X be an open subset of DX9 which contains P0 (=origin of DX9 X...(cf. n.l,

§1.2)), we take an element (f, a, m)eR+ xR^2xZ+. We the form a subset

/^ = £»i ;xx(0, r)xR^ of /£x = DxxR+xR+* and*> r^ = /i§ xZJ xl?t2 of
rx = /ixx (Z+ u 0)xUf2 . As in Section 1.2 we call r§ restricted parameter

space for H. We fix r^ in the remainder of Section 2.

(iii) Now, using the sets of the cochains as in the table soon above (cf.

also (2.5)2), we generalize Theorem 1.1, Theorem 1.2 to the d.p. cohomology

theory :
V

Theorem 2.1 (D.p. uniform estimation for Cech operator d = 6x). There

is a d.p.c. estimation map E$eEd^ (q>Q), with which we have:

(2.6), **Z««(X,(P)), /™§)ac:<5C«-H<'(Xr,(P)), /»'$)„ where

(2.6)i (/, d', m\ ot')=E%(r, a, m, a) (cf. Definition 2.4) .

Theorem 2.2 (D.p. uniform estimation for resolution of §). There is a

d.p.c. map E§ eEd p (g§:0), with which we have:

(2.6)2 j*ZV,(Xr(P)), /m%)^<o%Z«(^(Xr,(P))> /m'®kx)«>, where
(2.6)2 (r'9 v', m'9 a') = E§(r, o, m, a) ,

and co$: Ox-^S is the first resolution o/§ (Definition 1.5)**)

Note that the sheaves //
WO£ in (2.6)2 are, in general, not free sheaves.

In order to complete the resolution in Theorem 2.2l we give:

*) For the sets JRJ2, ZJ, see the end of introduction of Chapter I. In Theorem 2.22, we are
concerned with the structure sheaf Dx, and we should understand that «P§=TQX,... .

**) Also, in Theorems 2.1-2.22, we drop the term V' from the sets of the cochains (cf. also
(2.5)2).
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Theorem 2.22 (D.p. uniform estimation for { />m&x\m=\)- There is an

element ExeEdp (g^O), with which we have:

(2.6)3 **Z<(X,(Xr(P)), /™Vx)^F™'Z«(^a,(Xr,(P}), Ct).., where

(2.6)£ (/-', a ' ; m f ; a') =£*(/-, a',m;*),

and Fm:Ds
x-+Dx is the m-th standard homomorphism for ^ (n.2, §2.1).

In Theorem 2.1-2.22, the parameter t = (P; r, a\ m; a) is in the restricted

parameter space T%( = DltX x (0, f) x Ht2 x Zt x H^2). We will rewrite Theorem

2.1 in the following diagram (cf. also Figure III, n.4, § 1.2).

>Cov0(X)p.g

O Ux ^\^
Px " Cov0 (X)p.g ^

Figure I. (D.p. vanishing properties for Cech operator)*}

For the proof of Theorem 2.1-2.22, see Section 2.3. Also applications of these

results will be given in n.3, n.4, Section 2.2 and in Section 3. As we will see in

Section 2.3, Theorem 2.22 concerns an open map property of Koszul complexes,

which relates to a cohomological generalization of Hilbert zero point theorem

(cf Lemma 2.5; see also Introduction). Theorem 2.22 will also fill the gap

between the d.p. and p.g. estimation in Section 2 and Section 1, and may be

most basic among Theorems 2.1-2.22.

2o An affine analogue- Letting the affine variety X' aC"(z) be as in

Theorem 1.3, we take a finite set y^' = ( f ' j ) s
j = l ^ r ( X r , Ox>; #X')P.g» where the

p.g. function gx> = \z\ + l is as in n.5, Section 1.2. Similarly to n.l, we use

the symbol X' also for (X7, gx>), (X, /'} and (X', gx>, /"). We generalize

here Theorem 1.3 and Theorem 1.4. The set of the p.g. coverings:

Cov0(X%.g: = {X,(X'); 0-eJRJ-2}, where ^(X') is the p.g. covering of X' of

size 0-, is as in Theorem 1.3, Theorem 1.4. Next we set TX, : = px. x(Z+ u 0),

with px,: =R^2. Then taking a p.g. sheaf §' e Coh (X')p.g (cf. Definition l^),

The map E'% in Figure I is the first part of E% (cf. n.4, §2.1).
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our d.p. cochains in n.2 will be parametrized as follows:

(2.7), C%:TX. =R^2x(Z+ U 0)9(cr; m)

— > Cf^CX'), /'"§' ; 0 x<)p.g (cf.(2.3)3) .

Taking an element (<r; m)eUf 2 x Z"*", we set*} T' : =K%2 x Z£. Our d.p. estima-

tion soon below will work for elements in r'. Thirdly, our estimation maps

here will be of the following form :

(2.7); E'\ j R f 2 x ( Z | - u O ) 3 ( a ; m)-*K^2x(Z+ (J 0)3(^(0-), [L(m)]>, with an

el-map ^and a linear map L = ct; c>0.

We write the collection of all such maps as Edmp.

Theorem 2.3 (D.p. uniform estimation for Cecil operator d = 5x>). For a

suitable E%eEdmp we have (q^\):

(2.7)2 s*Z%<(X'), /'wS')P.gci5C«-1«'(X'), /'m'-5')P.B9

w/r/i (a'; m') = £§((T; m).

Theorem 2.4] (D.p. uniform estimation for resolution). For a suitable

we

(2.7)3

m),

where oj^ is the first resolution of & (Definition 1.5).

Theorem 2.42 (D.p. uniform estimation for { ' m O X ' }„==())• ^or a suitable

(2.7)4

Ex,EE'd.p we twve***:

wir/1 (cr'; m') = £x'((J? m)-

//? //?e above the parameter (<j; m) /s in T' =U~:2xZ't.

For the proof of Theorem 2.3, Theorems 2.41>2, see Section 2.3.

3. Open properties. Here we show the properties in the title for

some p.g. filtered complexes. For this we first set:

*} According as we are concerned with Theorem 2.3, Theorem 2.4i or Theorem 2.43, (</; in)
depends on (X7, §') or X'. Thus we should understand that T' = T§' or =rj.,, ac-
cording to the theorems just above.

M) F'?" is the /;/'-th standard homomorphism attached to / ' (cf. n.2, $2.1).
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**' S*' /*' g*} '' = (*' S' ' 9x)(2 8)1 ' ;° jax . :=/ix:=(0,f)xll«o r = a / l i f : =jij2.

(cf.n.l,n.2, §2.2).

We regard /*x* as the direct set in the manner as in n.6, § 1.2. For an element

# = (r; cr)e/2x = (0, r)xl?J2 or = (7e/*i>, we denote by ja^ the p.g. covering

j/ff(Xr(P)) or j/ff(X') (cf. Theorem 2.1 and Theorem 2.3). We generalize
Definition 1.9 to the present d.p. cohomology theory:

Definition 2.519 By left (#*, /*)~p.g. filtered Cech complex for (j^, §*),
we mean the following filtered complex (cf. n.l, §2.1):

O *n n _ > 7r°( o<f ft*"! t v , ...V^-°Jl u * ^ V-^/iJ 5 ) /p.g - » ® Z V J /p .g - * • I V J /p.g

where we set:

(2.8)1 ^!K, §*)^.g: = (QK, /*-$*)p.g}-=o (cf.(2.3)6) ,

and i: = inclusion: Z°«, §*)p.g^ CO(J/M, §*)p.g.

Next we write §* in the form of (1.4)! : 0 -> O& -£E^_> . . . _Ei_ Ofe -^ §*

->0, and we set:

(2.8)2 ^?«, S*)^.g: = {Zf«, /*m§*)P.g}S=o •

(We define ^i(j^5 ^x*)p.g
 m tne similar manner to the above.)

Definition 2.52. By q-th left (g*, /s*)-p.g. -filtered resolution complex

for (j3 ,̂ §*) (^^0), we mean:

(2.8)3 0 _

-** arj^, ofe)-.f -^U ^fK, §*)^.g — o,

where the augumentation map is understood to be the zero map (n.l, §2.1).

We write the filtered complexes in Definitions 2.5lj2 as ^7(ja^, §*)p.g and

, £*)p.g- The right (/*, gf*)-p.g.-filtered complexes **&,„ $%+ and
§)^g will be defined similarly. Then we have :

Lemma 2.1 (Open map properties of the left p.g. filtered Cech and re-

solution complexes). The direct systems of the left p.g. filtered complexes

{Vf&v S*)p.g}M, {&K-*v S*)p.g}M satisfy the open map property and are
j#x*-exact (Definition 2.1), where \JL runs through fix* (cf. (2.8)0).

Proof*). Let E'§ : (R+ x R+2)-+(R+ x JR+2) and L§ : Z
+->Z+ u 0 be the first

Cf. also (2.14), n.4, §2.3, which is used in the proof of Theorem 2.2j and Theorem 2.4!.
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and a.d. parts of the d.p.c map E$ in Theorem 2.1 (cf. also n.4, §2.1). Then,

letting the element u = (ri <f)Epx (ciR^ xJtj"2) be as in Definition 2.51? we

have directly the following from (2.6)! and (2.4)i :

(2.8)4 s*Zf(^, /^p.g^C?-1^, /»'g)p.g, with M': = (r'; <*') = £&; a)

and m' = [Ls(m)] (m » 0) .

Comparing this with the numerical criterion (2.1)2 f°r the open map property,

we have that condition for the Cech complex defined for XeAn l f l . The open
•v

map property for the Cech complex for X'eAff follows from Theorem 2.3

similarly to the above. Also the open map properties for the resolution com-

plexes defined for XE Anlfl and X'eAff follow*) from Theorem 2.2l5 Theorem
X

2.4^ Finally, the ^-exactness condition for the Cech and the resolution

complexes follow from the 6p.g. exactnesses', Corollary 1.2, Theorem 1.3,

Theorem 1.4, and we finish the proof of Lemma 2.1. q. e. d.

For the right d.p. filtration we have the similar fact to Lemma 2.1 :

Lemma 2.2 (Open map properties of the right d.p.filtrations). The direct

systems of the right p.g. filtered complexes {^f(^^ S*)p.g}/i and {S^C ,̂

§*)p.g}/i satisfy the open map property and are /%-exact.

By Lemma 2.1 and Proposition 2.12, the following lemma insures Lemma

2.2.

Lemma 2.3 (Equivalence of the left and right d.p. filtrations). The direct

systems W«, $*)£,}„ ™d {<<??«, S*)̂  as well as {0^, §*)p\g^
and {#?(.«/M, §*)p.g},* are equivalent (Definition 2.12).

Recalling the definitions of 'equivalence' and Proposition 2.22, we see easily

that the proof of the following leads to Lemma 2.3 :

Lemma 2.3'. We have the inclusion:

(2.9), 5*^^, /-S*)p.B«=Cf «,/»'§*)„, with m' = [L^(m)], and a

suitable parameter // e /*x*, where m»0 and Lx* is chosen**^ in an inde-

pendent manner from (/^; m).

The proof of Lemma 2.3' is given in Section 4.2.

*> See the footnote *>, p. 416.
**} Ly* is, as in Lemma 2.1, a linear map. Also the pair (j/^ §*) has the similar meaning

to Lemma 2.1.
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4. P,g. complexes in the completion. Now, from the results in n.l-n.3,

we derive a generalization of the p.g. cohomology theory in n.6, § 1.2 to the

completion theory. The content here will be our main applications of the

uniform estimations in Section 2 as well as in this paper. First letting the pair

(sfp §*) and /* eF(X*, C^*) be as in n.3, we define

(2.9)! C*«5 6*)p.g: = lim C*«, §*)p.g/C*«, /<""$*)p.g, where
4-~m

§* : = lim §*//*'"§* <>cf- Definition 2.3).
<~w '

By Proposition 2.2 1? this complex C*(ja^, §*)p.g is a subcomplex of C*(j3^, §*).
Now, denoting by XF the germ of X at P, we generalize Definition 1 .9 to the

completion theory as follows
V .A vN

Definition 2.6. (1) By /?.#. Cech complex for (XP, £) a/id (X', §') we mean :

(2.9)3 C*(XP, §)p.,: = lim C%fl^ §)p.g> C*(X', $%.,: = lim C*(j^, S')P..,
A*-* /*'-*

where p,, p! run through /Ix+.
>\ >s

(2) By g-£/t p.^. resolution complex for (XP, §) and (X;
3 §') (g^O), we

mean

4 o

where Z«(XP, §)p.g: = C«(X,, §)p.g n ̂ (O),-, and Kp _„... , o)e,... are the
completions of Kp, {,..., cos.

Now we generalize Theorems 1.5, 1.6 to the completion theory as follows:
^ ^

first denoting by Hq(XP, §)pog the q-ih cohomology group of Cq(XP, §)pg,...5

we have

Theorem 2.5. Hq(XP, ^)p.g^0 and Hq(X', §')P.gsO (g^l).

This follows from Lemma 2.3 and Proposition 2.2i. Next we have

Leinma 2»4. The p.g. complex in (2.9)4 is exact.

Proof. From the open map property for the p.g. complexes (cf. Lemma

2.2), we have

(2.9); Z«(Xp,S)p.gslm(lmZ«(^ and the similar
* p,-» <-w '

fact to Z"(X', S')P.g.

Similarly, applying the open map property for the p.g. resolution complex
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to the right side of (2.9)4, we Set tne desired exactness. q.e.d.

Finally we determine the structure of H°(XP, §>)pg and H°(X', §')p.g. For

this, letting the sheaves £)Xo(*D) of merornorpbic functions over X0 and <OT '5a lg

of (algebraic) regular functions over JCllg be as in Theorem \.6} (cf. also (\A3)'7).

Then we have:

Theorem 2.6 j. There are natural isomorphisms from the meromorphic

and algebraic completions to the p.g. completions:

(2.9), 0P: QXa(*D)P^> H?(Xr, OA)p .g , 0r

where the left sides are as follows:

CXo(*D-): = li
(2.9)^

Proof. We prove the first isomorphism in (2.9)5. The second is proven

similarly. First, from the isomorphism 0P: DXo(*D)P^H0(XP, Ox)p.g»
 we see

that the following natural homomorphism is an isomorphism:

(a) 0P: 0Xo(*D)P - > liin(li

where we write ja^: ?=jtfff(Xr(P)) as jtffl(P) (cf. also (2.8)0).

On the other hand, (2.9)4, Theorem 2.22 and Lemma 2.3 imply that

(b) //°(XP, 6x)p.g = right side of (a),

and we have (2.9)5. q.e.d.

Finally, applying Lemma 2.4 to Theorem 2.6A, we generalize Theorem 1.62*. /\
to the completions §, §' as follows:

Theorem 2862. The following complexes are exact:

S)n.K > 0,
(2.9)6

o .

Theorem 2.5 and Theorem 2.6 are a generalization of Theorem 1.5 and

Theorem 1 .6 as well as our analogue of Theorems A, B of H. Cartan in the

p.g. cohomology theory in the completion. We give an application cf Theorem

1.5, Theorem 2.6 to the analytic de Rham theory in Section 3.
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§ 2.3. Key Lemmas

Here we give key lemmas for Theorems 2.1-2 A, which concern the open

map properties of £)x*, where X*=X or X' (cf. Lemma 2.5-Lemma 2.7).

Also, using those lemmas, we prove Theorems 2.1-2 A.

1. Koszul complexes. In our proof of Theorems 2.1-2 .4, we will take

Theorem 2.22 and Theorem 2.42, which concern the a.d. properties of Ox*,

as the starting point (cf. n.3, n.4). Recalling that the a.d. properties in Theorem

2.2, Theorem 2.42 are measured by the powers of S*\ = S or ^/", we first

attach to f*m what we call m-th Koszul complex for S*\

f? iry> n _ >D n"\ j> _ k...r>(p)^U^z. iu;0 u - > AJX4= - > *JX* - » ^x* -

Here the Cx*-homomorphism F*m is given, as usual, in terms of the exterior

product as follows*) : for a point QeX*, let Qfa denote £)Q (: = Ox*jQ)-module

consisting of differential forms of degree q with coefficients in DQ. Letting x

be a (formal) indeterminate, we denote by /Q the identification : €>(P) 3 cp =

(<Pj)j-*&QBT,j9jdxj, where J exhausts all indices J = (Ji<mmm<jp)' Then

FJm is defined by: iQF*m= Aco m - i Q , where we set com: =Z;/=i/fmdx/ and 'A '

denotes the symbols of the exterior product. Noting that Ff^I
1=F*m (cf. n.2,

§2.1)**), we use the Koszul complexes in (2.10)0, ̂
r*m in symbol, for analysis of

the sheaves /*m£)x* ( = F*mOx*) (cf . n .2 soon below) . The lemma in n.2, Lemma
2.5, will be our key facts for the proof of Theorem 2.22, Theorem 2.42, which

concern the sheaves J5"*mDx*. In later arguments we use the symbols J2™,

F™,... or J^"/m, Fy,... for ^r*m
9 F*m, according as we are concerned with X*

=X or X'.) We set ̂ * = {Jr*m}^1.

2. Open map property for «^*. Letting the parameter spaces /£

xJR+xHJ2) and fiX'i=R^2 be as in Theorem 2.22, Theorem 2. 42 (cf. also

(2.5)!, (2.7)0, we form a product JZX: = ^xxJ?+2 (c=Dxx IT x JRf2xU+2) .

Also we take a linear function L0jX* = c0jX4; c0tX*>Q. Then we have:

Lemma 2.5 (Open map property for J5"*). Choose suitable d.p. estimation

v Cf. J. P. Serre [19].
**) Precisely the homomorphisms F*^ and F*m are

xff<?j and 25=i ^j'/T- This difference of the signatures does not cause differences
for the applications of the results for F*0\ for F*'ra.
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maps*) ExeEdp and Ex, eE'd,p. Then, for each (m, m)eJZ+xZ+ satisfying

m>Lox*(m), we have the following inclusion (l^

p.B n

wiff t (r'; cr'; m' ; a') = £x(r; <r; m; a) and (V; wt') = £x,(<r; m). Here the para-

meters (P; r; CF; a) are in ^x(CI^i,xx^+ xM|2xl?|2) and d is in /%> (cj?|2).

If we fix an element meZ+ , which defines the homomorphisms F™, then

Lemma 2.5 insures the open map property for Fjf. As we will see soon below,

Lemma 2.5 plays the most basic role in getting the d.p. uniform estimations in

Section 2 from the p.g. estimations in Section 1. Also Lemma 2.5 will concern

a cohomological generalization of Hilbert zero point theorem (cf. Part B, §4.1).

Lemma 2.5 will play the most important roles in the lemmas given in Section 2.3.

3. Here we will prove the following implication :

Lemma 2.6 (Reduction of d.p. uniform estimations to p.g. uniform es-

timations).

Precisely, in the above implication, we use Theorem 1.1 and Theorem 1.3,

applied to the structure sheaves Ox and OX'. Note that Theorem 1.1 and

Theorem 1.3 do not concern the a.d. properties of Cx,..., while those properties

are the basic factor in Theorem 2.22 and Theorem 2.42; we rewrite Lemma 2.6

in the following symbolical form :

(2.10)2 P-9- uniform estimation for Ox<, open map property for F*-»d.p. uni-

form estimation for £)x*.

We prove Lemma 2.6 in three steps. First we introduce a type of auxiliary

estimation maps, which is used to fill the gap between the estimations in Theorem

2.22, Theorem 2.42 and in Theorem 1.1, Theorem 1.3.

(i) Fre d.p.c. map. Denote by D, Dr the parameter space (R+xR+2)

xZ+x R+2 and (R+ x R+2) x R+2, on which the d.p.c. and p.g.c. maps operate.

*> Cf. Definition 2.4 and (2.7)J
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Then we make:

Definition 2.5. By a pre d.p.c. map we mean such a map:

(2.11)0 E:D-+Df, where E is written as E = pr-E, with a

d.p.c. map E (Definition 2.4) and the projection pr: D-+D'. lgure '

Take p.g.c. and d.p.c. maps Et, E2. Then, for each r = (r; a; mi a)e(0, 1)

x R+2 x Z4' x Up and the pre d.p.c. map E as in (2. 1 1 )0, we have :

(2.11)o £J(T) >-£!•£ (T), and £2(r)>-£- E2(r), with suitable pre d.p.c. maps

Bt, F2- (For the order >-, see (1.6)3.)

(ii) Letting the parameter space 2X^ and the linear function L0iX+ be as in

Lemma 2.5, we check that the symbol 'C9' in Lemma 2.5 is changed by 'Z9'

(by using the pre d.p.c. map instead of the d.p.c. map). (In Lemma 2.6' soon

below, the parameter (P; r; cr; a) or ere 2X, is as in Lemma 2.5. Also the

elements (m, m)eZ+xZ'r satisfies: /7/>Z/0 ,x+(W7)-)

Lemma 2.6'. (1) For a suitable pre d.p.c. map Ex we have (1 ^

(2.H), ^*(Z"«(1,.(P)), /moW)a n (F-r'(O))
c F»_ , Z"«. (1,, (P)),

with (r'; <r' ; a') = £^(r; cr; m; a).

(2) For a suitable Q\-map &x, we have:

(2.1 1)2 ^*(Z««(X'),

with cr'=&x.(o).

Proof. The proof of (1), (2) is parallel. We prove only (I). For this we

first remark that, by applying Theorem 1.1 to the right side of (2.1 1)l5 we have:

(2.11)1 s*(left side of (2.1 1)0 c^C^'^'^,,^)), oG--i))a, (q£l) ,

where (r;; cr'; al) = E'x(r', cr; m; a), with a pre d.p.c. map E'x, which is determined

by E'x.

(Remark that the estimation in Theorem 1.1 is given by a p.g.c. map, and from

(2.11)0, we have (2.11)j) Now, using (2.11)'1? the proof of Lemma 2.6' is

given inductively on p: if p = l, then, remarking that F™'. OX-»O^ is injective,

we have (2.11)! directly from Lemma 2.5. Assume that p^.2 and that (2.11)!

(and so (2. 1 l)'t) holds for /; < p. Take an element <p from the left side of (2. 1 1 ) L,

and we write (p as <p = FjL1(/?/, with cp' e Cq(j*fa>(Xr.(P)\ /''"'' C^1^'- Hcrc
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(r;; cr'; m'; a') = £x(r; cr; m; a), with a d.p.c. map Ex as in Lemma 2.5. Ap-

plying (2.1 l)j for p = p—\ to (5cp', we have:

(a) sV eF™

with (r"; a"; a") = Ex(r'; <*''•> ™ ''•> a ')» where the pre d.p.c. map Ex is determined

by the maps Ex just above and Ex in (2.11)! (cf. also (2.1 1)0).

Finally, operating F™_ t to the both sides of (a), we have (2.1 1) , . q.e.d.

(iii) Proof of Lemma 2.6. We derive Theorem 2. 22 from (2.11)^

Lemma 2.6'. The proof of Theorem 2.42 is given by using Lemma 2.6' in the

similar manner. Letting the linear function L0(t) = Lox(i) be as in Lemma 2.5,

Lemma 2.6, we take a suitable linear map L(t). Then we have the following

for each integer m » 0 :

(a) m — m'> L0(m'), with m ' = [L(m)] .

Now take an element cp e Zq(^(P\ /m&x\, where j/M(P): =j*ff(Xr(P))(cf.

Theorem 2. 22). Then setting m': =[L(m)] and m:=m — m'9 one can write

(p = Ff_{(p', with (p'eCq(^(P), /"'O^. By (a) one can apply Lemma 2.6'

to (5^?', and we have:

(b) s'V GF-

with (r '; cr'; a') = £x(r; cr; m; a). (Here £x is the pre d.p.c. map as in

Lemma 2.6.')

Operating F™1{ to the both sides, we have:

(c) s*<p e Fy^Z^&tP)), Oi)a. .

On the other hand we see easily that the correspondence :

(d) (r; cr; m; a) - » ( r ' ; cr'; 7 7 2 ' ; a')

defines a d.p.c. map, which is determined by Ex and L(i). It is clear that (c)

and (d) insure Theorem 2.22. q. e. d.

By Lemma 2.6' we see that the open map property for ^"* in Lemma 2.5

suffices to get Theorem 2.22 and Theorem 2.42 from the p.g. uniform estimations

in Section 1. In n.4 we give a lemma, which is used to get Theorem 2.2 j,

Theorem 2.1 from Theorem 2. 22 (resp. Theorem 2.3, Theorem 2.4 1 from

Theorem 2.42).

48 Letting the p.g. sheaves §, §' be as in Theorem 2.1, Theorem 2.3, we
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assume that §, §' are in Coh' (X)p.g, Coh' (X')p.g (cf. (1.4)9). Thus §cO£, §'

^OJ* with a suitable keZ+. Then letting the parameter spaces r§, r^/, and

the estimation maps E§eEdp and E f ^ e E r
d m p have the similar meanings to

Theorem 2.1, Theorem 2.3, we have:

Lemma 2.7. We have the following inclusions:

l^n

(2.12)

w/iere (r'; a' \ m'; a') = jE§(r; a; m; a) awa7 (0-'; mO = £^((r; m), a«cf ^/ie para-

meters (P; r; cr; m; a) aw^ (cr; m) are /n r§(c:I>xJR+ x jRf 2 xZ + xU|2) and

/n f§ '(cJRf2xZ+). Moreover, a>$: O£ -»£>£,... ar^ the first resolution of

§, ...(Remark 1.1).

We prove Lemma 2.7 in Section 4.2. Note that Lemma 2.7 concerns the

exact complexes, and is of Artin-Rees theorem type. The role of Lemma 2.7

in our d.p. estimations in Section 2 is similar to that of the above theorem in

the completions of rings (cf. [12]). Here we check the implication:

(2.13) Th. 2.22 + Lemma 2.7 -> Th. 2.2i -> Th. 2.1 (and Th. 2.42 + Lemma 2.7

->Th. 2.41-»Th. 2.3).

(From a simple observation,5^ we see that Theorem 2.2lj2J together with Theorem

1.1, imply Theorem 2.1. Here we check the first implication in (2.13).) The

key fact for (2.13) is the following inclusion, which is similar to (2.11)i:

(2.14) j*(z««(

(This follows using the similar inductive arguments to n.3 (on the length of §).)

Actually, remarking that Z\^ff(Xr(P)\ /m$)xc:(Mi side of (2.14)), we easily

have Theorem 2.2X from (2.14), and we also have the first implication in (2.13).

We will conclude Section 2.3 by the following proposition.

Proposition 2.3. For the proof of Theorems 2.1-2 .4, it suffices to prove

Lemma 2.5, Lemma 2.7 and Lemma 2.3.

For the proof of these lemmas, see Section 4.2.

*} As in n.3, we consider only the case of the local variety
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Remark 2.2. Here we make some remarks, which are used in the later

arguments. First, we recall that we saw the following implication in (2.10)2:

(2.15)! Lemma 2.5 - > Th. 2.22 .

Next we remark that the open map property in Lemma 2.5 is given in terms of

the symbol 'Cq\ Using the similar (syzygy) arguments to Lemma 2.6', we see

easily that Lemma 2.5 and Theorem 2.22 enable us to change the symbol 6C€' in

(2.12) in Lemma 2.7 to the one 'Z9'. (Namely we have the following inclusion):

(2.is)2 **(z'«(X,(P)),ffl€>(.p))p.g n

By (2.15)!, we have the following implication:

(2.15)2 Lemma 2.5 - > (2.15)2 .

Thirdly, as we checked in (2.14), the symbol 6Cq' in Lemma 2.7 is changed to
4Z*' (by using Lemma 2.7 and Theorem 2.22). This fact, together with (2.15)1?

insures the implication :

(2. 15) 3 Lemma 2.5 + Lemma 2.7 - > (2.14).

We use (2.15)1_3 in the proof of Proposition 4.2 (in n.4, §4.2).

§ 3. Application to Analytic de Rham Theory

Here we summarize our applications of the cohomology theories in Section 1,

Section 2 to the analytic de Rham theory. As was mentioned, we use here our

results on C°°-de Rham theory for certain stratified spaces and real analytic

varieties, which were announced in [15]2_4 and [16] (cf. Lemma 3.2 and

Lemma 3.3). The details of those results will be published elsewhere in a near

future (cf. [18]).

1. Letting the smooth local variety X=X0 — D and the smooth affine

variety X' be as in Section 1, Section 2, we set*).

< Q X , a l ^ ( X } l rational differential forms,
(3.1)0 \ '** > : =sheaf over < a lgi of \ meromorphic differential forms

IQX(*/>)J (X0 J [ with the pole D.

Moreover, let the subvarieties V, V of X0, X' in Section 2, we set:

*} Similarly to Section 1, Section 2, X£lff and Faig denote the algebraic varieties whose
underlying analytic varieties are X', V'.
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where 3F and 3F> j a l g denote the ideal sheaves of V and F^lg. We write

F— D as F, and, taking a point PeD f| F, we denote by XP, FP the germs of

X, F at P. We then set :

(3.1)3 #*(XP, C): = limlf*tY n U, €), where U exhaust all neighborhoods of

P in X0 (and we define~J?*(KP, C) similarly).

Then we have*) :

Theorem 3.1. H*(XP9 C) ̂  H*(QX(*D)P), and H*(X'9 C) ̂  H*(r(X'alv

Ar.alg)).

Theorem 3.2. H*(FP, €) * H*(QX(*D)P), and H*(V, €) ^ If *(r(F;lg,

^X'.alg)).

(Theorem 3.1 is given to the smooth varieties X, XP, while Theorem 3.2
is a generalization of Theorem 3.1 to the varieties F, FP, which have in general

singularities.) Except the concrete style of the formulation, Theorem 3.1 is the

well known theorems of A. Grothendieck in [5]. The second algebraic iso-

morphism in Theorem 3.2 is due to P. Deligne (cf. [7]). The first analytic iso-

morphism in Theorem 3.2 seems to have been not known. In the both theorems,

the analytic isomorphisms are stronger than the algebraic ones. (The analytic

isomorphisms, together with standard Gaga arguments, lead to the algebraic

ones. The proof of the former is harder than the latter (cf. [5]).) We note

that the arguments in [5], [7] use the resolution theorem of H. Hironaka. We

also note that, in the proof of the first isomorphism in Theorem 3.1, [5] uses a

comparison theorem of H. Grauert-R. Remmert (on the behaviors of coherent

sheaves under proper maps). As we will see soon later, our proof of Theorem

3.1 and Theorem 3.2 is largely different from the arguments in [5], [7]. Our

proof is more close to that of the holomorphic de Rham theorem for Stein

manifolds (cf. H. Cartan [1]):

(3.1)! H*(Y, C)^H*(F(Y9 QY))9 where Y is a Stein manifold and QY is the

sheaf of holomorphic differential forms over Y.

As is well known, (3.1)! is a formal consequence of the following facts:

*) See the footnote *}, p. 425.
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(3.1)2 H*(7, Oy)^0(<j ^ 1), H°(Y9 QY)^F(Y, QY) (Theorems A, B of H. Cartan

for QY) .

(3. 1)3 Exactness of QY: 0 — > € — > flj ---- > QP
Y -*U — (Poincare lemma).

Theorems A, B are a main result in the theory of Stein varieties, while (3.1)3 is

based on the analytic contractibility of the analytic manifolds. Our proof of

Theorem 3.1 and Theorem 3.2 is patterned on the proof of (3.1)3 indicated

above. We also use a topological fact (Lemma 3.5), whose correspondence does

not appear in the proof of (3.1)^

2» First letting QX9 Qx> be the sheaves of holomorphic differential forms

over X, X', we set: Qx: = limQx/5pOx and fix>: =lim Qx>l3y>Qx>9 where 3F
«-m <-m

and 3F/ denote the ideals of F", V . Then, from our main results, Theorem 1.5,

Theorem 1.6 and Theorem 2.5, Theorem 2.6, in Section 1, Section 2, we have:

Lemma 3.1. (1) H«(XP, Ox)p.g^0, H*(X', QxOP.g = 0, and H°(XP, Ox)p.g

(2) fl«(XP, Ox)p.g ̂  0, fl«(X', ̂ X0p.g s 0 (g^ 1),

Lemma 3.1 corresponds to (3.1)2 in our p.g. cohomology theory and in

p.g. cohomology theory in the completions. As in the proof of (3.1)1? Lemma

3.1 will play the most basic roles in our proof of Theorem 3.1 and Theorem 3.2.

Also we note that Lemma 3.1 concerns the Stein and the algebraic properties of

X, X', which may be the most important properties of these varieties (cf. also

Introduction).

3. Next let jx, be the injection: C^ Ox,, and we define:

(3. 1)4 C*(X', C)P.B : = lim C V.(X'), C)P.. >
o— >•

where C9(j*.(X')9 C)p.g: =j-lC*(sftr(X
t), Ox,)p.g9 and the p.g. covering <(X')

is as in Theorem 1.3.

We define Cq(XP, C)p>g similarly to the above. Then we have :

Proposition 3.1 (P.g. Poincare lemma). The following complexes are

exact:

, 0— , C"(XP, C)p.g — > C«(XP, Qi)p.g -L* C*(XP,

' h \ 0 _ C»(X', C)p.g _» C«(X', OJ.)p., -

where d denotes the exterior differential operator.
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Proposition 3.1 will correspond to (3.1)3 in our proof of Theorem 3.1. The

proof of Proposition 3.1 is essentially very elementary (cf. the end of Section

5.2). Next letting the finite sets / = (/,)}=! c r(X0, O*0) and /' = (fft.=l

cF(X', £>x')p.g be as in Section 2, we set:

(3.2)^ GJ iM: =/*flJ+rf/*+1 A O*-1, Q$m: =/"*Q$+d/»"" A O*r',

and

(3.2)3

Also letting the p.g. covering J3^(P), attached to XP, be as in Corollary 1.2, we

define the p.g. complex C*(ja^(P), £2x,m)P.g similarly to the above.

Lemma 3.2 (P.0. 0/?en map property for de Rham complex). We have the

inclusions:

* p ) ' 0*»)- n r f(3( ' « ' ) , oj,iW)p.B n

where the parameters ^', a' are chosen suitably in the manner as in Lemma 2.3.

Moreover, m' = [Lx(m)] and m' = [Lx,(m)], with linear maps Lx(t) = cxt and

For the proof of Lemma 3.2, see Lemma 4.7 (cf. part B, §4.1) and the end

of Section 5.2. Our proof of Lemma 3.2 uses certain open map properties for

Koszul complexes and a.d. properties of (topological) contractibility of analytic

varieties (cf. § 5.2). Lemma 3.2 is no longer, of obvious nature. Now ap-

plying Proposition 2Al to the open map property in Lemma 3.2, we have:

Lemma 3.3 (P.g. Poincare lemma in the completion theory). The fol-

lowing complexes are exact:

rn ±Cq(V f} *Cq(V 6°} ..... d .c^CV" 6p} ^\J > \*s I r p« ?U/ ln p > Vx I r p , && Y/ n o ' ^ ̂  V ^ Pi "^ Tf) n o ^
I ^ *. ' / t / . g •< M. ' Af ±1. & Vi' ^» .Xp.g
(0 -

'2)' o.
(In Lemma 3.3, the varieties in question are F, F' (instead of X, X' in

Lemma 3.2: by a simple observation of p.g. properties of the imbedded varieties

F, F;, we have: C«(FP, fi$)p<g^C*(XP, fi£)p.g,...(cf. [18])). Then, also from

a simple observation, we easily check that ^-1(0) at the first steps in (3.2)2

coincide with Cq(XP, C)p.g,...(cf. [18])).

Now, from Lemma 3.1-Lemma 3.3, we easily have:
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Lemma 3 A We have the following isomorphisms:

(3.2)6

f#^Xp,C)p.B£ff^flx(*/>^
1 tf*(fp, C)p^H*(Qx(*D)P), and

These isomorphisms summarize our applications of the p.g. cohornology
theories as in Lemma 3.1-Lemma 3.3. In order to get Theorem 3.1 and
Theorem 3.2, we should drop the term 'p.g' from the cohornology groups

f/*(XP, C)pig,... in the left sides in (3.2)6. In this step we will use our main

results on p.g. C°°-de Rham theory for certain stratified spaces in [15]2_4, [17].

4. Let C" be the ambient (euclid) space of the local variety*) X and the
affine variety X'. We identify Cn with the real euclid space R2n in a natural

manner, and we fix coordinates x = (xj)j=1 of R2n. The symbol e will denote
the sheaf of C°°-(differentiable) differential forms over R2n. Taking an open
set Fof R2n and a p.g. function g: Y->JIJ", we set:

(3.2)0 e(7;g)pg: = {<pee(7); 9 = ̂ K9KC^K satisfies the following for each
suffix K and each element J e (Z+ u 0)2n :

(3.2){, \Dj<pK(P)\<t*jg(P) in Y, with a suitable a, e R+2, where Dj = d J/dxJ.}

Next taking subsets Z, Z' of X, X', we define:

: =9-P-B- covering of i^ 1 of size a in C» (^
I £i )

where g is the p.g. function \hxl\ or |z| + I of X or X' (cf. Theorems 1.1-1.4).

We use the symbols JV,(Z), Nff(Z') for supp ^ff(Z) and supp ^ff(Z
;). We may

call Nff(Z), Nff(Z') the p.^. neighborhoods of Z, Z' in C" of size a. Such
p.g. neighborhoods are suitable for investigations of the p.g. properties of im-

bedded varieties (cf. [19]). See also Proposition 4.6, Section 4.2 of the present

paper, where we discuss p.g. properties in connection with extensions of cochains
from imbedded varieties to their ambient spaces.) Now we set:

p.g: = Urn e(Nff(Xr(P)), 0)p.g, s(FF)p.g := lim
a,r-+ <r,r~*

p .g : = lim •(NJX1), g)p.e, •(V'\.t: = lim •(N

Recall that X is of the from X=XQ—D, with a variety XQ in UQ. We are assuming that
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where g = \h^\ or |z| + l. Also the manifold Xr(P): = X n Ur(P)9 where C7r(P):
= disc in €n of center P and radius r, is as in Theorem 1.1. Moreover, we set

VJiP): = V fl [/XP). Then our main result in [17] insures*^:

Lemma 3.5e We have the following isomorphisms:

r
1 ~Jl

Note that the right sides in (3.2)! may be regarded as C°°-analogues of the

analytic de Rham cohomology groups as in (3.2)6, Lemma 3.3. Also note that

the left sides in (3.2)! are the topological cohomology groups H*(XP, C),...,

while the left sides in (3.1)6, H*(XP, C)p>g,... contain the suffix 'p.g.' (This

difference occurs from the following situation: first, in the definition of

H*(XP, €)p.g, we used the p.g. coverings N0(Xr(P))9 which are attached to Xr(P)

(cf. Definition 1.62), and our use of such p.g. coverings is a main source for the

suffix bp.g.9 mentioned just above. On the other hand, our proof of Lemma

3.5 is based on a type of stratified spaces attached to real analytic varieties, which

we call normalized series of stratified spaces (cf. [17]). Such stratified spaces

admit what we call p.g. simple coverings, where the word 'simple' is used in the

similar sense to the 'simple covering' in the C^-de Rham theorem in [21]. The

simpleness as above insures that the above coverings satisfy the standard Larey

condition for the constant sheaf Z (and so for R and C), and they are used to

determine the topological cohomology groups H*(XP, C),... Such coverings are

also suitable for treatments of the p.g. properties of C^-difFerential forms over

analytic varieties. Using the above stratified spaces and the p.g. simple coverings

of them, the proof of Lemma 3.5 is formal (cf. [17] and [18]. See also Remark

3.1 at the end of Section 3.)

5e Finally we will see that Theorem 3.1 and Theorem 3.2 are derived from

Lemma 3.3 and Lemma 3.5 in a formal fashion. For this we first let ex, ex,

denote the sheaves of C°°-differential forms over X9 X'. Letting the subsets

Z, Zf of X, X' be as in (3.2)0, we define 'p.g. complexes of C^-differential forms':

(3.2)2 %(^)p.g and %'(^%.g (in the similar manner to (3.2)0, by using the

coordinates of X, X' instead of those of C" as in (3.2)0).

