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Introduction

1. As the title indicates, the main purpose of the present paper is to give
a unification of the following two basic theories for coherent sheaves on
analytic varieties: (1) a type of cohomology theory, in which what we call
polynomial growth (=p.g.) conditions on cochains and coverings are involved
and (2) completion theory along subvarieties of a given analytic variety. Our
theory is given to (algebraic) affine varieties and their analytic analogues (u.l,
§ 1.2), which are more general than the affine varieties. The main body of this
paper is devoted to certair explicit uniform estimations on p.g. and what we call
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algebraic division (=a.d.) properties of coherent sheaves on such varieties

(n.2). Our main application of such uniform estimations is to give:

(1) an analogue of Theorems A, B of H. Cartan in our unified cohomology
theory for the two theories mentioned just above, which we simply call ‘coho-
mology with p.g. in completion theory" (cf. Theorems 2.5, 2.6 and Theorems
1.5, 1.6).

We will apply such a result to generalize, to varicties with singularities, the well
known theorems of A. Grothendieck on algebraic and analytic de Rham theory
(cf. [5]). This paper is originally developed® to provide an analytic base of
the generalization as above, in such a manner that the Stein and algebraic
properties, which may be the most important properties of the varieties as above,
reflect closely in getting the generalization. Our explicit formulations in (1)
and in our uniform estimations are so chosen, to certain degrees, that they are

convenient for the applications to the de Rham theory.

2. Concerning the two quantitative properties mentioned in n.1, the first
one ‘p.g.’ is a synonym for ‘rational’ or ‘meromorphic’, when the degree g of
the cohomology groups is zero (Theorem 1.5), and such a property concerns
most basic properties of algebraic and analytic varieties. When g=1, our
treatments of the p.g. cohomology (=cohomology with p.g.) theory may be a
sharpening of purely algebraic treatments of coherent sheaves (§1). By the
second one, algebraic division (=a.d.) property, we mean such a property
that concerns the degrees of zeros of cochains etc. along (imbedded) subva-
rieties of an analytic variety. As we learn from the classical Hilbert zero point
theorem, such a property concerns basic properties of the imbedded varieties,
and is important for investigations of analytic varieties. Now our studies of
the a.d. properties will be focussed on what we call open map properties (Defi-
nition 2.1) of geometric filtered complexes, such as Cech and de Rham com-
plexes of global nature (§2, §3) as well as certain local complexes formed from
homomorphisms of coherent sheaves (§4), where the filtered structures are
defined by the powers of the ideals of the subvarieties. The open map property
concerns that property of the degree one map in question (§2.1), and implies
standard comparison theorems in completion theories (cf. [13]). In particular,

it insures:

* Cf. [15],.
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(2) exactness of complexes—that of the completion of the complexes.

The open map property for the Cech complexes will insure the analogue of
Theorems A, B mentioned in (1), n.1, while that for the other complexes will
concern interesting a.d. properties of analytic varieties (§3, §4 and §5). Our
main task in the uniform estimations is to combine those on open map properties
with those on the p.g. properties of the above complexes.

Now letting the type of our cohomology theories be as above, we summarize
briefly the content of this paper.

3. Chapter I contains the basic notions and the main results of this paper.
First, in Section 1.1, we summarize basic notions which are used in our p.g.
cohomology theory. In Section 1.2 we give our main results in the p.g. uniform
estimations (Theorems 1.1-1.4), and we derive from them an analogue of
Theorems A, B in our p.g. cohomology theory (Theorem 1.5, Theorem 1.6).
The cohomology theory in Section | concerns the p.g. properties of the com-
plexes but not with the a.d. properties, and Theorem 1.5, Theorem 1.6 may be
regarded as a prototype of the result mentioned in (1), n.l. Our proof of
Theorems 1.1-1.6 will be given by using a p.g. version of standard tools for
treatments of coherent sheaves, syzygies, imbedding of analytic varieties as well
as extensions of cochaiuns, and a p.g. uniform estimation on Cousin integrals (cf.
Lemma 1.2-Lemma 1.4 and Theorem 1.7 in § L.3).

Cohomology theories with p.g. conditions were studied by P. Deligne-
G. Maliotionist [11] and by M. Cornalba-P. A. Griffiths [2] for locally free
sheaves over smooth algebraic varieties, by using the O-estimations. The
situation in our p.g. cohomology theory, where we work with what we call
‘p.g. coherent sheaves (Definition 1.5)’ over the analytic varieties as in n.l, is
more general than theirs. Our method depending on Cousin integrals differ
from theirs. Next, in Section 2, we generalize the p.g. uniform estimations by
combining them with uniform estimations on the a.d. properties of the complexes
in question. The main results in this generalization, which we call d.p. (=a.d.
+ p.g.) uniform estimation, as well as in the uniform estimation of this paper
are given in Theorems 2.1-2.4. Such results insure the open map properties of
the complexes, and our analogue of Theorems A, B in the p.g. cohomology in
the completions (cf. (1), n.1) is a formal consequence of them.

4. In the first part of Chapter II, we summarize our non cohomological
uniform cstimations on homomorphisms of coherent sheaves (cf. §4.1). We
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then give a cohomological version of those estimations, and we derive, from
such cohomological results, all the lemmas in Chapters I, IT which concern the
uniform estimations cn the sheaf homomorphisms (§4.2). The uniform esti-
mations in Section 4.1 contain results on the open map property of certain
Koszul complexes, which provide a cohomological generalization of Hilbert
zero point theorem and are a non cohomological version cf the main lemma,
Lemma 2.5, in the d.p. uniform estimations in Section 2 (c{. Lemma 4.2-Lemma
4.4). Such a fact, together with an open map property of the de Rham complex
(Lemma 4.7), is our main result on the open map property of the sheal homo-
morphisms, and may be worthwhile pointing out in connection with our treat-

ments of completion theories.

5. Finally, in Chapter III, we prove the key theorem, Theorem 1.7, for
the geometric arguments in Section 1, Section 2 (as was indicated in Section 3),
which concerns a p.g. uniform estimation of the structure sheaves of the complex
euclidean spaces. We prove Theorem 1.7, by reducing it to rather elementary
p.g. estimations on Cousin integrals (on the euclidean line). Our reduction
depends on certain filtrations defined for the sets of the cochains (in question)
and some algebraic machinaries for the filtrations, which imply a strong sharpen-
ing of the standard degerency theorem in the spectral sequence theory. The
algebraic arguments and the p.g. estimations on Cousin integrals in Chapter II1
may owe their own interests, aparting from the applications to Chapters I, II.
(For the content of Chapter IIT indicated soon above, see the beginning of
Chapter I11I. We add a brief outline of Chapters I-III in the beginning of each
chapter. Such an introduction may be useful for understanding of the content
of each chapter and of the whole line taken in this paper.)

6. In giving the application of the cohomology theories in Section I, Sec-
tion 2 to the analytic de Rham theory (§ 3), we should quote our results on the
C*-de Rham theory for certain stratified spaces, whose outline was given in
[15],_4 and in [17]. The details of [15],_, and [17] will be published else-
where in a near future. Except the part of the application to the de Rham

theory in Section 3, this paper is completely self contained.

7. The author began the study of the contents of this paper and of the
analytic de Rham theory in 1971, and the very early versions of the content of
this paper were given in [15], and [16]. Considerable parts of the explicit
computations in the uniform estimation of the present paper depend on [16].
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However, the present paper is written entirely newly from [16]. Finally, the
contents of the present paper seem to deserve to be generalized in more general
situations: our p.g. cohomology theory is given in a more or less categorical
Sform. Generalizations of the conteut of Section | seems to be very desirable in
that line (cf. n.6, §1.2). Assuming the p.g. cohomology theory in Section 1,
the most important facts in giving the d.p. cohomology theory are the open map
properties of the geometric complexes mentioned hitherto. From the scope
of the arguments in Section 2, the validity of the open map property as well as
the clarifications of their geometric meanings seems to be desirable for more
general classes of geometric complexes. Finally, our explicit p.g. uniform
estimations and the algebraic machinaries in Chapter III seem to deserve to be
tried their applicabilities for more general types of ‘cohomology with growth
conditions’. The author hopes that he will try possible generalizations about
what are mentioned above. We also hope that the contents of the present paper
provide a basis for possible generalizations.

Chapter I. Cohomology with Polynomial Growth and Completion Theory

Here, for convenience of reading of Chapter I, we illustrate the basic notions
and the styles of the formulations in our p.g. uniform estimations. For this we
first let €" be a complex euclidean space and - coordinates of it. We set
g: =|z|+ 1, O: =structure sheaf of C”, and, for an element a=(a,, «,) e R*2,
we define:

O, {00 0@ O ol <ag (P n €
! HO(C", D5 9)p. g =\ yer+2HC", D g),.

We then recall that a classical consequence of Cauchy iutegral formula implies:
0); HO(C", O; g), = {polynomials in =}.
Next letting X be a complex space, we may say that

{Coh (X))

(0), Cov (X)) : =collection of all

coherent sheaves over X |
{open coverings of X J

and the cochain map
(0)5 C?: Coh (X)xCov (X)2(§, o) —> CUH, §)

constitute the underlying data for the cohomology theories of coherent sheaves
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over X. Now our first task in Section 1 is to give p.g. versions of (0),, (0);, which
yield a generalization of the sets in (0);, with respect to the underlying varieties,
coherent sheaves and cohomology degrees. Our main results in Section 1 for
the case of the degree=0 are a generalization of (0);, while those for degree =1
insures the vanishing property of the cohomology groups®: in Section 1.1 we
introduce some abstract notions, p.g. filtration, g-structure** of abelian
sheaves and p.g. functions; we see that such notions suffice to generalize the
sets as in (0); to general abelian sheaves (Definition 1.45) and to give a p.g.
version of Coh (X), denoted by Coh(X),,, to reduced complex spaces. Also,
using the p.g. and a ‘distance function’ of a topological space X, we define for
each subset Y of X what we call ‘p.g. covering of Y in X’, in a concrete p.g.
fashion (Definition 1.7).

In the first part of Section 1.2, we attach, to our analytic varieties in the
main body of Chapter I (cf. n.1, §1.2), a p.g. version of Cov(X), denoted by
Cov(X), . by using the arguments in Section 1.1. Next take a p.g. sheaf
e Coh(X),,. Then, using a p.g. version of the cochain map as in (0);, we
attach to $ what we call ‘p.g. cochain collection’, C*(X, 9), . in symbol. Such
a p.g. collection contains all necessary sets of p.g. cochains in our p.g. uniform
estimations, and may be the most basic underlying data for our p.g. cohomology
theory. We note that the above p.g. collections, Cov(X),, and C*(X, 9),.
are parametrized in a certain concrete fashion, where the main part of the
parameter space is a product R** (s>0); we define what we call p.g. estimation
maps, which are a concrete transformation of R** (s>0). The main results in
Section 1, Theorems 1.1-1.6, are given to the p.g. cochain collections. We use
the p.g. estimation maps for the explicit estimations in those results.

In Section 2 we generalize the p.g. cohomology theory in Section 1 to what
we called the d.p. cohomology theory (cf. Introduction). We give a generali-
zation of the p.g. cochain collection, which we call d.p. cochain collection (§ 2.2).
The main uniform estimations, Theorems 2.1-2.4, of Section 2 as well as of this
paper are formulated in terms of the latter cochain collections (§2.2). The
content of Section 2 is more general than the one of Section 1, by the introduction
of the new factor of what we called the a.d. estimations (cf. Introduction).
However, the algebraic style of the formulations in Section 2 will be given

*) Cf. Theorem 1.5 and Theorem 1.6. Also see Introduction.
**) This is an obvious abstraction of the ‘absolute value’ as in (0), to general abelian sheaves
(cf. Definition 1.4,).
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parallelly to the one in Section 1.

Terminologies and Notations

Here we summarize some terminologies and notations, which are used
throughout the present paper.

1. First letting X be a topological space, we set

Ouv (X)
(D [ Ab (X)

Covg (X): =20uvX),

fx
}: =collection of all {open. sets 0 }
abelian sheaves over X

For an element & ={4,} € Cov,(X) we set |«/|=nNn,A4,. We use the symbol
A 99 (g=1) for the g-nerve of .«o7:

(1)2 mq'ﬂ={du=(A1<<Aq)c&f:|“dul¢¢}'

2. For a positive number a, we set:
(2), Ri:={reR*;r=a}.

We use the set R frequently in the uniform estimations in this paper. Also we
use the symbol R*, as usual, for the set {reR; r>0]. Moreover, for a subset
T of R, we use the set:

(2), Tr:={teT;t=a}.

We use such a set for the case T'=2Z =set of all integers (cf. Chapter II). Next,
for an element 6 =(0, 0,) € R}2, we define:

(23 R;?: ={(r;, r)eR*xR*;r; 20, (i=1, 2)}.

When o=(1, 1), we use the symbol R}? also for R}2. (This symbol is con-
cordant to Rj2=R7} xR} (cf. (2);)). Thirdly, for elements a=(x;, a,) € R*2
and a e R*, we set:

2), oa: =oa%2.

Moreover, for elements o=(0,, 0,), ¢’ =(01, 03) e R*2, we write 6 2¢’, if 6, 20
and 0,=05. When g,>0] or 6,>0}, we write 6>a'.
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§1. Cohomology with Polynomial Growth

§1.1. Polynomial Growth Conditions

1. Cochain collection. First letting X be a topological space and (%7, )
an element of Covy(X) x Ab(X), we make

Definition 1.1. By g-th cochain (resp. cocycle) collection for (o, §), we
mean the collection of all subsets of C%(f, §) (resp. Z%«7, §)). We use the
symbols C!(«7, §), £, §) for such collections.

Here we check

Proposition 1.1. The following two facts are equivalent:

(1.1)y ZY (o, F)=oCT (AL, F) -
(1.1), For each 2 € ZU oA, §), there is an element 9' € C~ (o, §) so that
(1.1)5 9<é2’.

Proof. Taking 2 to be Z%A4, §)eZ%, §), (1.1); insures (1.1),. Con-
versely setting 2'=C? (o, §) e CT (o, &), we have (1.1), from (1.1);.