*> Lemma 3.5 is given in [17] for local analytic varieties, and is applied to the variety XP.
On the other hand, Remarking that, the affine variety X' is compactified (in Pn(C)DO)
and, applying the local results just above to each point of the completion of X', we get
Lemma 3.5 for X'.
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Moreover, we use the symbols 8B'J(Z\ ^f
a(Z') for the p.g. coverings of Z, Z'

in X, X' of size a (cf. also (3.2)S). We also use the symbols N'a(Z), N'a(Z
f)

for supp &'a(Z\ supp ̂ (Z'). (Thus N'ff(Z), N'ff(Z
r) are the p.g. neighborhoods

of Z, Zr in X, X'.) Then, corresponding to (3.2)i, we define:

( 7 V ( X ' ) ) ? ( F ' ) . : =lim s

Then it is not difficult*^ to check: H*(8x(XP\^H*(e(XP)pmJ,..., and Lemma

3.5 is rewritten in the following manner:

f H*(XP, C)s/T*(«T(X,)p.g), H*(VP, C)s
1 #*(X', C) £

Now we denote by r, t the natural homomorphisms from the analytic de Rham

groups to the p.g. C°°-de Rham groups:

(3.2)3 T: QX(*D)P - > ex(*D)p.g, t:^x(*Z))P - > sx(FP)p.g.

Moreover, from a simple observation, we have natural homomorphisms**1 :

(3.2)4 n:H*(»x(Xp)p.,) - > H*(Xr, C)P.B, fi:H*(*f(VP)v.J

—>#*(*%, C)p.g.

Then we easily have the following diagrams

(and the similar diagrams for X' and V.) It is clear that the above diagram

insures the implication:

(3.2) 5 Lemma 3.3 + Lemma 3.5 - > Th.3.1 and Th.3.2.

Remark 3.1. As may be clear from the content of Section 3, the most

*} From that X, X' are smooth, this isomorphism is rather easily checked (cf. [18]. See
also Proposition 4.6 for treatments of the p.g. neighborfoods.)

**J Such homomorphisms are constructed, by using similar arguments to the one in [213,
which attaches, to the closed differential forms, their cohomology classes. See also the
arguments in Section 5.1 and n.5, n.6 in Section 5.2, where we give some cohomological
arguments. (Such arguments have similar algebraic structures with the arguments in
[21].)
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important topological fact in getting Theorem 3.1 and Theorem 3.2 is the p.g.

C°°-de Rham isomorphism as in Lemma 3.5. Also we use some a.d. properties

of (topological) contractibility of analytic varieties in getting the open map prop-

erty of the de Rham complex as in Lemma 3.4 (cf. [15]2. Also see the end of

Section 5.2.) The underlying basic fact for the above topological facts is the

existence of stratified spaces for analytic varieties ( = normalized series of strat-

ified spaces), which were mentioned previously. The details of the above

topological facts are in [15]2_4 and the author's forthcoming paper [18].

(The first three are outlines of what are mentioned soon above, while [18] will

contain the details.)

As may be from the context of Section 3, the above topological facts are

indispensable in getting Theorem 3.1 and Theorem 3.2. However, as in the

case of the holomorphic de Rham theorem (3.1)l5 and in the proof of Theorem

3.1 in [5], the most important facts in getting the analytic de Rham theorem

(as in Theorem 3.1, Theorem 3.2) are the results on the coherent sheaves in

Lemma 3.1.

Remark 3.2. At present, our results on the analytic de Rham theory are

given separatedly, according as we are concerned with the analytic or topological

aspects. The present paper covers the necessary analytic facts for the proof of

Theorem 3.1, Theorem 3.2, while the necessary topological facts are sum-

marized in [15]2_4, [17] and in [18]. The author plans to write a survey paper

on the analytic de Rham theory, which will include (1) even treatments of the

analytic and topological parts as above and (2) comparisons of our methods

indicated as in Section 3 and the methods taken in [5], [7].

Chapter II. Uniform Estimations on Homomorphisms of Coherent Sheaves

In Section 4.1 we summarize our non cohomological uniform estimations

on homomorphisms of coherent sheaves (Lemma 4.1-Lemma 4.7). Using

cohomological versions of them, we prove all the lemmas in Chapter I, Lemma

1.2-Lemma 1.4, Lemmas 2.3, 2.7 and Lemma 2.5, which concern the p.g. and

a.d. uniform estimations in Chapter I (cf. §4.2. Also see Introduction). Our

cohomological version of Hilbert zero point theorem*) and our non coho-

mological version of the main lemma, Lemma 2.5, in the d.p. cohomology

*> Cf. Introduction.
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theory in Section 2 are given in n.2-n.4, Part B, Section 4.1 (cf. Lemma 4.2-

Lemma 4.4. Also see Introduction). The proof of the estimations in Section 4.1

is given in Section 5. In proving the open map properties''^ in Section 4.1, we

see that these are checked easily for smooth points of the varieties in question.

We then show that those properties for the smooth points lead to the properties

for 'all points' of the varieties (§ 5.2). Such a method may be interesting in

connection with treatments of the a.d. properties of varieties with singularities.

Finally, the procedure in Section 4.2, which rewrites the non cohomological

estimations in Section 4.1 in cohomological forms, is essentially algebraic; large

parts of Section 4.2 is given in an abstract fashion in terms of the q-sheaves

(Definition 1.4,). The content of Section 4.2 may be useful for general treat-

ments of the p.g. and a.d. properties of q-sheaves.

§ 4. Uniform Estimations with Bound and Algebraic Divisions

§ 4.1. Non Cohomologica! Estimations

In Parts A, B we give non cohomological estimations of local forms, which

concern the first and second properties in the title. In C we give a global

version of the results in A, B.

A. Uniform Estimations with Bound

1. Geometric underlying data. In a similar manner to Section 1.2, we

start with giving the following geometric datum:

(4.1)0 X: = (Cn(z), l/o, XQ, X'0, F0) consisting of an analytic variety X0 (3P0)
in an open set 17 0 of a euclidean space Cn(z) and a sub variety X'0 of X0.

The variety X'0 may be empty, but should satisfy:

(4. L)Q X: = X0 — XQ is smooth, and X'0 contains P0, if X'Q^ $.

(When Xf
0 is the divisor of an element h e F(X0, ®Xo)>

 tne datum X is of the

form which was used in Section 1.2: Xe Anlfl (cf. (1.8)0). Note that, in this

case, X = X0 — X'G is a Stein variety. In Chapter II we do not require this con-

dition. The datum X is more general than geometric data in Anla in Section 1.2.)

We fix the geometric datum X in the remainder of Chapter II. The underlying

See the footnote *}, p. 432.
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variety of X will be X = X0 — X'Q. Moreover, for convenience of the formula-

tions of the estimations in Section 4, we fix subvarieties X19 X2 of X0 satisfying

(4.1)5 X0=»*i^*2 = *o.

2. ParametrizationSo Next we will define certain sets of cross sections to

coherent sheaves, which are parametrized in an explicit manner (cf. (4.1)2 soon

below). The parametrization here is of non cohomological form and is simpler

than the one in Section 1, Section 2. However, the formulation of the former

has some similarities to the one in the latter: first setting X1: = X^ — X2 we

define a parametrization of open manifolds in X ( = XQ — X'Q) :

(4.1)! Wjr i:^1:=l1xH+9 /, = (P;r)

- > Ouv(X)B Ur(P): = {QeX; d(P, Q)<r}9

where d is the natural distance in Cn(z) (cf. n.l, § 1.2).

Next taking a matrix K: O£-»D£(w, u>0), whose entries are in F(X0, £>Xo)9

we write the image ICO£(cD£) as K. (Here Ox, &XQ
 are trie structure sheaves

of X, X0.) We use the symbols 0e, 9® for the q-structures of ft, which are

induced from K: £>£-»ft and the injection: & C-» 0$ (Definition 1.42). Setting

Jj^ : = fi^^ x JRJ", we take an element (P; r ; a) e 2Xl(aX1 x jR+ x JRJ). Then the

sets of the cross sections, which are used in Section 4, Section 5, will be of the

form:

where | |ft, | |^ are the 9S- and 0^-absolute values (Definition lA^.

Note that, by the definition of 0ft,..., the above sets are explicitly as follows:

1 ' J2 ' n
where 0, 0' are the standard q-structures of £)£, €>£ (Definition 1.43).

3. Estimation maps0 Letting M denote the collection g+ x R+ _ > JJ+

of all positive monomials (n. 5, § 1.1), we set M: =MxM, U (MI

and we regard an element M = (Ml5 M2)eM=JfxM as jR+XjR + _ > R+

a map (cf . also Figure I) : Figure I.

(4.1)3 M:R+xR+3(r; d) - > R+ xH+9(M1(r)5 M2(a/r)) .

We use such a map in the remainder of Section 4.1.
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4. Bdd*> uniform estimation — 1. Letting the matrix K be as in n.2,

we take an open subset Ut = V l > K (B P0) °f ^o and an element d = (7KeI3^2.
We then form the following parameter spaces :

(4.1), f i K : = {(P; fOeCl / ! n^ 1 )xf i + ; r<{<j0(P)}-'] ,

with g(P) = d(P, X2)-
l**>, and JIK: = ̂ x«f.

Lemma 41' (Uniform estimation with bound — 1). Take a suitable

MK e M. Then we have :

(4.1)5 i*r(0J(Pl ft; 0J,)ffc:r(eUP), ft; 0*)a-,

H'f f /? (r'; a') = MK(r; a), tv/?ere f /?e parameter (P; r; a) rs /w 2K(cX{ xR+ xR1[)

and i = inclusion: Ur,(P)^>Ur(P).

We prove Lemma 4.1' in Section 5.1.

5, Bdd uniform estimation — 2, Here we give an another uniform estima-

tion, which is derived from Lemma 4.1' (cf. §5.1) and is sharper than Lemma

4.1' in some aspects (cf. Remark 4.1): first take a set / = (/ij"^ tc:F(X0, OXo)

satisfying n UDU = X'09 where Du = divisor of hu on X0, and we set:

(4. 1)6 Coh (X0 ; /) : = collection of all coherent sheaves § over X, which admits

a resolution of the form:

(4.1); 0 - > O^ J&Lii->... JEi* O^ -^ §(dO^) - > 0 ,

where Kj(Q^j^p) are matrices with entries in F(X, Dx) and satisfy:

(4.1)5 the entries of Kj are in F(X0, OXo(*Dtf)) (for each 7, u).

Here OXo(*^u) denotes the sheaf over X0 of meromorphic functions with pole

A,
Now taking an open subset Ulth(3P0) of 17 0 and an element a^eR^2, we

form parameter spaces ^(cJSfj xU+) and 2h: =^,,xjR| in the similar manner

to (4.1)4 (by using ((7j f f c , <7A)). Then we have***} :

Lemma 4.1 (Uniform estimation with bound — Coh (Jf0; A) . . e* ........ > M
2). TTiere are maps ez: Coh(A^0; /)3§~>Ma M(t, |ig I

ex ':Z+-»M which are factored as in Figure II, Z+ _ - _ » M

ana7 wj't/i which we have the following for each §e Figure n.***>

*} 'Bdd.'=bounded.
**5 When X* = $, we understand that d(P, JHra) = l.

***} Mg' in Figure II is the length map (cf. (1.4)3).



436 NOBUO SASAKURA

w/t/7 (r'; a') = M$(r; a), w/iere r/?e parameter (P; r; 0) is in

We derive Lemma 4J from Lemma 4.1' (cf. §5.1).

Here we give a remark on the formulation in Lemma 4.1' and Lemma 4.1, which

we use in getting Lemma 4.1 from Lemma 4.1' (cf. §5.1).

Remark 4.1^ (1) Take an element /? eF(XQ, OXo)» anc* let ^x0(*^) denote
the sheaf over X0 of meromorphic functions with pole D ( = divisor of /?). Then,

replacing the condition: 'the entries of the matrix K are in F(X0, OAo)' in Lem-

ma 4.1' by 'those are in F(XQ9 &x0(*DJ)\ we §et a^so the similar inclusion to
(4. 1)5 (in Lemma 4.1') for K (after the above change). Actually remark that

K = hdK are in F(X0, O^0), with a suitable deZ+ , and we apply Lemma 4.1'

to K. Then, recalling the explicit form of the estimation: (r; 0)->(r'; a') as

in Lemma 4.1', we get easily the inclusion mentioned soon above for K from

the application of Lemma 4.1' to K.

(2) Lemma 4.1 is sharper than Lemma 4.1' in the point that (a) the para-

meter space fjtk is independent from the individual sheaf § e Coh (X0 ; /?) and

(b) Lemma 4.1 satisfies Figure II (as in that lemma). The latter is used to get

the similar diagrams in Corollary 1.1, Corollary 1.3 and in Lemma 1.2. Con-

cerning the first, we remark that the open set U1 = L/1 > j K in the parameter space

f£K (cf. (4.1)4) ^ taken independently from the individual matrix K as in Lemma

4.1. Actually, take an open set Ui = UltX (3P0) of U0, and finite points P0 j U

E ( U l j X n X o ) , and we attach to each P0>v a parameter space /£KfV (aXxR^)

of the form (4.1)4, by means of a suitable element oKiV eR^2 and an open subset

UK,V (3^>o,y)(c:^o)- Then, by Lemma 4.1' (applied to /<Kjl;), we have the
similar inclusion to each (Pv\r)e pKfV. Also assuming that Ul.xdU0c:U0

with a suitable open subset UQ of UQ, one can assume that u v^k,v^ U\,x-

From this we see that, by taking a suitable element aKeR^2 and forming a para-

meter space pK by means of (UllX, crK), we have the similar inclusion to (4.1)5

for each (P; r) e /*K, with a suitable estimation map MKeM. This insures the

independence of the first factor, U1>x, of the parameter space /*K mentioned just

above.

(3) The similar independence from the first part of the parameter space
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pK also holds, by assuming that the entries of K are in r(X0, £)*<,(*/>)) (cf. (1)).

Remark 4.12. In Lemma 4.1, Lemma 4.1', we used the subvarieties Xl9

X2 of XQ. In later applications, we take ( X l , X 2 ) to be (X0, ^0<, ing) or (X0, D),

where D is a divisor of X0. The use of the varieties X} , X2 as above is convenient

for the proof of Lemma 4.1. In B, Section 4.1 soon below, we use the pair

(X^ X2) as in (4.1)0. Similar remarks to the pair (X^ X2} just above also hold

for the estimations in B.

B. Algebraic Division Uniform Estimations

This part concerns mainly uniform estimations on open map properties of

Ox-homomorphisms (Lemma 4.2-4.5). Such results are our main results on

non cohomological uniform estimations in this paper*0 . The proof of the results

of Section 4.2 will be given in Section 5.2.

1. A.d. estimation maps.*40 We begin Section 4.2 by the following

Definition 4.1. By an a.d. estimation map we mean the one:

(4.2)! E:R+x(Z+xR^)3(r- m\ a} - > R+ x(Z+ x jR + )9(r ' ; m'; a'),

where r'^M^r), m' = [L(m)] and a'=M2(a/r).expM3(m). Here Mf (1 ̂  f ^3)

are positive monomials and L is a linear function: L = ct', c>0.

We then set : R+ x (Z
+ x R+) - > R+ x Z+

(4.2)i Ea.d: = collection of all a.d. maps. E M l X L

R+ x (Z+ x R+) - > R+ x Z+

Letting £eEaid be as in (4.2)! we call M\

and L the first and a.d. parts of E. The map

E is factored as in Figure I. (In Figure I, the factor 'R+" in the right side is
the first factor of R+ x (Z+ x R+~).)

2. Algebraic and analytic a.d. properties. Take a finite set ^/ = (//)*.= 1

cF(,J0, OXo), which vanishes at P0 eX0 (cf. (4, 1)0) and satisfies:

(4.2)2 /j^O(^o.i) f°r each / /C^ j^s ) ar|d each irreducible component X0jl-
of the germ of Z0 at F0.

Then the set /m\ =(fj)s
j=1, the m-th homomorphism Fm: D^~»OX and the

sheaf ^m£)x\ =FmDs
x(a^)x) will have the similar meaning to n.2, Section 2.1.

As in Section 2 we use fl to measure the a.d. properties of Ox-coherent sheaves.

*} Cf. also the beginning of Chapter II.
**5 A. d.-= algebraic division (cf. §2).
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On the other hand, letting V be the locus of /, we also use*) the 'distance

I/WI : = S;=i I //OP) I to f to measure such properties. We will compare the
above two means for the measure of the a.d. properties. For this taking an open

subset UltXi (3P0) °f ^o and an element er^eJRf2 , we form a subset fiXl

of XlxR+ in the manner in (4.1)4, by using (U1>x1, ffxj- Also taking an

element meZ+ we set***: TXl: = f*Xl xZ±xjRJ". For an element (P; r; ra; a)

d i ' x U + x Z ' x U ) we define:

(4.2)2

rr(L/r(P), /'»Dx)fll |F-r(l7r(P), O^; 0)a (cf. (4.1)'2)

lr(CUnOx)J J ' WrcCU/^O*); |<p(0l^"l/(e)lmin ^(P

In the above 0 is the standard q-structure of DS
Y (cf. (4.1)2 and Definition 1.4!).

We then have :

Lemma 4.2 (Algebraic and analytic comparison of a.d. properties). For

a suitable a.d. map EXl eEa d we have***}

(4.2)3

wi£/z (r7; m'; af) = ESl(r; m; a) (c/. (4.2)!). f/er^ (P; r; m; a) /s ?n rj?1 (cr^j

xjR+xZ+xJJ-1-).

Treatments of the left side of (4.2)3 are sometimes easier than the right

side; Lemma 4.2 is useful in treatments of the a.d. properties of Ox. Next we

may regard Lemma 4.2 as an analogue of the comparison of fip.g. and mero-

morphic" (as in Theorem 1.6) in our treatments of the a.d. properties. Moreover,

as we will see in n. 3, Lemma 4.2 implies Hilbert zero point theorem for ^

(Lemma 4.3'). Lemma 4.2 may be a basic fact in the a.d. properties of Cx.

3. Koszul complex — 1. Taking a finite set <f=(gJ)
t
j=i^r(X0, DXo)

satisfying the similar condition to (4.2)2, we denote by ^ the Koszul complex

for y\ 0-»OX-^ •••£$) -^ ••• Gt"S OX-»Q. We assume:

(4.2)i the locus Wof /^V ( = locus of /).

Now taking an open subset £/ J s^(3P0) of U0 and an element cr^eK}"2, we

form a subset ^^(aX^ xU+) in the manner in (4.1)4. Also taking an element

*} By Lojasiewicz inequality, we may regard \/(P)\ also as the distance to V.
**} %£= {weZ; m^m] (cf. the introduction of Chapter. I).

***> Precisely, the map EXi depends on also /. The set / is a basic underlying datum
in Chapter II, and we use the symbols EXl instead of EXlt^....
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we set: T^\ =f*y xZ± xltf".

Lemma 43 (Open map property for Koszul complex). For a suitable

a.d. map £^eEa-d we have (l^p^t — i):

(4.2)4 WfiUn /«v$\ n G^crG^rcuxF), /m> -4pil))«',
w/f /7 (rf; m'; a') = E#(ri m; a), where ( P ; r ; w ; 0 ) /s /A? r^ (cj?1 xl

We check that Lemma 4.2, 4.3 give a cohomological generalization of

Hilbert zero point theorem. For this, taking a point P e X ^ f t W , we form

a filtered complex tfj: 0->^->---->^^-^---^^1-^^J,->0, where <T£: =

{/IMO^p}m=i and the degree one map is Cp (O^p^f- 1) (cf. n . l , §2.1).

Lemma 43'. (1) The complex &* satisfies the open map properly (De-

finition 2.1 j). (2) 77? e ope?? map property for tff at the final step*] : Df
x

Gt~l >£)X-»Q /s equivalent to Hilbert zero point theorem for (^, ^

suitable in eZ+.

Proof. The check of (2) is easy. To see (1) take an element

Then/;- = 0 on ^implies: |//Q)|^a-d(Q, M/) in a small neighborhood 17P of

P in X. By Lojasiewicz inequality we have: |/j(Q)m|^ i? • I/'COI1"', with

suitable m, /7i 'eZ+ and aeR+. Applying Lemma 4.2 to 0, we have:/']1-

^X.P^^^X.P- ^y (2) tliis implies the open map property for C f _ j i O^-^OX.
Finally, Lemma 4.3 insures the open map property for Gp ( O f g p < f — 1), and

we have (1). q.e.d.

Hilbert zero point theorem may be the most basic fact on the a.d. properties

of analytic varieties. Its cohomological generalization, Lemma 4.2 and Lemma

4.3, may be also basic in treatments of the a.d. properties. (Lemma 4.3' is given

for the germ OX > P . Formulations of semi-global and global versions of Lemma

4.3' will be left to interested readers.) We use Lemma 4.2 and Lemma 4.3 for

computations of the Cech complexes, which are defined from Koszul complexes

in the standard manner (§ 5.2). Though our use of those lemmas are in an

elementary level, the open map properties as in Lemma 4.2, Lemma 4.3 may

be worthwhile pointing out in connection with the very basic roles of Hilbert

zero point theorem and of Koszul complexes for algebraic and analytic varieties.

*} This means that Gi_l(/
m/Df

:yjP)^/ "'Dx for m>0. Here m/ = i-(m)J with a map c: Z+

-*Z+ satisfying lim r(m) = oo (cf. Definition 2.1).
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4. Koszul complex — 2. Lemma 4.3 concerns the single Koszul complex

G. Here we will be concerned with the family <F = {^m}m=\ of the m-ih Koszul

complexes &m\ O^Ox-^----*O^-^---->O^^>Ox-->0 (cf. n.l, §2.3):

letting the parameter space f£Xl (c%i xl?+) be as in Lemma 4.2, we take a

suitable linear function LQ(t) = cQt\ <?0>0. Then we have:

Lemma 4.4 (Open map property for the family J2r = {J*rw}^=]). Choose a

suitable a.d. map EXleE&md. Then we have the following for each

(4.2) 5 i*{F(Ur(P), /*C$\ fl (kernel of**)}

where (r;; m'; af) = Exl(ri m\ a). Moreover, (P\r) is in /i

and the a.d. exponent meZ+ of ^ satisfies: m>L0(m) (cf. also Lemma 2.5).

If we fix an element m eZ+, which characterize the complex Fm, then (4.2)5

follows from Lemma 4.3. The independence of the map E^1 from such meZ+

is the key fact in Lemma 4.4. We use Lemma 4.4 to get the corresponding

cohomological version, Lemma 2.5 (cf. §4.4), which is the main lemma in the

d.p. uniform estimations in Section 2.

5. Exact complex. Letting the set *£ = {hll}
i;ig1 c=r(X0, DXo) be as in

Lemma 4.1, take a coherent sheaf §eCoh(^0;^) of the form in (4.1)^:

0->£)fe' **-s...-j^O*'JEg^§(cOJ9-»0. Moreover, taking a suitable open

subset Ul = Ul3% (3P0) of ^o and elements cr = or§eK|2, m = m^eZ+, we form

parameter spaces /i§ and re by*}

Lemma 4.5 (Open map property for exact complex). For a suitable

a.d. map £§EEad we have:

(4.2)6 i*(F(Ur(P), /*0fc)fl n F(Ur(P), S))cX0r(^(P), /*'0i0fl- ,

r'; ?fi;; a')=E%(r', m; a). Here ( P ; r ; m ; « ) is in T$ ((=^X1 xR+ xZ±

Note that Lemma 4.5 concerns an inclusion of Artin-Rees theorem type

(cf. §2.1), and is used in the proof of the corresponding cohomological fact

(cf. Lemma 2.7, §2.3. Also see §4.4). As we will see in Section 5.2, the proof

*> Cf. also (4.1)4.
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of Lemma 4.5 is easier than that of Lemma 4.3, Lemma 4.4, which concern

the open map property of Koszul complexes. (Note that the Koszul complexes

are not, in general, exact.)

6. Comparison of filtrations. Here we add a lemma, which is used in the

proof of the comparison of the nitrations in Lemma 2.3. For this letting the

sheaf S3 e Coh (X0 ; /) be as in Lemma 4.5, we define OY-homomorphisms:

where we use the symbol Fm of the homomorphism: £)x~"*^x a^so f°r its /c-times
direct sum: O|fc: =Ds

x-{ hC^->£>£: =£}*+•••-hDx (cf. n.2, §2.1).

Also we use the symbol §m for the image of K0i,n: §m: = K0jln(O£1+sk)c:O;r.

Next, in Lemma 4.6 soon below, we use an estimation map, which is slicely

different from the a.d. maps in Lemma 4.2-Lemma 4.5. For this we set:

(4.2)? Ei.d: = collection of all maps E': R+ x Z+ x R+ 3 (r; m; a)->R+ xZ+x

R+3(r'\m'\a'\ where (/*'; a') = M(r\ a), m' = [L(m)], with a map MeJf

(cf. n.l, §4.1) and a linear map L = ct; c>0.

Similarly to n.l, Section 4.2, we call the maps

< . &J -=3 III *£J ^3 III ltl& i?+ vx 7+ \x J? +
jn. x SLJ x Jti. >

first and a.d. parts of Er.J F j Figure II.

Leinma 4,6 (Comparison of filtrations).

For a suitable map s^: Z+B 7f7->Eg id3£,5fia j^ ES.

satisfying Figure III, we have:
••-'a. d

(4.2), i*OT(CUn ®x)a n r(Ur(P), §„-,)) {0} > M x Ln

ciKo^vCaXP), Oj1+'*)fl' Figure III.*>

w/f/1 (r'; m'; a') = £^jl?l(r; ?f?; fl), w/iere (P; r; m; a) is as in Lemma 4.5.

(In Figure III, we set Ln: ={L(f) = ct; c>0}. Also M: = collection of all

positive monomials. The map n: E^d3F-»MxLii3(M, L) attaches to Ef

its first and a.d. parts.)

Remark 4.2. We make a remark on the estimation maps in Lemma 4.2-

4.5 and in Lemma 4.6. For this, for an a.d. map E eEa d as in (4.2)l5 we define

a series {E'Eiffl}™=1 of maps E'EimGl£'afd, which satisfies Figure III, as follows:

*> The set {0} consists of the single element OeZ+llO. Thus Figure III claims that the
first and a.d. parts of £§,m (weZ+) are independent from
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(4.2)8 E'E^:R+xZ+xR+3(r- m; a) - > R+ xZ+ xR+ a(r'; m'; a'),

with (r / ;a /) = (M1(r),M2(a/r)expM3(m)) and m; = [L(m)]. (The first and
a.d. parts Ml9 L of £ eEa-d and the positive monomials M2, M3 are as in (4.2)!.)

The estimations in Lemma 4.2-Lemma 4.5, for example in Lemma 4.5
are given as follows :

(4.2)g (r' ; m' ; a') = E'E>ffl(r; m; a), where E eEa,d is as in Lemma 4.5.

The dependence of E'Etin on meZ+ is quite clear, and the estimation (4.2)g

is sharper than (4.2)7 in Lemma 4.6.

7. De Rham complex. Here we assume that X0 is irreducible at the origin

P0 of X0. We also assume that the pair (Xl9 X2) is of the form: (X0, XQ),

with a subvariety X'0 of X0, and that the coordinates z' = (zl5..., zk) provide a

local parameter at each PE(XO— X'0). We identify the sheaf Qp
x (cf. §3) with

(k\ ik\
P in the standard manner: QP

X3 Zi^i^*7— ̂ ^* 3(<Pi)/? where / exhausts
all indices of the form: (i1< • <"-<ip), with l g / 1 < - - - < i / l ^ f e . Letting the
parameter space TX be as in n.2, part B, Section 4.1, we take a parameter
(P; r; a; m)erx (cZx JJ+ xj?| xl?+ xZ+), and we set:

(4.2)5

Then, letting dx be the exterior differential operator on X, we have :

Lemma 4.7 (Open map property for de Rham complex). For a suitable

a.d. map £xeEad we have (p^l):

(4.2)9 i*(r(ur(p), /-m n d^(oy)^dxr(GAP)9 /"'OJ"1).- ,
r'; m'; a') = £x(r; m; a), w/?ere (P i r' i mf ; a') is in Tx(c:XxR+xR+

Lemma 4.7 is derived from Theorem 1.22, Lemma 4.3 and from our uniform
estimation on the a.d. properties of (local) contractible properties of analytic

varieties (cf. [15]2). The latter concerns some topological properties of the
varieties, and the details of it will be given elsewhere in a near future. We

summarize the key points of the proof of Lemma 4.7 at the end of Section 5.2.
Lemma 4.7 is used in the proof of our 'p.g. open map property for the de Rham

complex' as in Lemma 3.2. The relation of Lemma 4.7 to Lemma 3.2 is also

summarized at the end of Section 5.2.

Now, letting the parameter (P; r) be as in Lemma 4.7, we form a filtered
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complex V*(P) by

(4.2)5' 0 - > r(Ur(P), C) - > {F(Ur(P\

_>...-<*

where we set :

Corollary 4.1. (1) The direct system (#*(P); re(0; 1)} satisfies the open

map property.

(2) The following complex is exact (formal Poincare lemma):

0 _ > C _ > li

The first follows easily from Lemma 4.7 (by dropping the explicit estimation

in it), and the second follows from the first by Proposition 2.1 j. It is in the

form of (1), Corollary 4.1 that S. Lubkin conjectured the open map property

for the de Rham complex (cf. §2.1). The formal Poincare lemma (4.9)3 was

proved by R. Hartshorae*> and by A. Fujiki**} independently, by using the

resolution theorem of H. Hironaka. (Their methods are also independent.)

The open map property in (1), Corollary 4.1 is also proven by A. Fujiki by using

the resolution theorem. (His proof also uses some local contractible pro-

perties of analytic varieties.)

Remark. The content of Part B, Section 4.1 contains all examples of

complexes, which we know, where the open map property hold. From the basic

property of Artin-Rees theorem in the completion theory as well as from the

scope of our examples of the open map properties as above, it looks like that the

open map properties deserve to be studied for more general types of (geometric

complexes). The author hopes that the content of Part B call attention of

analytic geometeres, who are working with complexes of geometric nature (on
analytic varieties).

8. Some remarks. Here we summarize some remarks for Lemmas 4.1-

4.6, which will be used in the proof of those lemmas (cf. §5).

(i) Terminologies. We begin n.8, by arranging some terminologies for

later convenience. First recall that the estimation in Lemma 4.1' was given to

*), **)[3],[7].
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points of Xl=X1 — X2 and that the underlying homomorphism was: K:&%

->£>£; we will use the terminology:

(4.3)! Lemma 4.1' holds for (Xl9 X2\ K)

as a synonym for 'the estimation (4.1)5 (in Lemma 4.1') holds' for the parameter

(P; r; a) as in (4.1)5. Here (P; r; a) should be in the parameter space of the

form 2K as in (4.1)5, and the estimation map should be of the form MKeM

as in (4.1)5. Similarly to the above we use the terminology:

(4.3)2 Lemma 4.2 holds for (X19 X2i /) (resp. Lemma 4.3 holds for (Xl9

X2\/,&\ Lemma 4.4 holds for (X^9X2\/\ Lemma 4.5 holds for (Xl9

X2; /> $) or Lemma 4.6 holds for (Xi9 X2; /, §))

as a synonym for the following:

(4.3)2 the estimation (4.2)3 (resp. (4.2)4, (4.2)5, (4.2)6 or (4.2)7) /ioWs for the

parameter (Pi r; m; a) as in (4.2)3 (resp. (4.2)3,...).

(Here note that (4.2)3-(4.2)6 are the explicit estimations in Lemma 4.2-Lemma

4.6. Also remark that ^9 (^, ^),... are the underlying geometric data in

Lemma 4.2-Lemma 4.6.) Moreover, for the first terminology in (4.3)2, the

parameter (P; r; m; a) should be in the parameter space r^ as in Lemma 4.2

and the estimation map should be of the form £j?1 e Ea-d as in Lemma 4.2. For

the other terminologies in (4.3)2, the parameter spaces and the estimation maps

should be understood in the similar manner to the above.

(ii) Next taking subvarieties X'l9 X2 of X0 satisfying: X ( ^ > X l 9 X2aX2,

we have the following implication:

(4.3)3 Lemma 4.1'for (X'ly Z2; K) > Lemma 4.1' for (Xl9 X2;K).

This is checked easily, by remarking that the estimations in the left and right

sides are given to points in (X(— X2) and (X1— X2) and that the estimation in

the left side is applied to the right side. (See also the explicit estimation in

Lemma 4.1'.) By (4.3)3 we have:

(4.3)5 Lemma 4.1' for (XQ, X0>sins) > Lemma 4.1'

(= Lemma 4.1f for (Xl9 X2; Kj).

We prove Lemma 4.1' in the form of the left side. The similar implications to

the above hold for Lemma 4.2-Lemma 4.6.

(iii) Chain property. Thirdly take a subvariety X3 of X0 satisfying
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(4.3); X^X^X^X^X'o.

Then we have the following implication, which will play a role in the proof of

Lemma 4.1'(cf. §5.1):

Proposition 4.1. Lemma 4.1' for (Xi9 Xi+1', K) (z = l, 2)-*that for (Xl9

X3; K). The similar implication to the above also holds for Lemma 4.2-

Lemma 4.6.

Note that 'Lemma 4.1' for (Xl9 X2; K)' and 'that for (X2, X3; K)' concern
the same homomorphism K, and the inclusions in them are similar (cf. (4.1)5),

except that

(4.3)5 the point P in question (cf. (4.1)5) is in Xi — X2 or in X2 — X3, and that

the size V of the manifold Ur(P) (cf. (4.1)5) should satisfy:

(4.3)6 r<{ad(P9 X2)-
1}-1 or r<{ad(P9 X^1}'1 -

It is easy to get 'Lemma 4.1' for (Xl9 X3', K)' from the above two estimations.

(The former is given to points Pe(Xl—X3)9 and the size r of Ur(P) should

satisfy the inequality of the form: r<{ad(P, X^)~l}~1. It is easy to fill the

gap between what is mentioned just above and (4.3)5f6, by using elementary

distance properties of analytic varieties; see also the author's forthcoming

paper [18].)

(iv) Here we add a technical remark for the proof of Lemma 4.1 and

Lemma 4.5, Lemma 4.6: recall that the sheaf § in these lemmas is in Coh(Z0;

Op.g, where ^ = (U"°i is a subset of F(X09 CXo). We then have:

(4.3)7 Lemma 4.1 for (XQ, X'0; K) for the case: ff^ = lc> that for the general

case: S/^2, where Jfo = l°cus of ^ (anc* the similar fact for Lemma 4.5 and
Lemma 4.6).

Actually, let ^ = {hu}^i be as in Lemma 4.1, we apply the left side of (4.3)7

to each hu (w = l,..., MO). Then the inclusion of the form in (4.1)7, Lemma 4.1

holds for each PeZ0 — £>„, and the size of the manifold Ur(P) (cf. (4.1)7) should

satisfy: r<{ad(P9 Ai)"1}"1- (Here Du is the locus of hu.) But X'0= n J>u.
Also, by the Lojasiewicz inequality, we have:

(4.3)8 e'd(P, X'0)< Iu d(P9 Du)< s • d(P9 X'0), with suitable e, f'eR+2.

This implies:

(4.3)9 cd(P9 X'0)<d(P9 Xu), with a suitable index u9 where the element
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is determined by the element c in (4.3)8.

From this the inequality mentioned just above is replaced by r < {ad(P, XQ)~I}~I,

and we get (4.3)7 (cf. also similar arguments in (iii)).

(v) A key proposition,, Here we give a key proposition for Lemmas 4.2-

4.5. We take an element to eF(Z0, OXo) satisfying DiDj^0)Sing, with the divisor

D of h. We assume the following:

(4.4) Lemma 4.4 for (X0, D; /) (resp. Lemma 4.3 for (X0, D; /, #) or

Lemma 4.5 for (X0, D; /, §)) (cf. (4.3)!), where the Koszul complex G and

the sheaf 9)eCoh(X0; h) are as in Lemma 4.3, 4.5.

Now take a suitable open set U1 = Ulih(BP0} of C70 and an element a = aheR^2,

we define the following parameter space (cf. (4.1)5):

(4.4)' f*h:={(P', r)e((D-Z0>sing) n I/Ox**; r<{*d(P, ^..h,.)-'}-'} -

Also we take a suitable d = dheZ+, an a.d. map £AeEa<d, a linear function

L0th = CQtht', c0>h>Q and an element m = mhGZ+. Then from the estimations

in (4.4), we get the following weaker version of Lemma 4.2 for (D,

Lemma 4.5 for (D, ^0,sing; /, §)•

Proposition 4.2. We to a ye the following inclusions:

(4.5), i*hT(Ur(P)9 Z>

(4.5)2 i*h*(r(ur(p),

(4.5)3 i*h'(r(ur(p), /**). n
CFJ.^^CP), /*'0^£l))a'

(4.5)4 i*hd(r(ur(p), /*o|)a n
Ttoe estimations is given by (r'; m'; a;) = £;<(r; m; a). Moreover, (P; r) is i«

/j /I(c=(D-Z0jSing)xK+). Ttoe element meZ+ m (4.5) l f2f4 satisfy m^m, and

(m, m)eZ + xZ + iw (4.5)3 satisfies: m>LQ(m). (The homomorphism K0 in

(4.5)4 is as in Lemma 4.5.)

We prove Proposition 4.2 in Section 4.2. Note that if, we drop the term

*) Precisely, the data (t/ l i f c | A) and (fif/i} Eh),... depend also on G or /f, according as we
are concerned with (4.5)2 or (4.5)4. (The above data also depend on / . As in Lemma
4.2-4.6, we write Eh9... instead of Ehift....)
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hd from the left sides of (4.5)1_4, we have Lemma 4.2 for (D, X0>sing; /%••• •

For the role of Proposition 4.2 in the proof of Lemmas 4.2-4.5, see Section 5.2.

C. Global Version of the hi A9 B

Taking an analytic variety*^ X = (Cfl(z)xCw(z/), X = Cn x U'Q, Pi) 6 AHO

(cf. (1.7)0) and an affine variety*) X'eC^z) (cf. (1.11)0), we give here a global

version**} of Lemma 4.1 to X*: =X or =X' and that of Lemma 4.4-Lemma

4.6 to X'. (In the above the euclidean space Cn(z)?... and the open set

l/o (sPo) in C" are as in (l.7)0.)

1, Global version of Lemma 4.1. First taking an open set i/i(9P0) of

l/o and an element o- = <rx* eK[2, we attach to X* the following parameter space

(cf. also (4.1)!):

(4.6)0 /%*:={(2;

whereXf:-!^'*^! and ̂ T.: = j|f!i}l, according as X* = {J1. (Recall( A j ' [\z\-r 1J i A j

that gx* is the p.g. function of X* and z = (z, z') (cf. n.l and n.5, § 1.2).)

(4.6)0 2x*: = /*x*xR+.

Next we set :

(4.6)g Coh* (X*)p.g : = Coh' (l)p.g or Coh" (X%.g

(cf.(1.4)9 and (1.18)0.

(Recall that such collections consist of the p.g. coherent sheaves over X* satisfying

certain algebraic conditions (as in (1.4)9 and (LIB),)-) For an element §

e Coh* (X*)p>g, the q-structures 0§, 9% will be as in (4.1)2. Also for an element

(Piria)elx*(<=XtxR+xRi)9 the set of the cochains r(Ur(P), §; 5s)fl,

where d$ = 9$ or 0^, will have the similar meaning to (4.1)2. (Here, as in (4.1)2,

we set Ur(P): ={QeX*; J(P, 0)<r}, with the natural metric d in CB(z)

xC"(z')orC«(z).)

!iJ) As in Chapter I, we use the symbol X also for its underlying variety X. Also recall
that the affine variety X' in (1.11)0 consists of the data (Cn(z), X\ HX'\ where X' is the
underlying variety of X' and H'** is the resolution of the structure sheaf of X' (cf. (1.11)0).
We also use the symbol X' for its underlying variety X'.

**} Similar global results to Lemma 4.2, Lemma 4.3, also hold for X*=X or X'. Also,
for X*=X, similar global facts for Lemma 4.4-Lemma 4.6 hold. But we do not use
such facts (cf. §2).
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Lemma 4.8-. (Uniform estimation with bound for n ,* s*r*\<^on ^& / p . g ~
= l or X'). There are maps*' ex*: Coh*(X*)p.p.g 18 iand ei*:Z+-»M, which satisfy the ™+ x* **-

factorization in Figure I and with which we Figure I*>.
the following**^ for each § e Coh* (X*)p.g:

wirh (r'; a/) = M§(r; a). Jfere (P; r; a) is in ^x* (cZf xR+ x«f) .

We prove Lemma 4.8t in n.3, and we derive Lemma 1.2 from Lemma 4.8j

in Section 4.4.

2. Globalization of Lemma 4.4-Lemma 4.6 to X1. In n.2 we let the set

/' = (/})}=! czr(X',OxOp.g» the m-th Koszul complex J^-'1" for /'lO-^O^

I^...^O^-^----*Oi,-^UOr-^0 and the sheaves //BIOX- ( = F'»OiO be

as in Lemma 2.5, Section 2.3. In Lemma 4.82>3 we globalize Lemma 4.4-

Lemma 4.6 to X', by using the sheaves ^/lflOX',... . The estimation maps in

Lemma 4.82_4 will be in E^ d (cf. (4.2)7). We use the symbols nl9 n2 for

the assignments: E^d 9 £'->M, L, where M, L are the first and a.d. parts of

E'. Then, taking a suitable linear function LQ = L0iX(f) = c0t ; c0 > 0, we globalize

Lemma 4.4 to X' in the following manner :

Lemma 4e82 (Open map property for the Koszul complexes {^r'm}m=i)-

There is a map eX' : Z+ 3 m->Ea<da £X',m> which satisfies the similar factoriza-

tion to Figure III, Lemma 4.6, and wirh which we hat;e the following for each

(m,ni)eZ+xZ+ satisfying m>L0(m)(l^Jp<s):

(4.6)2 i*(F(i/,(P), '"oi^x. n (/70

(r;; m'; fl') = £:x,jm(r; ?n; a). Here (P; r; a) e (X x R+ x JRf) is as in

Lemma 4.Slf

Next letting the sheaf §'(c=JO|0 and the homomorphism K'0: O^-^S'

be as in***> Lemma 2.7, we define a sheaf §^ and a homomorphism

*} For the sets M, M of the estimation maps and the map 'lg',... , see Lemma 4.1,
Section 4.1.

**) i=inclusion: Ur'(P)(->Ur(P). When there is no fear of confusions, we use the symbol
'/' for the inclusion in question, without mentioning it (cf. also §4.1, §4.2).

**#) The map K'Q is the first resolution, denoted by a)H' in the sheaf H' in Lemma 2.7. The
symbol *K" is concordant to the one in Lemma 4.5, Lemma 4.6, and is convenient for
the arguments on Lemma 4.83.
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^0,1*: £>x*+sk-*&m (meZ+) in the similar manner to (4.2)'7:

(4.6)3 Kf
0im:Dk

x\+^3(pl+(p2 - >Dk
Xf3K'Qcpl + Ffmcp2,

and S;: = njD^+'*(c=040.

Moreover, taking suitable <7 = (7it), eRf2 and m = m^ eZ+
9 we form parameter

spaces :

(4.6)5 Aie.:

Lemma 4.83. There is a map z§> : Z+ 3 m-^^ABE§>^ winch satisfies

the familiar factorization to Figure III, Lemma 4.6, with which we have the

following:

(1) (Open map property for the sheaf §'):

(4.6)3 WffXP), X'*040a n r(i/,(p), §')) <= KoAffr- (P), /'*'0i'0
(2) (Comparison of filiations) \

(4.6)4

/n f/ie a^oyg (r'; m'; a') = £§fl?i(r; m; a), and (P; r; m; a) is in v%> (cX7 xU+

XZ+X.R+).

We use Lemmas 4.82j3 in the proof of Lemmas 2.3, 2.5 and Lemma 2.7

(cf. §4.2).

3. Proof of Lemmas 4.81.3. (i) For the proof of Lemmas 4.81_3, we will

give a natural compactification ( = completion) of X* = X or =X'. For this

we first set:

(4.7)! PB(C):=U3=0C3, with €g:=C". (Namely, P"(C) = protective space,
which is the natural completion of Cn. Moreover, Cj are euclidean spaces,

which cover PB(C).)

(4.7)2 X*: =P»(C) x l/i (cf. (4.6)0) or the completion X' of X' in P»(C), and

(4.7)3 D* : = D x l/i or D n X', with D : = P»(C) - Cn .

We then take a point PeD* and a small neighborhood 0 of P in X*. Also

taking an element cr = o>eJR[2, we form parameter spaces pp9 2P similarly to

(4.6)0:

(4.7)4 AiP:={(e;r)6(&

Then the following analogue of Lemma 4.1, Lemma 4.4 at the 'point at infinity'
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PeD* will suffice to insure Lemmas 4.8! >2:

Lemma 4.1", Take a suitable map sp: Coh(X*)ppg3£-»Af9 Jfi^. Then

SP satisfies the similar factorization to Figure I, Lemma 4.81? and we have the

following for each f> e Coh* (X*)ptg:

(4.8), i*r(?7XQ), S; ̂  AGUG), S; 0«)«' ,

wiffc (r1; a') = M§(r; a). Were (Q; r; a) is in 2P (c(tt-D*)*R* xfif).

Lemma 4.4'. T#/ce a suitable map sp: Z+ B m->Ei>d3£pf f f t anrf a linear

function L0 = L0tP(i) = c0t', c0>0. Then we /?aye Z/ie similar factorization to

Figure III, Lemma 4.6 and we a/so ftaye the following for each (m, m)eZ+ x

Z+ satisfying m>L0(m) (l^s<p):

(4.8)2 /*(r(ffr(0, ' a n

(r'; m'; a') = EP^ (r; m; 0), w/?ere (Q; r; a) is /n 2P.

Actually, take finite points {Pl^l=i in ^* an^ neighborhoods Uu of Ptt

in X*, so that Lemma 4.1" holds*) for (C/M, [7U n D*, §). Also take finite points

{Pv}
vv=i in ^* so tnat Lemma 4.1 holds for*) (0V9 0; §). By the compactness

of X*, we may assume that X*c(u B f f H ) ( J (U ,#„). Thus, to each QeX*,
one can apply Lemma 4.1 or Lemma 4.1" (resp. Lemma 4.4 or Lemma 4.4;);

comparing the explicit formulation of Lemma 4.8t to that of Lemma 4.1,

Lemma 4.1" we have the implication:

(4.8)3 Lemma 4.1 + Lemma 4.1" - > Lemma 4.8i .

Similarly to the above, we have**) :

(4.8)4 Lemma 4.4 + Lemma 4.4' - > Lemma 4.82 .

The proof of Lemma 4.83 is given similarly to (4.8)4, by taking Lemma 4.5 and

Lemma 4.6 as the starting point and by giving the corresponding facts to these

lemmas at the point at infinity***). We omit the proof of Lemma 4.83.

*) Uv is a neighborhood of Pv in X*. Also, for the terminology 'Lemma 4.1 for (Uv,
0; &)', see (4.3)i. We use 'Lemma 4.1" for CPa,...)' in the similar manner.

**> The estimation maps in Lemma 4.4', Lemma 4.8j and in Lemma 4.4 are respectively
a series of maps in E£.d and in Ea-d. This gap is filled by the comparison of these
maps in Remark 4.2 (cf n.6, part B, §4.1).

***) We do not give here the explicit form of these facts. However, it is similar to Lemma
4.4, and one can give it easily from the proof of Lemma 4.4' soon below in (iii).
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(ii) Check of Lemma 41" and Lemma 4.4'. For the proof of the lemmas

in the title, we let zj = (z()li = l the standard coordinates of C'j (cf. (4.7)a),

and we denote by T;- the transformation: Cn-+C'j:

(4.8); zj = rj'(z), where i[ = z j z j (k = j), zj = 1 /z ;-.

We then set:

-*. = f^7 / x identity: C" xC"' >C] xC"'{

(4.8)J

Next we fix an element j e [1,..., n] satisfying C|"=) C7. For an element (Q; r)

E(U-D*}xR+ we set:

(4.8)i a/(Q): = {ReX* n Cf- d*(R, Q)<r] .

Then the following distance comparison between J* and d* is checked easily,

by using (4.8)4:

Proposition 43. For a suitable positive monomial MFeM, we have the

following for each (Q; r)e(U — D*)xR+ satisfying r<[ffgX4.(Q)}~1, with a

suitable a GR~2.

(z*i, :*): = &' [*,(' Z / )H, (d*, dj) = natural distance in (C*", CJ").
" -

(4.8)5 T*J(Ur.(Q))^ 0J
r(Q), and T*J(U,.(Q))^ Vl-(Q), wit/i r' = MP(r),

where the open set Ur(Q) is as in Lemma 4.8 1.

"Now, Lemma 4.1" is checked as follows: taking an open set U (3 P) in the

ambient space CJ" of U (czX*) satisfying 0" n X* = U, we define a local analytic

variety XJ e Anlfl(cf. (1.8)0) by

(a) X?:=(Cy»(z*'), 0, 17, zj,P0),

and we attach the collection Coh" (Xjj!)pig to XJ by (1.18)^ Then, remarking

that D* is the divisor of zj, we have:

(b) Coh* (X*)p.gczCoh" (X?)P.B (cf. (4.6)S) .

By this we apply Lemma 4.1 to*} § 6 Coh (X*)pig. Then, we have the similar

inclusion to (4.8)l5 Lemma 4.1", by changing the open set Ur(P), which is

*} Recall that Lemma 4.1 is also applied to such a sheaf © by (1) , Remark 4.1 at the end of
Part A, Section 4.1.
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required in Lemma 4.1", to t7/(g): using Proposition 4.3, we can replace &i>(Q)

by Gr'(Q)9 and we have Lemma 4.1" from Lemma 4.1.

Next, the check of Lemma 4.4' is similar to the above, and is as follows:

first we remark that

(c)1 /' : = (zj)d/"cr(G9 Op), with a suitable d e Z+ ,

and that /""O^ =//'
mOr

 in U-D*. Then we easily have:

(c)2

where a' = MFjm(a/r), with a positive monomial MF>m, which is independent from

QeU-D*. (Here we write Ur(Q) as tf r)

Using a similar argument to the proof of Lemma 4.1", we see easily that

the comparisons of the distance and cochains as in Proposition 4.3 and (c)2 lead

to the implication :

(d) Lemma 4.4 - » Lemma 4.4'.

(Here we apply Lemma 4.4 to the set f' at the point at infinity P e D.) Thus

we checked Lemma 4.1" and Lemma 4.4', and we also have Lemma 4.S1 and

Lemma 4.82 (cf. (1)).

4. Finally we add here an elementary uniform estimation on local para-

metrization of the variety X=(C»(z), U0, XQ, X'0, P0) (cf. (4.1)0). We set

X = X0 — X'09 and we assume that X'0 = XQ^inB. Also taking a suitable open

subset UliX (9P0) of l/o and an element crxejRf2, we form a parameter space

Px'- = {(Qir)e(U1,xnX)xR+',r<{crx-gx(P)}-i}, with gx(P): =d(P, Xfr1.

Proposition 4.4. For a suitable positive monomial MxeM we have the

following for each (P; r)e/ix (czXx jR+):

(4.9) there is an analytic map co: Ur>(P)-+Ur(P), which is the identity on

Ur,(P\ with r':=Mx(r). Here Ur(P):= {QeC«: d(Q, P)<r}, and Ur(P):

= [/,.(P)nx.

We use Proposition 4.4 for the proof of Lemma 1 .4 (for the local variety

Xe Anlfl as in Lemma 1.4). The check of Proposition 4.4 is given in Part A,

Apendix I.

Next letting the affine variety X'c:Cn(z) and the divisor ScC"xl/0 be

as in Lemma 1.4 and Lemma 1.3, we take elements a = ax>, <j = &seR1[2 and an
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open subset V of U0, and we form parameter spaces:

(a) f t x . : = {(P;r)eX'xR+;r<{ffgx,(P)}-i}, and
lts: ={(F; r)e(S n (Cx l/0)) xK+; r<{5flis(P)}-1],

where the p.g. function gx> of X' is as in Lemma 1.4, and we set gs: =|w|, with

the coordinate of C (cf. Lemma 1.3).

We then have the following analogue of Proposition 1.4 for X' and S.

Proposition 4.4'. For suitable positive monomials Mx-, Ms, we haue fhe

following for each (P; r)e/*x- anrf (P'; r)e/is:

(4.9)' fhere are analytic maps w: Ur>(P)->(Ur(P) fl A") and o>': [/r»(F)

-Kl/XP') n S), which are fhe identities on (Ur>(P) fl X'), (l/r*(P') n S), where

r' = Mx,(r) and r" = Ms(r). A/so /he discs C7r(P), l/r(P') zw C"(z), C(w) x C"(z)
/iflye fhe similar meaning to the one Ur(P) in Proposition 4.4.

We use Proposition 4.4' for the proof of Lemma 1.4 for X' and of

Lemma 1.3.

Proof. Let X' and S denote the completions of X', S in Fn(€), P(C)

x l/0. Then, taking points P0 e X' - Xf and P0 e (P(C) - C) x l/0, we have the

similar fact to Proposition 4.4 for (X', P0) and (S, P0) (using similar arguments

to Lemma 4.1"). Then, using the distance comparison, Proposition 4.3, and the

similar arguments to the ones in n.3, we have Proposition 4.4' from the above

analogues of Proposition 4.4 at the points at infinity P0> PO an<^ from Pro-
position 4.4 (applied to finite points P e X' and P' e S). q. e. d.

§ 4.2. Proof of the Lemmas In Chapter I

In n.l-n.3 we give a cohomological version of Lemmas 4.1-4.8, and,

using such a result, we prove the lemmas in Chapter I, Lemma 1.2 and Lemma

2.3, Lemma 2.5 as well as Lemma 2.7, which concern the uniform estimations

on the sheaf homomorphisms. Also, using the results in n.l-n.3, we prove

Proposition 4.2 in n.4. Moreover, we prove Lemma 1.3, 1.4 in n.5, n.6, by

using Proposition 4.4.

1. Comparison of cohomological and non cohomological estimations. Here

we give propositions, which play a key role in the proof of the first set of the

lemmas just above (cf. Proposition 4.5lj2). Such propositions will be given in

an abstract manner in terms of q-sheaves and is more general than the one
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used in the proof of the lemmas. In n.l we fix q-sheaves*^ (5\, 0e), (§, 6^) and

a homomorphism co: &->§ (of abelian sheaves). Also we fix a p.g. function

g: X-+RI and a distance function d: XxX-+[Q9 oo] satisfying d = Q on the

diagonal zf^ (aX xX) (cf. Definition 1.44 and Definition 1.6!). Moreover, we

fix an element deM.^2, and we assume the following for each PeX:

(4.10)o 9(0)12 <g(P)< 2g(Q)

for each Qe t/,(P; .g): -{QeZ; d(P, Q}<{3g(P)}-1} ,

(4.1(% the triangle inequality: d(Q^ Q3)^d(Ql9 22) + c/(Q2, Q3): holds for

For a point PeX and an element (r ; a) e R+ x JR| we set :

where ] |e = ̂ -absolute value110 and G^P): ={2eX; d(P, G)<r}.

(We use the similar notation for (ft, 0ff).) Also, for the formulation of Pro-

positions 4.51>25 we fix a subset 7 of X, and we form the following parameter

spaces (cf. also (4.1)4):

(4.10)? tiY:={(P',r)eYxR+;r

(i) Bdd estimations -»p.g. estimations**^ First taking an estimation map
M = (Ml9 M2)eM = MxM (cf. n.l, §4.1), we assume the following uniform

estimation for co: ft->§ on F:

(4.10), /*r(i7,(P), S; 0c

w/r/i (r7; a') = M(r; a), where (P; r; a) zs f/t ^y (c

C / M S / O W : Ur-(P)^Ur(P).

Note that (4.10)! is of similar form to the estimation in Lemma 4.8 3. In Pro-

position 4.51 soon below we give a cohomological version of (4.10)1? which is

of similar form to the estimations in Lemma 1.2. In Proposition 4.5! we fix

an estimation map**** J?eL: jR+2 x R+2-*R.^2 xU+2, which is determined by

M e M. (For the explicit dependence of & on M, see (4.10)7, (iii) in the proof of

Proposition 4.5j.)

Proposition 4.5 j (Bdd estimations-* p.g. estimations). For each element

*} Cf. Definition 1.4i-
**) The estimations of the left and right sides in the title of (i), (ii), concern respectively non

cohomological and cohomological uniform estimations (cf. Lemmas 4.8i_3 and Lemma
1.2, Lemmas 2.5, 2.7...,).

***> L=L :L, with the collection L of all el-maps (cf. n.5, §1.2).
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(Y'; tr; a)e2F xiZJ2 xR+2 we have:

(4.10)2 **C«(X,(n,&;0*)«c^^^
where

a* fy\ 0-p-g- covering of Y' in X of size a (Defini-
(4.10)2 I a \' = \ ti°n l - 6 i ) > set of (g, O^-Q/L- growth cochains, S; <W. I \ with Jj; tn /J '(LV)6)

Moreover, s is the p.g. refining map: jtfa.(Y')<->j&J(Y') (cf. Definition 1.62).

We prove Proposition 4.5j in (iii). In n.2 we use Proposition 4.51 for the

proof of Lemma 1.2.

(ii) A.d. estimations->d.p. estimations*>.

We give here a key proposition, Pro-

position 4.52, for the implication: Figure I.

(4.10)3' Lemmas 4.82j3 > Lemmas 2.5, 2.7 and Lemma 2.3.

For this we fix a sheaf O of ring over X, and we assume that (1) 5\, § are O-

modules, and (2) 51, § are homomorphic images of Ofc, D;/(/i, /c>0): Dfc-^^>5\

-»0, O;i—^U§-»0. Moreover, we fix an abelian sheaf §' and series of homo-

morphisms coin: $\-»§, co,',,: §->§)' (m = l, 2,...) satisfying co,'n-com = 0. Further-

more, we fix a subset //
? = (//-)}=1 c=r(X, D¥; 0)pg (cf. (1.3)7), and we use tne

symbol FIH( = ni-th homomorphism for ^}\ OS->D also for its k- and /?-direct

sums: D5fc-^£)fc, £)s/l->CA (cf. n.2, §2.1. See also Figure I.) For an element

(P; r; m; a)eXxR+ xZ+ xR+ we set:

(4.10y3 F(Ur(P), /™&)a: = a>nF™r(l}r(P), Ou)a (cf. (4.lO)g and Figure I).

(We use the similar notation for §.) Now caking a linear function L0(r) = c0f ;

c-0>0 and an a.d. map E' eEapd (cf. n.l, §4.2), we assume the following uniform

estimations for the series {com}, {o)'m} (m eZ+):

(4.10)3 For each (m, ni)eZ+ xZ+ satisfying in>L0(m) we have:

(4.10)3 i*(r(Ur(P), /™$3)a H ̂ iiTKW^COm^C^r'Wj /'"''^)a' >

with (r'l m'; a') = E'(r\ m\ a), where (P; r; a) /s in 2Y (^YxR+xM.'l) (cf.

(4.10)7).

Note that (4.10)3 is a similar inclusion to Lemma 4.4. In Proposition 4.52

soon below, taking a d.p. estimation map £eEd - p (cf. n.4, §2.1)*), we give a

*> See the footnote **>, p. 454.



456 NOBUO SASAKURA

cohomological version of (4.10)3, which is similar to Lemma 4.82:

Proposition 4.52 (A.d. estimation^ d. p. estimation). For each (m, m)eZ+

xZ+ satisfying m>L0(m) we have:

(4.10)4 s*(CJ(j*a(Y'), /*$). n a>^(Oy)ca>mCt(*AY'\ /*'*).-,
a') = £((r; m; a), where (F; a; a) is in 2y xJRJ 2x JK+2, and

(4.10); Cf^CY'X/^S).: =/e/i (/, 0)-d.p. filtered set of cochains with value

in § (cf. (2.3)3,5).

(iii) Proof of Propositions 4.5lf a. (1) Letting the positive monomials Ml9

Mi be the first parts of the estimation maps M, E' in (4.10)ls3, we first define

el-maps Sl9 ^ : R+2 3 cr-*R+2 9 a', a" by the equation:

(4.10)5 ((T'O'^M^CorO-^^'O^^MiftffO"-1), where t is a variable. Then
taking an el-map j^0: U

+23(a l5 a2)-^l?+23(4a12a2
3 a2), we define:

(4.10)5 ^ = ̂ 0-^-^0, ^fi=J^0.^i.J^0.

Such el-maps will be the first components of the desired estimation maps j?, E

in Propositions 4.51>2 (cf. (4.10)7). Then, letting creR^2 be as in Propositions

4.5lj23
 we set:

(4.10)? ^=^0(^,^=^(0 and a'=^0(a'0(=J^1((j)), where (Jls ̂ ) =

(^15 ^) or (^i, jg?i).

Next taking an element jtf' e^q+ijtf#>(Yf) (cf. Propositions 4.51>2) and a point

Qe\j*'\, we set: j^ = 5(j/')e^r«+1XT(7/), where s = p.g. refining map: j*y(Y')

') (Definition 1.62). Then we have the following from (4.10)5

(4.10)?' \^Ur(Q)^UAQ)^\^'\, where r = {

(Note that, by (4.10)?, we have: r^M^r), with Ml=Ml or M{ (cf. (4.10)lj3).

The relation (4.10)?' will be a key fact for the proof of Propositions 4.51>2.

(2) Now taking elements <pe C««(7'), §; 0§)a and ^eC?«(r)>
/*S)a satisfying co^ = 0, we write W explicitly as W = co%Fm¥, with

*F e C««(Y;), Osfc)a (cf. (4.10)2j4). Then from (4.10)0 we have :

(4.10)2 |<^(£)|, \V*(K)\<a: =*'-g(Q) in Ur(Q), where a' = (ai2«s a2) with

*} As in Proposition 4.51, the map £"eEd p is determined by £"eEa d by in a simple
fashion (cf. (4.10)7).
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We will apply (4.10)1>3 to cp^, ̂  in Ur(Q). Then there are elements cpl

er(OUQ), ft)fl. and 9 1 eF(Vr4Q\ /*'«)«- satisfying

(4.1(% ^ = 0)^, ^ = o)m*i, with (r'; a') = M(r; a) and (r"; m'; a") = £'(r;
m; a), where the estimation maps MeM and E' eE a d are as in (4.10), _3.

We write ¥^ as !P1=G)JKFm?P1, with ^ eT(tf^(Q)9 Os*)a» (cf. Figure I). We

note that (4.10)g implies:

(4.10)2 l < P i l < a ' and \W1\<a".

Then from that r = {5"g(Q)}-1 (cf. (4.10)5) and (4.10)0, together with the explicit
forms of the estimation maps M, £', we easily see that (4.10)2 is rewritten in the

form:

where the el-maps JS?2J -^2 an<^ *ne positive monomial M are determined by the
maps M, £' in (4.10)3.

Finally, letting L:Z+-^Z+ be the a.d. part of E' (cf. (4.2)0, we define

a map ^f e L = L x L and a d.p.c. map E e Edip by the following.

a) , JS?2 (a + CT))
(4.10)7 £ : jR + 2 xl l + 2 xZ + 9((7 ;a ;m) - > M+2 xl?+2 xZ+9(^i(a),

^ exp M(m)-& zfa + ff), L(m)) .

We take the estimation maps L and £ to be the desired ones in Propositions
4.51)2. Then remarking that the restrictions q>'9 W

r of cpiy W^ to j3/' satisfy:

(4.10)8 s*cp = co(pf and s*^ = com^,

we have (4.10)2}4. q. e. d.

Proposition 4.52 will be used in the proof of Lemma 2.5, when the variety

is the local one XeAn lfl(cf. n.3, §4.2). Here we give a slice modification of

Proposition 4.52, which is used in the proof of the other lemmas in Section 2.

Remark 4.3. (i) First take a series {F^}^=1 of estimation maps

(cf. (4.2)7), which satisfies the similar factorization to Figure III, Lemma 4.6,

and we make the following change of the estimation in (4.10)3 :

(4.10)i (r; m; a) - >( r ' ; m'; a')=Flfl(r; m; a).
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Then, letting the el-map <£ i : R+2->R+2 and the linear map L be as in (4.10)5j7,

we have the following inclusion, which is similar to (4.10)4, from the arguments

in the proof of Proposition 4.52 (cf.3 in particular, (4.10)5_s):

(4.10)9 s*(C?«(r),/-§)p.g n <-1(0))c=G)lllCf(^(y/),/*fil)p.g, with(a'; m')
= (g"1(a), [L(w)3). (For the p.g. subgroup as above, see (2.3)6.)

We use the above remark in the proof of Lemma 2.5, when the variety is X' E Aff.

(2) Next we assume that the homomorphisms com, a)'m in Proposition 4.52

are independent of meZ+: a) = col=cD2 = )... and CD' = 0)1 = 0)2 = ,... Also take

an element m eZ+. Then, assuming the similar inclusion to (4.10)3 f°r each*)

mgrm, we obviously have the similar inclusion to (4.10)4 for such m eZ+. We

use this fact for the proof of Lemma 2.7 (given to X e Anlfl). Finally, we assume

that the similar inclusion to (4.10)3 holds for each m = m, by changing the

estimation in (4.10)3 to (4.10)9. Then we have the similar inclusion to (4.10)9

for each m = m. We use this for the proof of Lemma 2.7 (given to X'eAff).

(We also use a slice modification of Proposition 4.52 in the proof of Lemma 2.3.

Such a modification is given in the proof of Lemma 2.3 in n.3, § 4.2.)

2, Proof of Lemma 1.2. Here we derive Lemma 1.2 from Lemma 4.1,

Lemma 4.8 15 by using Proposition 4.5 1:

(4.11)! non cohomological estimation in Lemma 4.1, Lemma 4.8j Prop'4'51 >

cohomological estimation in Lemma 1 .2.

For this we set :

rX*: = XeAn0, XeAn l f l or X'eAff (cf. Lemma 1.2),

ICoh* (X*)p.g : =Coh' (l)p.g, Coh" (X)p.g or Coh" (X')p.g (cf. (1.4)8(1.1 8)0-

Also we denote by ex_ the map: Coh* (X*)ptg9§-»M a M§ as in Lemma 4.1*#)

or Lemma 4.8X (according as X* = X or JC, X'). Moreover, we set:

(b) Y*: = C11 x l/i (cl), U1 n X (cX) or X'. (For the open set U^aC"',

U1 c=C", see (4.1)4 and (4.7)2.)

Then one can apply, to each § 6 Coh* (X*)p-g and 0 e Y*, the estimation

in the left side of (4.11)! (cf. also the explicit formulations in Lemma 4.1, Lemma

*} Precisely, \\e replace the inequality: /7z>L0(m) in (4.10)3 by mS>/7/.
**) When we apply Lemma 4.1 to X*=XeAnla, we understand that X=XQ—X'Q in Lemma

4.1 is of the form: X=XQ—D, where the divisor D of XG is as in Section 1.
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4.80. Now let the manifold*) Y*:=X,(P')9Xr(P) or X', the p.g. covering

AG(Y*) and the sets of the cochains C*(X,(F*), §; «P)«, C9(j*a(Y*)9 §; *")«
be as in Lemma 1.2. Then, by applying Proposition 4.5! to the non co homo-

logical estimation mentioned soon above, we get the desired inclusion of the

cohomological form in Lemma 1.2 (cf. § 1.3):

(c) s*c>aY*), <5; n.cC'to'Cr*), S; ^)«-> w^re (</; *')=<?%(*; a), with
the element ^ e L ( = L x L) determined by M§ (cf. (a)) in the manner in (4.10)7.

Next recall that, in Lemma 1.2, we imposed the factorization on the map:

Coh* (X*)p.g 3 §-»£ 3 &§ (cf. Figure III, Lemma 1.2)**>. This follows from the

corresponding facts in Lemma 4.1, Lemma 4.8 15 and we finish the proof of

Lemma 1.2. q. e.d.

3. Proof of Lemma 2.5, Lemma 207 and Lemma 2.3. The proof of the

first two lemmas is similar to Lemma 1.2. We summarize the key point of it.
(s} ( s }First letting the Koszul homomorphism F™: DyjJ-+D£p+lJ for the local

variety Xe An lfl be as in Lemma 2.5, we set (o>w, co'm) = (F™-l9 Fjf). Applying

Proposition 4.52 to (o>m, o}'m), we have:

(4.11)2 Lemma 4.4-» Lemma 2.5, when the variety is Xe Anla.

Next, from (1), Remark 4.3, we have the following in the similar manner to

(4.1 1)2:

(4.11)2 Lemma 4. 82-* Lemma 2.5, when the variety is X' e AS.

Moreover, from (2), Remark 4.3, we have:

(4.11)3 Lemma 4.5, Lemma 4.83-> Lemma 2.7 for Xe Anla, X' e Aff.

Finally, the proof of Lemma 2.3 is a little involved than Lemma 2.5, Lemma

2.7, and is as follows. (The proof of Lemma 2.3 for X* = Xe Anla or =X'

G Aff is similar. Here we prove Lemma 2.3 for XeAnla.) Letting the sheaf

§ and the homomorphism JC0>m: £)^1+sfc-»§m be as in Lemma 4.6, the key fact
for the proof of Lemma 2.3 is the following inclusion:

*} By Remark 1.4 (cf. the end of §1.3), the proof of Lemma 1.2 for such a sheaf § suf-
fices for that of Lemma 1.2 in its original form as in n.2, Section 1.3. Xr(P') = Cn

<Ur(P
f) and XT(P)=XnUT(P), with the discs Ur(P'), UT(P) in Cn\ Cn of center

P9 P and radius r (cf. Lemma 1.2). Also note that Y*c f* (cf. Lemma 1.2), and one
can apply Lemma 1.2 to Y*.

**} Letting M1: J?+->Jt+ be the first part of the estimation M.^eM in Lemma 4.1,... , the
first part ^^ R+Z->R+Z of & is determined uniquely by Ml (cf (4.10)s). We use this
fact in getting the factorization in Lemma 1.2.
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(4.1 1)4 5*(C«K, $„) n C«K, 0£)P.g) c K0tm. €<(*„ Ors*)P.g, with «' =
[L$(m)]. Here the p.g. covering ^ is as in Lemma 2.3, and the suffix // of the

p.g. covering jaf^ satisfies: //>/* (cf. (2.8)0). Moreover, L$ is the a.d. part of

the estimation map £§>meEa -d (as in Lemma 4.6).

This follows from Lemma 4.6 as follows: letting the open set Ur(P),..., be as

in Lemma 4.6, we write (4.2)7, Lemma 4.6 explicitly as follows:

(4.ii); i*(r(f/r(p), o*)a n/xCUn $J)cx0.»</XGUn ox
i+sk)fl,, with (r';

fl') = C^iM> A^2m(a/r))> where M\ is the first part*> of JE$, and the positive
monomial M2>m is also determined by £§>m (cf. also (4.2)7).

We see easily that the application of Proposition 4.5 19 together with*) the

independence of Ml from m eZ+, leads to (4.11)4.

Now we derive Lemma 2.3' from (4.11)4 as follows. (Also recall that

Lemma 2.3 follows from Lemma 2.3'.) First we write § explicitly as: OJ2

_^£xi_^<5(ci€5x)--»(), and we define the homomorphism Kitm: £)£2+sfcl

-.Oi1 similarly to K0,m (cf. also (4.2)7). We set S l p M : =Klim(Oia+'kO(cOjO-
Then we have the exact sequence :

(a)

Ox2"""" Kl (Here \im is the natural homomorphism.)

Next, by the definition of the right d.p. filtration (cf. (2.3)6), we have:

=x0(c«(^, oioP.g n
Applying (4.11)4 to the sheaf §1>m, we have:

(4.11)1 s*Cr%^,/'^ with m' = [L(m)].
(Here the linear map L is determined by {K1>m}%=1.)

Recalling that X l f l n , : = J^+F™' : O^ + O^^-^Ox1, we have the desired inclu-

sion**) in Lemma 2.3':

(4.11)1*

*) By the factorization in Lemma 4.6, the map MI is independent from meZ+.
**> When the length of ̂ -1 (i.e., 0 - >Dj!-^-»$(cD£) - >0, we understand that Kljm :

=Fm:Q*z*i - >D^i and that ©i,m: = /TODS-. For such (ATi,m, $1>m), the similar in-
clusion to (4. 11)4 holds (cf. n.6, §5.2), and we also have its cohomological version, which
is of the form in (4.1 1)4.
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and we finish the proof of Lemma 2.3.

4. Proof of Proposition 4.2. Here, using the implications (4.11)2_4, we
prove Proposition 4.2. First we prove (4.5)3 (cf. Proposition 4.2), which is a

key fact for the proof of Lemma 4.4 (cf. § 5.2). For this letting the element
h e F(X0, OXo) and the divisor D of h be as in (4.5)3, we have the following from

(a) 'Lemma 4.4 for (X0, D; /)' - > 'Lemma 2.5 for (X0, £>;/)'.

Now, letting the parameters (P; r)e/i fc (<=:(D-XQiSing)xR+), aeR^ and the
elements (m, m)eZ+ xZ+ be as in (4.5)3, we define:

(b)i «: = (*, l)eHt2, r: = r/2 and a: = (2/r, l)el?t2.

Then, for the set of the holomorphic functions as in (4.5)3, we easily have:

(b)2 r caXP^/^OczZoC^XpCF^^O) . , where the p. g. covering
and the set Z°(---) in the right side are as in Lemma 2.5 (cf. §2.3).

Applying Lemma 2.5 to the right side (cf. (a)), we have:

(b)3 S*(Z°«(!?(P))5 /*£$>). n (Fj

with (r'; cr'; m'; a') = £(r; a; m; a), where the d.p. map £ is as in Lemma 2.5.

On the other hand, applying*) Theorem 2.22 to the right side, we have:*)'**)

(b)4 s*Z°(XX*Xm /*'OA- c:F*''Z°(<<tXP)), Oi).., with (r- c^; m";
a") = £'(r'j CT'J ^'j a/)5 where the d.p. map E' eEd-p is as in Theorem 2. 22.

From (b)3>4, we have:

(b)5 (left side of (b)3)cF-_1(F-"Z°(^(XF<P))5 oJr^'V, with (P; ^; m";
a") = £(r; cr; m; a), where the d.p. map E is determined by £, £'.

Finally we write a"eR}"2 as (a", 5") and [d" + l] as d. Then we easily have
the following inclusion, which is converse to (b)2 :

(b)6 h*

Also recalling the explicit form of the d.p. map £eE d p (cf. n.4, §2.1), one can

*° Recall that Lemma 2.5 implies Theorem 2.22 and the inclusion of the form
(cf. Remark 2.2 at the end of §2).

**3 For the homomorphism Fm=F™_1, see n.2, Section 2.1 and Section 2.3.
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easily write the elements deZ+ and (r"; m"; a")eR+ xZ+ x JR| as follows:

(b)7 d=[L(l)] and (r"; m"; a") = £'(r; m; a), with a linear map L and an

a.d. map E' (Definition 4.2), which are defined by £eEd > p .

(In (b)7, the element '1 eZ+ in d = [L(l)]' is second component of a

Finally from (b)2>5 and (b)6, we have

(b)8 h*(r(ur(p), /*v$\ n (Py

This inclusion, together with (b)7, insures the desired inclusion (4.2)3, which is

given to the Koszul complexes ^m (cf. Proposition 4.2).

Next, the proof of (4.5)4 is given similarly to the above, by taking 'Lemma

2.7 for XeAn l f l ' as the starting point (cf. (4.11)3).*
) Moreover, for the proof

of (4.5)2, we note that the application of Proposition 4.52 to 'Lemma 4.3 for

(XQ, DI ^S, &)' insures its cohomological version, which is similar to Lemma

2.5, Lemma 2.7. Then using the similar arguments to the above, we have (4.5)2.

Finally, the proof of (4.5) l is given similarly to the above, by taking 'Lemma 4.2

for (X0, DI fy as the starting point, and we finish the proof of Proposition 4.2.

q.e.d.

5. Proof of Lemma 1.4. (i) Take an open set U of a euclidean space

Cn(z) and a subset X of U. Also taking a p.g. function g: U-+R+ and an

element deR^2 we assume (cf. also (4.10)0):

(4.12)0 g(Q)/2<g(P)<2g(Q) for each Pet / and Qe Us (P; g) n I/, where

Us(P',g):={QEC»; d(P9 Q)<{a^g(P)}^}.

For an open subset U' of 17 we say that U is a (g, a)-d-envelope of U', if

(4.12)i U9(Q;g)cU for each Q e U ' .

We fix such an open set U' in the remainder of n.4. Now take an el-map J?0

of the form j*?0 : R
+2 9 (al9 a2)->H+2 9 (4^1 - a^, (72) (cf. n.l).

Then setting

we easily have (a>&)\

(4.12)2 V0,(Q\g)f\X = <t> for each Q e U' - Ua(X ; gf), where af=&0(a).

Note that this cohomological version in terms of 6C«' instead of 'Z9'. Using the similar
remark to Remark 2.2, one can replace C« by Z9, and we get a similar inclusion to (b)2,3
(for the homomorphism K0 as in (4.5)4).
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(This follows also if 17 is a (g, o-")-d-envelope of IT, where a" eJ?|2 satisfies:

o">a'.}

(ii) Extension of cochains. Here we give a key proposition for Lemma

1.4. For this we assume that X is an analytic variety in 17 and that there are

open sets U, U0 in C" and varieties X, X0 in 17, U0 satisfying

(a) £7, U0 are (g, <r)-d-envelope of U, U, and X = XQ n ft, X = X fl 17.

Also taking a positive monomial M (cf. n.5, §1.1), we assume the following

uniform estimation (cf. Proposition 4.4): for each QeX and reR+ satisfying

r<{ffg(Q)}~1, there is an analytic map

(4.12)3 co: Ur.(P)<-*Br(P), which is the identity on CUP). Here r' = M(r),

and we set Ur(P) :={Qe C" ; d(P, Q) < r}9 Ur(P) = l/r(P) n X0.

For an element aeK[2 we set:

(4>12)4 ( ) - - 1 7 ' € «
(Definition 1.6J.

Next we define an el-map £?' : R+2-*R+2 from M in the manner in (4.10)5, and

we set <?': =£>0°g"°&0, where Jgf0 is as in (4.12)2. Also denoting by £"0 the

el-map : R+ 2 B a-*R+2 3 &0(2 • a), we set :

(4.12)5 J2f: = ^(,o^'.

Then, denoting by £)x, O and co* respectively the structure sheaf of X, C" and

the natural homomorphism : £)-*Ox, we have:

Proposition 46 (Extension of cochains). For any 0-e JJJ2 and a = (al5 a2)
eU5f2 we /?ai;g a map:

(4.12)6 e* : Z«(^W, ^x)a ̂  C^Xt/0, O)a, ,
where a/ = (4a12

a2, a2), 0-' = J

w/1/c/i satisfies Q}$de* = Q ami

(4.I2X s* = coje*, w/f/? f/ie p.gr. lefining map s:

(The similar facts to the above holds by changing (Uf, a') to (Uf, a1), with an

open subset V' of V and an element d' eUJ2 satisfying*^ <y'>a'.)

Proof. (1) First we extend cochains on X to its small p.g. neighborhood.

*} Note that this implies that U is a (g, of/)-d-envclope of U'.
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For this setting 080(X)\ = 0-p.g.-covering of X in C" of size a (Definition 1.6^,

we show the existence of a map :

(4.12)7 e'*: Z\^a(X\ OA^C'^X*), *>).-, satisfying coxje* = 0 and 5* =
o>*e'*, with the p.g. refining map s: j&a»(X)

where the element <T" eHf2 is defined as follows:

(4. 12)^ V = JS?0(<7), a" = <e\e"\ and a" =

Take an element 0' = {B'j}*+{ G^*+1&a4X) satisfying \@'\ nX^(f)9 and we set
jf' = {A'j}*+\9 with A'j = B'j n X9 and j2f = s(^/)e^'g+1XTW. Then, taking a

point Qe\j/'\, we have:

(a)! |j*| ID C7,(6)5 t/X6) => l^'l, with r = { (̂e)}-1, r' = {(T^g)}-1 ( = M(r))
(cf. (4.12)5 and (4.10)5).

By (4.12)3 take an analytic map CD: C/XQ) ^ Ur(Q)> which is the identity on
L/X2)- Now, for an element cp e Zq(jtfa(X), Dx)a, we set <p'@,: =co*(pJ,E

r(\0'\, O). Then we have:

(a)2 0*^' = ̂ ', and |^<JR)|<a'^(jR) in |0"|.

We then define an element 9': =e'*q> by

(a)3 <p'*'". =a>x9'&' or = 0, according as \^f\(]X^(f) or =(^.