In our later arguments, we do not work with the ‘whole spaces’ Ci(«, &),...
but with what we call p.g. subgroups, C¥(, &), in symbol,... of CU(, §),...,
which are characterized by concrete p.g. conditions (cf. §1.2. See also n.2 soon
below). We will derive corresponding facts to (1.1); (‘vanishing property’ in
p.g. cohomology theory) from correspondences of (1.1),. In the later argu-
ments, the former is also a formal consequence of the latter, but the converse is
not true. Our main subject in Section | will be to get similar inclusions to
(1.1), in our p.g. cohomology, by making explicit similar correspondences to
the one: -2’ in (1.1),. Our main results in such a direction are given
in Theorems 1.1-1.6 in Section 1.2. The remainder of Section 1.1 will be
devoted to define what we call p.g. cochain collection, which is a family of
elements of €%« &) (characterized by concrete p.g. conditions), by making
clear basic notions in the definition of such collections. The arguments will be

given in a somewhat abstract fashion.

2. P.g. filtration. We begin n.2 by making a definition, which will play
a basic role to define the collection mentioned at the end of n.1.
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Definition 1.2,. (1) By b-(resp. p.g.-)® filtration for an abelian group
%, we mean a map 0: R*—2¥ (resp. ¥: Rt2—29) satis[ying:

(1.2), 0(a)>0 for each ae R* (resp. ¥(x)20 for each xeR*?).
(1.2), 6(a’)>6(a) if a’=za (resp. P()o> P(x) if o/ =0a).
(1.2); (Archimedian property) For any a, a’ € Rt (resp. o, o’ e R*2), there is
an element a” e R* (vesp. o” € BR*?) so that
(L.2); a")y>{(bxb': (b, b')eda)xOa")} (vesp. F(o«")> (b1 b,
(b, b"Ye P(x) x P(&')} .

(2) We call Ugg+0(a), \Uygr+: P() respectively 0-bdd™® and ¥-p.g.
subgroups of 4. (When no confusions occur, we drop the terms ‘bdd’ and
‘p.g.” from the terminology just above.)

Definition 1.2,. We say that b-filtrations 0, 0,: R*—2% are equivalent,
if 0,(R*) (i=1, 2) are cofinal with respect to the increasing inclusion as in (1.2),.

Definitiom 1.2;. Letting £’ be a subgrcup of & (resp. w: #— %" a homo-
morphism of abelian group), we call the b-filtration 0': R*34—27"560(¢) N B’
(resp. w.9: B3 a—29" 3 w0(a)) the one induced from B to B’ (resp. to B” by
w). Moreover, letting §, (" be b-filtrations of 2, #” we say thai 0, 0" are com-
patible with w, if, for cach be R*t, we have:

(1.2), wl(b)=6"(b"), with a suitable b’ e R*.

The ‘induced filtrutions’, “equivalence’ and ‘compatibility’ as above are
defined for p.g. filtrations in the similar maunner to Definition: {.2,. Now taking
% to be CUsZ, §) in n.1, let ¥ be the p.g. filiration in Definition 1.2,.

Definition 1.3. By g-th ¥-p.g. cochain and cocycle collections for (7, &),
we niean
CUt, §: W)yt = P(RY)(S207D),

.3 5
(1-3); ZU(st, §; W)y = PRI (250,

where ¥ is the induced filtration of ¥ to Z%(«/, §) (Definition 1.2;). Also we
set

(L.3)] CUs, §; ¥),q: =V-p.g. subgroup of C4(< F) (Definition 1.2,).
(1.3)7 ZUst, §; Vg =CUA, &5 V)p e N2, ).

Moreover, when o7 consists of the single element X (i.e. & ={X}), we set

*) ‘p’=initial of ‘bounded’ and ‘bdd’=abbreviation of ‘bounded’.
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(1.3)7 (X, §; Yoyt =Z%A, &; Ve -

Now we will construct p.g. filtration in a geometric manner. For this we
first make a definition, which is a slice abstraction of ‘absolute value’ for analytic
functions etc. in the standard meaning.

Definition 1.4,. (1) By g-structure of FeAb(X), we mean a family
0={0,; UeOuv(X)} of b-filtrations 6,: R*—2%, #=I'(U, §), satisfying:

(1.3), pBy(a)>0y(a)forany U'> U and a € R*, where p=restriction: I'(U’; &)
-I(U, §.

(1.3); The stalk 0, of 0 at Pe X (i.e. 0p: R* 2 a—0p(a): = lim 0y(a)) satisfies

(1.3); 0p is a b-filtration for &p, and Fp="\U r+ 0p(a). o

(2) For an element ppe Fp we call inf(aeR*; 0p(a)3 ¢p) (e R U 0) the
O-absolute value of @p.

We call the pair (&, 6) simply g-sheaf. When there is no fear of confusions,
we write the symbol ‘(§, 8)’ also as ‘§’. Letting (X, Oy) be a reduced complex
space, we define a g-structure 6y ={0y; U € Ouv (X)} by

(1.3)e  0y: R*32a-T(U, Ox),: ={pel(U, Oy); |p(P)|<a on U},
where | | denotes the absolute value (in the standard sense).

Definition 1.4,. We call 6, the standard q-structure of Oy. One check
easily that the absolute value defined by the standard g-structure coincides with
that in (1.3),. For O% we define the standard g-structure by 6% ={6}},, where
0% assigns to each aeR" the k-times direct sum of the subset in (1.3), (of
I'(U, Ox)). We define g-structures for general coherent sheaves in n.3. Now
returning to the pair (&7, &) in Definition 1.4,, take a subsheaf § of & and a

homomorphism w: F—>§".

Definition 1.4;. By g-structure for §', §" induced from %, (&, w), we

mean

0": ={0y: R* 2 a—~0y(a): =0y(a) N (U, )}y,

1.3
(1.3)s w40 ={w*0y; R*3a-wly(a)}ly,
where 0 is the g-structure of § as in Definition 1.4,.

Next the following simple definition plays basic roles not only in our geo-
metric construction of p.g. filtrations but also in many aspects of later arguments:

Definition 1.4,. By a defining function of p.g. structure of X (or, simply, a
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p-g. function), we simply mean a map g: X—>R;. We call (X, g) simply a
p.g. pair.

Now, using the p.g. pair (X, g) and the g-sheaf (&, 0) as in Definition 1.4,
we define p.g. filtration for (=, &) in the following fashion.

Definition 1.45. (1) We say that an element ¢@eC%<, &) is (g, 0)-o-
growth (o€ R*2), if for each o' € #7117, we have

(1.3)s @ (Q)lg<ax-g(Q) on |&’|, where | |,==0-absolute value (Definition
1.4,).

(2) By (g, 0)-p.g. filtration for Cs, §), we mean

(1.3); ¥, R*250—the subset of C(«, §) consisting of all (g, 6)-a-growth
cochains.

The following notation will be used in the later arguments (cf. n.3, § 1.1 and
§1.2):

CiUst, F; Py0)a: =¥ge(®)

1.3) {
(1-3)s CU, F: ¥y0)pe: =Sy Pye(e), where o runs through R*2.

Letting the subsheaf & of & and the homomorphism w: F—>§F" be as in
Definition 1.4,, we use the symbels 0, w,0 for the g-structures for &', &,
which are induced from 6 to § (resp. 6 to §” by w). Then we easily have

Proposition 1.2. V¥ o =(¥,,) and ¥, g=w.¥,, where the right sides
are induced from ¥, , to CU (o, §') and to CU s, §F") by w,.

In n.3 soon below we define a p.g. filtration for certain coherent sheaves in
a more explicit manner.

3. P.g. coherent sheaf. Letting (X, Ox) be a reduced complex space, take
a p.g. function g of X (Definition 1.4,). We begin n.3 by giving a p.g. condi-
tion on coherent sheaves over X, which is used in the remainder of this paper.

Definition 1.5. By a (g)-p.g. resolution of an Oyx-coherent sheaf &, we
mean a pair 4 =(w, {K;}?z}) consisting of an Oy-homomorphism o and
matrices K; (1£j<p—1) with entries in I'(X, Ox; ¥, o,)pe The pair H
must satisfy a resolution as follows:

(1.4)1 0——>D§(p LS 1 N ~K—1>D§‘—-"i->ﬁ———>0

For later convenience we call O% in (1.4), the ‘first resolution part’ of K.
1
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Convention 1.1. (1) By a p.g. coherent sheaf over X, we mean a pair
H=(8K, ) as above; starting with the sheaf !, our explicit uniform estimations
depend not only on & but also on a resolution like (1.4),. The terminology
‘p.g. sheaf’ as above is convenient for later purposes.

(2) When there is no fear of confusions we use the symbol ‘$’ for also
‘K.

We arrange here some data which are useful in later arguments: first, writing
(X, g) as X, we set

(1.4), Coh (X)), ,: =collection of all p.g. coherent sheaves over X .
We define a map (length map)

(1.4); Ig: Coh (X), .2 H—Z* 3 p, (=length of the resolution of )
(cf. (1.4),), and we also define an increasing filtration of Coh (X)), ,:
(1.4)4 Coh?(X), : ={9 e Coh (X),,; po=p}.

Our coherent sheaves in later arguments are in Coh (X),,. Next letting the
p-g. sheaf § be as in (1.4),, we mean by standard g-structure of § the one in-
duced from w: D% —§ (cf. Definition 1.4, and (1.4);). This g-structure 0y is
determined by w, while that of O*t is uniquely determined by the analytic
structure of X (cf. n.2); we may say that 0y is determined ‘uniquely’ by the
analytic structure of (§, X). Now letting ¥, ° denote the (g, 0y)-p.g. filtration
for Ci«7, H) (cf. Definition 1.45), we get 'Pg’%-p.g. cochain collection etc.,
which are obtained by applying Definition 1.3 to ‘I’y,a@. For later notational
convenience we arrange here some notation for such collections. (The key
point in the arrangement is: (1) to drop the term 0y from Y/g’%,... and (2) to
write ¥, 1 =¥, , simply as 'g’, when no notational ambiguities take place.)

)

Thus we have:
CU <, D; g) cochain

1.4 { ”}::w-..{

(14 ZUA, D5 9)p.g 97 P8 Yeoacycle

(1.4, CUHA, 9;9)p.q: =¥,—Dp.g. subgroup of C(, H) .
CUA, D; 9)e

1.4 { }

(19 1240, $: g),

} collection for (7 $) .

setof (g, 0) — o —growth cochains with value in $

‘ {cqw, 9:9).N Z%4, 9). }

(For the above sets, collections and subgroup, see (1.3); and (1.3);.) Also we
will abbreviate ‘¥ -p.g.” and (g, 05)-" in the above terminclogies simply as
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3

g’. Thedata as in (1.4)_g will be frequently used in the remainder of Section 1
(cf. §1.2, §1.3). Using the above notation we have the following easily from

Proposition 1.2.
Propesition 1.3. C%(«, H: g),=wCi o, O; g), (cf. Definition 1.4;).

(The similar relation to the above holds for CU(4, 9; g),, and Z%(4, H;
9)pe)  We finish n.3 by the following remark for convenience of later arguments
(cf. §1.3).

Remark 1.1. (1) For D% (k>0) one can attach the p.g. coherent sheaf in
the following manner: 0—O4 —» D0, with the identity i. This trivial
realization of D% as the p.g. coherent sheaf is useful in later arguments. Unless
we say otherwise, we mearn by the ‘p.g. coherent sheaf Oy’ the above (trivial) one.

(2) Next we define a subcollection of Coh (X),,:

(1.4)4 Coh' (X), .. ={9HeCoh (X),,,

where the first resolution w: D%—%H (cf. Definition 1.5) is defined by a matrix
K (i.e. w=K), with entries in I'(X, Oy; g),,}. Note that $ is a subsheafl of
0%, with k"=length of columns of K, and we have a p.g. filtration for $ by
means of the inclusion: $&O% (Definition 1.4, and Proposition 1.3).  Writing
this filtration as ¥, the set of ¥ -z-growth ccechains with value in $ (cf. (1.4)g)
is explicitly as follows:

(1.4)10 CUst, D5 Vp)u=CUt, Dk 9). N CHL, H) (cf. (1.4)5).
In Section 1.3 we give a comparison of ¥} and the standard p.g. filtration ¥,

which is a key fact in our p.g. uniform estimations (Lemma 1.2).

4. P.g. covering. Here we assume that the p.g. pair (X, g) is as in n.2,
and we fix a map d: X x X—-[0, o), to which we impose the single condition:
d=0 on the diagonal 4, of X. We define a type of p.g. covering, which is used
in the main bedy of this paper. For this letting P be a point of X we use the
symbol U (P): ={Qe X; d(P, Q)<r}. Then taking a subset ¥ of X and an
element g € RF* we make

Definition 1.6,. By g-p.g. covering of Y of size o in X, we mean the fol-
lowing collection of elements of 2%

(1.5) (Y5 9): ={UP; g); PeY},
where U, (P; g): =U/P), with r={ag(P)}"!. Next take subsets X', Y' of X
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satisfying Y'< Y n X’ and an element ¢’ € R}? satisfying ¢’ = 0.
Definition 1.6,. We call the map
(1.5), s: B,(Y'5 9)2 Uy(P; g) — #,(Y; 9)2 U (P; )

p.g. refining map (from the left side to right side). Here the left side denotes
the g-p.g. covering of Y’ of size ¢ in X’, and U,(P; ¢): =U(P;g)n X'. Fixing
Y (resp. X', Y'), the p.g. covering in (1.5), (resp. the p.g. map in (1.5),) is de-
termined uniquely by o (resp. o, ¢'). This fact will be useful to fix our ideas
and to simplify arguments in later explicit uniform estimations (cf. §1.3 and
§4). Also such coverings and maps are suitable for our geometric applications
of the uniform estimations to geometric situations (cf. §1.2, §2.2 and §3).
The coverings and the refining maps in the main body of this paper will be the
ones in (1.5); ,.

Now, by Definitions 1.6, , we have introduced all necessary basic notions
to define what we call ‘p.g. cohomology theory for analytic varieties’; the first
basic datum is the p.g. function g: X >R} which is used to measure the p.g.
properties of cochains and coverings. The g-structure for abelian sheaves is
used to define the p.g. condition on cochains (cf. Definition 1.4,). Finally
‘distance function d’ is used to define the p.g. condition of the coverings. As
was checked in n.3, the g-structure for coherent sheaves may be regard as de-
termined by the underlying analytic structure of the varieties; we may regard the
p.g. function g and the ‘distance function’ d are most basic ‘additional data’ to
the analytic varieties, which are used to define what we call p.g. cohomology for
those varieties. In order to emphasize this, we will sometimes call (X, g) and

(X, g, d) as just above ‘p.g. pair’ and ‘p.g. triple’.