Then it is easy to see that (a)2 insures (4.12)7.
(2) Next setting a' = 2 -a" and a' =&Q(G')( = £"Q(G")\ we set &' \ =

{1/X6; ^); 2 e I/' n supp ^ff<X)} (cf. (4.12)7). Then we have a refining map

(b)i *: *'c*^xx) so that <i/X6;^))=u^e;^ if

Also we note that (4.12)2 insures :*>

(b)2 1/X6; 9) n * = <£, if C

Then we set:

(b)3 ^r«+1^ff<^0 = ̂ *9+1^/U^//, where ^": ={^e^r«+1^(^'); where
one of elements Uff>(Q; ^)e^ satisfies:

Note that (b)2 implies :

(b)4 |^| nX = (f) if ^

*J (6)2 holds for the pair (£/", ff') as in the remark soon below Proposition 4.6, and also the
remark itself holds.
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Now letting (p' = e'*<p be as in (a)3, we define an element W = e*<peCq(&ff>(Uf),

D)a, by the following:

(c) V = t*(p' on ,4^W, and =0 on 38".

By (b)t_4 and (a)3 we easily have (4.12)6. q.e.d.

(iii) Proof of Lemma 1.4. Now Lemma 1.4 follows from Proposition 4.6

almost directly as follows. First let the local variety Xe Anla be as in Lemma

1.4. Then letting the parameter space /*x (cX x R+) and the positive monomial

Mx be as in Proposition 4.4, we assume the estimation (4.9) in Proposition 4.4

for GUX, Mx).*^ The symbol &x denotes the el-map: R*2-+R*2, which is

formed from Mx in the manner in Proposition 4.6. Next let the manifolds

Yr(P)=Ur(P)-D0,Xr(P) = Yr(P)(]X and their p.g. coverings ^a(Yr(PJ),

jtfa(Xr(P)) in €", X be as in Lemma 1.4.**) Then choosing suitable neighbor-

hoods U', U" of the origin P0 of X (cf. (1.8)0) in C", and an element <rel?t2,
we have:

(a) V - DO (resp. U" -D0) is***} a (gx, a")-d-envelope of

(7"-D0(resp. 7,(P))-****}

Thirdly, let Ex be the first part of the p.g.c. map Ex as in Lemma 1.4. Then

setting (r'i a') = E'x(r\ a) we have the following from the explicit form of the

map£^(cf. n.5, §1.1).

(b) rr(P) is a (gx, a')-d-envelope of Yr.(P), and a1 >^x(o).

By (a), (b), one can apply Proposition 4.6 to (j*a,(Yr,(P))9 jz?a(Xr(PJ)) and the

structure sheaves Ox, O of X, C": writing the p.g. resolution §x of Ox over

l/0 —D0 in the form: ->O _^X§X^0, where §x coincides with Dx as the co-

herent sheaf over 17 — D0, we have a map e* from (4.12)6 in Proposition 4.6:

(c) ^rZ^^XXP^OA^^j/^rXP^Sz).', which satisfies: 5* = age*.

(Here 5 = p.g. refining map: jtfa,(Xr.(P))^->^(X^P)), and we use the symbol

co|: O->§x also for the obvious homomorphism: §X-»OX. We note that the

*) when we apply Proposition 4.4 to Jf, we assume that the pair (XQ, X'Q) in Proposition
4.4 is of the form: pf0, Jf0)^(^0, D), with the divisor D of XQ as in Lemma 1.4.
(=D0 n XQ, with the divisor D0 of t/0).

**> Ur(P): ={QELCn\ d(P, Q)<r] (cf. (1.17)1).
***) prom the explicit form of the parameter space f*x, one can take C/7, U" independently

from the manifold Yr(P) in Lemma 1.4.
****} ^(H/'jr!-1, where hxGr(U0,QUo)) is the p.g. function for X (cf. §1).
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map CDX in Lemma 1.4 was used in the latter sense.)

It is clear that (c) insures the desired inclusion in Lemma 1 .4 :

(d) s*Z«(XXX/P)), Ox). c eB$Z VUrr-CP)), $*).- ,

and we have Lemma 1.4 for the local variety XeAnla. For the affine variety
X' e Aff, we note that the ambient space Cn is (gx, o")-d-envelope of €n itself for

any a e R^2. Using this remark and Proposition 4.4 for X', the proof of Lemma
1.4 for X' e Aff is given similarly (and more easily) to the case of JCe An lfl, and
we finish the proof of Lemma 1.4.

6. Proof of Lemma 1,3- Let the divisor ScJC: =€(w) x UQ (cC(w)x

C"(z)) be as in Lemma 1.3 (cf. also (1.16)0). Then for points QeS, QeX =

U0 — D and creH^2, we set (cf. Lemma 1.3):

: d(Q, R)<(ags(Q)rl ... 0s) (M

(Here /zxeF((70, &Uo) and its divisor D in C/0 are as in Lemma 1.3 (cf. also
(1.15)4). Next take a suitable open subset Ux of l/0, an element a = (TxeJI^2

and an el-map £?x: R
+2->R+2 (cf. n.5, § 1.1). Then, from a simple observation,

we have the following comparison of the p.g. properties of S and X:

Proposition 47le (1) gx(Q)/2 < gs(Q) < 2gx(Q) .

(2) nx(UAQ)^Uff(Q) ^d nx(U,(Q))^Va,(Q\ with a'=3?x(<?Y

Here (Q; a) is in (Ux — D)xR+2.t and Q = nx
1(Q). Moreover, nx is the natural

projections: S-*X=UQ--D (cf. n.4, §1.3). Also we write Ua(Q', gs) as

Letting the point PeD and the element reR+, aeR^2 be as in Lemma

1.3, we set:

(a)i Sf(P) : = S n lf(P)? with lr(P) : = C x Ur(P\ and Xr(P) : = Ur(P) - D0 (cf.

< r , , S

(a)2 j/ff(Xr(P)) : = ^ -P.g- covering of Xr(/>) of size a in 1
[

Then from Proposition 4.?! we easily have:

*> Ur(P): = {R<=Cn; d(R, P)<r] (cf. n.4, §1.3).
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Proposition 4.72. There are (natural) refining maps ss and %:

(ss:^(S,(P))30a,(Q) - >n-x^ff(Xl.(P))3n^(0(T(nx(Qm
h

Thirdly let the estimation: (r; cr; a) -»(/•': cr'; a') = £x(7"; °^ a)-» where (r; <j;
a) e.R+ x f?f 2 x I?]"2 and Ex e Ep-g, be as in Lemma 1 .3. Then from the explicit

form of Ex (cf. Definition 1 .5), we easily have:

(b) Xr(P) is a (ax, o>d-envelope of Xr.(P) (cf. (i), n.5, §4.2) .

By this we apply Proposition 4.6 to (j*ff(Sr(P))9 ^a(Xr(P))) (cf. also Proposition

4.4), and we have :

Proposition 4,73 (Extension of co chains). There is a map:

(4.13)3 e*\ Zq(j^a(Sr(P)), Ds)ff > Zq(s/a'(Xr'(P)}, $)s)y » with (?• ' ; cr'; a7) =
Ex(r\ <r; a), which satisfies: s* = aXje*. Here the homomorphism a)s: §s~>^s

is as in Lemma 1.3 and s: =p.g. refining map: s/ff'(Srf(P))^s/ff(Sr(P)). (Note

that Proposition 4.73 insures, in the similar manner to n.5, the following

inclusion:

(4.13)4 coJZ«(^(XXP)),Ss)a^s*ZWa(SP(P)),Os)aJ where the correspond-

ence (r; a\ a)-»(r'; 0"'; a') fs as in (4.13)3.)

Now, it is easy to get the comparison of the sets of the cochains

Z%<(Xr(P)), §s)« and Zq(j*a(Xr(P)), Ox)a in Lemma 1.3, which are defined
respectively for CxC" and UQ — D, from Propositions 4.72j3 and (4.13)4. Thus

we have Lemma 1.3, and we also finish the proof of all the lemmas in Chapter I,
which is postponed in Section 4.

§ 5, Proof of Lemma 4.1-Lemma 46

In Section 5.1 we prove Lemma 4.1, and, in Section 5.2, we prove Lemma

4.2-Lemma 4.6. The geometric datum X=(C"(z), C/0, AA
0, Xf

0, P0) consisting

of varieties X0 z> X'Q (3 P0) in L7
0 c Ouv (C"(r)) will be the one in Section 4. Also

letting the subvarieties Xl9 X2 of X0 be as in Section 4, we assume that (Xl9 X2)

= (XQ, XQ) and that X'0: =X0)Sing. We assume, moreover, that the germ of

X0 at P0 is irreducible. From (4.3)3 and a simple observation, the above

assumptions are harmless for the proof of Lemma 4.1-Lemma 4.6.
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§ 5.1. Proof of Lemma 4.1

In n. l-n.4 we prove Lemma 4.1', and in n.5, we prove Lemma 4.1.

1. Reduction of Lemma 4.1 '. Letting the matrix K : £>£-»£)£ (X=X0

— X'o) and its image 51: =K&% (<=Ox) be as in Lemma 4.1', we make some re-

ductions of Lemma 4.1'. First we see that the proof of the following special

case of Lemma 4. 1 ' suffices for the proof of Lemma 4.1' in its original form in

n.4, Section 4.1:

Lemma 5.1'. Lemma 4.1' holds for (X0, X'Q\ K), when (X0, X'0) = (U09 $).

(For the terminology as above, see (4.3)!.) Here we check the implication:

Proposition 5.1. Lemma 5.1'-> Lemma 4.1'.

Proof. We let (X0, X'0) be of the general form as in Lemma 4.1', and we

take an open subset U1 (3P0) of U0. We then take matrices K, G, whose en-

tries are*) in r(Ul9 SUo\ which satisfy the following:**)

(a)j n(K) = K9 and 7c(G) = 0, where n: =natural homomorphism : OUo->Dx.

(a)2 n(<pp)e&p<=$(pPE$p for each PeUl and (pPE^0iP, where***) %:

= F£)V
V

+
0
V'9 with the matrix F: =[£, &].

Now, take an element (per(Ur(P), R, 9f^)a as in Lemma 4.1'. Then, by

Proposition 4.4, we have an analytic map :

(b) co: Ur.(P)-*Or(P), which is the identity on Gr,(P) -

Here r': = Mx(r), with the positive monomial Mx as in Proposition 4.4, and

(b)' Ur(P) :={QeCn',d(Q,P)< r} . (Also, as in Section 4. 1 , Ur(P) : = Ur(P) n

X.)

We apply 'Lemma 4.1' for (C/0, 0; §)' to <p = a>*(p. Then we have an ele-

ment****) ^eF([/,,,(P), £>&+"'),,', satisfying F¥ = cp, where (r"; a') = MF(r'\ a)

40 ®u0 '• = structure sheaf of UQ.
**) Take a base /i,..., fw of the ideal of X0 (over UJ, and we set f: =[/i,.. ,/J. Then

. r f , 0 , ...,0-11
we form the uY v'-matrix G, where v': = ux w, to be: G: = \ '• • \>u. Then we

. . . LOS ^fJ
easily see that F: = [K, G] satisfies (a)1>2.

***) v': ^length of colums of G (cf. the remark in **) soon above).
r(Ur(P),8UQ)a:=r(Ur(P),£Uo;0)a, with the standard q-structure 0 of D^ (cf.
Definition 1.4i and (4.1)2). We use the similar abbreviation in Section 5.
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with an element M F eM (cf. (4.1)3); by restricting *P to X, we have 'Lemma

4.T for (X0, X'Q\ Ky (cf. also (a)1>2), and we have Proposition 5.1. q.e.d.

2. We will prove Lemma 5.1' inductively on n=dimU0. For this we

add a lemma, which is slicely stronger than Lemma 5.1' and is convenient for

the inductive proof: take a variety V (3 P0) in C70 arbitrarily. Then taking a

suitable subvariety V of V and an element a — avv> eJJj"2, we form a parameter

space ft = ftVtV, in the similar manner to (4.1)4:

where 17 1 = U l f K § F , is a suitable open subset ( 3 F0) of 17 0 and g(P): = d(P9 V) *.

We set 2: =/i x J?J". Then taking an estimation map M = MV>F> eM: JR~" xU4"

-*R+xR+, we have:

Lemma 5.1. We have the following inclusion:

ft0)a n ftjO

where (r1; a') = M(r;a) and (P; r; a) /s /« 2 (c(V~ V')xR+ xJSf). Moreover,

we set :

(5.1)3 (/e/f side o/ (5.1)2): =

(T/ie matrix K is as in the beginning of n.\, by understanding that (X$9 Xf
Q)

= (tfo, «•)

Actually, we clearly have: (left side of (5.1)2)zDr([7f.(^)5 &l 6®)a> and we
have the implication: Lemma 5.1 ->' Lemma 4. 1' for (K, V; JC)' (cf. (4.3)!).

From this and from the chain property for sheaf homomorphisms (cf. Propo-

sition 4.1), we easily see that Lemma 5.1 leads to Lemma 5.1'. Next we make

some remarks on Lemma 5.1 : first we check that the proof of Lemma 5.1 for

the case of u ( = number of columns of K) = 1 suffices for the case of u g: 2 :

Proposition 5.2 x. Lemma 5 .1 for u = l-> that for u^l.

Proof. Assuming that w^2, we write K as *X = [tX1, <K2], where Kl is

of type (1, y). Denote by K\ (czOjJ0) the kernel of the homomorphism K} :

Og^O^. Choosing elements {g^\^\^r(U^ O&0), which generate K'l5 we

set K": =[jfi,..., #J and K2:=X 2 -X / / . Then the equation Kx = y, where
t^ = (^i,."5 ^u) is solved as follows: first find a solution x° of Klx° = y9 and we

solve: K'2x
l = y'-K2x°, where <y':=ty2,...9 yv~\. Then we have:

= y. Using this remark, we check easily Proposition
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By Proposition 5.21 we henceforth assume that w = l and that K: = [/i,...,

/J satisfies: fl ^ 0. Then setting Y: = divisor of fl, we have:

Proposition 5.22. Lemma 5.1 holds for (V, V f] Y\ K).

Proof. From the explicit form of Lemma 5.1 and from Lojasiewicz in-

equality, we easily see that the proof of Proposition 5.22 in the case: F=l/0

leads to the general case: Fez U0. Now take a point P e l/j — Y and an element

reJR + satisfying r<{a°g(P)}-1, where g(P):=d(P, YY1 and cr° is a suitable

element of R\2. Then Lojasiewicz inequality insures:

(a) l/i(P)l>^(P, Y), with a suitable e=sfleR+2.

From this we easily have:

(b) 2|/1(g)| >|/1(P)|>|/1(C)/2| in Ur(P).

Take an element (per(Ur(P), &Uo)a. Then we clearly have cp = Ky, with fy:

= (<p/fi, 0,..., 0). Using (a), (b) and that r<(a°g(P))-1, we easily have:

(c) \9/f\ \<a- MGt(ro(r~l), with a positive monomial M^ f f0,

and we have 'Lemma 5.1 for (L/0, Y\ K)\ q.e. d.

3. Now we prove Lemma 5.1 inductively on n = dirn U0. First, if w = l,

then Proposition 5.22 insures that the check of Lemma 5.1 for the case of (V,

V \ K) = (P0, 0; K) suffices for the proof of Lemma 5.1 itself (cf. also Propo-

sition 4.1). To see the former, take an element <pEr(Ur(P), &Uo)a (cf. (5.1)2),

and we assume that 77?: =deg/1>deg/J- (j'^2). Then we have: \fi(Q)\> f f l -

|zm|, with an element c^ eU+, in a neighborhood of P0 (in C). (Here z is the

coordinate of C). Remarking (pPo = 0(/j), we estimate the holomorphic function

(p/fi at the boundary of Ut.(P) (by means of the maximal principle). Then we

have: ^//il^Cy^/r1" in Ur/2(P). This insures Lemma 5.1 for w = l. We

henceforth assume that n^2 and that Lemma 5.1 holds for n<n. By Propo-

sition 5.22 we assume that Fc:7( = locus of f^. Moreover, without loss of

generality, we assume that

(5.1)4 the germ of Fat P0 is irreducible, / ^ - ( I r g j ^ f ) are Weierstrass poly-

nomials^ at PQ, and m>dcg/7- at P0 (j^2), where m=deg/1 at P0.

We then define an element m e Z+ and a subvariety V" c V by:

(a) deg/j = m at each P 6 V— V", and deg/j > m at each point P e V".

*} Weierstrass Polynomial in the last coordinate zn of r.
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Now we prove the implication :

(5. 1)5 Lemma 5.1 for fi = n— I - > that for n = n,

using the standard methods of the proof of the coherency theorem of K. Oka

(cf. [14], [4]).

4. Proof of (5.1)5. We begin n.4 by summarizing some (elementary)

estimations, which are used in the proof of (5.1)5. For this we take suitable

elements <7 = ovjF,, a = oeFjK, eR+2 and an estimation map M = MF>F, e M.

Then letting the open set Ul(3P0) of U0 be as in Lemma 5.1, we have the

following for each Pe l^ rKF— V) and each reR+ satisfying r<{ag(P)}~1,

Proposition 53. (1) One can write f^ as fl=e-f\, with f^ &e F(Ur(P),

Oj;0). Here fi is a Weierstrass polynomial at P and s is a unit in F(Ur(P)9

&Uo). Moreover, e satisfies:

(5.1)6 |e(Q)l, |e-'(Q)l«x-{d(Q, K')"1) for each QeUjP).

(2) For an element (/> EF(l/f.(P), OLr0)fl (a elt|~) we have:

(5.1)7 (p = <pif'i + <p2, where <pl9 (p2 are in r(Ur,(P\ O^V, and q>2 is a poly-

nomial in zn of degree <m. Moreover, (V; a') = M(r\ a).

We prove Proposition 5.3 in Appendix I.

Proof of (5.1)5. Letting cp and q>2 be as in (5.1)7, we assume that

Then (p2
: =G'(P2 *s also m &p- Remarking that <p2 is a polynomial of degree

m — 1 in zn, we write <p2 = £5?=o gkz$, and we form a vector x : =(0fc)?=o . More-

over, we denote by T the projection: Cfl(z)-^CII~1(zlJ..., rn-i). Without loss of

generality for the proof of Lemma 5.1, we assume that l/0 is of the form U0

= U 0 x £ / o , where UQ is a polydisc in C"~l and UQ is a disc in C. We set

P'=T(P).

(i) First we have the following estimation:

(a) xer(U'r{P')9 OgbV, with (r'; a') = ttfl(r', a},

where the estimation map Mfl is in M, and we set V'r(P'): = [Qe C""] ; d(Q9 P')

<r'}.

To check this we first note that the inequality KC?)!"1 >a • d(Q9 V) leads*^ easily

*} Also note that the element r^R+ in Proposition 5.3 satisfies: r<^(a-d(P, K')"1)"1. Using
this, we get easily (a)i (cf. also (c) in the proof of Proposition 5.22).
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to the inequality :

(a)x \e(Q)\<Mfl(l/r')9 with a positive monomial Mfl .

From this and from that \q>2\<a' (cf. (5.1)7), we have:

(a)2 \<p2\<a':=a'-MK(l/r').

Writing cp2
 as <?2==ZfI=o 9k(zn~zn(Py)k^ we estimate g'k in the following form

(by means of Cauchy integral formula) :

(a)3 0ler(l/XP'), O^U with (r"; a") = (r'/4; 5'.(2/r')*).

Finally, rewriting <p2
 as ^i^Z/Pd #fcz«» we have (a).

(ii) Next, applying the standard method of the proof of the coherency

theorem (cf. [4]) to the pair (K, <p2), we have elements 3>j 6 OUo,p satisfying

(b) (p2 — 2y = i &jfj9 and $j are polynomials of zn of degree ;g m — 1 .

Here the key fact is, as in the proof of the coherency theorem, that the coefficients

fj of the above equation are independent from PeV—V. We write <2>7- =

Zfc=<30/ fc z «> and we form vectors x, y by*} Tx: = (0, fx) and ry: =(yl9..., yv\

with v7-: =(^jfc)?=o- Then (b) is equivalent to

(c) x = K'y, with a matrix Kr, whose entries are the polynomials of the

coefficients of fj (i^jrgt;), and are holomorphic in U'0.

(iii) Now we derive Lemma 5.1 for n = n from that for n = n — 1 (applied

to the matrix K1}. For this recalling that VaY (= locus of the Weierstrass

polynomial /j), the map u: V-+V : — i(Y) is integral**) and is surjective. Then,

taking a suitable subvariety V' of V, the induction hypothesis insures 'Lemma

5.1 for (F, V'\ Kry. Setting V" : =i~\Vr) n F and F'^F" U V, we assume

that the point P is in V— V". Also we assume that the element re R+ in (5.1)7

satisfies***': r<{<j-d(P, F")""1}"1, with an element o = GVtV,,eRl2. Setting
$V:=K;O&b(c:£)gb), where v:=m-v, we note that xe^^. Then, applying

'Lemma 5.1 for (F, F'; K')' to the element x, we have:

*) D: =m-th 0-vector.
**) precisely, 'integral' at the origin P0 of V.

***> Note that, to apply 'Lemma 5.1 for (K, V'\ K'Y, the element reJR+ should satisfy:
r<(a*d(P, F')-1)-1, with an element G = dyty'^R\z. But from the Lojasiewicz ine-
quality and a simple observation, we have: d(P, V")<Lcd(P', V'}, with an element
ceJK"1"2. From this one can assume that the inequality soon above is satisfied (because
r"<((a.d(P, F'TT1).
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(d) x eK'T(&'r~(P')9 OfrbV, where (r"; a") = MK,(r; a) with an estimation map

By the equivalence of (b) and (c), we have**:

(e) q>2 = Ij #y 'fj> with $j e F(Cr,(P\ DUo)^ with (P; a") = MK(r; a).

Finally, setting $'j\ =$//£, we have: ^2
= Sy &'j •//• Also, applying the similar

argument to (a)x to the estimation of |e~!| in (5.1)6, we have the similar esti-

mation to (e) for <P'j. This implies 'Lemma 5.1 for (V, V"\ K)\ and we also

finish the proof of Lemma 5.1 (and so that of Lemma 4.1').

5. Proof of Lemma 4.1. Here we derive Lemma 4.1 from Lemma 4.1',
by using a cohomological method as follows: (i) first, for a subset Y of X = X0

— X'0 and elements t, aeR+, we define:

( ^t(Y):={Ut(Q)',QEY}, where Ut(Q): ={ReX; d(R, Q)<t

(cf. (4.1),)],

(5.2)0

for each

: ) a n <

Also taking an open set U'x of U0 and an element ax e JRf 2, we form the follow-

ing parameter space:

(5.2){, ^:={(P;r;r;a)6(^n^)x JR
+xl?+x JRr;r^<{(Tx^(P)}-1}, with

Moreover, setting M : = M x M x M , where M: = collection of all positive

monomials (cf. n.5, §1.1), we define the following map for each M = (Mf)?=i
eM:

(5.2)g M:R^xR+xR+3(nt- a)-*R+ xR+ x R+ 3 (M,(r\ M2(rf), M3(a/rt)).

Then taking an estimation map M^eM, the following lemma will play a key

fact for the proof of Lemma 4.1**> :

Lemma 5.2. s*Z*(j*t(0,(F)), Ox)fl ^5C«-\*/t,(Ur,(P))^x)a, (q^l), with

(r'; t'\ a') = Mx(r; f; a), where the parameter (P; r; f; 0) is m 2x(cXxH:+

*} In (e) we understand that the estimation map MK is of the desired form as in Lemma
5.1.

**) The refining map s in Lemma 5.2 is defined similarly to Definition 1.62: s:
3 C/K
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xR+xR+).

For convenience of the proof of Lemma 5.1, we add here the following

weaker version of Lemma 5.2:

Lemma 5.2'. Lemma 5.2 is true, if (X0, X'o) = (U0, 0).

We prove Lemma 5.2' at the end of Section 6. Also we derive Lemma 5.2

from Lemma 5.2' in (iii). In (ii) we derive Lemma 4.1 from Lemma 4.1' and

Lemma 5.2.

(ii) 'Double complex9. Next letting the sheaf § e Coh (X0 ; ^) be as

in (4.1)6, we assume that #^ = 1 (cf. (iv), n.7, § 4.1). For notational convenience,

we write § as follows :

(5.2) ! 0 - > Dk
x° --> -»-» OJr1 - &x

p - > O£Y§ - > 0 ,

where we use the symbol <5S for the matrices K0,... in (4.1)6, and the homomor-

phism in the final stage is the natural one: Dx
p-+£)x

p/fy (with § = (5§D|J"1).

Then, for the parameter A = (P; r; i\ a}e2x (c(Ux n X)xR+ xR+ xR^), we

set:

(5.2)2

' ' n

Next taking an element o-it,6l2|2, we form a parameter space 2§ (c(C/^n^)

x R+ x R+ x Rf) similarly to (5.2)o, by changing the condition on the third

term: it<{axgx(P)}-^ by 't<{a^gD(P)Y^: with gD(P): = d(P, D)~^ where

D: = divisor of h on X0.

Proposition 5.4^. We have the following inclusions:

; r; t; a)^5^ «(P; r; /'; fl') (p^
v - ^ 3 f f - f f l

the parameter (P; r; ?; a) is in A§ or /w Ax ( cr X x R+ x R+ x JRf),

estimation maps M§, M^ are /w M and M.*}

Proof. The second inclusion is a rewriting of Lemma 5.2. The first one is

*> In Proposition 5.4l5 the first factor (U'xr\X) of 2$ is independent from the individual
£eCoh (To; ^). This is insured by (2), Remark 4.1]..
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derived from Lemma 4.1', using a similar procedure to Proposition 4.5i: letting

the estimation: (r; O-^M^r), M2(a/i)) be as in Lemma 4.1', we define a map

M^E :M (f; a)-*(M((t), M2(a/4t)\ where M\ : = M0 - Ml • M0, with a map

M0: t-+t/4. Then using the similar inclusion to (4.10)5 in Proposition 4.5 ls

we have the first inclusion, which is a cohomological version of Lemma 4.1'.

q.e.d.

Next letting the estimation map MeM be as in (5.2)o, we call Ml : R+ 3 r

-^R+ 9 Mj(r) the first part of M, and we use the symbol n for the projection:

M3M-+M3M,.

Proposition 5.4 2 . There is a map et: Coh (X0;

Coh(X0; /)a§-*M3Afc, which is factored jig I

as in Figure I, and with which we have the Z+ - > M
following map (p^p^l ) : Figure I.

0 : Z* °(P :r;t; a)

*': Z"(P; ,; ,;

w/7/c/7 satisfy:

(5 ->V ' ; /; /'; a')
( '~U

with (r'; t'; a')=M$(r; /; a)

he similar facts for (l—9-0')Z°P and 6Z° P~~I (by changing the role of

d^ and 5). (In the above the parameter (P; r; t; a) is in 2§ (aXxR+xR+

Proof. It suffices to check the similar fact for Z^q: = Z^«(P; r; t\ a) and

ZP~I q+l: =ZP~lq+l(P; r; f; a), where i^p^p, q^Q. For this take an ele-

ment </> e Z?q (resp. <p' 6 Z^"1 < 2 + 1)- Then, by Proposition 5.4l5 we take elements

<Pi,<Pi from the right sides in (5.2)3 satisfying d$(pi = cp, d<p\ = cpf. We set

cp = 6(pl and (p' = d§(p\. Then we easily5^ see that the maps Q^q\ cp-^cp, O'pq:

(p'-^-cp' satisfy the similar fact to (5.2)4. q.e.d.

(Proposition 5.4lj2 correspond to the degeneracy theorem in the spectral

sequence arguments. Our arguments as above are suitable for the explicit

Note that the estimation map MA-eM in Proposition 5.4! is independent from the
individual $eCohC-Y0 /), while the map M^eM does not operate out the first term
r^R+ (or, operates on r as the identity). The iactorization in Figure I follows from
these remarks.
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estimations, and are patterned on the algebraic arguments in [20].) Now from

Proposition 5.4lj2 we easily have:

Proposition 5.5, Z* °(P; r; t; a) c d^Z"*-1 °(P; r'; t'; a') (p ̂  p ̂  1), where

the estimation: (r; f; a)-»(r'; l'\ a') is as in Proposition 5.41>2.

Finally we define an obvious map:

(5.2)5 fi: Z"P °(P; r; t; a) c_> r(Ur(P), O£?).

We easily see:

(5.2)6 jr1: F(Gr(P), £>|*)fl ̂  Z"* ° (P; r/2; r/2; a).

From (5.2)5 6 and Proposition 5.5 we have:

(5.2)7 (r(ur(p),, &x*)a n s^o^dd^r^Of^p), 0^"% ( i ^ P ^ P ) ,
where the correspondence: (r; a)-»(r'; a') is as in Proposition 5.42.

This inclusion and the factorization in Figure I, Proposition 5.42 insure Lemma

4.1, and we finish the proof of Lemma 4.1.

(iii) Here we check the implication: Lemma 5.2'~>Lemma 5.2. In (iii)

we assume that X0 is irreducible at the origin P0 of XQ. This assumption is

harmless for the proof of Lemma 5.2. Now letting the parameter (P; r; t)

eXxR+xR^ be as in Lemma 5.2, we take a suitable projection*) T: C"(z)

->Cfc(z7), where z' = (z f l , . . . , zik) with /c = dimZ0, and we set P': =r(P). Then

we have the following refining maps:

r JP : sf, (Ur, (P)) 3 U,, (Q) > T-H^t (Cfr(/")> s ^ (ff,(*(0)) 1

with (r'; f) = (Mx(r), M^(t)), where Mx is a positive monomial. (This follows

from Proposition 2, Appendix II.) It is then easy to see that, by using the above

cofinal relation between j&t(Ur(P)) and jtft(JJr(P')), Lemma 5.2 (given to X) is

reduced to Lemma 5.2' (given to Ck). As was mentioned, the check of Lemma

5.2' is given in the end of Section 6.3.

§ 5.2. Proof of Lemma 4.2-Lemma 4.6

Here we prove the lemmas in the title, by using Proposition 4.2 and some

elementary computations on the a.d. properties of coherent sheaves (cf. Lemma

*} 'suitable'=suitable choice of coordinates z'ez. After fixing the coordinates z', r is
the natural one: Cn(z)^z-*Ck(z')^z'.
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5.3 and Lemma 5.5). In n.l-n.4 we prove Lemma 4.2-Lemma 4.4. We

prove Lemma 4.5 and Lemma 4.6 in n.5 and n.6. As in Section 5.1, our under-

lying variety is X: = X0-X'09 with X'Q: = X0tSing.

1. Key lemmas for Lemma 4.2-Lemma 4A (i) First letting the sets f,

jrcr(X0, DXo) and the Koszul complexes J5""1, ^ (which are determined by

,S, j?) be as in Lemma 4.2-Lemma 4.4, we prove the following in n.l-n.4:

(5.3)0 Lemmas 4.2, 4.4 for (X0, X'0i /) and Lemma 4.3 for (X09 X'Q; /\ &).

(By (4.3)3, the proof of (5.3)0 suffices for the proof of Lemma 4.2-Lemma 4.4

in its original form as in n.2-n.4, §4.2). We give here a lemma, which is our

starting point of the proof of (5.3)0:

Lemma 5.3^. There is a subvariety Y of X0 satisfying*^

(5.3); ^=>*o(=Xo,sing), and dim(Y-X'0)^dimX0-2,

and with which the following three uniform estimations hold:

(5.3)! 'Lemma 4.2, Lemma 4A for (X09 7; /)'

and 'Lemma 4.3 for (X0, Y; /, &)'.

We check Lemma 5.33 in Part B, Appendix I. Note that Lemma 5.3X

implies:

Proposition 5.6. If dim X0 = \, then Lemma 4.2-Lemma 4.4 hold.

Setting k:=dimX0, we assume the following for the remainder of n.l-

n.4:

(5.3)2 k^2, and Lemma 4.2~Lemma 4.4 hold for k<k.

Remark 5.2. We may phrase Lemma 5.3! by saying that 'the estimations

in Lemma 4.2-4.4 hold for general points of X:=XO — XQ'> (cf. also the

proof of Lemma 4.2-4.4 in Appendix I). Also as we will see in the course of

n.l-n.4, our proof of Lemma 4.2-4.4 may be regarded as insuring the im-
plication :

(5.3)2 'estimations in Lemma 4.2-4.4 for general points of X'-*6those for

all points of X\

Precisely, we require (5.3)J for the germs of 7, ... at the origin PQ of XQ (cf. the begining
of §5). For the local variety XQ, we use similar terminology to (5.3)! in later arguments
(cf. Lemma 5.32 and Proposition 5.7).
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We prove this by using an inductive argument on k and Proposition 4.2, which

is essentially a cohomological result (cf. the proof of Proposition 4.2 in n.4,

§4.2). The implication (5.3)2 and its proof may be interesting in connection

with treatments of the a.d. properties of analytic varieties.

Now, the essential part of the proof of Lemma 4.2-4.4 is given in n.2-

n.4. Here we make some reductions of the above lemmas: For this we fix a

variety Y as in Lemma 5.3 19 and we assume that (Y— X^^cf). (Otherwise,

Lemma 4.2-4.4 are true.) Then the following lemma suffices to insure Lemma

4.2-4.6:

Lemma 5.32. There is a subvariety Yf of Y satisfying (1) Y'^X'0, (2)

Y'-Xr
0^Y-Xf

0, and with which we have (cf. n.7, Part A, §4.1):

(5.3)3 'Lemma 4.2, 4.4 for (7, 7'; /)' and 'Lemma 4.3 for (7, Y'; /, #)' .

Actually, by the chain property in Proposition 4.1, (5.3)1>3 insures the

following :

(5.3)4 'Lemmas 4.2, 4.4 for (X0, Y' ; /y and 'Lemma 4.3 for (XQ, 7'; /, #)' .

Remarking that (2), Lemma 5.32 insures: X0 — Y'^=X0—Y, we easily see that

a finite repetition of the above procedures leads to (5.3)0. In (ii) soon below,

we will give explicitly a variety Y' as in Lemma 5.32.

(ii) Take a suitable element h EF(X0, OXo)»
 anc* we denote by D the

divisor of /?. Then from a simple observation, we have:

Proposition 5,7. Taking a suitable subvariety D' of D, we have:

(5.3)5 D z > y u * ( > , 0' =3 *(>,/>' 27, and dh^Q at any PeD-D' . (Here d = ex-
terior differential operator on X0.)

(5.3)6 The elements f^/, gje& (l^i^s, 1 ^ j£t) satisfy: fh g^Q (Du) for

each irreducible component Dlt of the germ D at P0 satisfying DU<£D'.

We set Y': = Y n D'. Then we easily see that (1), (2) in Lemma 5.32 hold.

To show (5. 3)3 in Lemma 5.32, it suffices to prove the following:

Lemma 5.4. The following four facts hold (cf. also n.7, part A, §4.1):

(5.3)7 'Lemmas 4.2, 4.4 for (D, />'; /)' and 'Lemma 4.2 for (D, ZX; /, <g)\

Actually, from that D=D Y u X'0, one check easily that one can replace (D, D')

in Lemma 5.4 by (Y, 7'). Thus, by (5.3)4, the remaining task for the proof of

Lemma 4.2-4.4 (cf. also (5.3)^ is to prove Lemma 5.4. This will be done in
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n. 2-n.4 soon below.

2. Proof of Lemma 5.4. First we give a proposition, which reduces

Lemma 5.4 to Proposition 4.2. For this we fix a suitable*) d = dDeZ+, an ele-

ment (cr; m) = ((jD, mD)eR^2xZ+ and a linear function L0 ( = c0>Z)f; c0>1)>0).

Moreover, letting the open set t / l j D(9F0) in C", we form a parameter space
/iD(ci(D-Z)')xJ{+) by ^D: = {(P;r)e((D-DOniy l j l ))xU+;r<{^(F)}-1}?

with g(P}'.=d(P,D'Yl- Then, letting the Koszul homomorphisms Fjf, Gp?

be as in Lemma 4.2-Lemma 4.4, we have**} :

Proposition 5.8. (1) For a suitable Ejr,£Ea>d we have:

(5.4), i*(F»^r(Gr(p), /*cjr '^ n
= _ 1 . -

(0<^<s), w/f/1 (r'; in'; a') = ED(r; in; a). Here (m ; m) e Z+ x Z+ satisfies:

m>L0(m).

(5.4)2 i*(r(Qtf), /msx)a n nOf/p), /idox)) c hT(ur,(P), /""'
with (r'

(2)

(5.4)3 i*(Gpr(ur(p), mz>- n

i*(r(Qtf), /msx)a n nOf/p), /idox)) c hT(ur,(P), /"
' ; m'; a') = ED(r; m; a). Here meZ+ satisfies: rn^rn.

) For a suitable a.d. map £fl^6Ea.d, we /Taue (0<p<():

i*(Gpr(ur(p), /mz>(/-\ n r(t/r(n A'oP))

with (r'; m7; a') = ED^(r\ m\ a). Here meZ+ satisfies: m>rn.

In the above (P ; r ; a) is in pD x R J ( c (D - /)') x U+ x KJ).

We prove Proposition 5.8 in n.3, n.4. Here we check:

(5.5)! Prop. 5. 8 + Prop. 4.2 ->' Lemmas 4.2,4.4 for (D9D'\/)* and 'Lemma 4.3

for (D, D'; /, ^)' .

Actually, by (4.5)3, Proposition 4.2, we have:

(5.5); /*Hr(ffr(p), /"^Fx n (f?r1(0))c:Fj.1r(Oxn /*'o^£l))fl^,
with (r'; m'; a') = £x(r; m; a). Here the a.d. map £xeEa-d is as in Proposition

4.2. From this and (5A)l we have the desired inclusion to insure "Lemma 4.2

for(D,D';/)':

*} When we are concerned with (5.4)s, the data dD, ... depend also on <g:dD=dD^, . . . .
**} For the sets of the cochains in Proposition 5.8, see (4.2)2 and Proposition 4.2.
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(5.5)2 i*(r(ur(p), /*c n
where (r'; m'; a') = ED(r-, m; a), with an a.d. map ED eEa -d, which is determined

by £»,£* as in (5.4)^(5.5);.

Thus we have the first fact in the right side of (5.5)!. The remaining two

facts in the right side of (5.5)! follow from (5.4)2)3 and from (4.5)1>3 in Propo-

sition 4.2. Thus, the remaining task for the proof of Lemma 5.4 (and so Lemma

4.2-4.4) is to prove Proposition 5.8. This is done in n.3, n.4, soon below.

Remark 5.3. By a simple induction on rfeZ+ we easily see that the proof

of Proposition 5.8 for d=l leads to that in the general case: d^2. The proof

of Proposition 5.8 will be given for the case of d= 1.

3. Proof of Proposition 5.8- (1). Note that the uniform estimations in

Proposition 5.8 were given to each PeU1 n(D--D') and to Koszul complexes

Fm,..., which are defined on X0. We will derive Proposition 5.8 from the

uniform estimations on Koszul complexes,... on the divisor D0 of XQ, which are

insured by the induction hypothesis (5.3)2 (cf. (5.6)4 and Proposition 5.9 soon

below). For applications of such estimations, we begin n.3 by arranging some

geometric data, which are attached to D : first we set :

(5.6)i &D = structure sheaf of D, and n = natural homomorphism : £5Xo-»OD,

(5.6)2 / = (/,)l-i, / = (0y)J-i, where /, = TT(/,), 3j = *(9j) -

We use the symbol «^"m (resp. /) f°r tne m"tn Koszul (resp. Koszul)-complex
for

(5.6)3

We then use the induction hypothesis (5.3)2 in the following specified form:

(5.6)4 'Lemma 4.2, Lemma 4.4 for (D, £';/)' as well as 'Lemma 4.3 for

(D,D' ;/,*)' hold.

In the remainder of n.3 we summarize some (direct) consequences of (5.6)4.

First we check that the a.d. property of the holomorphic functions is preserved

by the extension from D to X0 :

Proposition 5.9!. (Extension of a.d. property). For a suitable a.d. map

£DeEaid, we have:
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w f f f t (r'; m'; a') = £i)(r; m; a).

Here */?e parameter (P; r; m; a) is, as in Proposition 5.8, in fiDx

(c:(D-D')xR+xZ+xRJ;). Also we set:

(5.6)1 # XP) = ff XP) n D ( = {S e D ; d(Q9 P) < r}) ,

and /': = inclusion: Uf
r,(P)t-»Ur

r(P}.

Proof. First, by its definition, the left side of (5.6)1 is written as follows:

(a) r(tf;(p), /*cD)fl= F*r(G'r(p), Of,)fl (cf. (4.2)2) .
Next by Proposition 4.4 there is an analytic map o>: Ur,(P)-+U'r(P)9 which is the

identity on lJ'r>(P). (Here r' = MJ)(r), with a positive monomial MD as in Propo-

sition 4.4.) This implies: r(l7;,(P), 8D)adnr(ttr.(P)9 Bx)a, and we have:

(b) *'*r(ff;(p), /*OD)« c 7cf*r(£7;<p), o^)fl . q. e. d.
Letting the a.d. maps £#, ED^ be as in Proposition 5.8, we give the fol-

lowing slicely weaker version of (5.4)1>3 (cf. Proposition 5.8):

Proposition 5092. We have the following inclusions:

i*(Gpr(ttr(p),

(r;; m'; a') = ED^(r; ?n; a)

Proof. Take elements <p = F™ cpf, W = GpW from the left sides, where

V', W are in F(l7r(P), /*O?))fl, !P' e AC/^P), ̂ O^^ (cf. (5.6)2j3). We set

(p' = nq>f and Wf = nWf. Then, by 'Lemma 4.4 for (D, D'; /")' and 'Lemma 4.3

for (D,D'\/\V)\ we have: ^FJ-^i, ^' = 0^^;, with 9ier(t7;<P),

/*'0^£l)V and ?i er(l?Xn /^'O&^V, where (r'; m'; a')=^(r; m; a)

and (r'; m'; a') = ED^(r\ m\ d). (In the above we assume that p^l. If p = 0,

then (5.6)2,3 is obvious, because Fg*, G0 are injective.) By Proposition 5.9l we

extend <pi, ^ to Z0. Writing the extensions as <pi, i^i, we set <p2 = (P /~-Fjf_1<jDi,

yi = y-Gp_1y;. We then have: 71^=71^=0 and F™(p'2 = (p, GP.^'2 = W.

From this and the estimations: (r; m\ a)-»(r'; m'; a'),... soon above as well as
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the one in Proposition 5.9l5 we easily have (5.6)2 3. q.e.d.

4. Proof of Proposition 5.8 - (2). We first check the implication :

(a) (5.6)2— *(5.4)2.

To see this, take an element <per(tir(P\ /m&x)a n r(Or(P\ hOx) (cf. (5.4)2).
We take a suitable linear map** L: R+ B m-*R+3 cm; c>0. Letting 777' =

[L(m)]5 m = m — in', we have:

(a)i 9 e F™r(Ur(P), X*°*)« n r(Ur(P\ hDx) (cf. (5.6)2) .

By the choice of the map L, one can assume*); LQ(m')<m, with the linear

function L0 in (5.6)2? Proposition 5.92; applying (5.6)2 to the right side of (a)j,
we have :

(a)2 r*(peF-Xr(^(n/"'^9a'nr(^(P)5/i£)i)), where (r'; nV; a') =
£^(r; m; a) is as in (5.6)2.

Remarking that**) r(U,(P), /'*'&x)acr(Ur.(P), Ds
x)a>, we apply the bdd.

uniform estimation, Lemma 5.1, (applied to the homomorphism h: O^a (p-+£)s
x

3 h(p) to the right side of (a)2. Then we have :

(a)3 z'>eF^/t.F([7xn OJV, with (r"; fl") = Mfc(r'; a').

Here the map Mft : R
+ x .f£+-».f?+ x I?+ ( e M) is determined by the homomorphism

h as in Lemma 5.1 . This inclusion is of the desired form in (5.4)2. Moreover,

we easily check that the map: (r; m; #)-»(r'; m'; a'), which is determined by

the maps L, Ex and Mft as in (a)1_3, is also of the desired form in (5.4)2. (Name-

ly, that correspondence is written as (r'; m'; a') = J5(r; m; a), with an a.d. map

E determined by L, Ex and Mh.) Thus we have the implication (a). Next,

it is easy to see that the application of (5.4)2 to the right side of (5.6)2t3 leads to

the following implication :

(b) (5.6)2 + (5.4)2-»(5.4)1> and (5.6)3 + (5.4)2-»(5.4)3.

Thus we have Proposition 5.8, and we have Lemma 5.4 and so Lemma 5.32

as well as our original lemmas, Lemma 4.2-Lemma 4.4 (cf. (5.5)l5 (5.3)7>4 and

(5.3)0).

5. Proof of Lemma 4.5. Letting the sheaf § be as in Lemma 4.5, we

*} For the treatment of the 6a.d. exponents' m,... here, see also (iii), n.3, Section 2.3 (in the
proof of Lemma 2.6), where the similar arguments are given.

**} Recalling that /=0 at P0, one can assume that I /1 < 1.
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assume that § is of the form in (5.2)j. We write ̂ Oj^ (cOjf) as §f (1 ^p^p).

(Thus § = §p.) Also we denote by D the divisor oP!s) /? on X0. Then, letting

the variety Y^XQ be as**> in Lemma 5.3,, the following lemma will be our

starting point of Lemma 4.5 :

Lemma 5,5, Lemma 4.5 holds for (JV0, Y: §)/5) ( 1 :g p :g p),

y-Dc: K ( = locus of /').

(For the proof of Lemma 5.5, see Part B, Appendix I.) Next taking an

open subset U& of UQ and an element a^ e JRf2, we form parameter spaces:

(5.7)0 ^ : - ( (P ; r ;a )e (L/ . 0 n(y-D))x l l + xl? t ; r<{a^ D (P)}-M 3 with 6 r D (P) :

= rf(P, D)-1, and T^:=JL^xZ+.

(If YcD, then Lemma 4.5 holds. We henceforth assume that YqLD.) For

convenience of the proof of Lemma 4.5, we fix a set /r = (gq)^=i^r(X0, OA-0)

satisfying y=n|^1D< i , where Dq:=divisor of gf§ on X0. Also taking an

element d eZ+, we set /d\ =(^|)|=1. Thirdly taking a parameter (P; r; a; /??)

(5.1), Cf (P; r; a; m): =£/ (gf)"1 -n^P),/^-),, (g^O, Ogpgp) , where

/ exhaust all indices of the form / = ( / 1 < - - - < ^ + 1) and Q\\ =gd
il-"gi~ + r

The homomorphism 5§ operates on Q^(T), with i = (P\ r; a; w):

-+CP+I q^m ^/Q denote by dgd the Koszul homomorphism for

(5.7)2 dgd:C^)B^ffpl/g^ with ^/

where (<?/)/ -»(cpj)j is defined by the Koszul homomorphism defined for

(cf. n.3, part B, §4.1).

We then set:

(5.7)3 Zr(T): = erWn^ l(0), zrW:-Cr(T)n (5^(0), and

Take a suitable elemenl***) e = e^eZ+ and an a.d. map £^eE a d (cf. n . l , B,

*; The element /?e/"(JT0, O l o ) is also as in (5.2)!.
**} Precisely, we understand that the divisor D plays the role of the subvariety XQ in Lemma

5.31. In Lemma 5.3! we assumed: dim (7—^J)^dim XQ—2. Here we do not assume
the corresponding fact: dim (7— D)<;dim XQ — 2.

**) when we are concerned with the second inclusion in (5.7)4, the data (e^, E$) depend
also on f\ c$=e§t and E^--=E^t.
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§4.1). Then we have:

Proposition S.lOj. We have the following inclusions:

ZJM(P; r: a; m^Ct1 * (P; r'-a'-m'
1 * )4 ;r;m;ac:gd

with (r ; a' ; m')=E$(r; m; a) .

Proof. The first inclusion follows from Lemma 5.5 and Proposition 4.2.

Moreover, the second follows from Lemma 4.3 or Lemma 4.2, according as

q < or = q (cf. also the proof of Lemma 4.3'). q. e. d.

Applying the similar algebraic arguments to n.5, Section 5.1, we get the

following from Proposition 5AQ1.

Proposition 5.102o We have the following inclusion (p^.1):

(5.7)5 ZS°(P; r; a; m)^5^Z"e"^0(P- r'; a'; m'),

where the correspondence: (r; a; m)-»(r'; a'; m') is similar to Proposition

5.10^

Finally, by comparing the set of the cocycles, Zp°(P', r; a; m) and the set

of the holomorphic functions F(Ur(P), /l"O**)fl in a similar manner to n.5,

Section 5.1, we get easily the desired inclusion in Lemma 4.5:

where the correspondence: (r; a; w)->(V; a'; m') is similar to Proposition

5.102. (Precisely, from the explicit form of the parameter space T§, (5.7)6

insures 'Lemma 4.5 for (7, D; §^)' (1 ̂ p<*p). But, using the chain property in

Proposition 4.1, we have 'Lemma 4.5 for (X0, D; §)' from the above (cf. also

n.l, §5.2), and we also have Lemma 4.5 (cf. also (iii), n.8, B, §4.1).)

6. Proof of Lemma 4.6. Finally we derive Lemma 4.6 from Lemma 4.5

and Lemma 4.4. In n.6, the sheaves §p = <5§Dp-i (cDJjp) (l<,p<^p) are as

in n.5. Next take a positive monomial M and an a.d. map £eEa<d. We then

define a map

(5.8)0 E:R

where r'=M(r) and (t'\ a'\ m') = E(rt; a; m).

We write the collection of all such maps as E. Moreover, the parameter space

2X (<^XxR+xR+xR~t) is as in (5.2)0, and we set Tx: = 2xxZ+.
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Now, we give two propositions, which are the key fact for the proof of

Lemma 4.6. (In Propositions 5.111>2, we fix an element mxeZ+.)

Proposition 5.11!. For a suitable estimation map ExeE we have:

(5.8)! s*Z\^t(Ur(P)), /•»Sx\CF'»'Z\^t,(Qr,(P)), Ofr),', with (r'; t ' - a ' ; m')

= Ex(r\ t; a i in), where we set:

(5.8); C»(j/r(aXP)),/mOA: = ^C«(^(l7r.(P)),Oi)fl' (c/. (5.2)0), and
: =(left side) n 5^(0).

Proposition 5.112. For a suitable E$ eE, we have (l^p^p):

(5.8)2 s*z VKCUP)), /m Wfl n V(0) d
( r ' ; * ' ; f l ' ; w') = £ft(r; f; a; m).

/« r/ie above**, the parameter (P; r; t; a) fs /H ̂ ^(ciX x Jl+ xU+ x JZf), a/id t/ie
element m E Z+ satisfy : m^.mx.

Note that, by applying Lemma 5.2 to the right side of (5.8)1>2J we have

Also note we gave cohomological versions of Lemma 4.4 and Lemma 4.5 in

Lemma 2.6' and (2.14) in the proof of Lemma 2.6 (cf. (iii), n.3, §2.3). Propo-
sitions 5.11 Ij2 are similar to those results, but are more simple than them,

because Propositions 5.11lj2 do not contain no p.g. conditions on neither the
sets of the cochains nor the coverings jft(Ur(P)) in (5.8)!. The proof of Propo-
sitions 5.111>2 is given in a similar algebraic pattern to that of Lemma 2.6' and
(2.14). The estimations in the former are much simpler than the latter. We

omit the check of Propositions 5.111§2.

Proof of Lemma 4.6. We derive here Lemma 4.6 from Propositions

5.111§2. For this taking a positive monomial M and an estimation map E' eE'

(cf. (4.2)7), we define an estimation map:

(5.8)2 £ ' :K + x l l + xK+xZ + 9( r ; r ; a ;m)^ l ? + x J K + x l?+xZ + 9( r ' ; f ' ; a / ;m ' ) 5

with r' = M(r) and (*'; a'; m') = E(rt; a; m).

Writing the estimations: R+ a r->lf+ B r' and: Z+ 3 m-*Z+ 3 m' as M, L we call

the maps M, L the first and a.d. parts of E' . We use the symbols E' and M, Ln

Precisely, the parameter space r,v in Proposition 5.113 also depends on
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for the collections of all maps as in (5.8)2 and of their first and a.d. parts. More-

over, we use the symbol n for the map E' 3 E'~>M x Lit a (M, L).

Now, let the homomorphism K0im = KQ + Fm: CI' + O^- ,̂,, (<=£)£) be as

in Lemma 4.6. Then we have:

Proposition 5.113. There is a map s%:Z+3m-+E'

3 E§jn satisfying the diagram in Figure I, and with which Z+ ^—> E'

we have: I
/ru k M x T n(5.8)3 s*(z«(j^((/r(p)), o|)fl n z«(^(*/r(p))< §,„))) 1U) r~^ ,rigure l.

\v/r / i (/•'; f' ; a'; m') = £§(r; f; a; m), w/iere f/?e parameter (P; r; f; a; m)e

X xl?+ xl?+ x Rf xZ+ /7GS f/te similar meaning to Proposition 5.112.

(For the diagram in Figure J, compare the similar one in Figure II J, Lemma

4.6.)

Note that, by comparing the sets of the cochains in (5.8)3 (in the case of

q = Q) and the sets of the holomorphic functions in Lemma 4.6, we see easily

that Proposition 5.1 13 implies Lemma 4.6. We prove Proposition 5.1 13 soon

below. We add here an inclusion, which we use in the proof of Proposition

(5.8)4 5*(z*te(CUp)), OJK n <^(0)) c dsC*-i(s/t.(VAP))> c^-Oa-, with
(r'\ t'\ a') = M§(r\ f; a), where the parameter (P; r; t; a)e2§ (aXxR+xR+

xR^) is as in Proposition 5.1 12 and the estimation map M^ is in M (cf.

(5.2)0).

(This follows easily from Proposition 5.5 and Lemma 5.2.)

Proof of Proposition 5.113. Take an element cp from the left side of (5.8)3,

and we apply (5.2)3 to the homomorphism K0tm. Then one can write <p as fol-

lows:

(a)i cp = K0(p1+F'n(p2, with <pl £0(X,-5 OjfOa- and <p2 e C«(j/rt., 05?*)^,

where (t'\ 0') = M§>m(f ; a\ with an estimation map $L§,m eM (cf. (4.1)3). (Here

we write ja^(l/P(P)) as jafrf.) Next we apply (5.8)2 to </>: =K0d(ply and we have:

(a)2 (5K0((p1 -(/?/
1) = 0, with an element <p\ eC*(^r, //

m"'Ox1)fl"? with (r'; f";

a;/; m") = E§(r\ t'\a'\ m'}. (The estimation map £§ eE is as in (5.8)2.)

Thirdly, writing the sheaf § explicitly as: -»£)£2 -^-> O|°-^->§-^0, we apply
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(5.8)^ to (Kl9 &(<t>i -<p\)\ Then we have:

(a)3 (<Pi -<p'i + K1<p'0 = 0, with an element <p'{ e C%j/rr, O£2),r. Here (?"; a")

= M$(t"; a"), with an estimation map M^eM (cf. (4.1)3).

Now, we set cpl: = (pl — (p'1 + Klc{)'fi. Then one can write:

(a)4 (p = (K0(p{+Fm(p2}==KQ<f>l+Fm(p2-KQ(p\ (and we have ^=0).

Setting cp2: = Fm(p2 — KQ(p\, we have the following from (a) l f 2 and (a)4:

(a)5 <p2GZ%<p, /"''OA7".

Finally, we apply (5.8)1 to <p2. Then we have the desired inclusion in (5.8)4:

(a)6 s*<p

with (r"; F"; a"; m / /) = Ex(r /; 7"; a"; /?!),

where the estimation map Ex eE is as in (5.8)i.

Thus we finish the proof of Lemma 4.6. (We should check that the estimations

in (a)1_6 yields the one of the form in (5.8)3. But this is checked by a tedious

observation). q.e.d.

By the proof of Lemma 4.6, we finish all the non cohomological uniform

estimations in Section 4.1, which are the basis of the cohomological estimations

in Section 1, Section 2. Finally, we make remarks on the p.g. Poincare lemmas

(Lemma 3.3 and Proposition 3.1), which we used in the application to de Rham

theory in Section 3.

Remark 3.4. We summarize here the key facts for the proof of the p.g.

Poincare lemma, Proposition 3.1 and Lemma 3.3. The details of the content

here will be given elsewhere* }. First we remark that the p.g. Poincare lemma

in Proposition 3.1 is of similar form to Lemma 1.2 (except that the sheaf homo-

morphism in Proposition 3.1 is the exterior differential operator <:/, while that in

Lemma 1.2 is an DA-homomorphism.) Thus, by Proposition 4.5, we see that

similar non cohomological uniform estimation (for the operator d) to the one

in Lemma 4.1 suffices for the check of Proposition 3.1. But such a non cohomo-

logical estimation is checked very easily, and Proposition 3.1 is essentially of

very elementary nature***.

*> Cf. [17].
**> When the pair (XQ, X'Q) (as in Lemma 4.1') satisfies: X0= U0 (e Ouv (C/l), such an

estimation is easily checked. In the general case, we get the estimation from those
for XO = UQ, by using the simillar arguments to n.5, Section 5.1.
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Next, we recall that the p.g. Poincare lemma, Lemma 3.3, is a formal con-

sequence of the p.g. open map property, Lemma 3.2. On the other hand, by

Proposition 4.6, we have the implication: Lemma 4.7-»Lemma 3.2. Thus, for

the proof of Lemma 3.3, the proof of Lemma 4.7 is sufficient. The proof of

Lemma 4.7 has, in its algebraic structure, similarities to the one of Lemma 4.5.

We summarize here the key facts for the proof of Lemma 4.6: first, by an ele-

mentary computation, we have:

(5.9)! Lemma 4.7 holds for (X0, 7; d), where Yis a subvariety of X0 satisfying

(1) dim 7g dim XQ - 2 and (2) Y c V (= locus of /).

(This terminology should be understood similarly to (4.3)!. In the proof of

Lemma 4.5, we gave a similar fact to (5.9)! (cf. Lemma 5.5). The proof of

(5.9)! is given differently from the one of Lemma 5.5. But the proof of (5.9)!

is very elementary, and we omit it.) Assuming (5.9)1? the key point of the proof

of Lemma 4.7 is as follows: first we let the finite set Sd = (g$)$ = i^r(XQ9 £)Xo)

and the parameter (P; r; a; m ) e ( Y - D ) x R + x R ^ x Z + be as in (5.7)i. (Here

we assume, as in (5.7)l5 that n^D^= Y.)

(5.9)2 0"(P; r; a; m): = Ein = i(gd
rr

l°r(Ur(P), /m&x) (P,9*0), where g\ is
as in (5.7)i, and the set of the holomorphic differential forms in the right side is

as in (4.2)9.

(S.9)i Z'^(t): = C^(T)nd-J(0), Z^«(*): = C*«(T)n^(0), and Z«(T): =

Z'* «(T) n Z"P«(T), where we set r = (P; r; a; m).

In the above 5gd is the Koszul homomorphism as in n.5, Section 5.2 and d

denotes the exterior differential operator.

Then the key fact for the proof of Lemma 4.7 is as follows:

Proposition 5.12!. We have the inclusions:

(5.9)3 Z'*«(P; r; a; m)^dC^1 «(P; r'; a'; m')

(5.9)4 Z"*«(P; r; a; wOc^C* *~\P\ r'; a'; m'), with (r'; a'; m') = Ex(n a; m),
where the estimation Ex is in Ead (cf. Definition 4.1) and the element eeZ+ is

similar to Proposition 5.10!.

The first inclusion is same as the second one in (5.7)4. Also we see easily

that the similar argument to Proposition 5.102 insures the implication:

(5.9)5 Prop. 5.12! > Lemma 4.7.

In the remainder we summarize the key points of the proof of (5.9)3, which is
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based on Theorem 2.22 and an a.d. estimations on C°° -differential forms (cf.

Proposition 5.124): first we note that, from a simple observation, the proof

of (5. 9)3 for the case of % = 1 leads to that of the case: %/ ^2. We henceforth

assume that $/-=!. In order to make the notation concordant to the one in

Section 1, Section 2, we write / as f = {h}. Also letting the parameter space

t*x (^DxR+ xltf2) be as in (1.9)4, we form a product rx: ==fixxR^ xZ+

(cDxU+ xR^2xR^2xZ+). Taking an parameter T = (P; r; a; a; m) in rx

(cD x R+ x R~l2 x R1[2 x Z+), we form a double complex as follows :

(5.10^ Cr(T): = {960(<(l^)),^);kl-l^l<«l/lm}, where the p.g.
covering <s/a(Xr(PJ) is as in Theorem 1.1.

(5.io)2 Z'/*(T): =CS«(T) n ̂ (O), zy*(i): = CJ«(T) n a-KO),
and Z5«(T):=Z'/«(T)nZ2"(T).

Now, let the a.d. map Ex and the element eeZ+ be as in Proposition 5.12le

Proposition 5.122. We /?0i>e the following inclusion:

(5.10)3 Z/«(P; r; cr; a; feeder1 *(P; r'; a'; a'; m')

(5.10)4 Z7*(P; r; a; a; m)c:5C^-1(P; r'; <r ' ; a'; m'),
where (r1 '; a'; m) = £x(r; a; m) flfic/ <r' is an element*^ of R^2 .

Proof. First, using the entirely parallel arguments to the proof of Propo-

sition 4.92 (cf. n.4, §4.2), we have (5.10)4 from Theorem 2.22. (As in n.4,

§4.2, (5.10)4 is a non cohomological version of Theorem 2.22 (which is the

cohomological inclusion as in Section 2.) Next we get (5.10)3 from (5.9)!

easily as follows: first, using Proposition 4.52, we have the cohomological version

of (5.9)j, (in the manner as in Proposition 4.52). Then, using the similar argu-
ments to the ones in n.4, Section 4.2, we have :

(a) (5.9)! Prop-5 '4i > cohomological version of (5.9)1->(5.10)4 .

This finishes the proof of Proposition 5.122. q. e. d.

Next, to the double complexes Cp
d *(T), we will apply the similar arguments to

Proposition 5.42. Then we have**}:

Proposition 5.123. There are maps 0: Z5°(P; r; a; a; m)-*ZQ
e
p(P\ r';

a'; a' i m') and 6': Z°d
p(P; r; a; a; m)->Z^°(P; r'; a'; a'; m'), which satisfy:

*} The dependence of the element ff'eilt2 is clear from the proof soon below. We do
not use the explicit form of o-'ei?!2.

**} The estimation: (r; o\a\ ni)->(r'\ a'\ a'\ m'), ... are as in Proposition 5.122.
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(5.10)5 ( l - 0 ' > 0 ) Z p
d ° ( P ; r; <r; a; m)cid->Z"e

p-lo(P; r'\ a'; a'; m'),

dZ"p~lQ(P\ r; a; a; m) G <5Z;° *- * CP ; r'; <r ' ; a' \ m')

(and the similar relation for 9-0',... (cf. also Proposition 5.42).

Now, using Proposition 5.123, the proof of the following suffices for the

proof of (5.9)3.

Proposition 5.124. Zp
d°(P' r; cr; a; m)cdZ'd°

 p~l(P; r'; a'; a'; m').

Actually, by Proposition 5.123, the inclusion just above insures:

(5.10)6 Z5°(P; r; o-; a; m)crfZ;° ^(P; /•'; a'; a'; m').

Then, comparing the sets Z^0 in Proposition 5.123 and the sets Z/° in (5.9)3

(using the similar arguments to (5.2)5_7 and (5.7)6), we easily see that (5.10)6

insures the desired inclusion (5.9)3).

Finally we remark that the both sides in Proposition 5.123 are contained in

Zq(^a(Xr(P)\ C) and C*-l(sfa(%r(P)), C) and are endowed with the a.d.
properties. Thus Proposition 5.123 is of topological nature, and the key fact

for the proof of Proposition 5.124 differs from our arguments on the coherent

sheaves in the present paper. The details of the proof of (5.1 0)6 is in [17]. Here

we only remark that (1) Proposition 5.124 follows from our estimations on the

a.d. properties of the (topological) contractibility of (local real analytic varieties)

(cf. [15]2). Applying the standard chain homotopy arguments in the proof of

C°°-Poincare lemma to the explicit contraction in Lemma 2, [15]2, one get a

similar C-version of (5.9)3. From such an inclusion, we get rather easily Propo-

sition 5.124. (2) The a.d. property of the (topological) contraction mentioned

just above is elementary once we assume the existence of what we call normalized

series of stratified spaces and some quantitative properties of such stratified

spaces (cf. §3. See also [15]2_4 and [17]). The details of Proposition 5.124

and of what are mentioned in (1), (2) just above will be given in [17].

Appendix I. Elementary Computations — 1

Here we prove Proposition 5.3, Proposition 4.4 and Lemma 5.3l9 Lemma

5.4. The geometric datum X = (C"(z), l/0, X0, X'0, P0) will be as in (4.1)0,

and the structure sheaf DUo of t/05... will have the similar meaning to Section 4,

Section 5. We prove Proposition 5.3, Proposition 4.4 in Part A and Lemma

5.3l5 Lemma 5.5 in B.



COHOMOLOGY WITH POLYNOMIAL GROWTH 491

A

1, An estimation of Weierstrass polynomials. In A we assume that l/0
is of the form U^^U^xU^ where U'0 and l/J are polydiscs in Cn~l(zr\

C(zB), where z = (z', ZB). We assume that the radius of U'Q, UQ coincides and
that d( = this radius)<l. We use the symbols nl9 n2 for the projections:

C"->€"-1, C.
(i) Take an element /eF(l/0, £)Uo). We assume that /is already defined

in UQ = UOX UQ, where the polydiscs UQ, UQ have the same center as U'0, UQ

and the radius of them = 2d. We set:

(1)0 K: = max(l, K'\ with K': =mpQeUo |/(0| + Zj = 1 \df(Q)/dzj\ .

Next take a point P e U0— U'0 x U'Q, where the polydiscs £/<,, t)'0 have the same
center as U0, UQ and the radius of thein = 2~1 -d. We assume that m: =deg/

in zn at P>0. Setting z': = z'-z'(P), zn: =ZB — zB(P), we expand / at P as

/(*' ; 2J = Zy=o//202i- Then, for z' = 0, we have :

(1); /(O, zw) = z-(/m(0) + zfr/;(0, zn))9 with a holomorphic function f'm, which

is estimated for |zB |<rf/8 as follows*}:

(l)i l/m(0j 2n)l<Mm(K/rf), where the positive monomial Mm depends only on
m eZ+. (We note that, for M;M = (8w+1K/Jm+1), the above inequality holds.)

From this we easily have :

(l)'i" l/(0, zJ|^2-Mz;»| . |/w(0)| for izJ<min(d/8, 2^ - |/m(0)| -Mm(K/d)).

For convenience of the estimation soon below, we set :

Now take positive monomials Mm, M'm, which depend* *^ only on m, and we

take an element r = (r l9 r2)El?+2 satisfying

We set l/r: =l/;4 x l/;'2, where U;,, l/"2 are the polydiscs in C"-1, € of radius

r1? r2 and center 7i1(P), rc2(P). Moreover, we take an element c = (cl9 c2)

eR+2, which depends**} only on m. And we set:

*} This is gotten by applying Cauchy integral formula to/^.
**} One can take Mm to be (//2). Starting with this positive monomial, the choice of M'

*eH+2 is clear from the proof of Proposition 1.
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(1)I! Wn:={zeU'rixCi\z,\£f\z'\, where z=(z',2n)}.

Proposition 1. We have the following inclusion.

(l)i Ur^Wre,^Urf}X, where X:= divisor off.

Proof. Take an element zneC satisfying |zj = r2, and we take an element

2' satisfying

(a) |z'| £min (d/2,

Then we have the following from (1)'".

(b) |/(z'; 201*0. Figure!

Now, by a choice of the positive monomial M'm9 we have: M^(r2)< right side of
(a) (cf. also (1)1), and we have (b) for |2'| ̂ M;n(r2). Finally, setting u=M'm(i),

we define an element reR+2 by t=e>u. Then, clearly, we have the first in-
clusion in (l)x. Also, by (b), the inequality |zj<<r- |z'| insures: /(z, 2')*0,

and we have the second inclusion in (1)^ q.e.d.

Proof of Proposition 5.3. We set rg: =Mm(deJK), and r§: =

For each |zr|<r?, let C/z') (Ig jgm) denote the roots of/(zn; z') = 0, and we

form Weierstrass polynomial f'(zn\ z') by

Note that (l)t implies that \zn — £j(z')\>r%/29 for |zj = r§, and we have:

(1)3 |/Xzn;zOI^(r§/2)-for |zj = r§.

Also, from the explicit form of r§ and M^, we have (cf. also (1)" and (a), (b)
in the proof of Proposition 1).

(1)3 |/(2', zn)|^Mm(ri) for |z| = r§ and |z'| = r§,

with a positive monomial Mm9 which depends only on m.
Remarking that |/|^X in U0 and |/'|^(r§)m, we easily have

(l)a fi: =///' and e': =/'// satisfies : |s|, Ifi^M'-^JJSO in 17° x I7?a, with
a positive monomial M* depending only on m eZ+.

Comparing this with the explicit formulation in (5.1)6, Proposition 5.3, we see

easily that (1)3 insures (5.1)6, Proposition 5.3.

Next take a holomorphic function cpeF(Ur, &Uo) satisfying \(p\<a in Ur.

(See (5.1)7, Proposition 5.3. Here we understand that Ur: =polydisc in Cn
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of radius r and center P, and we assume that r<r§.) Then, setting r'2: =r§/4

and r;: = M'm(r'2)9 we write V = <p1f
fjr<p2 (cf. (5.1 )7) in U ' r j x U ^ 2 . Here U'r{

and U"f2 are the polydiscs in Cn~l and C of radius r\9 r'2 and of center nl(P)9

7r2(P). Then <pl is given by the following integral formula (cf. p. 70, [4]):

(1)4 (27rV^T)^ = Oxtz' jO/lC-^df, where y i :={f ; |C | = ri/2} and ei: =

From this and from (1)3, we easily have:

(l)s \9i\ <Mftm(alr) in l/^ x L/^ , where the positive monomial Mftm is inde-

pendent from the point P satisfying degZn/(P) = m.

Moreover, (p2 = (p — <pifis estimated in the similar manner to (1)5, and we have

(5.1)7, Proposition 5.3. Thus we finish the proof of Proposition 5.3.

2. Proof of Proposition 4.4. In n.2 we assume that X0 is irreducible at

the origin P0 of X0. By a simple observation, this assumption is harmless for

the proof of Proposition 4.4. We fix a set / = (//)" =i^r(U0 , DUo)9 k = dimX0,

satisfying (i)/E=0(Z0) and (2)^: =|det5//5(zjk+ !,..., zn)|^0(X0). We assume

that f is defined in UQ (cf. the beginning of (i), n.l), and we define:

(2)0 X: =supzel7o l + SF^d/il + Zj-i \3fJ3zj\).

Moreover, we fix an open subset Ul (B P0) of l/0? and, for a point PeU1r\X0

satisfying gfJP) ^ 0, we define :

(2)o ^(P):

Next we choose positive monomials M~Mi;llffc (n^i^l), which depend

only on (n, /c), and we take an element r = (rj)
tj = -L eR+n satisfying

We then define :

(2)2 Ur(P): =n? = 1 l/r/P)cC" (cCx .- xC),

where C/rj(P) denotes the disc in the j-th component C of C", whose radius is r,.

and center is P0: =nJn(P). (Here njn denotes the projection: Cfl(z)->Cn(z-'),

with z-7': =(zl5..., zy-).) Moreover, taking an element r=fn>kER+2, which

depends only on (rc, fc), we set:

(2)3 ^(P): = {z = (z f c;z f e + 1 , . . . ,zn)e[/ rHP)xC- f c(c:C«), where |zr-zf(P)|
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Then, setting X: =X0 — (locus of 0;), we have:

Proposition 2. We have the inclusion:

(3)?-* UAP)=>Wr.(P)=>U,(P)(]X9 and

(3)2ik nkn: (Lr
r(P) n X)->17*(P) is biregular (and is surjective) .

Proof. First we note that (S)^"1 follows easily from Proposition 1. We

also note that this implies Proposition 2 for the case of n = 2. We assume that

71^3 and that Proposition 2 holds for n<n. We will derive (3)f;| for k^n — 2

from (3)f;r1 and (3)572
1»fc. For this we set:

(a)0 SfS = Wilfok+i\> /'•• = &>••"& and &-: = |det3/7d(zfc+2,...,z,,)|.

Then, assuming that the indices (1,..., n) are suitably chosen, we have:

(a)! §fl(P), g,>(P) > 8HF)IMn,k(P)9 with a suitable Mn>k E M .

(To check this, we first note that gfl(P)'g^(P)^gt(P)ln. From this and the

relation gfl(P), g^(P)^M'n)k(K), which is easily checked, we have (a)^)

(i) Denote by Y1 the locus of fi in U0. We summarize here the appli-

cation of P)'^"1 to Ft. For this we choose positive monomials M} = M};lI>fc

(n^/^1) suitably, and take an element r' = (r})J = 1 ell4"" satisfying

(b), r'a<M'tt(d.

Also we choose an element ?' = f'nikeR+2, which depends only on (n, /c), and

we form manifolds Ur,(P), W^/(P) and C/^r^P) in the similar manner to

(2)2t3. To make clear that we are concerned with the indices (n, n—1), we

write the first two manifolds as Upn~\P) and W^'.^P). Then we have:

(S)^-"-1 Ur
B;"-1(P)z3»Vr"/i

ll
cT

1(P)z>(l/;/II-1(P)n Yi), and nH-ln: (l/r"/""1(P)n

yO-^UjrHP) is biregular.

(To check this, we first define the invariants Ki of /j in the manner in (2)0, and

we set gfl(P): =min(l, gfl(P)). Also, we let M—M^^^^ be as in (3)^

Then, for an element r = (r_ /)J=:1 satisfying: rn<Mn(dgfi(P)/Kl) and rj<Mj(rj + 1)

(n-1 ^ j^l), we have the similar fact to (S)^11'11"1 from (S)^""1. But, assum-

ing that M'n is suitably chosen, (a)t insures:

(b)2 M>n(dgi(P)/K)<Mn(dgfl(P)/K1).

Thus, by understanding that M} = Mj (n^ j^l), we have (3)f
3

ll'n~1.

For purpose of the arguments henceforth, we arrange some data : we define
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an element r: =(rJ.)J = 1 eR+n by

(b3) rn:=M'n(dgfl(P)/K), r. :=M}(o+1) (n-l^j^i).

Also, setting P' : - nn _ , B(P), we define: l/^F): - ri"=l ^CH c C1""1 (cf.
(2)2). Moreover, we set //':=(/^ = 1, with /}: =(n~l, „)*(/;). We regard

that /' is defined in Uf
0(P'}.

(2) Denote by Y2 the locus of /' in I/Q( P')* ar|d we summarize the appli-

cation of (3)T~2
l>fc to ^2- F°r triis take positive monomials M^M'j.,,.!^

(1 ~ 1 ^ J ̂  t)- We then define an element r" = (r'j)Ji} e l?+"-1 by

(O, rl-i-.^Ml-AdgWIK}, r';<M;.(r'j + 1) («-2^j^l) .

Now, letting the manifolds L/^r^^P^cC""1,... have the similar meaning to

(3)3"' "~J (cf. also (2)3), we have:

(3);"-1'* VF^P')^WF£*(P')^U«»*>k(P)n Y2, and nkn^L: (Upl-k(P) n 72)
->C7^(P)is biregular.

(The element ,r" = r"""1 »* e IT2 depends only on (n - 1, fe).) We check (3)f/-^k

soon below. Here we remark:

(d) (3)'1»'"-1

(This is easily checked, once we remark that, letting Ur(P) be as in (3){;|, we

have: Ur(P) n X = (Ur(P) n yl) = (locus of /').)
Now the check of (S)^""1^ is as follows: first, we define the radius d' of

U'0(P') to be: d': =rt (cf. (b)3). Also we define the invariant K" of/' (which

is defined in U'0(P
f)} in the manner in (2)0. Also we define: gp: =

|det3/Vd(zfc+2,..., ZB)| and ^(p): =min(l, ^r(
p»- Moreover, letting the

positive monomials MJ = MJ-.,J_1 fc (?? — 1 ̂  jgrl) have the similar meaning to the

one used in (3)"~2*k (cf- also (2)j), we define: an element r = (r7-)"i} by

(c)2 ra: ̂ M^Wg+IK"), and r^M/rJ+1) (n-2^j^l).

Also, letting the element eeR+2 be the one used in (3)J72
lffc^ we llave trie similar

fact to (3)V.71'/£ (given in terms of (r; c) instead of (r"; <r")) from (3)J§-2
lfk. But,

choosing a suitable positive monomial Mn>k, we have:

(c)3 d' > &tttk(dgJK)9 K' < M^dg^PJ/K) and

(We check this soon below.) Thus, assuming that Mn is suitably chosen, we

have :
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(c)4 M"n^(d

and, by understanding that M~M"j (n — 2^ j^l), we have (3)in"~1>A: from

(3)3~~lfk (in the form given soon above (c)3). Finally, the first inequality in (c)3

is checked easily from the explicit form of d = rl (cf. (b)3). To check the second

and third, we remark: 3/}/5zy=/y + (/1J//lik+1)-/,fk+1 with fu : = dfjdzj

(2-^i-^n — k, n^.j^k + 2). The second inequality follows from this relation

and (a)!- Moreover, by a simple computation, we have: ^j' = (^/1)~"~1 •#/,
and from (a)x we easily derive the third inequality in (c)3. Thus we have (c)3

and (3y4
n~1>k. By (d) we also finish the proof of (3)5f;*,. q. e. d.

B. Proof of Lemma 5.3! and Lemma 5.5

1. First we prove the part of Lemma 5.31? which concerns Lemma 4.2

and Lemma 4.4 (cf. n.l, §5.2). For this we let the set / = (//);• =1 ̂ r(X09 CXo)
(s\ f s \

and the Koszul homomorphism Fjf: O^y->O>/7+iy be as in Lemma 5.3j (cf.

also Lemma 4.2).
Ss\

(i) Take an element <p = (9r)/eO>p/ ( l^s^jp — 1), where / exhausts all

indices of the form: / = (z ' 1 <---<f p ) , and we assume that F™cp = Q. Then we

easily have :

(4)o <P = 0, if <p/ = 0 for each / of the form: I = ( l<z ' 2 <-- -<z p ) .

(ii) Next letting the subvariety Xly X2 of X0 be as in Section 4.1, we take

an open subset U1 (sP0) of U0 and an element a^R\2. For each P 6 17 1 n Jf 1?

where Xl=Xl-X2 is as in Section 4.1, we set: Uff(P; g): = {QeX; d(Q, P}

<(o-^(P))~1}, with g(P): =d(P, X^'1* Moreover, taking an element ^ =

(cij c2)eJR+2 satisfying c1^l^c2, we have:

Proposition lx. If the following holds for each PeUlnXi:

in

w/zere j z's an element of [1,..., s], then Lemma 4.2 arad Lemma 4.4 /to/d /o

f. (4.3)^.

Proof. Take an element (r; m; a)el{+xZ+xH| satisfying r<{crgf(P)}~1

and an element <pEr(Ur(P), £>*)!? (cf. (4.2)2). Then, taking an element

satisfying mc2 < m, we have :

(a) l^(Q)//7(G)l^1/(0r, with (a' i m') = (a/c?i m-c2m).

This insures that <p' ': = cp/fj is in F(Ur(P), Ox)a» (cf. (4.2)2), where
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(b) a" = a' or a" = a'-M™, with an element M = M /6itf, according as*)

/(P0)= or *0.

The condition: m>c2m is satisfied, by setting m: = [m/2c2]. From the explicit
form of the estimation: (a; m)-»(a"; m') as above, we have 'Lemma 4.2 for

CX"l9 X2; /)' (cf. (4.3)! and the explicit formulation of Lemma 4.2). Next
~ (s\

assuming that j = J, we take an element (p = ((pI)IEr(Ur(P), /™&\p) )fl (l^p

^s— 1) satisfying F™cp = Q (ni eZ"1"). We then define an element (p' = ((pj)j

.r//T> wherc </' = (U A if- / is of the form (Ji< — <jp-i)9

(b) ^:= with j\>l,
0, otherwise .

By (4)0 we have: cp — F^^'^Q. Moreover, if w>2c2m, then (a) implies:

(c) I c p ' j ^a' • |/|l?i/2, where the element a' e JR| is given in the manner in (a) .

We then apply 'Lemma 4.2 for (Xl9 X2; /")', whose explicit form is given
~ ( s "i

soon above. Then we have <p' eT(!7,(P), /^'"'^x j;)a', with (a7; m') =
(Mx(fl) exp M2(m), [L(m)]), where the positive monomials Mt and the linear

map L are determined by the element reR^2. Thus we have 'Lemma 4.4 for

(Xl9 X2i ^Y (cf. (4.3)! and the explicit form of Lemma 4.4). q. e.d.