5. Finally we arrange here certain concrete maps, which are used in later
explicit estimations: first, by a positive monomial, we mean M(t)=at® (a, b>0),
where t is a variable. We call a map #: R*?23 (0,4, 0,)>R*"25(6,, 6,) to be of
‘exponential linear type’ (or, simply, ‘el-map”), if 6,=M(o,)exp M'(c,),
G,=L(0,), with a positive monomial M, a finite sum M’ of positive monomials
and a linear function L(f)=ct; ¢>0. It is easily checked that a composition of
el-maps is also an el-map. Next making a notational convention:

(1.6) a- (o, ay)=(aay, o,) for any a,o; and a,eR*,

we set
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(1.6)] E, :={E:R*xR*?>5(r, 0) — R*xR?>5(r', 0')},
where ' =M,(r), 6’ =M,(r1)-%,(0),

(1.6), E,,:={E: R"XxR*)xR"3(r, 0:0)—
(R* xR xR*23(+',0';a')},
where (', a’')=E'(r, 0), with an element
E'ceE,, and o =M,01)-Ly(a+o). (R"xR?)xR*? — (R*xR*?)
(Here M;, #; are positive monomials and la |£'

el-maps.) We write the correspondence:  (R+ x R+2) x R*2 — (R* ;R“)
E,.,2E—-E,, > E asn, where E, E are as Figure 1.
in (1.6), (cf. Figure I).

Definition 1.7. We call an element E€E,, an estimation map for p.g.
cohomology (or, simply, p.g.c. map) and E'=n(E)e E , its first part.

In the later estimations, the map E’ concerns those on coverings, while the
map E concerns those on both coverings and cochains (§ 1.2): letting the element
(r; ;o) be as in (1.6),, the estimation: (r; 6)—(r'; ¢')=E’'(r; ¢) concerns that
of coverings, while the element o concerns that of cochains. Note that the
factorization in Figure I insures that the term ‘a’ has no influences on the cor-
respondence: (r; o)—(r'; ¢’). We use this fact in Section 1.2. Next take
p.g.c. maps E;, E;eE,,. Then the composition E,°E; is not, in general, in
E,, However, define an order in R* x R*2 x R*2 by

(1.6)5 (r;o;0)>( 00V r<r',o>¢" and oa>a'.

Then the set E,, is closed under the composition in the sense that there is a
p.g.c. map E; e K, satisfying

(1.6)3 E;(r; ;@)= E,0E (r; 0; o) for each (r; 0; a)e (0, []xRZx RF2.

We use this fact in later p.g. estimations frequently, without mentioning it ex-
plicitly (cf. § 1.3). Also we use the symbol: E; > E,oE, to indicate the inequality
in (1.6);.

Finally, the p.g.c. maps as above will be used in our main results in the
p.g. uniform estimations (cf. Theorem 1.1 and Theorem 1.2). Our explicit form
of the p.g.c. maps are chosen in such a manner that (1) the p.g. estimations ob-
tained by such maps insure our p.g. analogues of Theorems A, B of H. Cartan
and (2) the p.g.c. maps are concordant to more elementary p.g. estimations on
sheaf homomorphisms and on Cousin integrals (cf. §4 and §6). Fixing the
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explicit forms of the p.g.c. maps as above, considerable parts of the arguments
will be reduced to those of p.g.c. maps, which are essentially algebraic and
elementary (cf. § 1.3. Also see, in particular, §4.2.).

§1.2. Main Results

Here we summarize our main resuits on the p.g. cohomology theory in
Section 1: in n.1-n.4 we introduce some basic data, which will underlic the
arguments in the cohomology theory in the remainder of Chapter I. Using such
data, we give our main results on the uniform estimations in the p.g. cohomology
in Theorems 1.1-1.4 {(cf. n.4, n.5). Also dropping the explicit estimations in
these results, we give analogues of Theorems A, B of H. Cartan in our coho-
mology theory in Section 1 (cf. Theorems 1.5, 1.6 in n.6).

I. Geometric data. As was mentioned, our analytic varieties in Chapter I
will be Stein varieties with suitable algebraicity (and will have similarities to
affine varieties). Here we introduce such varieties.

(i) First, by a coordinated complex euclidean space, we mean a pair
(C*, z) of a complex euclidean space C" and its coordinates z. When there is
no fear of confusions, we use the terminology ‘complex euclidean space C"(z)’
(or, simply, ‘euclidean space C*(z)’) as a synonym for ‘coordinated euclidean
space (C", z)'. We then introduce a geometric datum:

.7 X: =(C"(z2) x €' (z"), X=C"(2) x U}, Py),

where C*(z), C*'(z") are euclidean spaces and Ug(3 Pg) is an open set of C",
and we set

(1.7)¢ Ang: =collection of all geometric data as in (1.7)g.

The underlying variety of X will be X=C"xU),. We regard C"xC"" as the
ambient space of X =C"x Uy and the point P, as the center of X. As we
will see in later arguments, the uniform estimations, which are given to varieties
in Amg, are most basic among the ones in Section 1.2. (In Section 1.2 we in-
troduce two another types of varieties (cf. (1.8}, and (1.11),). The p.g. esti-
mations for such varieties will be derived from the ones for varieties in Ang, by
using explicit relations of the former varieties to the latter; see Corollary 1.4
and Lemma 1.3 in Section 1.3.)

(ii) Next, by a (smooth) local analytic varicty of affine type, we meau a
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geometric datum
(1.8) X=(C"(z2), Uy, Xo, h, Py, %),

where X (3 P,) is an analytic variety in an open set Uy of €", and h is an ele-
ment of I'(U,, Oy,), Oy, being the structure sheaf of U,. Moreover, setting

(1.8)§ Dy =divisor of h (in Uy), D=X,nNDy and X=X,—-D,

the final datum $Hy in (1.8)§ is a |h™!]-p.g. resolution of Oy over Uy— Dy (cf.
(1.4))), where Oy is the structure sheaf of X and the first term of Hy is of the
form: Oy, _p,—2> Oy (cf. (1.4),), with the natural hormomorphism w. (Here

Dyy-p, 18 the structure sheaf of Uy—Dy.) The datum X must satisfy

(1.8); D3P, and X is smooth,

(1.8), the germs of X,, D at P, have no common irreducible components.
We set

(1.8) An,,: =collection of all smooth analytic varieties of affinc type
(cf. (1.8)g).

The underlying variety of X will be X=X,—D. We regard U, — D, as the
ambient space of X and the point Py e X, as the center of X,,.... The p.g.
uniform estimation for X € An,, will play basic roles in semi-global estimations
in later arguments (cf. §2). (Note that we includc the p.g. resolution $Hx of the
structure sheaf Oy in (1.8),. The resolution Hy is used to give an explicit uni-
form estimations for the sheaf Dy; see §1.3.)

In the remainder of Section 1.2 we will fix geometric data X e An, and
X eAn,, of the form in (1.7); and (1.8)g. In (iii) soon below we fix some
additional data and notations for such varieties.

(iti)  First, to X, X, we attach the following p.g. and distance functions:

~ >3 1 ~
(1.9)0 {ZX}: ={ EZH_ }, {dx | —natural distance® of{
X i

CH(z) % C“'(z’)}
h~t dy ) ’

Cr(z)

where Z=(z, z’). When there is no fear of confusions, we write dg, dyx also as
ds, d.. In our framework, p.g. and distance functions have basic meanings to
define what we call p.g. cohomology theory for analytic varieties (c[. n.4, §1.1).
The p.g. and distance functions for X, X as above may reflect closely the analytic
structures of X, X and may be natural ones for studies of p.g. properties of co-

*) Natural distance of €7(z) is dcfined to be . :==1z =’| for =, =’ C".
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herent sheaves over X, X. Our p.g. and distance functions for X e An,,
X e An,, in the remainder of Chapter I will be the ones in (1.9), (cf. also n.4,
§1.1).

Next, gx, dx as above are determined by X. We will use the symbol X
also for the p.g. pair and triple: (X, gx) and (X, gx., dx) (cf. n.4, §1.1). Also
when there is no fear of confusion, we use X for its underlying variety X. For
the variety X € Any we use the similar notational convenience to the above.

2. P.g. parametrization. Letting the analytic varieties X € An, and
X € Any, be as hitherto, we attach to them what we call ‘p.g. cochain collections’.
Such collections will contain all necessary sets of cochains in our p.g. uniform
estimations. The arguments will be given paralielly to X, X. For this we set

(1.9  (X*, x* P¥):=(X, X, P}) or (X, X, Py) (cf. (1.7)5, (1.8)5),

and Dy x.: =U, or D. We construct the p.g. collection in the following three
steps.
First we define a parametrization of open submanifolds of X* by

S ey P X(P):=Crx U(P)
(1.9)1 Uxgs i YVxx i = DO’X*XR av—{(P : ,)} {X’_(P) - Ur(P) nX },

where U, (P’), U(P) are the discs in C*', C" of center P’, P and radius r, and we
set

(1.9); Ouv' (X*), ;1 = vx¥xs).-

(The manifolds in Ouv’(X*), . do not share particular p.g. properties. But the
use of the suffix ‘p.g.” will be concordant to the arguments henceforth.)
Next forming a parameter space gx.: =¥x. X R}2, we define the following

parametrization of eiements of Cov, (X*):

(1.9)2 Uge: px-=Vx. X Ri23 = (v; 0) — o, (XF(P¥)),

where Xf(P*):X,.(P’) or X,(P) is as in (1.9),, and

(1.9)5 AL (X*(P*)): =gx.-p.g. covering of X}(P*) of size o in X* (cf. (1.6),).
We then set

(1.9), Covo (X¥), 0 = txe(f2x2) -

Thirdly taking an element $ e Coh(X*),, (Definition 1.5), we define a
parametrization of sets of p.g. cochains with values in $ by
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(1.9)3 C4: Axs: =pxr x R}23A=(pt; 0) —> CUL(XF(P*), H),): =set of all
a-growth cochains with value in § (cf. (1.4)g),

and we set
(1.9)3 CU(X*, D), =C% (%) .

We define a parametrization Z§ by changing *C%’ to ‘Z%".

P.g. parametrization table

q

Ape = e X R{230= (s @) <2, CIUX*, §), .3 CUA,(XE(PH)), H),,
pX*=pX* XRTZB :L[:(“; O') K) C:OVO (X*)p.ge‘ﬂo(x;k(P*))a ’
Yy =D x-x R 3 =(P*; r) 2 Ouv’ (X*), ;3 X*(P¥) .

The manifolds, their coverings and the sets of the cochains in our p.g.
uniform estimations for X* will be taken from Ouv'(X*), ., Covy(X¥),, and
CUX*,9),, The last collection contains all necessary data in our p.g. uniform
estimations. In order to emphasize the role of such a collection in our uniform
estimation, we make

Definition 1.8. We call C/(X*, ), , q-th p.g. cochain collection for $.

3. Estimation data. In the uniform estimations in n.4, we use the p.g.c.
estimation map Ee€ E, ; and its first part
E' e E, , (Definition 1.7). Next note (R* xR xR*?) — (R*x RY)
E lE’
work for all elements of Ay« (cf. (1.9);) (R* xR*E x R*2) — (R* x R*?)
but for elements of a suitable subset Figure L.

that our uniform estimation does not

of Ax.. More precisely, take subsets

Ui (2 Pp) of Ug and U,(3 Py) of Uy (cf. (1.7)g, (1.8)), and we set D, x.=U] or
(DnU,) (=Dyxs). Also taking elements 7 =7x.€ R* and 6 =Gx. € K}?2, we set™
(1.9)s  wxe: =D x:%x(0, F), pex:: =wy x RE? and Ax.= pgx. X RF2.

We fix this restricted parameter space in the remainder of Section I. Our
p.g. uniform estimations for X* in Section 1 will work for all elements of A%..

4. Main results. Now, using the sets of the coverings and the cochains in
(1.9),_5 and the estimation maps as in n.3, we will give our main results on the

* R’ ={reR*?; =5} (cf. the end of Introduction of Chaptcr I).
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p.g. uniform estimations for }K*=f{eAno or XeAn,, First we will be con-

cerned with Cech coboundary operator.
Theorem 1.1 (P.g. uniform estimation for Cech operator 6 =0x.). There is
a map*® g;: Coh (X*), .3 H—E, .3 E; (qg>0), with which we have:
(1.10), s*ZU (L, (XF(PF)), ), =0CT (L, (XFE(PF)), D)ars
with (#'; 0" ;&) =Ey(r:0; a).
Here the parameter (P*; r; 05 %) is in Ay (=D x. x R* xRf2x R}{?). More-
over, s=p.g. refining map*® : of (X% (P*)) G oA (XF(PF)) (cf. Definition 1.6,).
Next we will be concerned with the resolution of $ e Coh (X*),, (cf. also
(1.4),).
Theorem 1.2 (P.g. uniformn estimation for resolution). There is a map
ex.: Coh(X*), .3 9—E, 5 E, (¢=0), with which we have
(1.10), s*ZU AL (XF(P¥)), £),< 0y ZU o, (XE(PF)), Ok
with (r'; 0’ ;0)=Eg(r;o;a),
where the parameter (P*; r; o; a) is as in Theorem 1.1.  Moreover, wg: D%
—$ is the first resolution part of 9 (Definition 1.5).
For the proof of Theorem 1.1, Theorem 1.2, see Section 1.3. Also we give

applications of Theorem 1.1, Theorem 1.2 in n.6, Section 1.2 and in Section 3.

Here we add the following

Corollary 1.1. There is a map ¢5: Z*—E, ,,
Coh (X*), ., E, ,

‘lg J!’n
Z+ % g
p-g

which satisfies the factorization in Figure II. (In
Figure Il ‘lg’ denotes the length map (cf. (1.4),),

and the projection w is as in Figure I, n.6, §1.1).
Figure II.
The similar factorization to Figure II holds also

for the map ex. in Theorem 1.2. (Corollary 1.1 is not a consequence of
Theorem 1.1. But the proof of the latter will also insure the former; see §1.3.)
Now in accordance to the parametrization table in n.2, we rewrite Theorem

1.1 in the following diagram:

*) Strictly, the map ¢, in Theorem 1.1 depends also on g=cohomology degree. But the
influence of g on the estimation is small; we do not mention the cohomology degree in
question in Theorem 1.1 and in the other estimations in Section 1.