(iii) Thirdly let X'0 and V denote ^O.sing
 and the locus of f.

Proposition la. The pair (Xi9 X2) = (XQ, X'0 U V) satisfies (4)A.

Proof. First, by Lojasiewicz inequality, we have**) :

(a) \/(P)\ > ocg(P) for each PeU1^](X1- X2\ with an element a e R+2.

Take an index j satisfying |//P)|^|/(P)/s|. Then, assuming that the element
a E R~l2 is sufficiently large, we have :

(b) 2|/J.(0|^|/,(P)|^|//(0/2|,

and |2/(0|^|/(P)i^|/(0/2| in Ua(P;g).

The condition (4)l is easily derived from (a), (b). q.e.d.

Next we assume that dim ( V— X'0) = fc — 1 , where k = dim X0. We choose a

*} PQ is the origin of the variety XQ (cf. the beginning of this appendix).
**> Recall that g(P)=d(P, X2) (cf. the beginnig of (ii)). We use the symbol 'g9 in this sense

in the remainder of Appendix I. Note that the variety X* depends on the geometric
situation in question.



498 NOBUO SASAKURA

suitable sub variety V of V satisfying dim(V — X'0)^k — 2.

Proposition ls. The pair (Xl9 X2) = (V U Xf
Q9 V U XQ) satisfies (4)lB

Proof. Denote by Vl the locus of /15 and we write V1 as V{ = V\j V\,

where V{ has no common irreducible components with Fat P0 ( = origin of XQ).

We set V : = V n V\. Then, letting the neighborhood Uff(P; g) be as in Propo-

sition 12, we have: d(Q, V) = d(Q, V() in Va(P\ g). By Lojasiewicz inequality,

we have :

(a) l/i(2)l^/H/((?)l in Va(P\ g\ where £e.R+2 is independent from P, and

we have Proposition 13.

It is easy to see that Propositions I2j3 insure the part of Lemma 5.31? which

concerns Lemma 4.2 and Lemma 4.4.

2. Next we check the part of Lemma 5.3 19 which concerns Lemma 4.3.

The set g e F(XQ9 £)Xo) and its locus W (on XQ) are as in Lemma 4.3.

Proposition 218 Lemma 4.3 holds for (X09 W U X'0
m, /, &).

Proof. Setting ( X l 9 X2) = (X09 X'0 U W), we apply Proposition 12 to

/ and Uff(P; g). Then we have:

(a) 10/6)1 >«IX6)I in ^ff(^; ^)» with a suitable a 6 J^2 .

Thus, assuming that creUf2 is sufficiently large, we have: |l/#/(Q)|<l/r for

each r 6 H+ satisfying r < (<70(P))~ x . Now take an element 9 e T( U,.(P), /*Ox)flJ

where the element (r ; a ; m) e JR+ x Hf x Z+ is as in Proposition 1 1 . Then, from

the inequality just above, we directly have :

(b) (<plgj) e r(Ur(P), /*CA-, with a' : = a/r .

- (f ̂Finally, taking an element <per(Ur(P)9f™Oxp )a satisfying Gp(p = Q, we define

an element (pf er(Ur(P),fmDY~^) satisfying (p = Gp_1cpf in the manner in

Proposition 11 (by changing (Fy,/^ to (Gp9 g$. Then, from (b), we have:

)a'» and we have Proposition 2 i (cf. also the explicit

formulation of Lemma 4.3). q. e. d.

Assume that dim(W--X'0) = k-l, and we choose a suitable subvariety Yof

W satisfying dim (W- X'0 - Y) ̂  k - 2. Then we have :

Proposition 2a. Lemma 4.3 holds for ( X l 9 X2) = (W U X'0, Y U X'Q).

Proof. Letting W1 be the locus of glf we write W1 as FFj = W U Jfi, where
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Wl has no common irreducible components with W. Recall that V^W (cf.

(4.2)4), and we write Fas K= W U V\ in the similar manner to the above. Then,

setting Y: — W n (W± U Fj), we have the following similarly to Proposition 13:

d(Q, W) = d(fi, Wi) = d(2, J7) in Ua(P\ g). Applying Lojasiewicz inequality to

(f l f i> A we have:

(a) l0i(6)l^a|/(Q)| in l/ f f(F; 0), with an element a e J R 4 - 2 .

Now let the element (peF([7r(P),/'"OA-)fl be as in Proposition 2t. Then taking

an element rfeZH, we write <p as </> = F*"V'J with <?' er(Ur(P),fd^x)a. (Here

we take ileZ+ to be: rf>a2, with the second component a2 to a, and we may

regard that deZ+ depends only on ael2f2.) By (a), we have:

(b) <plgi E r(Ur(P), f*-dOx)a'> with a1: = a - K, with an element K = Kf,g eUf .

Finally, for an element Wer(Ur(P), /*oi^)fl satisfying G,y = 0, we define an
( f ^

element «P' eF([7r(P), O>P"I;) satisfying Gp^l
iF' = {F in the similar manner to

Proposition 2j. But, by (b), we have:

(c) V'er(Or(P),f*-dokLl\.,

and we finish the proof of Proposition 22. q. e. d.

It is clear that Propositions 2 l j 2 insure the part of Lemma 5.3 j, which con-

cerns Lemma 4.3, and we also finish the proof of Lemma 5.31.

3. Finally the proof of Lemma 5.5 is quite simple, and is as follows:

letting the variety X0 and its divisor D be as in Lemma 5.5, we take the subva-

riety Y (required in Lemma 5.5) to be the locus of f. Also we take a matrix

K: £);r-»O^ (s> f>0)? whose entries are meromorphic functions over X0 (with
the pole D). Now take a point P E U^ n (X0 — (Y U DJ) and an element (r; a; m)

GR+xR+xZ+ satisfying r< [ad(P, Y U D)}"1. (For the open set Ul and the

element creU^2, see the beginning of part B.) Also we take an element q>

e r(l/,(P), /m&x\ n r(ttr(P), ft), with &: = K£)s
x (cD*x). By (b) in the proof

of Proposition 12, we have: (2'1) • |/(Q)| < |/(P)| <2 • |/(Q)| in (7r(P), and we

also have: |<p(g)|<a': =(2'" • I/CF)"1!). We apply Lemma 4.1' to (K, c/?), and

we have an element cpf er(Or,(P), ®x)a»-> satisfying <p = K<p'9 where the esti-

mation: (r; a')-*(r'; a") = (M1K(r); M2K(a'jr)) (with the positive monomials

MfK) are given as in Lemma 4.1'. From this explicit estimation, one can rewrite

the estimation as above in the form:

(a) \<p'(Q)\<ar- l/(C)m'l, with (r'; a'- m;) = JEx(r; a; 777), where the a.d. map £A-
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(Definition 4.1) is determined by M1>K.

We apply Lemma 4.2 for (XQ9 Y \ j D ; f ) to <p', and we have: <p' er(VP,(P),

^m'^sx)ar-> where the estimation: (V; a' \ m')-+(r' \ a'; m') is given similarly to
(a). Tt is clear that this, estimation, together with the equation: K(p' = (p, in-

sures Lemma 5.5, and we also finish the proof of all the facts, which are used in

Section 4 and Section 5 and whose proof are remained in Appendix II.

Chapter III. Polynomial Growth Uniform Estimations for the Structure
Sheaves of Complex Euclidean Spaces

The main purpose of this chapter is to prove Theorem 1 .7, which concerns

the uniform estimations in the title. The proof is given by the reduction:

(1) Theorem 1.7-»p.g. estimations for Cousin integrals on C.

The main part of (1) will be certain algebraic arguments on types of filtrations,

which are suitably applied to the sets of the cochains in Theorem 1.7 and its

variants (§6.1). The contents of Chapter III are as follows. In Section 6.1

we give the variants of Theorem 1.7 which are convenient for the use of the

filtrations. The algebraic arguments on the filtrations are given in Section 6.2

and in Part A, Section 7. Using these arguments, the proof of Theorem 1.7

is given in Section 6.3 and Part B, Section 7. Very roughly our algebraic

arguments enable us to give the following implication :

(2) £?;*SO(<?£1, fjL€-ti)=*H9(K*)*El-o (q^Q),

where X* is a filtered complex in question and E^'q is its spectral sequence.

Also ££•* is the spectral sequence of a complex K*, where the complex {K*}^

is defined from the geometric situation in question. Note that the standard

degeneracy theorem, applied to our situation, is read as follows :

Thus, our sharpening (2), where the assumption is given at the lowest filtration

degree j? = 0, will give a strong sharpening of (2)l as well as the main part of the

reduction (1). The key facts for (2) are the construction of the families of the

complexes i£* and some reduction arguments using such families. These will

be given in Section 6.2 and in Part A, Section 7. (For the first, see n.3, Section

6.2. The main part of A, Section 7 will be devoted to the latter.)

Cohomology theories with growth conditions have been developed



COHOMOLOGY WITH POLYNOMIAL GROWTH 501

systematically since the works of L. Hormander (cf. [8], [9]), chiefly by means of

the 5-estimations. On the other hand, the very basic method of Cousin integrals

in function theory seems to have been regarded as not so adequate for the

cohomology theories with growth conditions (cf. for example, p. 90, [8]). Our

algebraic arguments on the nitrations enable us to take the Cousin integrals as

the analytic base for our p.g. cohomology theory. Also, our sharpening of the

degeneracy theorem indicated in (2) (cf. also Lemmas 7.2-7.5) may be worth-

while pointing out; the content of Chapter III may owe its own interests aparting

from the applications to Chapters J, IT.

Remark. The necessary p.g. estimations on Cousin integrals and the

algebraic arguments on the filtrations will be found in Part A, Appendix II and

in Section 6.2, Part A, Section 7. Interested readers in the above analytic and

algebraic arguments may first read those parts. The estimations and the

algebraic arguments mentioned soon above may deserve to be tried their ap-

plicabilities to more wider situations. The author hopes to try possible gener-

alizations in a future.

§ 60 Cousin Integrals and Spectral Sequences

§ 6.1. Key Theorems for Theorem 1.7

1. Elementary coverings. We begin Section 6.1 by introducing certain

coverings of domains of a complex euclidean space Cn(z) (?i>0) (cf. n.i, § 1.2),

which are of quite simple nature and are suitable for explicit estimations on

Cousin integrals (cf. Appendix II).

First let U = (a, a + fr); fr>0 be an open in- , k ~^

terval in a real euclid line JR. We mean by ele- a xf a + b

mentary covering of U of size Y\ = (k\ e)e(Z+ U 0) Figure I.

x (0, 1/2) the following element of*> Cov0 (K):

, 6 ] ) f W)U where l^: = {*efl; |A--*,|<eA/fc} (*>0)
( ' )l \ [uo}9 where(70: = {.T6H; \x-xQ\<sb} (fc = 0).

Here xt: =a + (ib/k)9 x°: =a + (b/2) and e: =

Next by an elementary figure in Cn(z) we mean a product l/ =

*> For a topological space X, we set: Cov0 (X): =2 0 u v ( Y ) (cf. the end of the introduction
of Chapter 1).
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c:R2n (^C"), where Uj is an open interval in the j-th component of R2n. For

an element ?y = (^; K)e(Z+ u O)2" x(0, 1/2), where ^ = (fcj)j^1, we make:

Definition 6.1 x. By elementary covering of U of size fj, we mean an ele-

ment ja^Cl/) e Cov0 (C") as follows:

where jaf^ runs through the elementary covering of Uj (cJR) of size f/7-: =(fc/; e).

When A:l = /c2 = - - - ( = /c), we write X?(C7) also as s/n(U\ with *7 = (lc; s).

Thirdly, we define a covering of €", which may be a most simple one among

elements of Cov0 (€"). For this we decompose C" in the form :

(6.1)3 C» = \J!eZ2nTl9 where Tj = U^i(ip 0+ O^C" (^J£2»), with / = 0'i,».,

'2»)-

Then, taking an element >? = (/c, e)eZ+ x(0, 1/2), we make:

Definition 6.12. By elementary covering of Cn of size rj, we mean an

element of Cov0 (C") as follows :

(6.1)4 X?(C"): = W/gzznja^CTj), where ^(Tj) is an elementary covering of Tr

of size Y\.

Tt is classically well known that such a covering is suitable for computation

of Cousin integrals. Our key theorem, Theorem 6.1, will be formulated in

terms of such a covering (cf. n.2 soon below).

Remark 6 A ̂  Let the elements rj = (^, e)e(Z+ u O)2" x (0, 1/2), Y] = (k, e)

eZ+x(0, 1/2) and the elementary coverings j^~(t/), jtfn(C
n) be as in (6.1)2j4.

In our arguments henceforth, we use such coverings in the case: e=l /4. For

notational simplification, we use the symbols j&k(U), <s/k(C") for the elementary

coverings

Finally, for purpose of the formulation of Theorem 6.1, we fix a euclidean

space Cn'(zr) (n>Q). We write (z, z') as f. The symbol £> will denote the

structure sheaf of C" x C"' .

2. A key theorem., Now, letting k be an element of Z+, we take a suitable

k' eZ+ and an el-map ^Uik: R
+2-*R+2, which depends only on (n, k). Then

we have (^f^l) :

Theorem 6,1^ For each aeR^2 and an open set D'cC"', we have:
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(6.2) s*Z Vk(C") x D', O)ac<5C*-1(j*k<C'')xD', O)a,, where a'=j^?a.(a) and s

is a suitable refining map: ̂ k'(C
n) xD'^j^C") x D'.

Here \ve set :

(6.2)' Cq(jtfk(C") x D' , £))a: =sel of (\z\ + l)-u-growth cochains with values

i n C ( c f . (1 .3) 6 f lwd(l .4) 8 ) ,

and we write the element {Df} eCov0 (€"') as D' .

(The element D' eCov0 (€"') is just additional to ja^(C"). But it is con-

venient to include this element for our application of Theorem 6.1 to the proof

of Theorem 1.7 and for the proof of Theorem 6.1 itself (cf. §6.2 and §7).)

Remark 6.12. In Theorem 6.1 we do not give an explicit form*> of the

correspondence: Z+ 9 /c-»Z+ a kr. Also we do not give an explicit dependence

of the el-map jS?M>fc on /ceZ+ ; the estimation in Theorem 6.1 is of relaxed form

(relative to the ones in Chapter 1). But, the formulation of Theorem 6.1

suffices for the proof of Theorem 1.7. (in the proof of Theorem 1.7, we use

Theorem 6.1 only in the case of /c = l ; see Section 6.2.)

Remark 6.13. Except our concrete formulation, Theorem 6.1 is of familiar

type in ^-estimations (cf. [9]). However, as we will see in the course of Chapter

III, our proof of Theorem 6.1 differs entirely from the ones depending on

5-estimations (cf. also the introduction of Chapter I I I ) .

3. An another key theorem. Recall that the elementary covering jtfk(C
n)

in Theorem 6.1 is much simpler than the p.g. coverings in Theorem 1.7. We

give here a theorem, which will fill the gap between Theorem 6.1 and Theorem

1.7 stemming from the above difference of the types of the coverings.

(i) P.g. elementary coverings. First we give a type of coverings of do-

mains in C" x C11' , which is convenient to fill the gap just above : taking an element

C = (C; e)eZ+ 2x(0, 1/2) and an elementary figure C/'cC11', we set:

(6.3)1 Si,t'-=Y\j=i(-s + ij> ii + z)^C" (^R2"l with e:-s + 2-1, and 1 =

(6.3)! ^(Sj^x U'): = elementary covering of S I f B x U r of size (((|/|-hl), e)

(Def. 6.1J, with |/| : = !/,! + -- + |/2J.

*} We can take k'\ = [Ln(k)], with a linear map Ln depending only on n. (Here [ ] is the
Gauss symbol, cf. Appendix II and §6.3.) However, we do not use this fact in this
paper.
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We then make:

Definition 6.2. By p.g. elementary covering of C"x V of size £ = (C, £),

we mean the following element of Cov0 (C
n x C"'):

(6.3)2 <<(€« x V): = U/eZ2n <(S/£ x [/').

Concerning the p.g. elementary covering ja^^j/^C'1 x V) we remark that

(6.3)3 each element of j^ is an elementary figure in Cn x C"',

and that

(6.3)4 the size of the elements of ja^ becomes smaller in the p.g. order with

respect to g = |z| + l.

By (6.3)4}3, the p.g. elementary coverings have similarities to the p.g. and

elementary coverings as in Theorem 1.7 and Theorem 6.1; the p.g. elementary

coverings, which are essentially of technical nature, are suitable to fill the gap

between Theorem 1.7 and Theorem 6.1 (cf. §6.2).

Remark 6.2. If e^(>( = field of rational numbers), then, by a simple ob-

servation, we see that the expression (6.3)2 is the disjoint union:

(6.3)5 ^(C- x l/') = Uiez- <(Si. x 17'),

and one can define a map

(6.3)'5 J*'t(Cn xU')3A -^ Z2"a/, where j*£(S/e *U')3A.

We use this map in later arguments. Henceforth, by a p.g. elementary covering

j&'te(C
n x U'), we mean such a one with ££=(?.

(ii) Now we give an another key theorem, Theorem 6.2, for Theorem 1.7,

by using the p.g. elementary covering. For this we first set:

(6.3)6 Ouvel (€"'): = collection of all elementary figures in Cn',

(6.3)7 Ouv;1(Cn '):={C/ /eOuvel(CB);d^<l}, where, writing U1 as U' =

Ujii (<*j, ^ + 6j)(cC"')(fc7>0), we set: dfr: =maxJ.(max(/7J.J 1)).

Also, for later convenience, it is convenient to set:

(6.3)8 dy: = min^. (min (bj9 1)).

Moreover, for an element m e U+, we set:

(6.4)i U'm:= elementary figure in C"' with center = that of U' and size =

m x (size of 17'), where, writing U' as n?=i (<*p aj + bj)(bj>0) cCB'(=*2ll')>
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the 'size of Uf9:=(bj)
2

J«
r
lcR+2ttf.

In the remainder of (ii) we fix an element** s = erje((0, 1/2) — Q), where n:

= (/i, n')9 and we form the following collection of elementary coverings in

C" x C"' :

(6.4)! Alfi:^{^E(C"xU')- (I/'; OeOuv^ (Cn')xZ+2} .

For an element ^BeA'n and an element aeR1[2 we set:

(6.4)2 C%flf £e, O)a : = set of (|z| + l)-a-growth cochains with value in D (cf.

Next we form a collection of estimation maps as follows :

(6.4)3 E' : =L x (MxL), where L and M are the collections of all el-maps and

positive monomials (cf. n.5, § 1.1).

To an element E' = (^, (M, &2))EE' =Lx(MxL) we attach the following

map:

(6.4)^ £':Z+2x(IT xH+ 2)3(C; r; a)-»Z+2 xR+23(£f, a') by C' = [^i(0] and

a' = M~1(r)-j£?2(a + 0- (Here, [ ] is the Gauss symbol. More precisely,

writing C': =^i(0 as (C'1? Ci), we understand that f: =(Ki], [G]).)
Now, using the sets of the cochains and the estimation maps as above, our

key theorem for Theorem 1.7 is as follows :

Theorem 6.2'J. There are an element e' = e~e((0, 1/2) — (?) cmd an estima-

tion map E'n eE', with which we have:

(6.5), s*Z*(j*'tJtC" x U'\ 0)a cz 8C*-i(j*fa(C» x U'l/2), O)a,, with (£'; a') -

£i(C; l/dy-;a) (c/. (6.3)8), where the parameter (V; C; a) /s m Ouv^ (€»')

5 /s a refining map: ja

For the proof of Theorem 6.2, see Section 6.3. Here we check the following

implication.

Proposition 6.1. Theorem 6.2-*Theorem 1.7.

Proof. Let the elementary figure Uf be as in Theorem 6.2. Then we set:

(a) jtfa(C
n x U f ) : = {\z\ + l]-p.g. covering of €» x U' in C" x €"' of size

(cf. Def. 1.60-

*> The element e% is fixed (in an arbitrary manner) in the remainder of Chapter III. It
is convenient to regard that s% depends only on n.
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Then, taking a suitable el-map j^: R+2-+R+2 and a positive monomial Mn, we

see that if there is a relation between o and f = (C19 C2)E^+ 2 of the form:

(6.6)! <j>X5* -^(0 (resp. C>MB(l/^)^cj)), with K= 1 + suprW, |z'|,

then we have a refining map**:

(6.6)2 s: sfa(C
n x V) ^ J</€" xV) (resp. s': ̂ E(Cn x [/') c> j^ ff(C"' x [/')).

From this relation and from a comparison of the estimation map E'n e U' in

Theorem 6.2" and the p.g. estimation map in Theorem 1.7, we easily have

Proposition 6.1. q. e. d.

By Proposition 6.1, the proof of Theorem 6.2 suffices for the proof of Theo-

rem 1.7. The proof of the former is given by the following implications:

(6.6)3 Theorem 6.1"-1-*Theorem 6.1" (n^2), Theorem 6.!"->Theorem 6.2".

(For details, see §6.3.) The key facts for the above implications are certain

nitrations and algebraic arguments concerning them. These will be discussed**)

in Section 6.2 and in Section 7.

§6.2. A Type of Filtration

Here we introduce a type of filtration (Definition 6.3), and we arrange some

data for such a filtration, which are used in later arguments.

1. A type of fiiltration. Let X be a topological space, ft an element of

Ab (X) and jtf an element of Cov0 (X). We also take an (abstract) set & and

a map n: «£/-> J5. For a subset Cq of Cq(j>/, ft), we make

Definition 6.3. By a filtration in Cq induced from n: $#-+&, we mean the

following decreasing sequence of subsets of Cq:

(6.7)! F0C
q:=Cq^FlC

q=>"-^Fq+iC^Q,

where

(6.7); FpC
q: ={<pECqi <?v = 0 for each j^'e^r«+1j^ satisfying #7r(j*')^JPj .

Assuming that Cq = Cq(^ ft), we write the spectral sequence of (C*, Fp)

as Ef>*-p. Note that £f ' °^Zf>°: = {<peFqC
q-, S<peFq+1C **1}, and that

*} Cf. Part B, Appendix II. We summarise necessary estimations on refiningmaps (used
in §§6, 7) in Part B, Appendix II. The estimations will be found to be essentially of
very elementary nature.

**} Cf. the introduction of Chapter III.
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(£f'°, ^^(Zf'0, 5) is a subcomplex of C* in a natural manner:

(6.7)2 |p*

Next, for a subset jtf' of j/, we mean by*} &u-quotienf of &?' by ?r the following

element of Cov0 (X):

(6.7)2 (jtf'ln)u\ = {supp7c'~l(B); Ben(s/')},

where n': — restriction of n to j/'. (Here 'supp n'~1(By is, as usual, defined to

be: V pAp where ^en'"1^).) Denoting by r the refining map:

(<8f/n)v 3 supp Tr"1^]?)), we easily have

Proposition 6.2. We have the following diagram:

(6.7)2

Proposition 6.3. We have the following implication (degeneracy theorem):

2. Concrete flltrations. (i) First let Xl9 X2 be topological spaces and

j&i, j&2 elements of Cov0 (Xj), Cov0 (X2). We denote by jtf the product
j^: = j^ixs/2:= [A1xA2; Ai£jtfi(i=\, 2)} eCov0(J^j, with X\=X^ x X2,

and we denote by n the projection n: js/=ls/1 xj/23(A1 x A2)-+£/29 A2.

Then we easily have

(6.7)4 (J//TC),, = (supp j/0 x ̂ 2( e Cov0

Let j/fc: =s/k(C
n) and j^: =^(U) be as in Definition 6.12fl, and write Cn as

CB = CxC f l"1,^ as ^ = (/cJ)j^1 and C/ as C/=l / 1 xL/ 2 , with elementary figures
C/!, l/2 in C, C"-1. We set <%k: = ̂ k(C

n~l) and ̂ :=^(l/2), with /': =(^.)j^2?

and we define maps

(6.7)5 nk: jtfk > &k and nL: j*t > &t

hi the manner in the beginning of n.2, by using the product structures of tfk, ^

as above. Then, by (6.7)4, we have:

(6.7)6 (j*k/nk)u = Cx @k and (X/^)« = (supp J/D x ̂ , with j^;: =j*r
jfclfc2(0r

1).

*) 'w' is taken from the initial of 'union'.
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Next, take an open set Dr of C", and use the symbols nk, nt also for the
maps nk : &?k x Dr 3 (A x D')-+&k B nk(A) and nk : ̂ txD'B(Ax D')-*^ B nk(A).
We write the filtration induced from nk, nt as Fp(Definition 6.3), and write the
spectral sequences of (C*O4x£', £>), Fp) and (C*(XxD', O), Fp) as ££k*-p

and E*;*~p. Then Proposition 6.2 and (6.7)6 insure that

(6.7)7 E9
2^Hq(^kx(CxDf),D),E^^m(^lx(DrfxDf),D)9 with I>":

Thus the £f>°-terms for <tfk(C
n), ^(V) (defined for €") are isomorphic to

the cohomology groups in the right sides, which are defined for C""1. We use
a p.g. version of (6.7)7 for our inductive proof of Theorem 6.1" on n = dim€n

(cf. §6.3).
(ii) Next let the p.g. elementary covering ja^ = «*/£(CMx [/') be as in

Theorem 6.2, and let the map n% be as in (6.3)5 :

(6.7)8 7c5:j/i - >Z2».

Then we easily see that the w-quotient of n% is written as follows :

Sl£x I/O;

where SlE e Ouvel (C
w) and the elementary covering stf '^(Sls x U') are as in

(6.3)! . Thus, the £2-
term °f tne spectral sequence of (C*(j2/^, O), F^), where

the filtration Fp is defined by n%, is as follows (cf. (6.7)3).

(6.7)9 £!'0

Concerning the right side, let eS/l£ = j3^lE(C") be the elementary covering of Cn

of size (1 ; e) (cf. Def. 6.2). We then easily check the existence of a unique
refining map i: s/le x U' £-> (^^/n^)u. Also taking an elementary covering
s/k\ =J34(C"), /c>0, of Cn and a refining map u: s#k x L/ /c->jaf l£x IT' in an
arbitrary manner, we have :

Proposition 6.4 '. Wfe fcat?e refining maps 5, t;
satisfying Figure I. (Jw Figure I, £/ze m^p r is ,

defined as in Proposition 6.2 and the p.g. ele- ^
"mentary covering £/'*>( = £#'*>(€" x U'1/2)) is as in I

s '
Theorem 6.2.) _. TFigure I.

We check Proposition 6.4' in Part B, Ap-
pendix II. We note here that, letting the natural homomorphism p*:
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'^ £>) be as in Proposition 6.2, we have the following diagram from

Porposition 6.4.

(6.7)9 E|-° - p~ - > H*(j/'p O)

l\\ /?«

fffl(«/*€)M, O) -£U ff«(j*i. x 17% O) -^ ff«(j*i x £/', O)

Roughly we may 'identify' Eq
2^^Hq((^/n^u, O) with fTVi.x U', O).

Proposition 6.4. We /itfue the following implication:

(6.7)n M*//«(j*iex£/', 0)^0 «=^s*p*£!'°^0.

A p.g. version of Proposition 6.4 will be a key fact for the reduction of

Theorem 6.2 to Theorem 6.1 (cf. § 6.3 and the end of § 6.1).

3. Admissible family. Let the element jaf e Cov0(X) be as in n.l. We
attach to s& a family of elements of 2^(i.e., a family of subsets of j&\ which is
important for our treatments of the filtrations in Definition 6.3. For this we

first set (p, #^1):

^

Recalling the explicit form of the filtration in Definition 6.3, we may regard
jaf^ as un underlying set theoretical datum for the filtration. Analysys of jafj3

will be useful for studies of the filtrations. (See Part A, §7.) Here we make an
observation for j/ * : take a subset &psf of 2J/ satisfying

(6.8); *TC(J^) =/> for each ja^eJ^X-

Definition 6.4, We say that J^pja^ is admissible, if there is a map (admis-

sible map) T: J&™-J>&PS& satisfying

(6.8)'; T(J<) DJ*V for each <e^, and T(J^) = T(J^V), if TC(J^I) = TC(J^V) .

Take an admissible family ^"p+1j3f. We write the restriction of n to

^. Using the symbol Fp also for the filtration induced from

), we write the spectal sequence of (C*(j^, ft), Fp) as E***~p.

The following proposition insures that the vanishing property of each E^~p;

j/pt&p + ij* suffices for that of E$>*-p of the original complex (C*(j/, ft), Fp).

Proposition 6.5. £f;«-p = 0 /or each ^e^p+ij^^>E^q"p^O.

Proof. Take an element <p e Ity*-* : = {<p<=FpC
q(#f, ft); d<peFp+1C*+1(s/9 ft)}.
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Then i*cp e Z^(j^, &) for each ^E^r
p+lj^, where i^ := inclusion :

Remarking that FP+1C«(^, &)*Q(p^p) and £?•«-' sff« (F/:% ,̂ tt)), we
have an element ^ef^O^fja^SV) satisfying d(p'tt = i*cp. We define an element

, 0, if J/'G^J/ satisfies: #7r(j3f')^/> + 1
(a) <p'^. : = | value of <p^ at jaf' , if #TC(J^') =/?+ i, where the index \JL

^ is defined by J^ = T(J/'), with the admissible map T.

By (6.8)j we easily have (p = 6cp' eFp+1C
q. q.e. d.

Remark 6.3. Detailed uses of the admissible family ^pjtf will be given

in Part A, Section 7. Here, for convenience of the arguments in the rest of

Section 6, we illustrate uses of such a family in our studies of the filtration of the

form in Definition 6.3 : first note that Proposition 6.5 is given for a fixed peZ+.

In later arguments we consider a series {^r
p^}pez

+ of admissible families
(cf. A, §7). We then define a set theoretical operation: ^p^^-^^p^ and a

homomorphism from complexes defined for elements of lFp+ljtf to those defined

for elements of ^p^ . (The above two operations will be our main parts of

treatments of the filtrations in Definition 6.3; see Parts A and B, §7). Using

such inductive treatments of the families &PJ& , we will have the implication of

the following form :

(6.8)2 £?;« ^0 for each ̂ e^j* =* EP^~P^Q (q> p) for each j^e

This, together with Proposition 6.5, insures:

(6.8)3 £?;^0;

(For the precise formulation, see Lemma 7.3 and Lemma 7.5. For technical

reasons and for purposes of applications to our p.g. estimations, Lemma 7.3

and Lemma 7.5 are given slicely different form from (6.8)3.) Lemma 7.3 and

Lemma 7.5 will be the sharpening of the degeneracy theorem mentioned in the

introduction of Chapter III and are main tools for the proof of Theorem 6.1

and Theorem 6.2. In the remainder of Section 6, we first attach to the coverings

sfk, stf's (in Theorem 6.1, Theorem 6.2) admissible families in a concrete

manner. We then formulate key lemmas for Theorem 6.1 , Theorem 6.2 in terms

of such admissible families.

Example 6.1. Let j^ be a collection of elementary figures in C"(z) (cf. § 6.1)
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and n a map from jtf io 38. We assume:

(6.8)2; %7t-l(8)<ao for each BE <% .

Setting @^\ ={^ra @\ %&' = p], take an element &' e ^p} and an ele-

mentary figure (7'cCX We form a subset £/(£$'; U') of $£ as follows:

(6.8)i j/OT; C/'): ={^6 j*; 71(^)6^", A, n

We then set:

(6.8)4 ^j/: ^{jy^czj/; ^ is of the form ^/'/ = j^(^>/; I/)} , where the pair

(^', V) satisfies: \(n-i(&')ln)u\^U (cf- (6.7)2).

Noting that

(6.8)5 l(ft~K^')M)J= U ̂ ''|j3f"l5 where sf" is an element of j** satisfying

we see easily that ^Q
ps# satisfies (6.8)1. Moreover, we have:

Proposition 6.5'. Assume that

(6.8)6 suppjT"1^) ''s flft elementary figure for each Be^. Then ^Q
p<s/ is

admissible.

Proof. We define an admissible map r by

(6.8)7 T : ̂  3 ̂  - > &\sf 3jtfv: = **(&' ; 17') , with &' : = n(j*J and Uf :

(By (6.8)6, U' is an elementary figure, and we have : X. e J^j/.) The right

side is determined by ^' = 7r(ja^)5 and we have (6.8)".

The family J^jaf is completely of experimental nature and is concordant

to the inductive treatments on p$Z+ sketched soon above. (For detailed uses

of J^J/, see n.6, A, §7.) We examine the structure of &\$$ ', which is most

important for later applications. For this we set:

(6.8)8 Cov0 (C")ci : - -X(^); (t/; ̂ ) e Ouvel (€») x (Z+ U O)2'1, where j*k(U) is

the elementary covering of U of size 4 (Def, 6.1)}.

We assume that, for each B e &, we have :

Then setting
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(6.8)9

we easily have the following.

Proposition 6.5". fF\stf\E= {j^teCov0(C")ei; where each element ( = ele-
mentary figure) of ^ is contained in n~l(B)}. Roughly, ^^^\B is the col-

lection of all elementary coverings of elementary figures, which are constructed

from n~l(B) e Cov0 (CB)el.

(An interested reader may picture &\3#\B and will find that &\stf\E has a

simple geometric meaning for n~1(B).) Let the p.g. elementary covering s/'^

= j3^(Cn x V) be as in Theorem 6.2 and the map n^: ja^-»^( = Z2n) be as in

(6.3)5. We see easily that the map n^: ja/'§->^ satisfies (6.8)9. One can apply

Proposition 6.5 to s/^. We use the simple structure of ^s/\B in the proof of

Theorem 6.2 (cf. § 6.3).

Example 6.2. Let the elementary covering j/k\ =j#k(C
n) be as in Theorem

6.1. Note that*) j£k does not satisfy the finiteness condition (6.8)4. Here we

attach to jtfk an admissible series, which is useful for studies of j/k. For this

letting £^>: = {#c#k; #^ = p, |#|^0}, we set:

(6.9) l ^'^k' = {ni\^Y a'eaP}.
We easily see that the map

(6.9)2 T : (j4)£ a 30' - * &'*sfk B nll(nk(sf')) is admissible.

We use the above admissible family in the proof of Theorem 6.1 (cf. §6.3).

Note that n^S') is written also as sfk(C) x |̂ '| (cf.n.2, §6.2) and that

\nil(0'ynju\ =Cx \@'\. Thus we have:

(6.9)3 nl\<%')=rf(@'\ U), with l/ = €x |a"| .

This shows that our family F'p°jtfk has a similarity to the one in Example 6.1.

§ 6.3. Main Lemmas

Here we give our main lemmas for Theorems 6.1, 6.2 (cf. Lemmas 6.1, 6.2).

These lemmas will be an application to Theorems 6.1, 6.2 of our sharpening of

the degeneracy theorem (cf. also the introduction of Chapter III). The sharpen-

ing in general forms will be given in Section 7 (cf. Lemmas 7.3-7.5). We also

*} We understand that the map 7r fc: j/&-»^fc is defined in the manner (6.7)s.



COHOMOLOGY WITH POLYNOMIAL GROWTH 513

give some facts, which fill the gaps between Lemmas 6.1, 6.2 and Theorems

6.1, 6.2.

1. Sets of cochains. We should begin Section 6.3 by arranging certain

sets of cochains, which we use in Lemmas 6.1, 6.2: first let j^ be a collection

consisting of (1) elementary figures A^ in C" x €"' or (2) geometric figures of the

form A'p x D' with an elementary figure A'^aC11 and a (fixed) open set D' czC"'.

Also take a map n: stf-*3$, where 38 is an (abstract) set. We use the symbol

Fp for the filtration induced from n (Def. 6.3). First, concordantly the nota-

tion in spectral sequence theory, we set*} :

Zf. «-*(.*, O) > , (q>eFpC
q(j*9 O) ;

(6.10) Bfrq-'(j*9 D) :=

We use the symbol i for the injection: Z&q-p(j*9 &)<^>Zq(j*9 O). Next, for

an element a e R+2 we define :

f Z?.«-'(j/f D) n C«(j/s 0)a9 where c = l or oo
10V( ' h

where

(6.10); C«(j*, O)a: =set of all (|z| + l)-a-growth cochains in

Thirdly, assuming that j/ is of the form in (2), we write s£ as j/' x D', with a

collection stf' of elementary figures in C". Denoting by ja^one of j/ (as in (1))

or j/', we set:

(6. 10)^ ^~« : = {4™ ; A, e xt~}(m e U+) (cf. (6.4)1) -

We define :

(6 tov « - =/
^ ' j2 ' x /)', 0)J J ' w C«(j/; x D', O). T

r where im : = refining map :
> ^m^^m or ̂ ' x D' 9^' x D' - > stf'm x D' 9^m x

(We define C*(j/, O)m, Cq(j*'xD'9 O)m by dropping the term a from (6.10)2.)

Then letting j/ be one of the form in (1) or (2), we define :

(6 10) ' >1 ' J2 1 2?g.«-'(j/f 0)J: =(5FPC^1(^, .

We define Z^-p(j^, O)WI and Bg'9-p(j/, O)w by dropping a from (6.10)2.

As hitherto, the symbol D denotes the structure sheaf of Cn x Cra/.
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(Such sets will be useful, when we are concerned with refining maps of the form
in Theorems 6.1, 6.2,...) Finally, for a collection s# of elementary figures in C",

take elements A^ A v e j t f . We write them as A^ = Yl]=\ (aj^ ajn + bjfl} (bjlJL>Q)
a€n(^R2n)9... We set aflv: = m2iXjbjfl/bjV, and we define ratio number of

30 by

(6. 10)3 a^ : = sup a^v, where A^ AVEJ# satisfy : A^ fl Av

(This number will play a role in our treatments of p.g. properties of elementary

figures.) Letting j& = j&i(U) or =ja/k(C") be as in Definition 6.11>2, we easily
have:

(6.10)4 ^=i.

For the p.g. elementary covering j/J: = j3^£(€"x I/'), C=(£ l 9 (2) eZ+2, as

in Theorem 6.2, we easily have:

(6.10)5 ^«^S42> witn an element c~eHt which depends only on w=(w, «')•
We use (6.10)4>5 in later arguments.

2. Mam lemmas. Here we give main lemmas for Theorem 6.1 and

Theorem 6.2. The data for such lemmas are as follows :

k, x D' <->jtfk x D'9 where j*k> : =s/k> (€"),...
(6.11)o refining map s: ^:=^(CnxUf)^^(CnxUf)9 where f =

(C;«) , {' = «'; «) are in Z+2x (0,1/2).

(The data as above have similar meanings to the data in Theorem 6.1 and

Theorem 6.2).
According as we are concerned with Theorem 6.1 or Theorem 6.2, the admissible
families :

(& 1 IV 35"'0r> —\\J. 1 1 )Q 3r j J»j^' V — ̂  \

will play the basic roles (cf. Examples 6.1 and 6.2, § 6.2). For each

and j/j G c^"jaf we set :

(6.11)o 5^: = restriction of s to J/M, j/^, and TTM, 7c^ are the restrictions of the

maps 7cfc, n% to J3 ,̂ j/^. (For the maps nk, n% see (6.7) s and (6.3)5.))

When we are concerned with the original j/k.> j&'^ we use the filtrations Fp

induced from nk>9 n% (cf. Def. 6.3 and n.2,§6.2). When we are concerned

with j/p $0'^ the filtrations Fp will be the ones induced from nkfl, n^. Using

such filtrations, the sets of the cochains in Lemmas 6.1, 6.2 soon below will
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be of the form in (6.10),_3, which are specified to jtfk, jtfg and J3//P jtf'^.

Lemma 6.1" (Sharpening of degeneracy theorem for Theorem 6.1). As-

sume the following for each ja^e^i0^:

(6.11)?-« s*Z?'^(j^)5 O^cBg.a^, O)a,, w/iere f/ie estimation a' = L(a) is

as in Theorem 6.1.

T/ien we ftflue a map T*: s*Zq(j*k, O)->Zfe°(j/^, O) satisfying

(6.11)? (1 ~/*T*)s*Z*(^, O)ac^C^~1(^'1 O)ff., w / f / 7 f/?c inclusion /

(cf. (6.10)0.

Lemma 6.2" (Sharpening of degeneracy theorem for Theorem 6.2).