*#) For the p.g. refining map s, see n.4, Section 1.1. We use the symbol s for the p.g. re-
fining map in qucstion, without mentioning it in the later arguments.
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7
Axed A ZUX*, 9)p.¢2 Z4(2)
Es s*
c;g" i s
Ax 3 Eg(4) CIHX*, D)y — 0CTHEL(D) 252 §(4)
Uy
”X* C‘OVO (X*)p.g ¥
NE
Uy
Hxr — COVO(X=::)p.g

Figure III. P.g. uniform estimation for Cech operator.

(The similar diagram also holds for Theorem 1.2.) Next we assume that the
variety X* in Theorem 1.1, Theorem 1.2 is in An,,: X*=X e An,, (cf. (1.8)y),
and take a point PeD,x=(U,;nD). We then set giy:=(0, F)xR? (cf.
(1.9),). For an element u=(r; o) € @iy (=(0, 7) x R}2), we write the p.g. cover-
ing (X (P)) (cf. (1.9),) as «Z,(P). Moreover, we set

(1'10)3 Cq(,jf“(P), Sj)P.g: = UaER1"2 C(’(‘MM(P)a S})u (= gx-p-8. Subgroup*) Of
CUs,, D).

Then, from the explicit formulations of Theorem 1.1, Theorem (.2 and from
the factorization in Figure I, n.3, Section {.2 (of the p.g.c. maps E,€E, ), we
easily have

Corollary 1.2.%%)  We have the inclusions:

{ s*ZUAU(P), D). COCT (A (P), D) (g2 1),

1.10
10 sn 200t (P), 9), yc 03 Z9(at, (P, B, (420),

where u' is a suitable element of [ix.

Corollary 1.2 is given in terms of the p.g. subgroups as in (1.10),, and may
be more suitable for geomelric applications than Theorem 1.1, Theorem 1.2,
where we used the sets of the cochains, C!(sZ,(P), H),,.... We use Corollary
1.2 in n.6.

Here we make a remark on the explicit estimation in Theorem 1.1¥%%),

Remark 1.2,. As may be clear from its formulation, the estimation map

) Cf. (1.4);.
*##) The similar fact to Corollary 1.2 holds also for X=An,. But we do not use such a fact
(cf. n.6, §1.2).
**%) The similar remark also holds for Theorem 1.1.
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EyeE,, is taken independently from the point P*, which is the origin of the
manifold X¥(P) in question. When the variety X*=Xe An,,, the divisor
D, .x: (3 P¥) has, in general, singularities, and the above independence is never
of obvious nature. As we will see in Section 1.3, Section 4.2 and in Section 5.1,
this independence is insured by certain uniform estimations on Weierstrass
polynomials and the coherency theorem of K. Oka (or, more precisely, the
structure of the proof of his theorem). From its formulation, we may regard
that the coherency theorem insures a uniform structure of the coherent sheaves
with respect to the points on the analytic varieties. The independence mentioned
just above plays a very basic role in our treatments of the cohomology theories
in this paper (cf. §2, §3). As in the case of theories of coherent sheaves, where
no explicit estimations are involved, the coherency theorem of K. Oka will
play the basic role in our cohomology theory in this paper. Next Corollary 1.1
and Corollary 1.3 concern a type of uniform estimations with respect to the
p.g. sheaves on the analytic varieties in question. Though we do not use those
results in this paper, the factorizations in Corollary 1.1 and Corollary 1.3 may

be useful, when one concerns a family of p.g. coherent sheaves.

Remark 1.2,. The remark here is of technical nature for the proof of
Theorem 1.1. Letting X* be a variety in Anm,, or An,, we use the phrase
‘Theorem 1.1 holds for Ox.’ as a synonym for that (1.10); holds for Ox., with a
suitable p.g.c. map Ex.. Next, letting & be a collection of p.g. coherent sheaves
over X*, we use the phrase ‘Theorem 1.1 holds for €’ as a synonym for ‘(1.10),
holds for each $ € €’ (by changing Coh (X*) in Theorem 1.1 by ¥). When we
use this terminology, we assume that the factorization in Corollary 1.1 holds
for 4. We use the similar terminology for Theorem 1.2, Theorem 1.3 and
Theorem 1.4.

5. An affine analogue. Here we give an analogue of the results in n.4 to
affine varieties. The content here is chiefly given for purpose of geometric
application (cf. n.6 soon below and §3). We do not give corresponding explicit
estimations to Theorem 1.1, Theorem 1.2 to affine varieties®). Our results
here will be given in a similar form to Corollary 1.2. In order to formulate
such results, we first mean by smooth imbedded affine variety a datum X’ as

follows

*) For the explicit estimations for Theorem 1.3, Theorem 1.4, see Section 1.3 and Section
4.2, where the proof of these theorems is given.
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(1.11)o X'=(C"(2), X', Hx) »

where X’ is a smooth affine variety in a euclidean space €C"(z) (cf. n.l, §1.2)
and $Hx is a (|z|+ 1)-p.g. resolution of the structure sheaf® Oy. of X’ over C".
We then set

(1.1 Aff: =collection of all smooth imbedded affine varieties.

Letting an element X' e Aff be of the form in (1.11),, the underlying analytic
variety is the affine variety X'. In this paper, unless we say otherwise, we
regard® (X', Ox.) as the analytic variety. When we regard it as the algebraic
variety, we write it as (Xj,,, Oy ,1,), where the underlying topology is that of
Zariski. The p.g. and distance functions for X' will be gy =|z|+1, dg.: =in-
duced distance from the natural one d. of C*(z). We write the p.g. pair (X', gx)
and triple (X', gx, dx-) also as X' (cf. also n.1, § 1.2).
Next setting gey.: =R{?2, our coverings will be taken from the family

(L.11), Covo (X')p.g: = {H(X); o€y},

where & (X'): =gx-p.g. covering of X’ of size ¢ in X' (Definition 1.6,). Taking
an element '€ Coh(X"), ,, our underlying datum for the p.g. cohomology (given
to ") will be the following p.g. group:

(1.11), CHA(X"), 9'),pq: = gx-subgroup of CUZ,(X"), H')
(Definition 1.3 and (1.4)g).

Thirdly we will use el-maps .#: R*2—»R*2 (cf. n.5, § 1.1) in our estimations
soon below. We set

(1.11)54 L =collection of all el-maps.

For each geZ* U0 we fix a restricted parameter space g% :=R$?, with an
element ¢ =6y € R72; our uniform estimations will work for ge%. (cf. also n.3,
§1.2). Now we give an analogue of Theorem 1.1, Theorem 1.2 to X’ in the
following fashion.

Theorem 1.3 (P.g. uniform estimation for Cech operator §=09x.). There is

a map &;: Coh (X'), 3 9 —»L>Z,. (q>0), with which we have
(1'12)1 S*Zq(do'(Xl)J g’l)p.gcécq.—l(da"(x,% 5’)p.g: with o’=$.i)’(a)'

Theorem 1.4 (P.g. uniform estimation for resolution). There is a map

*) As in n.3 we use the symbol X" also for its underlying variety X".
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ex: Coh (X'), .2 9" —L3%, (q20), with which we have
(L.12),  s*ZUAU(X'), $)p g SO ZUAAX"), )pgr With 0’ =ZLg(0),
where wg.: k. -9’ is the first resolution of ' (cf. Definition 1.5).

In the above ¢ is in the restricted parameter space gx.. Also, correspond-
ing to Corollary 1.2, we have

Corollary 1.3. We have the following factorization

Coh (X')p ¢ i (Here lg=Ilength map (cf. (1.4),), and
(1.12)3 llg §=85 or Exl.)
zZ+ L

The proof of the above results is given in Section 1.3 (cf. also §4).

6. P.g. complexes. Here we give our analogue of Theorems A, B of H.
Cartan to the p.g. cohomology theory. For this we fix the following data as
in Theorems 1.1-1.4 (cf. also Corollary 1.2):

the local analytic variety X € An,,, the point Pe D,
(1.13) and the parameter space fiy=(0, 7) x Rf?,
the affine variety X’ and the parameter space gex.,

and we set
(1'13)1 (X*a #;)=(Xs ﬂ."{) or (X/s ,LL;('), and "Q{u=da(Xr(P)) or 'S{U(X,)a

for each u=(r; o) € fix=(0, F) x R}? or =0 € py =R%?, where the point Pe D
is as in Corollary 1.2.
Letting the p.g. sheaf H$*¥*=9 or ' be as in Theorem 1.1, or Theorem 1.3,

we make

Definition 1.9,. By p.g. Cech complex for (o, H*), we mean
(1.13); 0 —— COtyy §%)p.g —— C (L §%)p. o~ -
We write this complex as C*(,, 9*),.-

Next, assuming that $* is of the form in (1.4),, we call the following com-
plex g-th p.g. resolution complex for $H*:

(1.13), 0 — Z%(sf,, O%E)p.g 25 - K1y Z9(a,, DKL), ¢
29 Z4(st,, H*),p.q — 0.

Thirdly, we regard fiy.= fiy or g% as the ordered set in the following
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manner (cf. (1.13)g):
(1.13), pu=@r;o)=pu=(;d)e=r<r,o>0,and u=o>u'=0'.
Then letting X, denote the germ of X at P we make

Definition 1.9,. By p.g. Cech complex for (Xp, ) or (X', ), we mean
(1.13)s C*(Xp, D)p.g: =1[}'§1 C*( s D)p.pr CHX, D)5 =1i£n CH* (s D) p.g
We define ‘p.g. resolution complex for (Xp, ) or (X', ') by operating the
similar limit procedure to (1.13)s to the complex in (1.13),.

Writing the g-th cohomology groups of the p.g. Cech complexes in Defi-
nition 1.9; as HY(Xp, 9),, HUX', $'),4 we have the following theorem direct-
ly from Corollary 1.2 and Theorem 1.3.

Theorem 1.5. HY(X,, $),,~0 and HY(X', '), .20 (¢>0).

p.g= = Ip.g =

Next applying the standard syzygy arguments to Corollary 1.2 and Theorem
1.4, we easily have

Lemma 1.1. The g-th p.g. resolution complexes (q=0) for (Xp, ) and
(X', ©') are exact (Definition 1.9,):

(1.13)g O

> lim Z9(/ (P), OF) 5. 2=+ lim Z9(af,(P), OF);.
u— -
2, lim Z4(eZ,(P), $),. — 0,
Y
where we set o, (P): = (X (P)).
(and the similar exact sequence for (X', $')).

Now, in order to determine HYXp, §),, HU(X', $),, we let 0p, O
denole the natural homomorphisms from the algebraic objects to the analytic
ones

(1.13); 0p: Dy, (D)p— H(Xp, Oy O T(Ktgr Dratg) > HOCX', Oy
where

(1.13); Dy (+D): =sheaf (over X,) of meromorphic functions with the pole D.
Then we have

Theorem 1.6,. The homomorphisms 8, and 0x. are isomorphic.
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If X'=C" then Theorem 1.6, is a classically well known consequence of
Cauchy integral formula.® If X, is smooth, then we get Theorem 1.6, also
easily from Hartogus theorem on removable singularities (in the codimension
one case). For general X, X’ we derive Theorem 1.6, from what are mentioned
just above (cf. n.4, §1.3). Finally, applying the standard syzygy arguments to
Theorem 1.6, and Lemma 1.1, we easily have**)

Theorem 1.6,. The following complexes are exact:
D;‘(z ﬁ" D;? 'i)p‘" HO(XPS 5)p.g am— Os

(1.13)8 ’ k K’l ’ k 0H ’ ’
F(Xalga DX%,alg) I F(Xalg9 DXl’,ulg) — HO(X 5 55 )p.g — 0.

Theorem 1.5 and Theorem 1.6 are our p.g. analogues of Theorems A and B
of H. Cartan ([1]). Applications of Theorem 1.5 and Theorem 1.6 will be
given in Section 3.

Remark 1.3,. In [21], H. Yamaguchi showed an analogue of Theorem
1.5 and Theorem 1.6 to algebraic locally free coherent sheaves over affine
varieties, by using Theorem 1.5 and Theorem 1.6. Next, note that, in Theorems
1.1-1.6, we gave a more or less categorical treatments of the p.g. uniform esti-
mations. At present, we lack the notion of ‘p.g. maps’. In this direction,
S. Kamiya ([6]) gave some functorial treatments of our p.g. cohomology theory.
It seems to be quite desirable to give a suitable functorial generalization of our
p.g. cohomology theory in Section 1.

Remark 1.3,. As was mentioned,*** cohomology theories with p.g. con-
ditions were studied by P. Deligne-G. Maliotionist ([11]) and by M. Corbalna-
P. A. Griffiths ([2]) for locally free algebraic coherent sheaves over smooth
algebraic varieties. Our results for p.g. coherent sheaves over the analytic
varieties as in Section 1.2, together with the result of H. Yamaguchi ([21]), are
more general than theirs. In particular, the independence assertions mentioned
in Remark 1.2 are not found in [2], [11]. Also, our proof of Theorems 1.1-1.6
depends on p.g. estimations on the uniform estimations on homomorphisms on
coherent sheaves in Section 1.3 and on Cousin integrals (cf. Chapter I1I), and is
entirely different from ones in [2], [11], which use the d-estimations.

*) Cf. (0), in the introduction of Chapter I.
*#*) Cf. also Lemma 1.2 in Section 1.2.
#*%) Cf. Introduction.
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§1.3. A Key Theorem and Key Lemmas

Here we will reduce Theorems 1.1-1.4 in Section 1.2 to a key theorem,
Theorem 1.7, and key lemmas, Lemmas 1.2-1.4. The latter is proven in Chapter
I1T and Section 4.

1. A Kkey theorem. First setting

(1.14), Euc': =collection of all products €*(z) x C*'(z') of coordinated
euclidean spaces (n.1, §1.2),

we define a map (dimension map) dim: Eue' 3 X=Cn(z) xC"'(z')—»Z* x Z*

3(n, n'). The p.g. and distance functions for X are gz=|Z|+1, with Z=(z, z’),

and dg: = d; (=natural distance of X) (cf. n.1, §1.2). Taking an element

(P';r,0;a)edg: =C" x(0, 1]x RI2x Rf?, the set of the cochains in Theorem

1.7 soon below is as follows:

(1.14); C “(M,(X,(P’)), Dx),: =set of all gg-a-growth cochains with value in
the structure sheaf Og of X (cf. (1.4)g),

where

(1.14); MG(X,(P’)): = gz-p.g. covering of X,(P’): =C"x U/ P") of size ¢ in
C'xC", with U(P"): = {Q eC"(z'); d,(Q', P")<r} (Definition 1.6,).®

Then the following theorem is most basic among the results in Section 1.3.

Theorem 1.7 (P.g. uniform estimation for Dg; Euc’
X=cr xC"). There is a map s&;: Euc’aXaEp.ga jdim Cs
Ez(q>0), which is factored as in Figure 1, and with Z*xZ+—SE,,
which we have the following for each X eFuc’: Figure L
(1.14), s*ZUL(X (P")), D), =0CT Yt X, (P)), Og)y »

with (r', a'; a')=Eg(r, 0; a), where (P'; r, 0; o) is in Ag=C"" x --- x R}2.

As may be clear from its formulation, Theorem 1.7 will be most basic for
the proof of Theorems 1.1-1.6 (among the p.g. uniform estimations given in
Section 1.3). The proof of Theorem 1.7 will be given in Chapter III in an
independent manner from the contents**) of Chapters I, II. Here we derive a

*) d,,=natural distance in C*'(z’).
**) Cf. Introduction
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consequence of Theorem 1.7. For this we first set

(1.14), Euec: =collection of all euclidean spaces X'=C"(z).

We denote by ‘dim,’ the map: Eucs X'—Z* 5 n, and we also define a map
(1.14), I': Bues X'=C"(z) — Aff 3 (C"(2), X'=C", Hx),

where $y. denotes the trivial resolution of Dy .: 0—Ox —» DOy —0 (cf. Remark
1.1). By means of I’ we regard an element X'=C"(z) € Euc as the element of
Aff; we use the terminology for Aff (n.5, §1.2) for X'. In particular, the p.g.
and distance functions for X' are gx =|z|+1 and dy =natural distance of
C"(z) (n.4, § 1.2). Next taking an element (o, 0)e dy. = RF? x R}? we set

(1.14),  CUA(X"), Ox.),: =set of gx-~a-growth cochains with value in §,

where o7 (X'): = gx-p.g. covering of X' (in X') of size o (Definition 1.6,).
We use el-maps {or the estimations in Corollary 1.4 soon below. We set

(1.14)} =L x L, with L=collection of all el-maps (cf. (1.11)3).
To an element & =(%;, %,) e L=Lx L we attach a map
(1.14); Z:R2xR*3(c, a) — R2x R*25(%,(0), L,(a+0)).

We then have

Corollary 1.4. There is a map ¢: Eucs X' =C"(z) —» Eue
isi’x, (g >0), whichs atisfies Figure Il, and with which we ldi"x
have the following for each X' € Euc: Y/ L
Figure I1.

(L1D)s s*ZUL(X"), Ox ), < 0CT (L, (X'), Ox )
with (63 &')=Lx(c; o), where (o; @) is in A5 (=RT2x RT?).

Proof. Letting U} denote the disc in the euclid line €(w) with the center
0 (=oigin of C) and radus r=1, we identify C" with C*x0c=C*x U;. We
write the projection: €" x U] —C" as ny.. Then, writing the left side of (1.14)
as Z% we have n$Z%cZiL (C"x Uy), O),, where D: =structure sheaf of
C"x Uj. Apply Theorem 1.7 to the right-hand side of the inclusion just above,
and we restrict the resulting inclusions of the form (1.14), to C* (xC*x0).
Comparing the explicit estimations in Theorem 1.7 and Corollary 1.4 (cf. also
the explicit form of the p.g.c. maps and el-maps in n.5, §1.1), we get easily
(1.14)s. q.e.d.

From (1.14)5 and (1.12),, Theorem 1.3, we easily have
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Corollary 1.4'. Theorem 1.7— Theorem 1.3 for each™ Oy.; X' € Eue.

The right side will be our starting point of the proof of Theorem 1.3 and
Theorem 1.4 (cf. n.2—n.5 soon below).

2. Sheaf homomorphisms. Letting X* be one of XEAHO, X € An,, or
X' € Aff as in Theorem 1.2 or Theorem 1.4, we will give here a lemma on the
title of n.2, which will be most basic in deriving Theerems 1.1-1.4 from Theorem
1.7. For this taking an element e Coli’ (X*),, (cf. (1.4)g), we recall that such
a sheaf § is endowed with two natural p.g. filtrations: The first one, ¥ in
symbol, is induced from the first resolution K: D%, —$ of $, where K is a matrix
with entries™*) in I'(X*, Ox i gx:),, (cf. (1.4)g), and has been used hitherto in
Section 1. The second one, ¥', is induced from the inclusion: H$& Ok, k
=length ¢f cclumns of K, and letting the parameter™** (P; r, g, o) or (o; &)
€2 xx: = poy x Rf? have the similar meaning to Theorem 1.2 or Theorem 1.4,
the set of a-cochains is defined by ¥’ as follows (cf. (1.4),):

(1.15))  CUef, (V) H: ¥),: = CUA (), H) N CUL(Y*), k), -

(Here ¥* denotes the manifold X P) or X' as in Theorem 1.2 and Theorem
1.4.)) We write the corresponding set to ¥ explicitly as follows (cf. (1.4)g):
(1'15)’2 Cq('&fa(Y*)s 59 ‘P)a: = ch(&{a(Y*)’ DI&*)« .

Now we give the key lemma, mentioned soon above, in terms of a comparison
of the sets of the cochains in (1.15)] ;.

Lemma 1.2 (P.g. uniform estimations for 24.- Coh’ (X*), , 2 Ny
homomorphismns). F¥¥¥) There are maps &x:: jlg ( l
Coh' (X*),,39—L2%, and ex: Z*—L, which is zZ X L
factored as in Figure Ill, and with which we have Figure IIL.

(1.15); s*CUA(X¥), 91 W), @ CUA (X F), 5 W) with (¢';0) =Zo(059) ,
where the parcnieter (o o) is as in (1.13)].

For the proof of Lemma 1.2, see Section 4. (See also Remark 1.4 at the
cnd of Section 1.3.)

*) Cf. Remark 1.2;.
*#) gr.=p.g. function for X*=|Z|+1, |hz!| or |z|+1 (cf. Theorem 1.2 and Theorem 1.4).
*#*) For the sets of the paramecter 4%+, see n.2 and n.5, Section 1.2.
##%%) For the scts L, L of cstimation maps, see (1.14),. Also the set L in Figure IIl is the
first component of L=L - L, and lg=length map (cf. (1.4)).
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3. Consequences of Lemma 1.2. First we prove the implication:

Corollary 1.5. Theorem 1.7+ Lemma 1.2— Theorem 1.2 and Theorem 1.1
for An,.

Proof. Take an element X eAn,. Then, applying Theorem 1.7 to the
right-hand side of (1.11),, Theorem 1.2, we easily have

(1.15),  Theorem 1.2 for Ang — Theorem 1.1 for An, (cf. n.4, §1.2).

We prove the left side inductively on Coh? (X’.)p_g (p=1, 2,...) (cf. (1.4),), using
the standard syzygy arguments: if p=1 then $=O% (k>0), and we have directly
Theorem 1.2 from Theorem 1.7 (cf. §1.2). Assume that (1) p=2, (2) Theorem
1.2 holds® for Coh?~1(X),, and (3) e Coh?(X),,. Writing $ as: ---»Of
K1, 0% +$—0, we define an element $,; € Coh?~1(X),,n Coh’ (X),, to be:
o0k X1, 6 (=0%—0. Now taking a parameter (P';r, 0: «)c (<= Uy
x R x R*t2 x R*2) (cf. Theorem 1.2), we set

(2) Z'1: ={p e CuL,(P; 1), Df)s; w39 =0},

where we set oZ,(P; r)=sZ,(X,(P)). Then letting the p.g. filtrations ¥}, ¥,
for ©; have the similar meanings to ¥, ¥’ for $ (as in Lemma 1.2), we have
0Z' = CT YA (P; 1), 15 P1),. Applying Lemma 1.2 and Theorem 1.1*¥ to
the right side, we get

(b) S*¥0Z' < ZT Y (A (P; 1), D15 Y1)y O0CUH AL AP ¥), D15 P)ar»

where (¢'; a')=ZLy(0; ) and (1", 0"; «")=Eg (r, 0'; &) are defined as in Lemma
1.2 and Theorem 1.2.
It is clear that (b) insures

(C) S*Z’q < Zq("do"ﬁ D;)u” + Cq(da"’ 51)1" H

where of,.=s7,(P; "). Finally operating the homomorphism w to the both
sides of (c), we get the desired inclusion (1.11),, Theorem 1.2. g.e.d.

For later quotations, we rewrite Corollary 1.5 in the form

(1.15); Theorem 1.7 SzeyLtemmal.2), Theorem 1.2 for An,

— Theorem 1.1 for An,.

Next take subsets of 4, 4’ of An,,, Aff (n.1, n.5, §1.2). Then the similar syzygy

*) For this terminology, see Remark 1.2;.
**) By the induction hypothesis we have Theoren 1.2 for Coh?-}(X), .; by (1.15); we have
Theorem 1.1 for Coh?~}(X), ..
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arguments to Corollary 1.5 insure

Proposition 1.4. If Theorem 1.1 holds for each Ox; X € A (resp. Theorem
1.3 holds for each Dx.; X' € A'), then we have Theorem 1.1 and Theorem 1.2
for A (resp. Theorem 1.3 and Theorem 1.4 for A').

Taking A4’ to be Euc (n.1, § 1.3), Proposition 1.4 and Corollary 1.4 insure
Corollary 1.6. Theorem 1.7— Theorem 1.3  for each Dy.; X'eEuc

wzygy(Lemma 1.2), Thoorem 1.3 and Theorem 1.4 for Euc.

We give here an analogue of Corollary 1.6 to An,,. For this we define a
subcollection An{, of An,, as follows:

(1.15), An{,:={XeAn,,; X is of the form: (C"(z), Ugy, Xo, x, Ox, Po)}

(cf. (1.8)q), where X, coincides with the ambient space U,. Moreover, Hy is
the trivial resolution of Ox: 0->D5x—>Ox—0 (Remark 1.1), where X:=X,—D,
with the divisor D of hy (in X, =U,). Thus X coincides with the ambient space
Uo—D. This property is similar to the one of X'=C"(z)eEuc (cAff) (cf.
(1.14)3), and An9,<=An,, has a similar role to Euc < Aff.

Corollary 1.7. Theorem 1.1 and Theorem 1.2 for Ang— Theorem 1.1 for
Oy; X € An,— Theorem 1.1 and Theorem 1.2 for AnY,.

The second implication follows from Proposition 1.4. The first is proven
in n.4, by imbedding X € An?, to higher dimensional euclidean spaces (cf.
Lemma 1.3 in n.4 soon below).

m

l l

Cor. 1.4 (Dy; X' € Euc) « A DMNE o0 17 (Dy; XeAn?,)

Th. 1.7 (Ox-; X' €Euc’) ~romma 72y Th. 1.1, Th. 1.2 for An,

l (Lemma 1.3) 1
syzygy .
Th. 1.3, 1.4 for Euc (Lomma 1.2+ Prop. 14) Th. 1.1, 1.2 for An},

Diagram L

(The theorems at the bottom will be the starting point of the final part of the
proof of Theorems 1.1-1.4 (cf. (n.5).)

4. Imbedding. First take a euclidean line €(w). Using the similar no-
tation to (1.15),, we define a map
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(1.16)p I:An?,3X — AnyaX=(C(w) x C"(z), X=Cx U,, P,)
(cf.n. 1, §1.2),

where X=X,—D, with X;=U,. Setting® hg: =1—hyw (cf. (1.15),), S=locus
of hg in X and ny=Dbiregular map: S—»X=U,—D, we use the imbedding
nzl: X=Uy—D-S and the p.g. sheaf $Hg: 0-Oz %, O3->03—0 over X for
the proof of Lemma 1.3 soon below. (£z, £ ave the structure sheaves of
X, S.) |Letting the parameter (F; r; o; «)e Ay (< Uox(0, F)x Rf2x Rf?) be
as in Theorem 1.2, we set

Cq(Ma(Xr(P)), Dx)a
Cq(MJ(Xr(P))’ 55)0:

O
with value in {5"} (cf. (1.4), and Definition 1.45),

/S

1A

2]+ l_H}-a-growth cochains
z[+|w

(1-16)1{ }:=set ofg:={

where

X=U,—D
}ofsizeain{~ ° 1

'MO'(XP(‘P))} X"(P)
X=CxU,)

2,(X,(P)) X.(P)
(Here X(P)=X n U,P) and X,(P): =C x U,(P), with the disc in U,(P)cC", are
as in (1.9),, § 1.2.) Then the following lemma compares the sets in (1.16),.

(1.16), { :=g- p.g. covering of{

Lemma 1.3 (P.g. uniform estimation for imbedding). There is an element
ExeE,,(q=0), with which we have

CH Ay (X, (P)), D)o 253 (nz)* 03 CU (7, (X, (P)), H5).

(10 { e (AP, Oy, ot Z(t (R (P, S0

with (r'; o', &')=Ex(r; o; &), where wf=natural homomorphism.** $3—Dg
and sx and sg are the ‘p.g. refining maps’**® in X, S.

We check Lemma 1.3 in Section 4.2. Corollary 1.7 follows from Lemma
1.3 as follows: apply Theorem 1.1 for Any to $g, which is a p.g. coherent sheaf
over Cx U,. Then we have the inclusion of the form (1.10), for the right side
of the second inclusion in (1.16);. Using the first inclusion in (1.16);, we pull
back this inclusion to X (by means of ny). Then we have the desired inclusion
in (1.10), for Dg.

*) Here we understand that C*(z)x C*'(z’) in Theorem 1.2 is C(w)XC"(z) and that
Ui(cC™(27) is Uy(cC(2)).
**) Note that 95 and D5 are obtained by regarding the structure sheaf of S as the sheaves
over f{, S.
**%) For the precise form of the refining maps ss, 51, sce (1.13); in Proposition 4.7,.
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Finally, we will complete Diagram 1 in the foillowing fashion.

Th. 1.3, Th. 1.4 for Euc Th. 1.1, Th. 1.2 for An?,
extension N
! ¢ (Cor 1.8 -Lemma 1.4) l
Th. 1.3 (O ; X e Aff) Th. I.1 (0D; XeAn,,)
SYZygy s
l ¢ (Lemma 1.2) l
Th. 1.3, Th. 1.4 for AF Th. 1.1, Th. 1.2 for An,,

Diagram II.