? /ie following for each jtf'^ e 3F\s#'^ :

(6J1)§'« ZJ»*(j^, O)Jc=5g»«(^, O)J/ (<?^0, w/iere r/?e estimation: a->a'

/s as /« Theorem 6.2. Moreover, the elements m, m'eifrf are o/ the form:

(6.1 l)f m>cna^ m' = ml(dna*), with the ratio number a^ of jtf'* (cf. (6.10)3),

/?e elements cR9 dneR*2 which depends only on /7: = (/i, 72').

we ftaye a map T*: s*Z^(j3f'*, O)a-^Z^°(j/^, O)a* satisfying

(6.11)! (l-i*T*)s*Z%i/i, OJ.cSC^K^i'- C)a,.

integer n in Lemma 6.1 (or 6.2) satisfies: n^2 (or^.1). Also the integer

Figure I.

Lemmas 6.1, 6.2 will play the most basic roles in the proof of Theorems

6.1, 6.2, and will be a special case of Lemma 7.5. The latter lemma will be a

sharpening of the degeneracy theorem (cf. Introduction) in a more or less general

set up (cf. B, §7). Note that the conclusions (6.1 Of,2 ni Lemmas 6.1, 6.2 are

regarded as a p.g. version of the standard consequence of the degeneracy theorem

(cf. Proposition 6.3). By this reason, we used the term 'sharpening of the

degeneracy theorem' in Lemmas 6.1, 6.2. The proof of Lemmas 6.1, 6.2 will

be given in B, Section 7, after giving some algebraic arguments on the filtration

of the type in Definition 6.3. Here we give a consequence of Lemmas 6.1, 6.2.

Proposition 6.6j_. We have the following implications:
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f Theorem 6.ln~1 - > Theorem 6.1"
t Theorem 6.1" - > Theorem 6.2" .

Proof. This is proved by giving a p.g. version of (6.7)7 and Proposition 6.4.

First, corresponding to (6.7)7 we easily have:

(a) Z*t»(s/k(C*) x />', 0).S Z'Ca^C"-1) x (Cx />')).,.

Applying Theorem 6.1"~l to the right side, we have the first implication. To

check the second, we have the diagram corresponding to (6.7)9 :

Z&°«s O). - > Z««, 0).

(b) ^
€)H , O).

where the p.g. elementary covering j£'^\ =j^'^(Cn x U') is as in Theorem 6.2.

Also the refining maps in (b) have the similar meanings to (6.7)9. Apply

Theorem 6.2 to z*Zq(jtflEx U', O)a. Then, from (b) and from the comparison

of the explicit forms of the estimations in Theorem 6.1 and Theorem 6.2, we

have the second implication. q. e. d.

By Proposition 6.6l5 the remaining task for the proof of Theorem 6.1 and

Theorem 6.2 is to prove Theorem 6.11 and the assumptions (6J1)?;| in Lemmas

6.1, 6.2. The former is proven in Appendix II by giving explicit estimations of

Cousin integrals. In n.3 soon below, we check (6.11)?;|.

3. Note that the assumption (6. !!)§•* in Lemma 6.2 concerns finite

collections ja^ e J5"?^ of elementary figures. Here we give a p.g. estimation

for finite elementary coverings. For this, letting the collection Cov0 (C")ei °f

finite elementary coverings be as in (6.8)8, we form a parameter space:

(6.13)0 A" : = Cov0 (C»)el x Ouv (€"') x jR|2 .

For an element (XA, Df, a)eAn = Cov0(C
n)el xOuv(C"')x^i2, we set:

(6.13)(, C«(^x/>', O)a: = set of all (|z| + l)-a-growth cochains with value

in D (cf. (1.3)6 and (1.4)8).

Next, for a finite collection ^ of elementary figures in C", we set:

(6. 13) Q Itf : = Sj2/5 rj : =max (1, diameter *} of supp jtf) ,

Letting 7 be a subset of Cn, we understand that diam (Y) :=sup P,Qd(P, 0, where
Q, are points in Y.
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and r^: =min / l(rnin(l, ^ )), where A^ runs through j& (cf. also (6.3)g). For

each ^eCov0 (C'Oeu we write /^ , rj as /^ r~. Such numerical invariants
are used in the p.g. estimation just below. Thirdly, for the explicit estimation

below, we make :

Definition 6.5 By an elementary p.g. estimation map, we mean a map of

the form :

(6.13)S' E:R+2xR+23((ul9 u2\ a = (a l s a2)), R+2 3 a': - M^uJ- M2(u2)
u* •

^f(a), where w3 = M3(a2) and Mf, ^f are positive monomials and an el-map

(n.5,81.1).

Now taking elements cn9 dneRf and an elementary p.g. map £ we have:

Lemma 6.3" (w^l). We have the following inclusion.

(6.13)! Zq(^ xD', O^C^C'-VAX/)', £%'/ (q>G), with oe' = En(/A/rA, mr+,
a), where the parameter (j^, D", oc) is /n /I" and m, m'eHi" satisfy: m>cn

and m' = mjdn.

As may be clear from the formulation, Lemma 6.3 is a ^/m/te version of

Theorem 6.1". The proof of Lemma 6.3 is accordingly easier than that of

Theorem 6.1". Here we give a lemma for Lemma 6.3", which corresponds to

Lemma 6.1 in the proof of Theorem 6.1. For this we assume that n^2. For

notational simplification, we set An\ = Cov0(€")el. We write an element

ja^e^" as jafA = ̂ x^A, with J3^ eA1, «^A e^l""1, and we define the map

TTA : j3fA-^^A in the manner in n.2, Section 6.2. We then set:

(6.1 3)2 Btt : = {&i}to n" : = {TTA}A , where ^ e A", and A" : = (A", B", n") .

(Such notation is also used in Part B, §7.) For each j^^eA", we define a

family ^j^ 6 2^ by (6.8)4, and we set:

(6.13)2 ^An: ={j^; where ^ is in J^ja^, with an element ja

For each ^ E ^ j n we denote by J/A^ the element of ^4" satisfying J3^

Then letting (D, a) e Ouv (C") x U|2 be as in Lemma 6.3, we have:

Lemma 6.4" (n ̂  2) Assume the following for each ja

where c^' = En(l^Jr^, mr^ oc) ^^^ *^e correspondence: m-*m' are as in

Lemma 6.3. Then, for each j/Ae,4", we /7afe the following diagram (similar
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to the one in Lemma 6.1):

(6.13)1

such that

(6.13)1 (1-/*T*)

where the estimation: (m\ a)-»(m'; a') aw/ (m', a')->('w//
J a") are as in Lemma

6.3.

Similarly to Proposition 6.6l5 we have the following implication:

Proposition 6.62. Lemma 6.3"'*-+ Lemma 6.3" (w^2).

Proof. Letting J/A e Cov0 (€")el be as in Lemma 6.3, we write J^A ex-

plicitly as follows: j*JL=j*k(U)=s/k,(U') x ^»(t/"), with U=U' x U"

eOuve l(C«)( = Ouvel(C"-1) x Ouvel (C)) and fc=(fc", fc")eZ2n(=Z2B-2 x Z2).
Then, the p.g. version of (6.7)7 implies:

(a) Z^(^k(U)xD\Dy^Z^(^(Uf)x(D'fxDf),Dyi\ with D": = Supp

Applying Lemma 6.3""1 to the right side, we have Lemma 6.3".

Check of the assumptions in Lemmas 6.1, 6.2. Here we check the as-

sumptions (6.11)?;| in Lemmas 6.1, 6.2, which are given for the lowest degree

Proposition 6.63. We have the following implication:

(6.13) Theorem 6.11 - > (6.11)?'*, Lemma 6.3 - > (6.1

We also have the following implication for the assumption in Lemma 6.4.

Proposition 6.6.4 Lemma 6.31 - > (6.13)°»« .

The proof of Proposition 6.64 is easier than that of Proposition 6.63.

Here we prove only Proposition 6.63.

Proof. Let the coverings j*k,:=j*r
k.(C

B) and ^ : = j*£(C» x [/') be as

in Lemmas 6.1, 6.2, and the maps nk, n^ the ones attached to jaffc, J3^ (cf. (6.7)5j8).

We set &k\ =nk(<stfk) and ^^:=n^(j^r^). By the definition, these sets are of the

following forms (cf. (6.7)558):
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(a) &k=j*k(C
n~l) and ̂  = Z2" .

For an element B e 38k or ^, we easily have :

(b) nk
}(B)=^k(C)xB and Tc~l(B)=^(SBcx U'). (For the latter set, see

(6.3);.)

Next recall that the assumptions (6.11)?;| are given to the admissible
families &'fjfk and^?^. Setting^, ^,): =(^, J^i°) or (ja/J, ^?), we ues

the filtration of P^\B as in Proposition 6.5". Remarking that %n~l(B)= oo or

<oo, according as $#\ =jtfk or .a^, we divide the arguments henceforth in two

parts :

(i) The case jtf=jtfk(C
n). We easily see that ^'i^k\B consists of the

single element ^: =jtfk(C) xB. Apply Theorem 6. 11 to js^, and we have:

(c)i s*Zq(s/k(C) x(Bx D'\ Oj.czaO'-'C^C) x(Bx D'), O)a,, where the esti-
mation: a-»a' and the refining map 5 is defined in the manner as in Theorem

6.11.

Take a suitable refining map s2'. J&k>(Cn~l)(->,sfk(C
n~l), and we set: s:=sl xs 2 :

^k,(C»)xD'( = (^k(C) x D') x^(C--1))(^^r
fc(Cn)( = (^(C)xD') x^C--1))-

From (c)t have:

(c)2 s*Z^(j/MxD'), ^c^C^K^xD', D)a,, with the refining map 5M:
^f/t x D' ^-> s^C jaf^) x D' as in Lemma 6. 1 .

Finally, noting that #5=1, we change the symbol Zf/, (5O"1 in (c)2 to Zf'°

and Bg'q. Then we have (6. LI)?**.

(ii) T/?e cose jaf=ja^. In this case the check of (6.ll)%'q is essentially

an easy consequence of Lemma 6.3. The unique key point is to check the

explicit forms of the estimations in (6.11)2 and Lemma 6.3. First the collection

&\s£\B is of the form: {^^^ where jtf^ is an element of Cov0 (€" x C"')el.

(This follows from Proposition 6.5" and the explicit form of B in (a).) Also note

that J/M consists of elementary figures in j/^(SBcx U') (cf. (6.3)',). Applying

Lemma 6.3 to j^4, we have:

(c)3 ZV,, OjcSO-H.^, 0)y;, with a' = £a +„(/,//•;; wirj; a),

where the estimation map £„+„' and the elements (m, m') are as in Lemma 6.3.

Also the numerical invariants /^, rj of ̂  are defined in the manner in (6.13)o-

The desired estimation (6.11)2
>a follows from (c)3 as follows: first from a simple

observation, the invariants /^ r^ are estimated in the following fashion:
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(d)x l, = m\B\ + lW(n+n'\ r-^dvllj, and r+£cnM.9 with an element
jRf depending only on (n, w').

For each ZG|J^|, we easily have**: |z — B\<c'n>n>, with an element c'ns^

From this we easily have :

(d)2 e.(|B| + l)<C'(l*l + l), with C'=^iB-(0, where the el-map <enj (cf. n.5,
§ 1.1) depends only on (??, ??').

Now it is easy to rewrite the estimation in (c)3 in the form in (6. !!)§'« (by

using (d)1>2), and we finish the proof of Proposition 6.6.

Conclusion: Now we conclude Section 6.3 by the following.

Proposition 6.7. For the proof of Theorem 6.1, Theorem 6.2 and Lemma

6.3, the proof of the following suffices:

(6.14) Theorem 6.41, Lemma 6.31 as we// as Lemmas 6.1, 6.2 and 6.4.

Proof. This follows easily from Proposition 6.6.

The proof of the first two facts are given in Appendix IT. The second

three facts are proven in B, Section 7 after we develop certain algebraic argu-

ments for the filtrations in Definition 6.3.

Remark 6.2. Here we check that Lemma 5.2' follows easily from Lemma

6.3. The implication: Lemma 6. 3-> Lemma 5.2' is very elementary. We sum-

marize only the key points of the proof of the implication: Lemma 6.3-»Lemma

5.2'. Take an elementary covering ^ =s/t(U)eAn(= Cov0 (O)el), where

(17; fe) is in Ouv(€'J)el xZ+2". We assume that ^ is of the form: 4 = (kj)jgi9

with /c1 = /c2 = - - - . (We write ki9 k2>... as /c.) Letting the invariants rf of

j3fA be as in (6.12)o , we easily see that the inequality:

(6.15)i cnrj//c<r(resp. t<cnr^/k), with an element cneR1[, which depend

only on ft = dim C", insures the existence of a refining map:

(6.15)! s : j/^17) C-> j<([/) (resp. s' : j^(L7) C-> j*k(C7)), where the covering j/r([7)

is defined in the manner as in (5.2)0.

The above fact suffices to get the implication: Lemma 6. 3 -> Lemma 5.2'. Actu-

ally, we first recall that the underlying geometric figure in Lemma 5.2' is the

disc Ur in C", while that in Lemma 6.3 is the geometric figures U as above.

Note that B is in Zn and is in Cn. Using this \z—B\ is well defined.
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The difference of these two geometric figures is quite small, and one can easily

get the similar relation among the coverings &?k(U) and j/r(l/). Also, by
checking the explicit estimations in Lemma 5.2' and Lemma 6.3, we easily get

Lemma 5.2' from Lemma 6.3 (by using (6.15)^.

§ 7. A Sharpening of Degeneracy Theorem and Polynomial

Growth Uniform Estimations

The main purpose of Section 7 is to give the sharpening of the degerency

theorem (cf. Lemma 7.3 and Lemma 7.5) and to complete the proof of Theorem

6.1 and Theorem 6.2 by using such a sharpening. In Part A we give some

detailed computations on spectral sequences, which are used in the proof of the

sharpening mentioned just above. The applications of the arguments in A will

be given in B.

A. A Localization Method In Filtrations

In Part A the topological space X9 the element jtf e Cov0 (X] and the map

n: 3$-*@ will be the ones in n.l, Section 6.2. We make the following ad-

ditional condition on n: &£-*£%.

(7.0)! n: $$-+& is surjective and p: =#^ — 1^1.

The main results in A will be Lemma 7.1-Lemma 7.1'". The applications of

such lemmas are found in the proof of Lemma 7.3 and Lemma 7.5 (cf. n.l and

n.2, B§7).

1. An additional filtration. Letting peZ+ be the one fixed in (7.0)1? we

set*) :

(7.0)2 X«: =FPC«(^, ft) fo^O).

The purpose of A will be then to reduce investigations of X* : = £^0 Kq to those

of certain complexes at the filtration degree p = p—\ and j? = 0 (Lemma 7.1).

For this we fix a total order •< of 3%, and we set:

(7. 0)3 B: = maximal element of ^, and jtf\ =n~1(B) .

Using the order -<, we introduce a filtration in Kq:

Definition 7.1. By filtration of Kq induced from -<, we mean the following

*> The sheaf ft is also as in n.l, §6.2.
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decreasing sequence of subsets of Kq :

where

(7.1); GtK
tl:=z{cpeK11: (p^ = Q for each ^'e./r«+W satisfying

We write the spectral sequence for (JC*, Gr) as £^ f '*~ f . In n.2 and n.3 we give

a detailed structure of E^-terms.

2. Decomposition of Ei-terms. First, taking a subset $&' of ^ and

integers q, p, f ^ l , we arrange the following notation, which is convenient for

later arguments (cf. also n.3, §6.2):

(7.1)2

n J ) =/} .

Moreover, for an element 2 e ja/(f), we set:

Then we obviously have :

(7. l)^ ^(,f } : = JU-a^S?, where 2 runs through

Next, we use the symbol V for the map:

(7.1)3 v- JVqsf' ^Jt'ir+J*'™ sjf'p, where we forget the order of ^ in the
right side,

and we define :

(7.1)5 ^X—^'Ca^), sn(^\t' = u~l(^'p(\^> and

Now, taking an element ^ e jtf(t+l\ we define:

(7.1)3 *r%: = fae*«; ^=0, unless j/'

and we set:

(7.1)^ ^^ : = ©^ K^39 where ^ runs through j/<'+1>.

It is then easy to see :

(7.1)4 (GtK*IGt+lK*)*K* (as abelian groups).
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We want to make this isomorphism as the one of complexes. For this, denote

by \& the inclusion: K^9^Kq and by rQ the restriction map:

(7.1); rs: KqB<p - > K«]sB<p', where <p> = <?v

for each

and we define a degree one map b&\ Kq^ 3 tp-^K^ B <p'

by Figure I. The explicit description of <p' = 8s(<p) is as Kq — $ — > Kq+1

follows: taking an element ja?' e vtf"$.\(stf)\9* we assume T»^ \r*9
s V1

that the order of $&' is given in the form: K^3 — ̂ -» Kq^

(1.1)1 J*' = (j*'\ ®\ where 2 is ordered in an arbitray Figure!

manner and $t" is an element of ^qt\~f(j^) satisfying

n(jf") = &-B. Moreover, Av < A^ for each (Av, A^ ejtf"x&.

Then <p'^, is given as follows :

(7.1)4 9>fa = S?i!"'(-0-/-^;fd, with j^:=j3r-0'-th component of
s/") .

(From the explicit form of Kf\& (cf. (7.1)3), tne attachment of <p^ for the

element jtf' E~Vffi(jtf)\s suffices for the definition of (pf = Ss((p).) Then setting

St: =©^: JCf-»Kf+1, we easily have the following.

Proposition 1.1. (Kf, St)^(®tGtK*IGt+lK*9 (5), where d is induced from

Kt->Kq+1, and the isomorphism is induced from ®&i&.

By the definition of £|-term (cf. n.l), we have:

Corollary 7.1. E'^^^H^Kf)^®^^^).

In n.3 we give an another description of £'rterm in a convenient form for

our inductive treatments of the filtration Fp on p = 0, 1,...

3. Localization procedure. First taking an element ^ej^(t\ we make:

Definition 7.2. By localization of s/ with respect to Qi (resp. |^|), we mean

the following collections :

\J*s

\^\

We use the localization j^^j in n.3. The localization j/9 will be convenient

for our explicit p.g. estimations (cf. n.4, Part A). We arrange here some data

which we use in later arguments: first we define an obvious bijective map:
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of n to S&Q and Tr^-res^1 (cf. Figure II). Also, con- (0B — B)

cordantly to n. 1 . we set : Figure IL

(7.2)2 (^|)ifl): = K6(j/w)(fl); *n

The map res;;1 induces an injective map: ^T^(j^j^|)->^^(ja4) in a natural

manner. (This map is, in general, not surjective.) We write this map also as
res^1. Now, using the symbol Fp also for the filtration induced from the map

n\s>\ > we set:

(7.2)3 Kfa : =Fr-iC*(j*W9 ft), where

We show that Kfa and X,%
are isomorphic*). For this we
first define (set theoretical) maps

0W,0^ by Figure III. (In Figure III.
Figure III we fix an order of

^ arbitrarily**), and the order of (ja^, ^) is given similarly to (7.1)4. Also

note that 93 is defined for the image of res;;1.) Now, using the maps 0S, 0^9

we define:

Definition 7.3. By reduction and reverse maps 6f&\, cofa, we mean the

following isomorphisms of complexes :

*b\
(7.2)4 K*}, 9 (p ^=± K^\-i a q>' where cp^ : = <p'^ with < : = 0S«) ,

"T*l
for each

(By Figure III we easily have |0|^|(jaOI = l^l» anc^ one can ea§ily check the
well definedness and the isomorphisms of the maps 0|, G>|). From Definition
7.3 and Proposition 7.1, we have:

Proposition 7.2^ £ir'«-r s ©^H^-

*} Note that Kfis is the subcomplex of K*=FpC*(,stf, ft) (cf. n.2), while ^f^^Fp.f
C*(j^, ^)(cf. (7.2)8). The author believes that there is no notational confusions
between the above two complexes.

**} Thus the maps 0$, 0@ and the resulting homomorphisms 0*&\, <D*Q\ in Definition
7.3 depend on the order of 3$. As we will see in the course of the arguments, the
latter arguments on 0fg>|5 ^f®j will work well for any choice of the order of J^.
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Using the injection z'*: Kf\9C-*K* and the restriction rf : K*-*K*\9

(cf. n.2), we have the homomorphisms 0fr|: K*-+K%~t~~l and ifcof : K!"'"1

-».K*. When there is no fear of confusions we call such maps also reduction

and reverse maps and use the symbols 0J, co| also for such maps.

Remark 7.1. Let cp e K*\9 and the elements

be as in (7.2)4. We then regard ja<^ = (j3^, ^) as the variable for the cochain

map: (p: WJ+i(j*)|*9.^M-+/WM, 51). Then the idea of Definition 7.3 is to

regard the first and second variables ^ and & respectively as the moving and

fixed variables. Thus our reduction method is concordant to standard reduction

methods obtained by regarding some parts of variables in questions as the fixed

ones. We also note that we use a similar reduction method for our cohomology

theories for certain stratified spaces (cf. [18]). The reduction maps as in

Definition 7.3 will be a key tool in the later arguments of Section 7.

E'f'p-terma. Here we determine the limit case E'^P (cf. (7.1)^. For

this take an element 2 e j/(f+1), and we set:

(7.2)5
_ )J, ft), if*> ^iStfJ0^ (cf. (7.1

:~ o, otherwise.

We set J*j: = @9J^ with & e j/(f+1), and we define a degree one map:

(7.2)J S.j:Jj3<p-+Jj139', w^re ^: = Zjti (~1)J>%5 for each
. (Here ^J-: = ^-(j-th component of ^.) Precisely, <p9j: = Pj<p9j,

with the restriction**) p./: r(|(ja/,^,/7r,^,)J, ft)->r(|(ja/,^,/^|)J, ft).)

Next remarking that Ei'»*: = Z'^-P: = {ep e G^r+^; 5<p e G,+ 1Kr+^+l} (cKt+P),

we define an element cpf e fj by attaching the following value to each & e

. (We write the correspondence: E\ttp 3(p^fj3 (pr as #.)

(7.2)6 ^: =9^,^' in \sf'\ n |^| for each j t f ' e ^ P j t f satisfying 7r(j/') = ^-^,

|j^7| n |^| 7^0. (Here, writing j/' as jtf' =(A( -<•-•< A'p), we understand that

(Remark that |(^/7cd)J= U ^(\^'\ n |^|), where j^'e^T^j^ is as in (7.2)6

(cf. the footnote to (7.2)5). Also we see easily that (peE'^P implies: yQ^>

— 9®,j*" in 1^1 H |̂ '| n |j//r| for such j&', jtf". From the above we see that

*} By (6.8)5 this is same to say that xs>(3/s>) = &~B and ICj^W^)*!^- We use this
fact in later arguments.

**) When J3^p+tis>1)=^> we understand that pj is the zero map.
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<p'9 is an element of J9 = r(|(j3^/7r^)J, ft).) From the explicit relation in (7.2)6

we easily have :

Proposition 7.22. (£;*•*, dJ*(J$9 6^ .

Finally we summarize the arguments in n.l-n.3. For this we use the

symbol Fp for the filtration in C*(«^, ft) and C*(jtf\s\, ft), which are induced

from the maps n: <s/-»& and n\9\\ $$\g\-*S8 — B. Also we use 'Fp
9 for the

filtration in J^, which is induced from the map n: jtf( = Ti~l(&)}-*& (cf. (7.0)2).

Note that %B= i implies that F0J^^Jj and FpJj^Q (pS> 1). We then set:

f «'*~P> E*$*9 £r
p;*-«) -spectral sequneces of ((C*(j/, ft), Fp) ,

•~)7

Lemma 7.1. Assume that

(7.2); E^fef-' 2*0 for each Q^t<q-p and

Then we have the isomorphism:

Proof. First, from that #71^= p + 1 and %n^ gi^P^WQ have : Fp-C*(j&99 ft)

^0(p>p) and FpC*(s/Q, ft)^0(p>p-l). This implies:

(a) EW*H*(K*) and ̂ yf-^^-^1^^,) .

(For this also recall that K* = FpC*(j*9 ft) and Xf^,=FpC*(j^,s|, ft) (cf. (7.0)3

and (7.2)3.) Moreover, by Proposition 7.21? we see that (a) implies the

following :

(b) (7.2)'7 - > £'^'^^

and, by the degeneracy theorem (applied to £ifi*-terms) and by Proposition 7.22,

we have :

(c)

Finally, remarking that FpJj^Q(p^l) implies: Hq-p(Jj)^E°^qJP
9 we have

(7.2)7. q.e.d.

Corollary 7.2. // £?;£"* ̂  0, then E\^~p ^ 0.

Lemma 7.1 and Corollary 7.2 insure that the E? -terms for the original com-

plex C*(X ft) is 'determined' by the Ef^-and £?-terms for C*(j/,^,, ft) and

for jj, and will play a basic role in getting our sharpening of the degerency
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theorem in Part B*>. In n.4, n.5, we give p.g. versions of Lemma 7.1. Such

facts will be basic in the proof of Lemma 6.1-Lemma 6.3 (cf. n.3, Part B).

4. Reduction maps for localization j^» Here we develop similar arguments

to n.3 for the localization stf^ (cf. (7.2)j). In n.4 we assume that j& consists of

elementary figures in CM(z) (cf. §6.1). We make this assumption for some

technical reasons^ and, more importantly, for purpose of the applications to

the proof of Lemma 6.1-Lemma 6.3 (cf. Part B, §7). We also assume that

(7.3)0 the ratio number a of ,o/<oo (cf. (6.10)3).

We begin n.4 by giving a proposition on elementary properties of elementary

figures, which we use in the later arguments:

Proposition 7.30. (1) // At e j/ (1 g ig 3) satisfy: At n Aj^ 0 (1 ^ /, j^3),

then r^=1 A — cj). Moreover, if Al n A2¥=4)-> then we have:

(7.3)j ^j./w13^2,111'/or any m> in'eRi satisfying m>3m'a.

(2) For the maps res$l and 0^(cf. (7.2)2j3), we have:

s^ : ̂ « (j*|p|) > j\rq
p(j*9) is bijective

(?'3)l satisfies •.

(In (7.3)j, Al>m: = elementary figure with the same center as A1 and with the

size = mx(size of A^ (cf. (6.4) J). Also, writing ^ = {,4 ,̂ we recall that

^m={^m)^(C/.(6.10)S).)

Proof. (1) is very elementary, while (2) follows easily from (1).

In the arguments soon below, we define reduction and reverse maps for s4&

from those maps for s#\3\ (Definition 7.3). The bijectivity in (7.3)'{ is used in

the definition. The second condition is also used, as a technical convenience,

in such a definition (cf. Proposition 7.3 soon below).

Next we assume that the aheaf 51 is the structure sheaf O of C". We use

the 'principle of analytic continuation' for D in the definition mentioned just

above. Taking an element in eH^, our complex will be of the following form:

(7.3)5 C*(j/, 0)'»( = ?*C*«,, 0))(cC*(X O)) (cf. (6.10)2), with the refining

We use the symbol Fp also for the filtration in C*(jaf, D)m, which is induced from

the map K: ££-*£%. In a concordant manner to (7.0)3, (7.1)4, we define:

*} cf. Proposition 7.30-Proposition 7.3?.
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(7.3)y X*(m): =F 'pC*(j*, O)», X,%(m): =Xr% n X*(m),
and

(We use the symbol Fp_l also for the filtration in C*(j&99 O)m, induced from

n9:j*s-*&-B (cf. n.2).)

Now take elements m, m' and m" eUJ" satisfying:

(7.3)2 ra > 3m' - a, and m" > 3m'a .

We then have the following analogues of Proposition 1.2l and Definition 7.3:

Proposition 7.3! . For each & e j2/(t+1)(t^0), there are homomorphisms

( 3, (01: Xf%(m
' to?*: XS-'-

which are characterized by

Figure IV-l, and the homomor-

phism (D%-Q% satisfies Figure

IV-2 (and 01-0)1 srtisjto r/ze

similar diagram to Figure IV . _

-2).

(In Figures IV-1, IV-2, im»m: = refining

We call Q% and cog also reduction

and reverse maps. Moreover, as in n.3,

we call the homomorphisms :

(7.3)3 flS-rJ: X*(w) - > XJ-'"1^'), «-o>S: ̂ S'^1^) - ^ X*(/«') ,

with the injection z'| : X?^ ^ X* and the restriction r|: X*->X?|d, also re-

duction and reverse maps (and we use the symbols 0J, co| also for such maps).

(Proposition 7.3j follows easily from Propositions 7.2j, 7.30. Here we sum-

marize the technical key points of the proof. First setting <p' = 6%(cp)9 cp' = co|(<^),

where 9, q> eK*(m), K|~t~1(m), we remark that q>'9 $' are explicitly as follows:

(7.3)2 9^=9^, <P'^ = 9^ for each <e^r(^), with < = 0^(^) .

(We understand that (^^restriction of ^eFflj^J, D) to r(|jaf^|, D) and

(p^M should be understood similarly. Note that |̂ |̂ |̂ | in general. But

(7.3)i implies: |^m|=>|^m'|.) The existence of the maps 0J, co| follows from
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(7.3)2, while the uniqueness follows from the principle of the analytic con-

tinuation for O, applied to |^m'|c|j^J.

E^'p-terms. Here we give an analogue of Proposition 7.22. We assume

the following for each @ e j/(r+1):

(7.3)3 J/JS-Yji0 *0 (cf. (7.2)5), and |(j/s/^)J is connected.

Corresponding to Proposition

7.22 we write the spectral E'*-r(m)

sequence of (K*(w), Gf) as

Proposition 7.3a. There Figure IV-3.

homomorphisms:

\ 0)m'
(7'3)* '-,J:C*(^

characterized by Figure IV-3. Moreover, ^C*(j^? D)m'

coJ • 0*7 satisfies Figure IV-4 (ant/ 0 £• - co*/ Figure IV-4.

satisfies the similar diagram.)

We call 0%, ajj also reduction and reverse maps. (The map % just above is

as in Proposition 7.22. The map r*? is a natural map given soon below.) Pro-

position 7.32 follows easily from Proposition 7.22. Here we also summarize

technical key points in the check of Proposition 7.32: first recall that J^ =

®aj£9( = r(\^9lna)ul °)) (cf- C7-2^)' and we take ?V to be the induced from the
restriction: F(\&\, O)-»J^. Thus, for an element (pe£i*sp(m), the value of

<p' = 0j/(<p) on ^ is the restriction of <p9tJ>f' to |^m>|, with an arbitrary j/'

e^KJ(j3^). (For convenience of the arguments, we understood that the order

of sf' is concordant to n(j&') = &' — B'.) By the first condition*) in (7.3)3 such

an element j&' exists*). Also by the second*), Q% is independent of the choice

of such an element j&'. The definition of o>*7 and Figure IV-4 follow easily

from Proposition 7.22.

Finally, we give an analogue of Lemma 7.1. For this we set:

(7.3)S (Ef;*'p(m)9 Ep;*-p(m)9 Ep
r$-p(m)): =spectral sequence of ((K*(m)9

*) For the existence of such an element j^', see also the footnote to (7.2)5. Let jtf'9 #/" be
such elements. Then the connectivity condition in (7.3)3 implies the existence of such
elements {jaO JUi, with j/J =j/', &/'v=$£" and | j^f

u\n \ j&'u+i\ =£<?>. The welldefinedness
of e% follows from this.
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where the filtration Fp in K*(m), K%(m) and C*(j/, D)m is the one induced

from n: j/->^, n^: stfQ-*@ — B and n: jtf = n~l(B)-*B (as in n.3).

Now taking elements ^,^eJRf2 , we assume the following for each O^r

<q-pand ^6j/< f + 1>:

(7.3% ^m£r^~P~'(m) = °> where m, m'eJRf satisfy: m>era, mf = m/^a.

Lemma 7.1'. T7iere are homomorphisms:

(7-3)6

satisfying Figure IV-5 (and the similar

d'ajram to 0j-coj). Here the elements _.J * **J Figure IV-5.
m, m' ana7 m" eH|" satisfy:

(7.3)2 m>rq,pai m/ = m/^ j p-a and m" = m'/t/q>p-a , where

(7-3)6 ^,p=^,p(^ ^,P =-^ip(</)> wi^A an el-map jg^fp, wftzc/i

Proof. The algebraic structure of the implication: Proposition 7.3 1§2->

Lemma 7.1' is parallel to the proof of Lemma 7.1. The condition on the ele-

ments m,... is checked, by recalling that we imposed the condition (7.3)2 in

Proposition 7.3lf2. q. e. d.

Corollary 7.2. Assume that

(7.3)^ ftiX^MsO, w/tere m, m' eHf are as m (7.3)6 .

Then we /iat?e:

(7.3)7 tt^£?:i-Wso.

5. A p.g. version of Lemma 7.1 '. Here we give a p.g. version of Lemma

7.1 in a convenient form for the later arguments: for a subset j/' of j/, an open

set D'c:Cn'(z') (cf. §6) and an element a el?}"2, we use the sets of the cochains*)

Zf»*-p(jaf xD, O)J. (For such sets of cochains, see (6.10)li2.) Next, for

convenience of our explicit estimations, we take an s-times product R$s of HJ",
and we fix a collection E consisting of maps : R^s x RJ2-^li]["2. (We permit the

case s = 0, or equivalently, the case R |s x JR|2 =I?J2.) For maps EA, E^ E E, we

write E^Ep if £A(jS; a)>£^(j8; a) for any (j8; a)eJZJ*xllJ2. Moreover, we

The filtration here is induced from the map:
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define a composition £v: = £; • Ell by

(7.4), E v : J R J » x K + 2 3 ( j 8 ; a ) - > ̂ |2 ̂  «': =^(P; W «)) -

Next we fix a map j/t : E xEB(E^ £v)->Es £A satisfying E^E^ • Ev. We then

define maps ;^p (p^2) inductively as follows**:

(7.4)2 nP-Ep+]=E?xEB(E^ Ev)—+E3EJi:=ril(iip-}(Ell), £v) .

For each pg; 1 we define a map:

(7.4)3 rlp:E3E—-* E3E': = i i p ( E 9 . . . 9 E).
' — /H i— ̂

Also, for convenience of the estimation here, we fix an clement /? = /?,/ eJC'j"2.

Now we assume the following for each Q<*t<q — p and ^eja/ ( / + 1 ) :

(7.4)5 zr^^-'C^x^'.OJJcBg-^^-^j^xD'.O)?;, wilha' = £(j8;a).

where a is in J?t2, and m, m'eJRJ" satisfy: m> <?a, m' = m/t/a (cf. Lemma 7.1').

Lemma 781". T/?e reduction and reverse maps*} 0*r anc/ coj preserve the

p.g. conditions:

(7.4)6

and also satisfy:

(7.4); (1 -a)jOj)Z$'q-p(j&xD'9 ^<^B^q-p(^xDr, 0)?"

(and a similar inclusion to 9^-coj). In the above, the element t/f

is as in Lemma 7.1, and the map Eqif) is as follows:

(7.4)6 Eqip = fje(E)7 with an element e = eqtpeZ+, which depends only on (q, p).

The proof of Lemma 7.1" is given similarly to Lemma 7.1', and is omitted.

Our main application of Lemma 7.1" will be given in Part B (cf. Lemma

7.5). Here we derive a key proposition for the proof of Lemma 6.1:

A key proposition for Lemma 6.1. Let the collection <$/k'(C
n) of elementary

figures be as in Theorem 6.1, and the map nk>: £/k>(Cn)-*&k, = s/k>(Cn~l) as well

as the family &r/
]f+1j!/k(p'£.l) be as in (6.7)5 and (6.9)P Taking an element j/^

Here we assume that E is closed under the composition in the sense that if E(l

then there is a map E^E satisfying E^yE^E,,,
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!^, we set:

(7.5)0 ^: = TI^(^), with the restriction n^ of nk to ja/J, ,

and we fix an order < of ^, and we set j^: = Ti"1^), with the maximal

element B'^ of ^.

Proposition 7.4!. Take elements*^ mn,dnERi and an el-map &„&-

Then there are maps 0*, co*:

(7.5)t

which satisfy:

similar relation for 0* • a> * ) .

Proof. Here we take the set of parameters (J?^"s x flf 2) and the collection

E of estimation maps in Lemma 7.1" to be: (jR|s xR^2) = R^2 and £: = set of

all el-maps**) R+2->R+2. Then, by Lemma 7.1", it suffices to check the

following**^ for each Q^t<q — p and ^Ej^'fl
(t+l) for the proof of (7.5)lj2:

(1 *n 7P-l,1-P-t( <„/' v D' r)^/.D Z, <& X V 3J

where the estimation: (mn, a)-»(m'; a') is as in (7.5)i.

To check this, we remark that the localization £0'^ is a finite set, and is,

moreover, J^'^Q is written as :

(a)t j&'pg is in ^$4 ' ̂  (cf. (6.8)4), with a finite elementary covering j&'^

eCov0(C")ei (Qf- (6.12)2), which consists of elements of j/k,.

We give here a proposition, which is applied to the finite collection £0'^'. let

the collection ^"( = Cov0(C
w)ei), B

W = {BA}A and nn = {n^}^ be as in (6.12)2.

Then we have the following for each ^ e &%$£k (p^ 1) (cf. (6.8)4):

Proposition 7.42. Zf • ?-^(^ x £)', C)J c Bg- 9-p« x />', O)? ,

w/tere K' = En(lJr~i mrj; a). (Here ^/ie open set D'cCX, the element (m; a)

*) mn, dn and «^TC,fc depend, respectively, only on w=dimC re and (n, k).
**^ Cf.n.5, Section 1.1.

***} j/i«=localization of ̂  (Definition 7.2).
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xHi"2 and the estimation map En have the similar meaning to Lemma 6.4.)

Proposition 7.42 follows directly from our algebraic result**, Lemma 7.4

in Part B, Section 7, which is proven independently from the content here con-

cerning Lemma 6.1. Our use of Lemma 7.4 for Proposition 7.42 is legitimate.

Now letting the localization stf'^ be as in (a) l9 the numerical invariants /^,

rJJ of J3^ (cf. (6.12)S;) satisfy:

(a)2 I'^Q, r'^ and l/r^<cn>fc, with an element cn § f ceJRf, which depends

only on (n, k). (This is checked easily by remarking that the radius of \&\ is

estimated similarly to (a)2 and by recalling the explicit form of the localization

ji/'pa (cf. Definition 7.2).)

We then apply Proposition 7.4X to A'^. Then we have the similar inclusion

to (7.5)3, by the following change of the estimation:

(a)3 ^'= En(l'tlS>lr'~9\ mnr
f^i a), with the estimation map En as in Proposition

7.42.

But, by (a)2 and the explicit form of the map En (cf. Definition 6.5), we easily

see that the element a' in (7.5)3 satisfies: a;>a', and we have (7.5)3. Finally,

by Lemma 7.1", we know that (7.5)3 insures (7.5)j>2, and we have Proposition

7.4le q. e.d.

Next we derive a key proposition for Lemma 6.1 from Proposition 7.4!.

For this letting the refining map s: s4v x D' ^ s t f k x D' be as in Lemma 6.1", we

also take a suitable k"eZ+ and a refining map s': ja/fc« xD /c->^ xD', where

we set <sfk»: = Ak»(Cn). We then take an element ja^eF^jaf^ (cf. (6.9)j),

and we set j^'^xD'= sf^(j^'^xDf)9 j^xZ)' = sM(j3^x,D')? with the restrictions

s^ of s', s to j/^xD', ja^xD'. Also, letting the map nk: j/k-^^lk: =J3^

(C""1), where /c = /c, k' or k", by the one defined by

(6.7)5, we set: ja^ c-^-> <stk>
 (—^-> &?k

<v* J J J
VWl ^n - s'n- i (• sn ^

TI^ n'n and n'^ — restriction of n% to A^ A'^

$ln, &' and &"„: ~n(^fn), n($/'} and

We fix an order of @}"^ and we use the orders of ^, Figure I.

^, which are induced from &" (cf. Figure I). We

write the maximal elements of $"^ 8$'^ and ^ as B"^ B'^ and B^ and we set

Precisely, 'Lemma 7.4 applied to (An, Ba, xll)\
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j/J: = <-W,^ = *;rW and j/^n-^B J. We assume that (6.11)?««
holds.

Proposition 7.43. We have the following diagram:

(7.5)4

x D'9 0)a — «1— > Z?>«-<W; x ZT,

Proof. First we easily have :

(a) ! s(^4' x D') ID A'mn x D' for each A'

and we have the first diagram in (7.5)4 from Proposition 7.4^ By applying

(6.11)?'« to Z?'«-p(^xD', £))m» (cf. (7.5)4), we have the diagram in the right

side of (7.5)4. The commutativity of cu*, co'* and s7* is easily checked, we have

(7.5)4. q.e.d.