(The second implication is insured by Proposition [.4; Corollary 1.8 and Lemma
1.4 will be given soon below.) By Diagrams I and II, the remaining task for
the proof of Theorems 1.1-1.4 is to prove

Corollary 1.8. Wc have the following implications:

Theorem 1.1, Theorem 1.2 for A“(l’al

Theorem 1.3, Theorem 1.4 for Euc |
{ Theorem 1.1, for each Ox; X €An,,
| Theorem 1.3, for each Oy ; X' c Aff .

(L1, |

For the proof of Corollary 1.8, we atiach to elements of An,,, Aff their
ambient spaces:

An, 3 X =(C"(2), Uy, Xo, 1, D%, Po) —
J { AnY, 3 Y= (C"(z), Uy, Uy, 1, By, Py,

(1.17),
1 AFX =(C'(2). X', Hy) — Euea Y = (€(z), ¥' =C", Hy.) .

(For the above notation, see (1.8), and (l.11),. In particular, Hx is the p.g.
resolution of the structure sheaf 0y of X=X,—D, with D=Ilocus of h on X,
and 9y is the trivial resolution of ¥ ¥=U,—D,: 050y —>Dy—0, with the pole
Dy of h on Uy.) We will piove Corollary 1.8 by extending cochains on X to
its ambient space V.

5. Extensions of cochains. Letting the variety X e An,, and ¥Y=J(X) be
asin (1.17), and letting the parameter (P; r; o o) = Ay have the similar meaning
to Lemma 1.3, we compare the following sets of the cochains™:
(CU(A (X, (P)); Ox)a)

(1.17) (o, (Y,(P)), H1), )

:=set of all g (=|A"1|)-a-growth cochains with

D
value in [~x]

19, 1°

1 CF (1.4)g and (1.3);.
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where
. (X (P . X,(P): =X nU,(P)
(1.17)7 {M,(Y,(P)) } =g-p.g.-covering of { Y.(P): =Y N U,(P)}
of*®) size ¢ in {;{:?ffz:lﬁo}

Also letting the affine variety X' € Aff and Y'=C"(z) be as in (1.17),, we will
compare the following sets

CU(A,(X), Ox). . .
(1.17)5 {CqE,MZEY;, 531 }: =set of all g(=|z|+ 1)-a-growth cochains with
e in { o}
value in e
where
” (X)) . X’ ) . (X
(L.17)5 {M,(Y') } =g-p.g. coverings of { ¥ } of size o in { ¥ }

(In the above, the parameter (o; a) is in A% (<Rf2xR}?) (cf. Lemma 1.2).

Then we have

Lemma 1.4 (P.g. uniform estimation for extension). Take suitable Ex
ek, and PyeL (g=0). Then we have

(1.17) {S*Zq(&fa(X,(P)), 0. Wy Z4 st (Yo (P)). $).
T St ZUA, (X, Ox)e S 0 Z(r (V) Sx)a
{("’ o' o) =Ex(r, 0 a)}

(0"; fx’) =Ly (o'; Ot) .

} where

Here wyx and wx. are the natural homomorphisms: $x—Ox and : Hx—Ox..

(We prove Lemma 1.4, by extending cochains on X to Uy—D,,... (cf.
§4.2).)

Now Corollary 1.8 is derived from Lemma 1.4 as follows. First applying
the Theorem 1.1 (for $x) to the first inclusion in (1.17);, we get the inclusion of
the form (1.10), for the right side of the former inclusion. Then, operating wy
to that inclusion (of the form (1.10),), we have the desired inclusion of the form
(1.10), for Ox. This insures the check of first implication in (1.17),. The
second implication is checked in the similar manner to the above. Thus we have
Corollary 1.8, and we also finish the proof of Theorems 1.1-1.4 (cf. also the

*) U,(P): =disc in C” as in (1.9),, Section 1.2.
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remark soon below Corollary 1.8).%

6. Proof of Theorem 1.6,. First recall that we checked the comparison
of ‘meromorphic’ and "p.g.” in Theorem 1.6, for elements of An{, and Euc
(cf. n.6, §1.2). Then, using the extension of the cochains in Lemma 1.4 for
An,,, Aff, we get Theorem 1.6, for An,,, Aff from the corresponding facts**

for Ang,, Euc. Thus we have shown that, for the proof of Theorems 1.1-1.6,

it suffices to prove the key theorem, Theorem 1.7 and the key lemmas, Lemma

1.2-Lemma 1.4.

For convenience of understanding of the logical structure of Section 1.3,
we summarize Diagrams I, Il and the content of n.6, Section 1.3 as follows:

Th. 1.7
(Dg; XeEuc')

Cor. 1.4
(O ; X' €Eue)
Th. 1.6, for X’ eEuc
|
‘ <

v

Th. 13, 1.4
(for X’ eEuc)

| «

¥
Th. 1.3
(Ox ; X' e Aff)
Th. 1.6, for X' e Aff
l <
!
Th. 1.3, 1.4
(for X' € Aff)

Lemma 1.2

~(for XeAn,)

Lemma 1.3
(for X’€Euc, XeAn},)

Lemma 1.2
(for X’ €Euc, X An},)

Lemma 1.4
(for X’ Aff, X An,,)

Lemma 1.2
(for X' Aff, XcAn,,)

Diagram III.

Th. 1.1, 1.2
(for XGAnO)

|
Cor. 1.7

(Ox; XeAnf,)
Th. 1.6, for Xe An{,

Th. 1.1, 1.2
(for Xe An?,)
> |
+
Th. 1.1
(DXa XEAnla)
Th. 1.6, for XeAn,,

Th. 1.1, Th. 1.2
(for Xe€An,,) .

We will finish Section 1.3 by a technical remark for the proof of Lemma 1.2.

Remark 1.4. Letting the varieties X € An,,, X' € Aff be as in Lemma 1.2,

we define the following subcollections of Coh’(X), ., Coh’(X"),, (cf. n.2, §1.3
and (1.4)g):

*) See also Diagrams I, II.
**) Also, in this step, we use Theorem 1.2 and, Theorem 1.4 for An},, Euc. This follows from

Lemma 1.2 (cf. n.3, §1.3), and our use of those theorems is legitimate (cf. also Diagram
III at the end of §1.3).
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(1.18), Coh” (X*), .: ={H € Coh' (X*),, (cf. (1.4)5)],

where X*=X € An,, or =X’ e AR, and writing $ explicitly in the form of (1.4),,
(1.18))  $:0— Ofp Kozt Ofp ... K, OF Ko, 5,0,

the element $ must satisfy

(1.18)7 the entries of K; (0= j<p)are in [(Xo, Oy (D)) or [(X]1y, Oy uig)s
according as X*=Xe An, or =X'c Afl.

(Recall that, for an element $ e Coh'(X*),,, the corresponding condition to

(1.18)] is ‘the entries of K; are p.g. with respect to the p.g. function gy =|z|+1
or |z|+ 1" (cf. (1.4)9)).

Now recall that Lemma 1.2 was giver to Coh’(X*), .. Here we check™®

(1.18), one can replace ‘Coh’ (X*), .’ by ‘Coh” (X*), .’ in Lemma 1.2.

)

First, if X e An9, or X' € Eue, then the comparison of ‘p.g.” and ‘meromerphic
(or, rational)’ in Theorem 1.6, is a well known fact (cf. 1.6, §1.2), and (1.18),
is legitimate. On the other hand, Diagram Il insures that ‘Lemma 1.2 for
An¢,, Euc as well as the extension of cochains in Lemma {.4" imply Theorem

1.6, for general X € An,, and X' e Aff. Thus we have (1.18),.

§2. Cohomology with Algebraic Division and Pelynomial Growth

This section contains the main results of this paper: First, in Section 2.1,
we summarize some algebraic notions used in Section 2. Using them we give
our main results of Section 2 as well as of this paper in Section 2.2. In Section
2.3 we reduce the results of Secction 2.2 to those in Section 1, by using some
uniform estimations on the a.d. and p.g. properties of coherent sheaves (cf. also

Introduction).

§2.1. Algebraic Division Conditions

1. Open map property. We begin Section 2.1 by arranging some termi-
nologies, which will be used in later arguments. First, a filtered group is, as
usual, a decreasing sequence & ={B(m)}>., of abelian groups B(m). When

*) Note that Lemma 1.4 follows from an estimation on local parametrization of analytic
varieties, and is independent from Lenmuma 1.2 (n.5, §4.2).  Also we use Lemma 1.3 in
Diagram III. This lemuna is also proven independently from Lemma 1.2 (n.6, §4.2).
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there is no fear of confusions we write B(Q) also as B. By a filtered complex we
mean such a one

2.1), 0 E_°, @9 i, ga_da

]

where d, is a homomorphism of filtered groups and e is that of abelian groups.
Letting €'*: 0—-E —» ¥°—...>%'9> be an another fltered complex, a
homomorphism w: €*—%"*is a collection w= {w’, {w,]},=0} of homcmorphisms
w,: €1—%'" (of filtered groups) and that of abelian groups w’: E—E’ satislying
the standard commutativiiy condition. Nexl let ¥ ={%%; pe g} be a direct

system of filtered complexes. Writing %7 as: 0—-E, —> ¢0—--— &
(cf. (2.1);) and & as {Ci(m)}, o, we make

Definition 2.1,. We say that € has open mup property (resp. is g-exact)
if, for each ge Z* U0 and pe g, there is an element p’'>u, with which (2.1),
(resp. (2.1);) below holds

(2.1), thereisamapa: Z"—Z" so that d,Ch(m)> p,, 241 (C(a(m))),

(21Ds dpCir'=p, ZUCE) (g2 1), epEp >, ZCF) (g=0),

where Ci 3 =CI"'(0) and CFi=3 50 C}.

(If # g2 =1 then (2.1), is equivalent to say that d,: Ci—Z9+1(C¥) is an open map,
with respect to the topology detcrmined by Cj.....) The following equivalent
condition to (2.1), is useful in later arguments:

(2.1); there is a map b: ZT—Z" saislying lim b(m)=co and d,CL(b(m))
2 P LY (C(m)) for m>»0. "

The open map property is important because we have*’

Prepesition 2.1,. [f ¥ satisfies the open map property and is pge-exact,
then we have
lim H"(hm CEICk (m))~11m (hm HI(C¥|Ci(m))y=0 (g=1),
(2.0 {7
lim Zo(hm Cr|CiE(m)) ~hm (hm Zo(Cx/ C*(m)))““hm (hm 0

um p. y)
e
where 0, is the natural homomorphism: C4—C9/C%(m).

Remark 2.1. Take a Noetherian ring O, an ideal I of O and a complex
C* of O-modules:**) 0—-C0—...>Cl—.... We set ¥7: ={3I"C12_,. Then

* For the proof of Proposition 2.1; and for roles of the open map property in other standard
comparison theorems in the completion theory, see M. Noumi [13].
**) We understand that the augumentation map e: E—~C? is of ithe form: E=0 and e=zero
map. We use the similar notations in later arguments (cf. Definition 2.5,).
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Artin-Rees theorem insures that if #* is exact then #* satisfies the open map
property. Also it is well known that the above theorem insures the exactness
of the completion of ¥* (cf. [12]). In spite of this basic character, the open map
property seems to have been not taken up in general situations. In our con-
text, the open map property was first conjectured for de Rham complexes by
S. Lubkin in 1971 (in our conversations). The open map property for the de
Rham complex is our starting point of our studies in Section 2. The open map
properties will be given for some geometric complexes of local and global nature
(cf. §2. 3and B, §4.2). The most substantial part of Section 2 will concern that
property for certain Cech complexes of global nature.

Finally, letting €*={%; ue g} be as in Definition 2.1,, take an another
direct system ¥'={%,*; ue p} of filtered complexes. Writing €%, #,* as
0-E,—»%¢2—--—%l—> and 0—E,—»%—--—%,2—---, we)assume that the
complexes (of abelian groups) 0—E,—»C9%—---—»C{ and 0—E,-»C—---=C,2
— coincide. (Here C{=C}(0),...)

Definition 2.1,. We say that ¥, €’ are equivalent, if for each gqe Z*y0
and p € g, there is an element p' > u, with which we have the following for each

m>»0:

2.1)s p,,CHm)cC,i(m’), with an element m’ e Z* satisfying lim m’= oo,

m—w

and if the converse relation to this holds.

Proposition 2.1,. Assume that €, %' are equivalent. If ¥ satisfies the

open map property, then €’ satisfies that condition.

2. A.d. filtration. Let X be a topological space, O a sheaf of ring over
X, & an ©-module and //=(fj)j-=1 a subset of I'(X, D). We write {f7}5-, as
Fm. By m-th standard homomorphism for ,, we mean the homomorphism
Fr: 053 0=(0;)»03 % ;f7p; 1£j=<s), and we write the image F"Os<D
also as /’"D. We use the symbol /"’S{ for the O-submodule of K, which is
spanned by elements ¢,,- ¢, with ¢, € "0 and g e K.

Next take an element .o € Covy(X).® We then make the following

definition for later terminological convenience.

Definition 2.2. By Z-a.d. filtered group of CUsZ, K) (or, g-th A-a.d.-
filtered cochain group for (o, R)), we mean the following:

*) Covy (X)=20uv(X) (cf, the end of the introduction of Chapter I).
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(2.2) (CUst, /™ K)o, With OR=8.

In n.3 soon below we will combine Definition 2.2 with the p.g. filtration in
Definition 1.2,.

3. D.p. filtration.*) First taking an abelian group £ and a map @:
(Z*U0)x R*23(m, a)—2%, we denote by &,, the restriction of @ to mx R*?
(=R*?). Setting B(m; D), 3= \Useg+2 @,(¢) (= Z), we make

Definition 2.3,. We say that @ is a d.p. filtration of 4, if we have

(2.3), @,: R*2-27 is a p.g. filtration for each m e Z+ y 0 (Definition 1.2,).
2.3), %#(m; &), ,cB(m’; P),, for any m'<m, and o, ®, are com-
patible with the inclusion: Z(m; ®),, < #(m’; ¢),, (Definition 1.2;).

Next letting the datum (X, O, &, /) be as in n.2, we take a p.g. function g: X
—R7{ (Definition 1.4,). We will define a d.p. filtration for C%(«/, &) by means
of ( /> 9). For this we assume that & is a homomorphic image of DOk OF
—©, -0 and that O is endowed with a g-structure 8 (Definition 1.4,). We
endow S\ with the induced g-structure, Oy in symbol, from (0, w) (Definition
1.43). Recall that (g, 6), (g, 0g) define p.g. filtrations for C%.ez, OF), CY(«Z, K)
(Definition 1.45). For an element o« € R}? we set

C(o, OF; g)a} (g9, 0)
: =set of
Ci(, K g), {(g, 0g)

k
in {i } (cf. (1.6)5), where

(2.3)5 CU, 8; g9),=wC? (&, O; g), (cf. Proposition 1.3).