Now setting s : = s' • s we have :

Corollary to Proposition 7.4S. For each jtf^ e &"£.ltsfk* we have:

where we set s^: = restriction of s to j/£ and J^:=S(,Q^). Moreover, the

estimation: a->a' is as /« Lemma 6.1.

This covers the essential part of the proof of Lemma 6.1 (cf. B, § 7).

6. Reduction condition Let the collection ^ of elementary figures in

C"(z), the map n: jtf-*3$ and the families ^jtf d2J*(p^. 1) be as in Example

6.1, n.2, Section 6.2. Take an element J3^ = j3f(^'; l/')e^+1X where ^' is

a subset of ^ satisfying %£jf =p and £/' is an elementary figure in C"(z). We

then fix an order in ^( = TC^(^)), where n^: = restriction of n to j^,, in an

arbitrary manner. Setting J5^ := maximal element of ^, ^: = n~l(BM), we

easily have :

£/'), and is in ^"X (cf. (6.8);).

Also taking an element @ e ja/(t+1)(r^0), we also easily check:

(7.6)2 the localization s/^ is of the form j^ = «sf (^ - J3,, ; I/' n |^|), and

/^//) ill is connected (cf. (7.3)3),
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By (7.6)1>2, the series F°jaf: ={&rQ
p^}^=\ is closed under the localization pro-

cedure: J^-***^ and the procedure: j^-^j/^: =n~l(B^. This fact, together
with the second condition in (7.5)2, makes it possible to apply the localization

methods in n.l-n.5 to the series F°j/. Now taking a series F.c/={^"pfcgf}*=1

of families & ' pj& c2^ satisfying (6.8)1 , we make:

Definition 7.4. We say thai FJS/ satisfies reduction condition, if the fol-

lowing holds for each j^ e ^p + j sf (p ̂  1 ) :

(7.6)3 fix a suitable order -< of ^':=ntl(^/fl)9 where n^ := restriction of n

to j/^. Then setting B^: = maximal element of ^ and s/^: = 7r~1(J3y), we have:

(7.6)3 •sfpG&'i'Bf. Moreover, for each 2 e j/ ( f+1)(f>0), the localization

jtf^ is in & Ps0, and ICa^/Tc^),,) is connected.

We rewrite (7.6)lj2 in the following form:

Proposition 7.5. The series FQJ/ satisfies the reduction condition.

In Part B we give a sharpening of the degeneracy theorem in the form of

Proposition 6.3 for a series Fjaf as above, which satisfies the reduction condition.

B. A Sharpening of Degeneracy Theorem

In n.l and n.2 we give our main applications of the localization arguments

in Part A, and in n.3, we prove the main lemmas, Lemma 6.1-Lemma 6.3, in

Section 6.3, by using the results of n . l , n.2.

1. First let the collection stf of elementary figures in C"(z), the map n:

jtf-*& and the series F^f = {Fpts^}^=l of families J^pj3/c:2^ be as in Definition

7.4. We assume:

j ratio number a of s# < oo (cf. (6.10)3)
0 I FJ/ satisfies the reduction condition (Definition 7.4).

For each ja^eJ^j/, we set n^ : = restriction of n to j^, and let

m^l , denote the spectral sequence** of (C*(j3^, O)m, Fp), where the filtration

Fp is induced from TZ^ (Definition 6.3). We fix elements cl9

Lemma 7.2. Assume the following for each s/^ e & \^ ':

(7.7)?'« /*,MJS?;J(m)^0(^^l), where m^j 'eftf satisfy: m> c}a, m'^

*} For the complex C*(ja^, D)w, see (6.10)3.
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Then we have the following for each j

(7.7)f-« im-*Et-*-*(rt)*0(q>p), where m, m'e R+ satisfy: m>eqtpa, m' =

m/</qtpa, with elements eq>p9 </^peR\2, which are determined*^ by (ei9 </i)

and (q, p).

Lemma 7.3. Assume, in addition to (7. 7)?'^, the following'.

(7.7)o each ^pjtf (p^l) is admissible

(Definition 6.4). H9 (€*(*/, O)*)

"Then we have a homomorphism

(7.7)2 T*:#*(C^£)*)^!

satisfying Figure I.

In the above, £l;2r(m) denotes the spectral sequence of the 'original complex'
/, £))m, Fp\ and the homomorphism p* is the natural one: E\>^-+

f, O)m). Moreover, the correspondence: m-»m' is as in Lemma 7.2

and: m'-*m" is given similarly to

Proof. The proof of Lemma 7.2 is given inductively on p as follows:

taking an integer p^l , we assume (7.7)f* for each p<p. For an element

jtflie#r
p+ij&, let the localization j3^se^"pj/ and the inverse image j/^:

= 7c~1(J5/i)ee^
r
1jaf have the similar meaning to (7.6)3. % the induction con-

dition we see that (7.7)r1'^~' and (l.l)^q~p hold for jf^j*^. On the
otherhand, the key lemma, Lemma 7.1', insures that the above facts for ja^,

j/M imply (7.7)?'9 for J^M, and we have Lemma 7.2.

Next, to check Lemma 7.3, we recall that the admissibility of J^+jj^,

together with (7.7)?'*, for each ja^ 6 J5r
p+1j/, insures:

(7-7)5 '€ ^'m£?;^(tfO = 0 (0 > P^O) (cf. Proposition 6.5).

Thus, applying the standard degeneracy theorem**^ to this inclusion, we have

Lemma 7.3. q. e.d.

Lemma 7.2 and Lemma 7.3 are our sharpening of the degeneracy theorem

*) The map: (el9 «/i)->(^,p, a/q,p) is given in the manner as in (7.3)J".
**> In Lemma 7.3, we are concerned with the subcomplex C*(j^, D)m of C*(j#, O) (instead

of ^*(jaf, £))), and we use the homomorphism / ~', ^. However, this gap is quite small,
and one get Lemma 7.3 from a slice modification of the standard proof of the degeneracy
theorem (cf. [22]).
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which is mentioned previously*^ and the key point is that the assumption for

the 'isomorphism9 in Figure I is reduced to the vanishing property for (7.7)?'e

at the lowest filtration degree p = Q. In n.2 we give a p.g.version of Lemma 7.2,

Lemma 7.33 which may be our substantial main lemmas in our treatments of the

p.g. uniform estimations in Chapter III.

2. A p.g. version of Lemma 7.3. In n.2 we start with a family A = {AJi\

X E A} consisting of data Ax as follows :

(7. 8)0 J[A = (jafA, ^A, TTA), where ^ is a collection of elementary figures in

Cn(z), ^ is an abstract set, and TTA is a map: j3fA-»«^A. For notational

convenience, we write:

(7. 8)0 j/ = {j<JA, ^ = {^A}, and 7r = {7iA}A, where A runs through A.

We assume the following for each J/A e stf :

(7.8)'o the ratio number 0A of J^A< oo (cf. (6.10)3).

Moreover, for each v4AeX we fix a series -fp«^A = {^r
p^}p=i of families

j5-pj/Ac2J*X We assume that each ^p^ satisfies (6.8)1 and that

(7.8/0 F^i satisfies the reduction condition (Definition 7.4).

We then define :

(7.8)j)v & 'pA: ={ja^; where ^ is an element of J%J/A, with an element

For each ja^ 6 ̂ PA, we denote by j3fA^ the element of jaf satisfying

Next, for the explicit estimation here, let the set of parameters J?£s x R^2

and the collection 1£ of maps: (R^s xR^2)-»R~£2 be as in Lemma 7.1". More-

over, for each J/A e ̂  we fix an element j5A e HJS.

Now, take elements ^15 ^eHJ"2 and a map E1eE, and we assume the
following uniform estimation for J5r

1j

;; for any ( j^jD'j^e^j/x
Ouv(Cw)xl?f2, where a' = (£1()8A/i; a), and m, w'eJRf satisfy: m >cx a A^m r =

Then we have the following p.g.version of Lemma 7.2, which is easily derived

*> Cf. the introduction of Chapter III, and the end of Section 6.3.
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from Lemma 7.1", by using the similar inductive arguments on peZ+ as in

Lemma 7.2:

Lemma 7.4. For each j&^e J^p+1j/(p^l), we have:

a), 0nrf m, nVeUI satisfy: m> ^ Q t p a ^ ^ ni/ = m/^p9qa^. Here the elements

c^p and t/ptp by^)(cl9^l) and (q, p). Also the map EQipeE is given in the

form:

(7.8)ip»9 Eqip = rje(El), with an element e = eq^peZ+, which is determined by

(q, p). (For the map fje: E-+E, see (7.4)3.)

Next we assume the following for each j

(7.8)2 eacn ^P^A (p^l) is admissible (Definition 6.4).

Then, using the similar arguments to Lemma 7.3, we have the following p.g.

version of Lemma 7.3 :

Lemma 7.5. For each ja^e j&9 \ve have**** map TA:

(7.8)3

satisfying

(7.8)3 (l-ixpJZt^xD', O^cdCt-^jfiXD', O)*r, a/irf/Ae similar rela-

tion for / A -T A .

In ^/?e above, the element meiZf satisfies: m> cqa^ and cq,tfqeRi2 are

determined by**}(c^ d \) and q. Moreover, the map EqeE is given as follows:

(7.8)3 Eq — neq(Ei)> w/t/? an element eqeZ+, which depends only on qeZ+.

Applications of Lemma 7.5 will be given in n.3 soon below.

3. Proof of Lemma 6.1-Lemma 6.3. (i) First we derive Lemma 6.2 from

Lemma 7.5. For this letting the collection A'", n=(n, «'), of the p.g. elementary

coverings be as in Lemma 6.2 (cf. also (6.4)j), take an element $

*,**) T^g correspondence: (cl9 *Si)-*(cq,P, «^|3») is as in Lemma 7.2 (cf. also (7.3)f). More-
over, one can take (cl9 </q) in Lemma 7.5 to be:(^, «^)=(^,g, «^>g).

***J For the set Z£° and the map /, in (7.8)3, see (6.10)lf (6.10)2
r.
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Then, letting the map n^: j/'^-^Z2" be as in (6.7)8, we set:

(7.9)! B'»:= {B'*};, n f n : = [7t,}^ where we write Z2"( = n^(^)) as ̂  .

Next letting the element enER^2 be as in the assumption (6.11)§'« in Lemma

6.2, we define an element <r I M ZejRJ2 by ^n^ = ̂ n,q(^^ (<?>0), where the el-map
&tttq is as in (7.3)6 . Now, let the refining map s: stf'^^stf'^ be as in Lemma

6.2. We write the p.g. elementary coverings ^, jtf'^ explicitly as j&'^s&'^C"

xU') and j*'?J(CH x I/'), with c = (C; e), £' = (C'; e)eZ+2 x(0, 1/2) and 0"

eOuv'(Cn ')el(cf. (6.3)7). We define*^ j8^: =(d^; Oefif x «t2. Now we
apply**) Lemma 7.5 to jtf'^.. Then we have the diagram:

, ___

(7.9)2 f J^! Z&0«., O)?, with a'=

In the above we set mr : = cnA - a?, with the ratio number a§, of j^ (cf. (6.10)3).

Moreover, the maps: m*f-nn', m'-*m" are defined in the manner in Lemma

7.5. Furthermore, the estimation map En>q is, as in Lemma 6.2***), in E=L

x(Mxi)(cf. (6.4)3).

On the otherhand, we have (cf. (5), Part B, Appendix II):

(7.9)3 sW^sf'w ^ each ^e^.

Thus one can apply (7.9)2 to s*Zq(j&£, O)a, and we have the conclusion****)

(6.1 1)| in Lemma 6.2. This finishes the proof of Lemma 6.2.

(ii) Proof of Lemma 63. The proof of Lemma 6.3 1 is given in Part A,

Appendix II. Recall that the proof of Lemma 6.4" (n^.2) suffices for the proof

of Lemma 6.3" (n ̂  2) (cf. § 6.3). But we easily see that, by applying Lemma 7.5

to the triple (A", B", n") as in (6.12)2, we have Lemma 6.4. (In the application,

the estimation map £ should be the elementary p.g. map as in Definition 6.4.

Moreover, for an element j^Ae^4", the invariant /^ is defined by*****> /?A =

(/A/rj; mrf), with the invariants /A, rj of J/A as in(6.12)o- Using these data,

the proof of Lemma 6.3 is given similarly to Lemma 6.5.)

510 For the invariant d^' of £/', see (6.3)8.
**> Precisely, 'Lemma 7.5 for (A'n, B'n, ?r/n).

***) The estimation: «-»«'=En,q(pe'', a) is given explicitly as in (6.4)3.
****) Precisely, the estimation (6.11)| is of the form a/=En,q(lfdu:> C; 3). But, from the

explicit form of the map Eniq(cf. (6.4)g), one can change the term C' in (7.9)3 to C.
*****} The term m^R\ is independent from s$^An (cf. (6.12)0), and is not an invariant

of j^. But we check easily that the proof of Lemma 7.4 and Lemma 7.5 is applied
to the element fi^(ljrj\ mr^) at the present situation.
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(iii) Proof of Lemma 6.1. Assume the assumption (6.II)?'9 in Lemma 6.1,

and let the refining map s: stf^ x D'^j^, x Dr be as in Proposition 7.42. (Here

we write ^(C11),..., as j<4,...) Then, using the similar algebraic arguments as

in Lemma 7.5, we see easily that the check of the following suffices for the proof

of the conclusion (6.11)| in Lemma 6.1:

(7.9)4 s*Z'l.*-'(j*k x />', 0)ac j&g.«-*(.fl^ x /)', D)a,(?>/^0),

where the estimation: a-»a' is as in Proposition 7.43 (or, equivalently, as in

Lemma 6.1). But Proposition 7.43 insures the similar inclusion for each j^

e&'£+is/k». By the admissibility of ^"p°+l^ (cf. Proposition 6.5), the latter

insures (7.9)4, and we finish the proof of Lemma 6.1.

By Proposition 6.7 and Proposition 6.1, the proof of Lemma 6.1-Lemma

6.3 insures Theorem 6.1, Theorem 6.2 and our original concern,

Theorem 1.7, and we finish the proof of Theorem 1.7, which is our basis for the

geometric arguments in Chapters I, II.

Appendix II. Elementary Computations - 2

In Part A we prove Lemma 6.31 and Theorem 6.11 (for the complex euclid

line), by using Cousin integrals. In B we summarize some estimations on the

refining maps, which are used in Section 6, Section 7.

In A we fix a complex euclid line C(z), z = x + x/ — 1 -y, and a complex

euclid space C*'(z') (n'>0) (cf. n.l, §1.2). We set z = (z, z') and C : = structure
sheaf of C x Cn' . We use Ouv (€"') x R$2 as the parameter space for sets of the

cochains in A.

Notation. Take a set J^ = {Atl}ll of elementary figures in C and a map

7i : j^->^, where 38 is an abstract set. For elements*) (D'; a)eOuv(C"')

xR^2 and m eitf, we define the following sets of the cochains in the manner

(0)t C«G* x D'9 D)-: = i*C«(Xn x D'9 O)a, where**) *fm: = {Atltn}^ and fm:
= refining map: jtfxD' 3 A^xD'^^mxD' 3 A^mxD'. Moreover, the right

*} OuvCC^Oi^collection of all open sets in Cn/.
**} ^nm '• — elementary figure with same center with Aft and size = m x (size of
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side is the set of all a — (|z| + l)-growth cochains (cf. (1.3)6 and (1.4)8).

(0)2 Z?-«-%*x/^0)J:={pGFp^^
and Bfrq-p(j*xD', O)J: ^FpC^G^xD', O)J, where Fp is the filtration

induced from n: &?-*&$.

1. Cousin Integrals. The argument here is divided into two parts, ac-

cording as the collection stf is a finite or infinite set.

(i) Finite case. Take a rectangle 17 = (a, b) x (a', b')c:C(^R2) and

elements £ = (/c, /c')e(Z+ u O)2, ee(0, 1/2), and we set:

(a)r X7(£<0: = elementary covering of 17 of size n: = (/e; s) (Definition 6.1!).

We write X,' =X7(^) explicitly as ja^ = {t/r; /e [0, fc] x [0, fc']}, where the
center P7 of the elementary figure l/7 is characterized by the following condition :

(a); x(P7)<x(Pr), y(PI}<y(Pr\ with /': =/ + (!, 0), I": = / + (0, 1).

Next setting 38 n: = [0, /e'], we define a map:

(a)2 nq ' X/ ̂  I// - > ^ 3 J5 with / = (/;./).

The symbol (X/m/^^u denotes the w-quotient of j^m by TT;? (cf. (6.7)2). Note
that, if fc, /c'>0, then (j^njn^u is explicitly as follows:

(a)3 (•fl^MMif)«={^/'w)}J = o» where L//m): ={zeC; -mre+ a< x<b + mrs,
\y-yj\<mr'e}, with r = (6-a)//c, r': =(b'-a')lk', s: = e + 2-1 and jy: = a'

+7>'. Now, defining the numerical invariants /,/5 rj of X/ by (6.12)o , we have:

Proposition 1. Take suitable cl9 d^sRl and an elementary p.g.map E

(Definition 6.5), which depend only on l=dimC. Then we have:

(i), z?'K<xir,o)-ci£8'K^x^^ )

where the parameter (D';a) fs in Ouv(€"')xMJ2 and fne element

satisfies: m>c1. Moreover, the filtration F1 and the sets ZJ'1,... are defined

in the manner in (0)2, ^3^ ̂ /?e map n,r

(ii) Infinite case. The arguments here are divided into further two parts :

first taking an element (a; b\ e) e (I? x jR+) x (0, 1/2), we set :

(2)0 <(«; b):={UiE}T=-^ where UiE: = {zeC; \x-i\<e + 2'i9 \y-a\<b + s},
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(2% c:=max\a±b\.

Now take an element <peZl(^'B(a\ 6)xD', D)a, where (£>'; a) is in Ouv(CX)

Proposition 2. There is an element cp' G C°(j3f^(a; b)xD', D) satisfying

(2)l cp = 5(p' and |<p^/(P)|<a'-(|z| + e+1) in \A'\ for each A'^^'^(a\b).

Here a': — M1(l/e)j^f1(a) and sf = s / d l , with a positive monomial Ml5 an el-

ma/? ^fj and an element d{ eJRj", which depend only on l=dimC r .

We prove Proposition 2 in (iv). Next, for an element ee(0, 1/2), we use

the symbol j<(C) for the elementary covering of C of size (1; e) (Definition 6.12).

We define a map:

(2)f
2 n: J#E(C) a A > Z aj, where j = y-coordinate of the center of A

Then the w-quotient (j^E(C)jn)u of J2/£(C) by n (cf. (6.7)2) is explicitly as follows:

Then, letting the el-map J?l9 the positive monomial M1 and the element d1 eJR|

have the similar meaning to Proposition 2, we have:

Proposition 3. We have the inclusions:

(2)2 2

(2)3 ^

where a/ = M1(l/6)«^7
1(a) and B' = e / d l . Here (D1; oc) is in Ouv(CX);

The proof of Proposition 3 is also given in (iv).

(iii) Proof of Proposition l.*) For an

index / = (/, j) e [0, fc] x [0, fc'] (resp. j e [0, fc']) -

we define arcs y^ (resp. yj) by the following con /

dition (cf. also Figure I) : Figure I.

rr u 77 ) _ ( 3(t//>m» n ur ,,,,,.) i /' .- = /+ (0, i)
7} U V7 r ~ " " '

(a)2 rv w">'v i>'v v ' "kwith
\r :=(b~d)lk 1

where \ f \ .
(r : =(b —a)lk )

*) We prove (1)1>2 for the case &, k'>0. The proof of the case £=0, £'=0 is given by a
slice modification of the proof given here.
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(The inequality 'x(jj)^-V indicates that x^xt for each x e y/,...)- Now taking

elements (p, (p from the left sides of (I) l j2, we define:

We then define elements <2>e C°(j*;,x D', x))f and $ eC°(\(j*nJn,)tt\, O),

where w': = m/4, by the following:

(6)2 # i / :=zv; j - i>;T, #y := z'pr-EV,-*'.
r=0 i = i f=0 f=,/

It is clear that (/>~d06F1C1(X/x £',£)) and (?-<5^=0. Moreover, for all

indices I = (t, j) and f, which appear in (b)2, we have:

(c) |<p'±(z)|, |^f(z)|<(8/^)(8mrj).a'(|2|+(8mrj)+l) in 17/X, l//m%

with a'^^oc). Here the el-map JS^: R+2-*R+2 depends only on l=dimC.

(The first and second terms in (c) appear from the estimations of |( — z\~l and

the length of yf, yj. The third term appears from the estimation of <p, $ on

yf, yj. Precisely, we have: |( — z |<8mrj in U />OT. and Uj(mf). From this and

from that \q>\, |(^|<a(|z| + |z'| + l) on yf , yj, we have the third term.) From

(b)2 and (c) and from the relation soon below (b)2, we have (l)1>2 in. Proposition

i. q.e.d.

(iv) Proof of Proposition 2 and

Proposition 3. We first prove Propo- L.E'
I a y

sition 2. For this, for each i E Z, we i - • — —

define arcs yf by: y=a . _ >r

(a) yf u y7 = d(Uie. n ^+i£-)5 e'=e/25 Figure I.

(cf. Figure!).

Letting the element <p e Z\s^'t(a\ b) x D'9 O)a be as in Proposition 2, we define:

___ ( < p £ ( z ) ) ( f^ -CC-r) - 1 ^C )(b)' ^/-i{^;;)}
:={^(c-^)--^ci where ihe integral is

taken over y f .

We expand**^ tpf(z) (i^O) at the 'origin' (0, a^-1):

*) The inequality here has the similar meaning to (a)2, («'/)•
**) Precisely, ^t is, as in (6)1, the function of z. In the proof of Proposition 2, we regard

z' as the parameter and z as the variable. We write c^J+(r) also as p+(z). This nota-
tion will clarify the main geometric situation in question.
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(z — a^J — 1)J', and we set:

(b)2 <?r:=Z?=o<-(*-flV^)y> <Pr+ : = <P?-<Pi+ , where £=[a2

with the second component a2 of aeH|2.

Next we define an element Wt e r(Uis x D', D), s: = e/4, by:

(b)3 ^:=Ei=U

Then we easily see that

(b)4 y l+1-yf = (pf in

Next we will estimate !P£ as follows: first, using the expression (b)ls we have:

^^^

|<pf(z)|<(4/fi)(26 + 2)/, for zeC satisfying: \y-a\<b + (sl4),

(In the above one can take dl to be, for example, di=4.) The terms Jt, s"1

and (2fc + 2) appear from the estimation of cp on yf, |C — z\~l and the length of

yf.) From (c)1? (b)2 we easily get:*}

(c)2 |?r(z)|<(4/C)(2ft + 2)^^

for |z-flx/:rT|)<^'=^ + 2"1-
Also from (c)l we have**}:

(c)3 |^+(z)|<(4/e)Jra
/-(lz| + c + l) for any zeC, where a^j^^a), with an

el-map ^l : R+2-*R+2, which depends only on 1 =dim C,

and, from (c)1>3, and from (b)2, we see that***)****)

(c)4 cp"+ is estimated in the similar manner to (c)3 for zeC satisfying the same

condition as in (c^.

Now, using (c)! ,̂ we have:

(d>! |y j(z)|<(l/fi).a /-(|z|+c + l)in l/a, where a^jgf^a), with an el-map &l9

which depends only on 1 =dim C.

*} (c)2 holds by dropping the term (4/s). The addition of the term (4/s) is convenient
for later arguments (cf. (d)i).

**> Nothing that \a\,b<c, we replace (6+1) by (c-fl) and Iz-s/^TK by (|z| + l)+(c-f 1))-^
<(2(|z| + l)(c+iy(y^^). Using this we easily get (c)3 from (c)i.

***> jhg estimation in (c)4 is less sharper than (c)2. But (c)4 holds for more general zeC
than (c)2. (We use (c)4 in the estimation of (b)3).

****) j|erc we use t^e simiiar trick to the ones in **).
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Actually, we see easily that the first two terms in (b)3 are estimated*) in the

similar manner to (d)1? by using (c)lj4. (Here we use the fact that <p^(z) is

estimated in the form of (c)l in Un ( I<0«) Next we write the third term of
(b)3 in the form :

(d)2 Z!=l<Pi + + Zi*i<Pr, where z : = [ f + c + 3].

We estimate the first term of this in the form of (d)-,, by using (c)4. Moreover,

the second term, which may be the main term of (b)3, is also estimated*) in

the manner of (d)^ by using (c)2. Thus we have (d)^

The arguments hitherto arc given for /^O. We repeat the similar argument

to get ¥"' (/^O), which satisfy the similar facts to (b)4, (d)^ We then define

(d)3 f f: = ff- J «PgdC O'^O) and : = <F; + J <F'^C (i^O), where the integral is
taken over yj (cf. (a)), and we set: ^: = (2n^'^I)-1 -(¥0- Y'0)l(£-z). Then

!?f satisfies (b)4 for each i e Z, and is estimated in the manner in (d)1? and we have

Proposition 2. q.e.d.

Proof of Proposition 3. First we check that (2)2 follows almost directly

from Proposition 2. To see this, letting the map n: j^E(C)-^Z and the set

j/eO'; 2""1) (jeZ) have the similar meaning to (2)2, (2)0, we note:

Now take an element cp from the left side of (2)2. Then, letting ij denote the

injection: j*'K(j\ 2~1)c^j4(C), we fix an element (pjECQ(jtf'E,(j; 2~1)xD ;, O)a,

satisfying: ij(p = dcpj, where the estimation: (e; a)-*(e'; a') is as in (2)!. Define

an element <?' e C°(««C) x D', D)K, by : q>' = <pj on ja/Xj; 2~1)xD /. Then it
is clear that (p — d ( p ' e F l C 1 ( ^ E f ( C ) x D f , O), and (p' is estimated in the manner

in (2)2. Thus we have (2)2.

Next, in order to prove (2)3, we first summarize necessary facts from Propo-

sition 2 : first for each peZ+ we set :

(b), <(0; /7 + 2"1) : = {Vjelp}^9 where VJElp: = VJs

n {zeC; |,\-|<^ + 2-1 + e}, with Vjs as in (2)1

(Note that the collection jaf E is of the form in (2)0, with the change of x and

^-coordinates.) Also we define a niap**}

See the footnote ****>, p. 544.
For the explicit form of the u-quotient (j^CQ/*:)?/, see also
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(b)i 6p: 4(0; p + 2-i)3Vj.lf - > (j//C)/jt),,3 Vjt.

Now take an element (p from the left side of (2)3. Then, by Proposition 2, we

fix an element <pp e C°(j«0; p + 2'1) x £>', O)a, satisfying

(b)2 6*(p = d(pp, and ^(z^a'CI^I+p+l), where a' = J^?
1(a), with an el-map

jg?!, which depends only on / = dimC (cf. (2)!).

Next setting We*(p): = suppj/'e,(Qi p + 2~1), we define:

and we expand Wp at the origin 0 of C: *Fp=Z/c ^/>k" z / < - Similarly to the
proof of Proposition 2, we set :

(c)2 ¥'P: = Z2-o «V**, yj: = ̂ -^' where ^ = [a2 + 3], with the second
component ur

2 of a' eR^2 (cf. also (b)2 in the proof of Proposition 2).

Then setting

(c)3 *:=?,- Ef^1 ^ + Z^p ^ in K,£lp x D' (for each j e Z) ,

we easily see that

(c)4 0 is independent of p e Z+, and (p = 6<I> .

Now we estimate $ as follows : first, using the integral representation : 2n^J — 1 •

Wpj = S(pp(^)'^~j~1d^ where the integral is taken over the circle of radius

p + 2"1 and center 0, we have:

and we also have*> (cf. (c)2).

(d)2 \y"p(z)\«*"(\z\ + p + l) for each zeC, with a;/ = J^i(a), where the el-map
^i depends only on 1 =dim C.

From (d)2 and (b)2 we easily have:*}

(d)3 !Pp(z) is estimated in the similar manner to (d)2 for z e Vje>\p .

Moreover, using (d)l9 Wp is estimated in a sharper form than (d)3:

(d)4 l!F;(z)|<a'(|z'|4-2p + 2)(p + 2-1r^|zr1 for |z|<p-2-i.

Finally taking a point zeC, we choose an element (j, p)eZxZ+ satisfying

ze VjK'\p — Vje'\p-i9 and we set: m: = lJl + p-f-3. We write*} the third term of

*] Also compare similar arguments in the proof of Proposition 2.
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(c)3 as: (0)3 EsLp + Z^m-M- We then estimate** the first two terms of (c)3

and the first term of (c)3 by (d)2 and (b)2. Also we estimate the second term

of (0)3 by (d)4. Then we have the desired estimation of <P in (3)3. q.e.d.

3. Proof of Lemma 63 1. Let A1 be the collection {A^U); (U; K)

E Ouv (C) x (Z+ u O)2} (cf. (6.12)2). For each ^: ^(U^eA1, K = (k, k'\ we

set <% A: = [0, /<'], and we denote by TUA the map: j^-*^ as in (a)2, n . l . We

then set :

(3)0 A]: = (Al, JB1 , 7i l), wi th B'H^Vu, TT! : = {nx}^ where ,c/A runs through

/i1.

Then, from Lemma 7.5, we sec easily that the check of the following suffice for

the proof*) of Lemma 6.31 :

(3)?'« Z?'«<XM x D', O^'cj&g.*^ x £', O)£' ) with the estimation:

(3)? Z^faxD', Ojyc^C^H^x^', 0)»: I (m; a) - > (w' ; a')

as in Proposition ] .

(Here J^A is in A1 and ja^ is in J^j/^, with an element j^^e-41.) But (left

side of (3)f)£0 (q^2) and sZKK^l/TcAl xD', O)a (q = l)\cf. (1)2). Thus,
applying (1)2, Proposition 1 to Z1 (•••) , we have (3)J. On the otherhand remark-

ing that #TCA^(J^U)=I, one can write ^ as «^ = J/0,fc"(^)5
 witn an element

/r" eZ+, and applying (1)15 Proposition 1 to ja^, we have (3)?<<z. q.e.d.

4. Proof of Theorem 6.1 ̂  Here we derive Theorem 6. 11 from Propo-

sition 2 and Proposition 3: letting the element ee(0, 1/2) and the parameter

(Df ; a) e Ouv (C") x R±2 be as in Proposition 3, we have :

Proposition 4. We have the inclusion'.

(4)! Z*(j*;(C) x £>', O)ac=^C«-1«'(€)xD/, O)a,, where the estimation: (e; a)

->(e'; a') is as in Proposition 3. (Also jtfE(C)==<$/is(C) as in Proposition 3.)

Proof. First, if g ̂ 4, the left side of (4^ ^0. Also we see very easily that,

for g = 3, (4)j holds by taking (e; a)-*(e'; a;) to be the identity. Moreover, if

c /= l , we get easily (4)t from (2)2,3 in Proposition 3. (This case is, of course,

the main part of Proposition 4.) Finally, assuming that q = 2, we summarize

the key fact for the proof of (4)l : first we let the map n: j4(€)-»Z be as in (2)2.

Then we easily have :

(a) Z\>l(j/e, O)a^Z2(j/6, O)a, and Z?-0(^fc, O)a^0, where we set J2f£: =

For the sets of the cochains here, see (0)l3 Proposition 1 and (6.10)|...
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j/e(C) x £)', and the sets Zj'1,..., are, as in Proposition 3, defined by the filtration

Fl5 which is induced from the map n (cf. (2)2 and Definition 6.3).

To analyze the set Z} j l, we fix a subset & = {j, j + 1} <=Z2, and we set:

(b)! j/aj: =n-*(j)(j=j or j + 1), ^: = 7u-1(^F)( = J<yJL ^-+1), and j/.7: =
j/£J- x I)',.-- • We then define the following subset of Z\^(j^ca, O):

(b)2 Z^-^^D),:^^^^]'^^^:^^^^^}'1}, where the fil-

tration Gt is defined by the order: j<j+ 1 in ^ (Definition 7.1).

Then, defining the collection j/~c(j + 2~ ' ; c), where e = e/2, by (2)0, we easily

have the following from Proposition 7.2*} :

(b)3 Zi1'1^, 0)asZ1(^.0' + 2-1; e) x/)', O).

Apply Proposition 7.2 to the right side. Then, by Proposition 7.2, we have:

(c)t Z;1'1^^, O)ac5G1C
1(^, O)a,, where the estimation: (e; a)->(e'; a')

is as in Proposition 4.

On the otherhand, for an element Dets/ej+l9 the localization j&e#iD (Definition

7.2) is easily seen to be of the form: <stfE<%iD = {Aj}j = i, where the elements Aj

eTE""1 (7) are characterized by A^\D\ + ^>. Applying Proposition 1 to J^£^JJD,

we have: Z1^^^ x£)', O)ac^C0(j3^^jD xZ)', O)a^, where the estimation:

(e; a)->(e;; a') is as in Proposition 4. (The estimation is first given in the form

of Proposition 1, which is applied to AESS^D. From the above explicit form of

j3^jD (cf. also Definition 7.2), the estimation is rewritten in the form of Propo-

sition 4.) Applying Corollary 7.1 to the inclusion just above (cf. also Definition

7.3), we have:

(c)2 Zi°>2(j^xD', D)c=(5C1(j<^xZ)', D)a, + G1C2(j/£^xD', D)a, .

Using the similar argument to Lemma 7.1 and Corollary 7.2, we have the

following from (c)]j2:

(c)3 Zi'^xD', OkcS

(To get (c)3 we also remark that G fZ} s l^O if t^2.) Finally, from the explicit

form of n~l(B\ we easily see that

(d)i {icl(&)\ & = {j, j + l}}7=-oo is admissible (cf. Definition 6.4).

*) See also (7.2)5 for the explicit form of ZJ1'1. Writing the complex J* in (7.2)s explicitly
(in the present situation), we easily get (6)3.
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Thus, by Proposition 6.5, the inclusion (c)3 for individual ^cZ2 insures the

similar inclusion for the 'original collection' J^£(€):

(d)2 Z2K(C) x D', 0). c 50(j*8.(C) x D', O)a,

which is the desired inclusion in (4)}. q.e.d.

Finally, Theorem 6.1 is derived from Proposition 4 as follows: take an

element fceZ+, and we set r\\ =(/c; s), Y\' \ =(/c; e'), where the elements e, e'

6(0, i!2) — Q are as in Proposition 4. Letting TT^ denote the biregular map:

CB z-*C3 /vr, we have: nk\ ,c/,;^,</JC(C) ..... Using this we have the following

from a very simple observation :

(d)3 Z\j*,(C)xD',S\c5C*-*(j*n,(C)xD',D)&,, where a' = (aifc t t / 2 , ai), with

the element a' = (ai, a^) as in Proposition 4.

Moreover, if an element /c satisfies: k>4/s, there is*) a refining map s:

^j^ieCC), with e = l/4. Using this refining map, one can easily rewrite (4)2

in the form of Theorem 6.1 J, and we finish the proof of Theorem 6.1 l.

B

1. Let R be a euclid line, C/=(a, a + b)(b>0) an interval in JR, and let

X;(L7), where ^ = (/c; e)G(Z'1- U 0)x(0, 1/2), be the elementary covering of 17 of

size r\ (cf. (6.1)!). For an element jf\ = (k': e')eZ+ x(0, 1/2) and for each

Pe 17, we set (meJR|):

(5% [/,;<F)m-.={^eK; |x-x(P) |<f i ' -mb/fc 'J , with st:=Bt + 2'19

and we define :

(5)5 ^'(^)«:= {t/XP) IB;P6l7}.

Now we assume :

(5)i c'^e and kf>4mkl&, with ^ : = m a x ( l , /c).

Then we check easily the following :

(5)i there is a refining map 5 : ^/(C/)m ̂ ^(17) .

The estimations on the refining maps in Sections 6 and 7 are derived from the

above simple fact:

cf. (5)a in Part B of this appendix.
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( i) Assume that k> 0 and that (5)i holds. Then, for the elementary cover-

ings (̂C11), jtfn'(C
n) (n ̂  1) (cf. Definition 6.12), we easily have:

(5) 2 there is a refining map s: ^(Cn)m^j^tl(C
n) .

(For the collections j*n(C
n ),„,..., see (6.10)2.)

(ii) Next take elements fc = (fc-/), /c' = (/c}) (1 g. /^2/?)e(Z+ U O)2", and we

set /7 = (fc; e), 17': =(/v ' ; e'). Taking an elementary figure 17 (cf. n.l, §6.1) in

C" we denote <s/,,(U), <$?,,> (U) the elementary coverings of U of size ;/, if. Then

(5)3 e'^e, kj>4mkjlc, with £,-: = max( l , /:/) (1 gj:g2/?), then we have:

(5)3 there is a refining map s: j^tl'(U)^j^n(U) .

(iii) Thirdly take elements £ = (£; e), £' = (£'; e')eZ+2 x(0, 1/2) and an

elementary figure* > C7' of C"', and let j^: = J3^(C" x 17'), jaf^ : =j/^(C" x 17')
be the p.g. elementary coverings of Cn x (7' of size £, £' (cf. Definition 6.2). We

summarize some estimations on the coverings s&'^ jtf'^. For this we first recall

that j/* is the disjoint union ^ = JL/6Z2n ja^/» where j/^/: =^(S/fi x £/')

denotes the elementary covering of the elementary figure S/c x I/' of size C •

(l / l + l) (cf. (6.3)5.) See also (63)l for the elementary figure S/e.) For each

A'e^, let P be the center of pr(Ar), where pr := projection : C"xC"'->C".

We then attach to A' an element I = IPeZ2n satisfying PeS /c. Also we set

I': =nJ(A'), with the map TC,: jut'^Z2" (cf. (6.3)5). Then we easily have the

inequality :

(5)J c-1-(|/'|-t-l)<(|/| + l)<c(|/|+l), with an element c = ctteR{, which
depends only on n.

Now writing C, C' eZ+2 as (;1? ;2) and ((!, ('2)^ we easily see from (5)4 that the
inequalities :

(5)i 8^8',C^C2 and (4i77/e)C lCC2^C'i

insure the existence of a refining map:

(5)4 s\ j&'^s&'z satisfying s(A) = l for any A'es^'^.

We use (5)4 in getting Proposition 6.4; and in (7.9)3. (When we get Proposition

6.4', we take / to be: co- u • v(A), where the refining maps v, u are as in Propo-

sition 6.4' and co denotes the map: j^lE(Cn)3 A-*Z2n 3 7 = center of A. When

As in Theorem 6.2 we assume that d~^' - I.
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we are concerned with (7.9)3, we take m e/Jf to be : m = 1cn^-a^ with the ratio

number a^ of A^ and the element <rK^eU}~2 as in (7.9)3. Moreover, we define

/eZ 2" to be : I=n£A\ with the map TT^: j^'.-^Z2" as in (6.7)8.)

(iv) Finally we check (6.6), 2, which is the key fact in the proof of Propo-

sition 6.1: letting the p.g. covering jifff(C
n x U') and the p.g. elementary covering

jtf'^C" x U1) be as in Proposition 6.1, we let the elementary figure S / fE (/eZ2")

be the one defined in the manner as in (6.3)i. Also we use the symbols j^ff(SlE

x V) and s/'^(SlBx U') for the p.g. covering of SjEx V of size a and for the

elementary covering, which is defined in the manner as in (6.3)!. For the proof

of the cofinal relation between the p.g. and p.g. elementary coverings jtfff(C
n x V)

and jtf'^C" x U') as in (6.6)1)2, it suffices to show the similar cofinal relation

between <&?a(SIcx U') and ^'^(SlEx U'). But, from (5)ls we easily see that the

relation (6.6)j in the proof of Proposition 6.1:

(a) a>K** • &n(Q (resp. C>Mn(l/^) - &n(a)\ with K: = 1 + sup=w |z'|, where

the positive monomial Mn and the el-map &n: U+2->JR+2 depend only on

7i=0?, w'),

insures the existence of refining maps:

(b) Sl: ^ff(SI>E x EO^GS/.a x tf') (^sp. ^ :^(SI>E x U')^^ff(SI>E x U')).

From this we have refining maps:

(c) s: s/a(C" x U')^^r(C" x U') (resp. s': ^*(C" x U')^sf0(C
n x U ' ) ) ,

and we have (6.6)1>2.
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