235 |

} a-growth cochains with valve

We use the symbol F™ (=m-th stan-
dard homomorphism for #): Os—9O Cit, OF; g), £ Cl(o, O g),

(cf. n.2) for its k-times direct sum ©
Dsk : =Ds+ . + Ds FM4eeeq FmM Dk — Cq(m /’"R; g)a
O+--+O. Assuming that /<= TI'(X, Figure 1.

D, 9),.. We make
Definition 2.3;. By left and right (&, g)-d.p. filtration of B=C(«, K), we

mean the following maps:

U4 F’"C‘l(..d, Dsk. g)
2.3 {’ ”g}: Z+y0)xR*23(m,a) —> 29 { e
( )3 rW;,g ( U ) X 3 (m a) 3 Cq(.,d, R, g)a n Cq(-ﬁ[, /mg)_

* ‘dp’=‘a.d’+‘p.g’ (cf. n. 2., §2.1 and §1.1).
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We use the following notation for the first set in the right side of (2.3)5:
23)s it "85 9)ar =19, (m;0), ZiL, "85 9),:

=9, ,(m; ) n671(0).
Note that (2.3); implies
(2.3)5 Cl(e, /"R g)y: =0Ci(, //'"D"; g), (ct.also Figurel).

(Here and in Figure I, we regard OF as the trivial p.g. sheaf: 0—O% —1 Ok 0,
with the identity i (Remark 1.1).) We use the notation CI(/, /"’R; G)gs--- for
the second set of (2.3);. Moreover, we set

(23)6 Cg('% /MR; g)p.g: = UaeR;“z Cg(&[! /"IR; g)az (Cf (23)4)7

where the symbol ¢ indicates the symbol ‘I’ or ‘r’.

The left filtration @, , makes use of informations of the left side of the
homomorphism - F”: O%—$ and the definition of the sets in (2.3), is con-
cordant to the similar sets in the p.g. cohomology theory in Section 1 (cf. (1.4)g).
The left filtration is suitable for later explicit uniform estimation (cf. §2.2). The
right filtration ,®,,, is, as we will see soon later, suitable for applications to the

completion theory.

Definition 2.35. By g-p.g. subgroup of C(sz, R%), ]M: =lim K/ /"R, we

“m

mean
(2.3); Cllet, 85 9pgt =lim CHt, K, g)p o/ Cr(t, "SR5 G)p -
The word ‘subgroup’ is justified by the following
Proposition 2.2,. There is a natural injection
(2.3)s i Cl(aty M5 g) . & C oty §N) .
Proof. First, from (2.3);, we have the exact sequence:
@ 0—Clet, L™R; )y — CUt, R: g)y o 2205 Cot, §)[CUst, 78,

where the homomorphism ,, is induced from the natural one: >8/ /"K and
i=inclusion: CH«z, K; g),,< CUsZ, ). (Thus we use the information of the
right side of (a) in the definition of the right filtration ,@,,.) It is easy to get
(2.3)g from (a). g.e.d.

Concerning the right and left filtrations, we remark :*

* If we replace the symbol ‘C¥ in (2.3), by ‘Cy, then the corresponding fact to (2.3), fails
in general; the right filtration is more suitable than the left one for application to the
completion theory.
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Proposition 2.2,. C/(«f, /"85 9),,2CHA, "R} Ghpg-

This follows directly from the definition of the both sides; see (2.3),. In
Lemma 2.2, §2.2, we show that the above two filtrations arc ‘equivalent’ for
the varieties of the type in Section 1.

4. D.p.c. estimation map. Finally we introduce an estimation map, which

will be used in the main estimations in Section 2 (cf. Theorems 2.1-2.2,, §2.2).

Definition 2.4. By a d.p.c. estimation map, we mean a collection E=(E,
exp M, L), where E is a p.g.c. estimation map € E, . (Definition 1.5), M is a
positive monomial (n.5, §1.1) and L is a linear map: R* s m—R* s cm; ¢>0.
Recall that Eis a map: D: =(R*xR*? x R*?)s(r; 0; 0)>D=(R*x R*? x R*?)
3(r'; 0';0'). We regard E as the map:*

24);, E:Dx(Z u0)a(r;o;a)xm->Dx(Zt+u0)a(’'; ¢'; a’ -a)x[L(m)],
where a’ =exp M(m).

(In the later estimations, we write the parameter space DD x (Z+ u 0) as (R x R*2)
x(Z*Y0)xR*2; see §2.2.) Note that the correspondence: (i; 6)—(1"; o)
is given by the first part E' of £ (e E ».p) (cf. Definition [.5).  We call E’ also the
first part of E. The correspondence: (Z*U0)sam—(Z*y0)a[L(m)] will
concern the ‘a.d. part’ of the cochains (cf. §2.2). We call this correspondence
‘the a.d. part of E'. The map E is factored as foliows:

(2.4))  (R*xR*2)x(Z*Uy0) xR _E, (R* x R*2) x (£ U 0) x R*2

| l

‘

(R xR2)x (Z*u0) —EXL  (R*xR*?) x (Z* % 0)
(Here ‘L’ denotes the a.d. part of E.)
We set:

(2.4), E,4 ,=collection of all d.p.c. estimation maps.

Concerning the decomposition EcE, of the elements E;efy  (i=1,2) the
similar ‘associativity law’ to (1.6); (given for the p.g.c. maps) holds. We use

this fact frequently in the sequel of this paper, without mentioning it.

*) Writing a’€R}? as (af, a3), we set aa’: =(aaj, aj) (cf. (1.6)}).
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§2.2. Main Results

1. Case of local variety. Letting the local variety X=(C"(z), Uy, Xo,
h,...) be as in Theorem 1.1 (cf. also (1.8),), we fix a finite subset /=(fj o1
& I(Xo, Oy,) satisfying (1) f(Po)=0 (1=j<5) and () £;£0(Xo;p,y) (1S j<5)
for each irreducible component X.p.., of the germ of X, at P,. Here we
generalize Theorem 1.1, Theorem 1.2 to the present d.p. cohomology theory,
which is given to the pair (X, /). As in Section 1, the underlying variety for the
arguments here is X = X,— D, where D=1locus of h. The p.g. properties of co-
chains etc. are measured, as in Section 1, by the p.g. function gy: =|h"1|, while
the a.d. properties of the cochains will be measured by . As in Section 1 we
use the symbol X also for X and (X, gx). When there is no fear of confusion,
we use ‘X’ also for (X, gx, /) and (X, »).

(i) D.p. parametrization. Here we generalize the p.g. parametrization in
n.2, §1.2 to the present d.p. cohomology theory. First the parametrization of
the coverings here is same as that in n.3, §1.2 (cf. (1.8),):

(2.5), ux: pix: =Dy xR*xR*2au=(P;r; 0)

— COVO (X)p.gs'yp.: = Mc(Xr(P)) s
where we write D as Dx. Also the manifold X,(P) and its p.g. covering «, are
as in (1.9),.

Next, we form a product zx: = gx x(Z* U 0)xR{2, and, for an element e

Coh(X), . (Definition 1.5), we define the following parametrization of sets of

cochains:
(2.5), Tx: =pxX(ZTU0)XxR™2s51=(u; m; a)

C‘I

8, Ut D5 9)e (£
We define a parametrization Z¢ by changing ‘C{’ to ‘Z{’ (cf. (2.3),). Then,
we generalize the p.g. cochain collection in (1.9)5 as follows:
(2.5)3 Ci(X, 9)p.¢: =Ci(z0)={C{(H, £™D;9)a; (W:im:a)ETy

= pxx (Z* U 0) x R}2} .

We call C{(X, 9)¢, the g-th (7, g)-d.p. cochain collection for . We define
(/> 9)-d.p. cocycle collection Z{(X, $)3 . by changing the symbol C{ in (2.5);
to ZE. Such collections contain all necessary sets of cochains in the d.p. uniform
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estimations in n.1. We will fix the p.g. sheaf § as above in the remainder of
Section 2.

Tx=pxx (Z* U0) x R{251=(u; m; o) —2 C4(X, H)4,
5CUL, (X, (P)), /"5 9)a
ptx=Dy x R* x R}25 = (P; 0, ) 2% Covo (X), ¢34, (X,(P)) .

D.p. parametrization table

(ii) Estimation data. We will use the d.p.c. estimation maps Ee€E,,
(Definition 2.4) for the uniform estimations in n.l. As in Section 1.2 our
uniform estimations will work for a subset of the parameter space zx: letting
D,.x be an open subset of Dy, which contains P, (=origin of Dy, X...(cf. n.1,
§1.2)), we take an element (¥, 6, m)e R* xRi2xZ*. We the form a subset
L5=D; xx(0, )xRf? of pex=DyxR*xR{? and® zi=pexZixR}? of
Tx=px % (Z*U0)xRf2.  As in Section 1.2 we call 7§ restricted parameter
space for H. We fix 7§ in the remainder of Section 2.

(iii) Now, using the sets of the cochains as in the table soon above (cf.
also (2.5),), we generalize Theorem 1.1, Theorem 1.2 to the d.p. cohomology
theory:

Theorem 2.1 (D.p. uniform estimation for Cech operator d=0dx). There
is a d.p.c. estimation map Ey € Ey , (9>0), with which we have:

(2.6); s*ZUAL(X.(P)), "D)e=0CT Wy (X, (P)), ™ D), where
2.6)7 (.0, m', & )=Ey(r, 0, m, a) (cf. Definition2.4).

Theorem 2.2 (D.p. uniform estimation for resolution of $). There is a
d.p.c. map E; e Ey , (q=0), with which we have:

(2.6);  s*ZUA(X,(P)), f7D)a= 0o Z (L (X, (P))s /™ OR)ors where
(2'6),2 (r,3 0", m,y a’)=ESj(r, g, m, (X) H

and wg: D%—9 is the first resolution of $ (Definition 1.5)*%

Note that the sheaves /™D in (2.6), are, in general, not free sheaves.
In order to complete the resolution in Theorem 2.2, we give:

* For the sets R}?, Z}%, see the end of introduction of Chapter I. In Theorem 2.2, we are

concerned with the structure sheaf Dy, and we should understand that zg=7g4,... .

**) Also, in Theorems 2.1-2.2;, we drop the term ‘g’ from the sets of the cochains (cf. also
(2.5),).
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Theorem 2.2, (D.p. uniform estimation for { /"Oxjn-;). There is an
element Exe E, , (q=0), with which we have:

(2'6>3 S*Zq(da'(Xr(P))ﬂ /mDX)aCFMI Zq(ﬂa'(Xr’(P))a Dg{)a’a where

2.6)5 (r'yo';m;d)=Ex(r,o;m;a),
and Fm:0%—-Ox is the m-th standard homomorphism for /(n.2,§2.!).

In Theorem 2.1-2.2,, the parameter t=(P; r, o; m; a) is in the restricted
parameter space T75(=Dy x x (0, F)x R}2x Z7 x R}?). We will rewrite Theorem
2.1 in the following diagram (cf. also Figure 111, n.4, §1.2).

Z‘I

9
TXBT Zq(X’ g)ggazg(’[)
E A
R Cq—l ‘: ‘\\ Q ol
Ny

Tx3 Eg(t) ——— €11 (X, )3, 2, 5CT1(Ey (1)) 55* Z4(x)

Ex COVO (X) p-8

Figure I. (D.p. vanishing properties for Cech operator)*

For the proof of Theorem 2.1-2.2,, see Section 2.3. Also applications of these
results will be given in n.3, n.4, Section 2.2 and in Section 3. As we will see in
Section 2.3, Theorem 2.2, concerns an open map property of Koszul complexes,
which relates to = cohomological generalization of Hilbert zero point theorem
(cf Lemma 2.5; see also Introduction). Theorem 2.2, will also fill the gap
between the d.p. and p.g. estimation in Section 2 and Section 1, and may be

most basic among Theorems 2.1-2.2,.

2. An affine analogue. Letting the affine variety X'<C"(z) be as in
Theorem 1.3, we take a finite set '=(f)5-; =l (X', Ox; gx),,, Where the
p.g. function gy =|z[+1 is as in n.5, Section 1.2. Similarly to n.1, we use
the symbol X' also for (X', g4), (X', /’) and (X', gx, /). We generalize
here Theorem 1.3 and Theorem 1.4. The set of the p.g. coverings:
Covy (X'),o: = {Z,(X); 0 R7?}, where «,(X") is the p.g. covering of X' of
size o, is as in Theorem 1.3, Theorem 1.4. Next we set 74 : = gex- X(Z1 U 0),
with gy : =R72. Then taking a p.g. sheaf $’e€ Coh (X'), ; (cf. Definition 1.4,),

*) The map E.'@ in Figure I is the first part of Eg (cf. n.4, §2.1).
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our d.p. cochains in n.2 will be parametrized as follows:
(2.7), Cl:ry=R{?>x(Z*y0)3(0; m)
— C;I('Q{a(X,)’ /,,,g)/; gX')p.g (Cf(23)3) .

Taking an element (6; m)eRT2x Z7, we set™ ¢': =Ri?*x Z}. Our d.p. estima-
tion soon below will work for elements in z'. Thirdly, our estimation maps
herce will be of the following form:

2.7), E:Ri{*x(Z'u0)a(o: m)-»>RI?2x (£ U 0)a(L(0), [L(m)]), with an
el-map . and a linear map L=ct; ¢>0.

We write the collection of all such maps as & .

Theorem 2.3 (D.p. uniform estimation for Cech operator d=0x.). For a
suitable Ege Ej , we have (9= 1):

(2.7, s*¥ZUA(X), /"".5’)p_gcéC‘I‘l(.m!‘,,(X’), /""'E)')p,g,
with (¢’; m'y=Eg(a; m).

Theorem 2.4, (D.p. uniform estimation for resolution). For a suitable
EyeEy , we have:

(27 s*ZUA(X), D)y g0y LA (X)), 0% ) g
with (¢'; m')=Eg(0o; m),

where wy is the first resolution of ' (Definition 1.5).

Theorem 2.4, (D.p. uniform estimation for {/’"'DX,};LO). For a suitable
Eyx € E} , we have™):
(27)4 S*Zq(“({o-(-Xl)a /IMDX')p.gCF,m’Zq("Q{a’(X,)a DsX’)p.g’
with (o’; m")=E%(0; m).
In the above the parameter (a; m) is in v/ =RE2x Z}

m*

For the proof of Theorem 2.3, Theorems 2.4, ,, see Section 2.3.

3. Open map properties. Here we show the properties in the title for
somc p.g. filtered complexes. For this we first set:

*) According as we are concerned with Theorem 2.3, Theorem 2.4, or Theorem 2.4,, (' 77)
depends on (X7, ©') or X’.  Thus we should understand that z’=zg. or =r%., ac-
cording to the theorcms just above.

=) ['m is the m'-th standard homomorphism attached to #  (cf. n.2, §2.1).
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(X%, %, 2%, g%):=(X, $, /g0 or (X', 5, /', dx)
fxs:=[ix:=(0, ) xR?2 or = pu% :=R}2.
(cf. n.1, n.2, §2.2) .

@8, |

We regard fix« as the direct set in the manner as in n.6, §1.2. For an element
u=(r; 0)e fix=(0, ) x R}? or=0€ py, we denote by «, the p.g. covering
(X, (P)) or £ (X') (cf. Theorem 2.1 and Theorem 2.3). We generalize
Definition 1.9 to the present d.p. cohomology theory:

Defigitien 2.5,. By left (g*, /*)—p.g.ﬁltered Cech complex for («,, 9*),
we mean the following filtered complex (cf. n.1, §2.1):
(28)1 0— Zo(dm 5*)p.g —i, g?(du’ 5*)gg 2 q”plll(dm 5*)3,; s )
where we set:
(2.8)} Gy 9%)5.6: ={CUH D% 5 edm=0  (€£.(2.3)6),
and i: =inclusion: Z%«,, $*),, < Co(),, H*)pe-

Next we write $* in the form of (1.4);: 0— Ok Ke=t ... K1 Okt 0%, g
—0, and we set:
(2.8)2 ZH( Ay, 9551 ={ZU Ay L*"9®)p e} m=0-

(We define 24(s,, D}’;f*)g_g in the similar manner to the above.)
Definition 2.5,. By g-th left (g*, /*)-p.g.-filtered resolution complex
for (£, $*) (¢=0), we mean:
(2.8); 0— Z{(o, OB, Kozt
K, 24(o, DR)E s — 2 Z(H, 99)Es — 0,
where the augumentation map is understood to be the zero map (n.1, §2.1).
We write the filtered complexes in Definitions 2.5, , as €§(%/,, )i, and

Zi(A,, 9D*)i,. The right ( /*, g*)-p.g-filtered complexes €y (s, H)2, and
Z A, D)L will be defined similarly. Then we have:

Lemma 2.1 (Open map properties of the left p.g. filtered Cech and re-
solution complexes). The direct systems of the left p.g. filtered complexes
{CF( Ay, 9%)p ot {Z N, 9%}, satisfy the open map property and are
Pxwexact (Definition 2.1), where p runs through fix. (cf. (2.8)o).

Proof®. Let Ey: (R* xR*?)—»(R*xR*?) and Lgy: Z*—Z* y 0 be the first

*) Cf. also (2.14), n.4, §2.3, which is used in the proof of Theorem 2.2; and Theorem 2.4,.
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and a.d. parts of the d.p.c map E in Theorem 2.1 (cf. also n.4, §2.1). Then,
letting the element pu=(r; o)€ giy (cR"xRf?) be as in Definition 2.5,, we
have directly the following from (2.6); and (2.4);:

Q8)s SZUtyy 7).y SECE tyr 7 G)y g With s =(r'; 6')=E4(r; 0)
and m’=[Lg(m)] (m>0).

Comparing this with the numerical criterion (2.1); for the open map property,
we have that condition for the Cech complex defined for X € Am,,. The open
map property for the Cech complex for X'e Aff follows from Theorem 2.3
similarly to the above. Also the open map properties for the resolution com-
plexes defined for X € An,, and X' e Aff follow® from Theorem 2.2, Theorem
2.4,. Finally, the g-exactness condition for the Cech and the resolution
complexes follow from the ‘p.g. exactnesses’, Corollary 1.2, Theorem 1.3,
Theorem 1.4, and we finish the proof of Lemma 2.1. g.e.d.

For the right d.p. filtration we have the similar fact to Lemma 2.1:

Lemma 2.2 (Open map properties of the right d.p. filtrations). The direct
systems of the right p.g. filtered complexes {#}(of,, D*)2 .}, and {ZX«,
H*)a .}, satisfy the open map property and are p-exact.

By Lemma 2.1 and Proposition 2.1,, the following lemma insures Lemma
2.2.

Lemma 2.3 (Equivalence of the left and right d.p. filtrations). The direct
systems {€1(ed,, H*)5 g}y and {€F (L, H)5 e}, as well as {ZT(f,, D)5 6}s
and {ZXN,, H*)8 .}, are equivalent (Definition 2.1,).

Recalling the definitions of ‘equivalence’ and Proposition 2.2,, we see easily
that the proof of the following leads to Lemma 2.3:

Lemma 2.3'. We have the inclusion:

(29), S*CHtyy L"5%)p 5 Cllty, P S%)pg With m' =[Ly(m)], and a
suitable parameter u' € pag., where m>0 and Lx. is chosen*®) in an inde-
pendent manner from (u; m).

The proof of Lemma 2.3’ is given in Section 4.2.

*) See the footnote *), p. 416.
*¥) Lz« is, as in Lemma 2.1, a linear map. Also the pair (.o7,, §*¥) has the similar meaning
to Lemma 2.1.
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4. P.g. complexes in the completion. Now, from the results in n.l-n.3,
we derive a generalization of the p.g. cohomology theory in n.6, §1.2 to the
completion thecry. The content here will be our main applications of the
uniform estimations in Section 2 as well as in this paper. First letting the pair
(£, *) and /* e ['(X*, Oy.) be as in n.3, we define
(2.9);, CHd, H%)pg: = lim C*(,, 9%)p/ CH(yr 757y, Where

§%: = lim $*/ #™H*  (cf. Defipition 2.3).
/

—~m

By Proposition 2.2,, this complex C*(7, é*)p,g is a subcomplex of C*(«, 53*)‘
Now, denoting by X, the germ of X at P, we generalize Definition 1.9 to the
completion theory as {ollows

Definition 2.6. (1) By p.g. Cech complex for (Xp, .6) and (X', 53’) we mean:
(29); CHXp Dyt =lIim CHtp, Sy CHX', §)p 0 = lim CHp, §)y,
where fi, i’ run Lhrough#ﬁx*. ’

(2) By g-th p.g. resolution complex for (Xp, $) and (X', §) (g=0), we

mean

0— Z9(Xp, D), g K22 -+ K0, Z9(Xp, D)), 4 220 Z4(Xp, §),.— 0
29 0— zo(X’, Oy, Koot K, zaxr, O, 2%, 24X, §'),.,— 0
where Z9(X5, S:%)p,g: = CYX,, .\S)p.g n 6~40),..., and Kp_,,‘.., (g,... are the
completions of K,_,..., wg.

Now we generalize Theorems 1.5, 1.6 to the completion theory as follows:
first denoting by H4(X,, Sfy)pug the g-th cohomology group of C%X5p, ﬁ)p.g,...,
we have

Theorem 2.5. HY(Xp, §),,20 and HY(X', $'),,20 (g2 1).
This follows {from Lemma 2.3 and Proposition 2.2,. Next we have
Lemma 2.4. The p.g. complex in (2.9), is exact.

Proof. From the open map property for the p.g. complexes (cf. Lemma
2.2), we have

@9%  Z4(Xp, ss)p.gglgl (lim Z2(fy, 9o/ Z (s £™9),.q) and the similar
fact to Z4X', §), 4

Simifarly, applying thc open map property for the p.g. resolution complex
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to the right side of (2.9),, we get the desired exactiess. g.e.d.

Finally we determine the structure of HO(X,, Gy) . and HO(X', 33 )pg  FOF
this, letting the sheaves Oy (+D) of meromorplic functtons over Xo and Oy

of (algebraic) regular functions over X/,, be as in Theorem 1.6, (cf. also (1.13)5).

alg
Then we have:

Theorem 2.6,. There are natural isomorphisms from the meromorphic

and algebraic completions to the p.g. complctions:

(2.9)s 0p: Oy, (D) p 55 HO(Xp, O350 Ox: T (Xpgs O )

— H X', Oy, 0
where the left sides are as follows:

6){0(*D) L= 1]‘_1]1-\,)‘0(* D)/F’”DXO(*D)
(2.9)5 R o |
D,\",algl =lim DX,,“g/F m

“«m

X' ,alg

Proof. We prove the first isomorphism in (2.9)s. The second is proven
similarly. First, from the isomorphism 0p: Oy (#D)p 3 HO(Xp, Ox), . We see

that the following natural homomorphism is an isomorphism:

(@) 0p: Oy, (#D)p — lim (lim Z%Z,(P), Ox),. o/ F"ZUL,(P), D%)p. o) »

f g «m
where we write &7, : =/, (X (P)) as «,(P) (cf. also (2.8),).
On the other hand, (2.9);, Theorem 2.2, and Lemma 2.3 imply that

(b) HO(X . & X) ~right side of (a),

pg=

and we have (2.9)s. q.e.d.

Finally, applying Lemma 2.4 to Thecrem 2.6,, we generalize Theorem 1.6,
to the completions 53 E) as follows:

Theerem 2.6,. Tlie following complexes are exact:

Dk (xD)p K1y f);l(*p),, 2o, go(x,, s%)p . —— 0,
(2.9)¢
F(Yalga “"K alg) '—"" r(xaly ’DX ﬂg) HO(XI 6 ) g 0.
Theorem 2.5 and Theorem 2.6 are a generalization of Theorem 1.5 and
Theorem 1.6 as well as our analogue of Theorems A, B of H. Cartan in the
p.g. cohomology theory in the completion. We give an application cf Theorem
1.5, Theorem 2.6 to the analytic de Rhanm theory in Section 3.
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§2.3. Key Lemmas

Here we give key lemmas for Theorems 2.1-2.4, which concern the open
map properties of Dy, where X*=X or X' (cf. Lemma 2.5-Lemma 2.7).
Also, using those lemmas, we prove Theorems 2.1-2.4.

1. Koszul complexes. In our proof of Theorems 2.1-2.4, we will take
Theorem 2.2, and Theorem 2.4,, which concern the a.d. properties of Oy,
as the starting point (cf. n.3,n.4). Recalling that the a.d. properties in Theorem
2.2, Theorem 2.4, are measured by the powers of = or 2 we first
attach to /*"‘ what we call m-th Koszul complex for /*:

(2.10), 0 — Oy 2 O, 0@ B, 0g, M, 00 0.

Here the Oy.-homomorphism F}™ is given, as usual, in terms of the exterior
product as follows®: for a point Q € X*, let Qf denote O, (: = Ox. g)-module
consisting of differential forms of degree g with coefficients in D,. Letting x
be a (formal) indeterminate, we denote by i, the identification: Dg’)B(p=
()~ 2523 ;¢,dx;, where J exhausts all indices J=(j;<---<j,). Then
F}m is defined by: igFf™= A w,,- iy, Where we set w,,: =35, fi™dx; and ‘A’
denotes the symbols of the exterior product. Noting that F*m = F*m (cf. n.2,
§2.1)*®, we use the Koszul complexes in (2.10),, & *" in symbol, for analysis of
the sheaves /*"Ox. (=F*"0x.) (cf. n.2soon below). Thelemma inn.2, Lemma
2.5, will be our key facts for the proof of Theorem 2.2,, Theorem 2.4,, which
concern the sheaves #*mO,,. In later arguments we use the symbols &#™,
Fm,... ot #F'm Fpn,... for #*m Fim, according as we are concerned with X*
=Xor X') Weset F¥={F*m}>_ .

2. Open map property for #*. Letting the parameter spaces gy (<=Dy
xR*xRf?) and py :=R}? be as in Theorem 2.2,, Theorem 2.4, (cf. also
(2.5);, 2.7),), we form a product Ax:= px X RF2 (c=Dyx Rt x Rf2x R}2).
Also we take a linear function Lg y«=Cq xsf; Co x+>0. Then we have:

Lemma 2.5 (Open map property for #*). Choose suitable d.p. estimation

#* Cf. J. P. Serre [19].
*%) Precisely the homomorphisms F¥™ and F*™ are : D§+3(p;)5=1——0D5sD X5, (—1)
xfro; and X%, ¢;-f™. This difference of the signatures does not cause differences
for the applications of the results for F*= for F*=,



CoHOMOLOGY WITH POLYNOMIAL GROWTH 421

maps® Exe€E, , and Ex. € E, ,. Then, for each (i1, m)e Z* x Z* satisfying
> Lo xd{m), we have the following inclusion (1<s<p):

s*(CUL,(X(P)), £*OP)), N (Fm)~1(0))
C.10), | SFC (P, ),
s*(CUA,(X"), 2 "OR)), o N (Fym)=1(0))
CF;,'EIC‘I(%G' (X’), /lﬁ‘,D§’ﬁil))p.g5

with (r'; o' W'; ') =Ex(r; ¢; #; ) and (¢'; m'")=Ex.(o; ). Here the para-
meters (P r; 0; a) are in 2x (D x xR* x R{2xR{?) and o is in py (cR{?).

If we fix an element m e Z*, which defines the homomorphisms F?, then
Lemma 2.5 insures the open map property for F#. As we will see soon below,
Lemma 2.5 plays the most basic role in getting the d.p. uniform estimations in
Section 2 from the p.g. estimations in Section 1. Also Lemma 2.5 will concern
a cohomological generalization of Hilbert zero point theorem (cf. Part B, §4.1).
Lemma 2.5 will play the most important roles in the lemmas given in Section 2.3.

3. Here we will prove the following implication:

Lemma 2.6 (Reduction of d.p. uniform estimations to p.g. uniform es-
timations).

7 1.
(2.10), {T 1.1

{ Th. 2.22}
Th. 1.3 '

F
4L 2.5 for { } —
} emma 2.5 for | g Th. 2.4,

Precisely, in the above implication, we use Theorem 1.1 and Theorem 1.3,
applied to the structure sheaves Oy and Dx.. Note that Theorem 1.1 and
Theorem 1.3 do not concern the a.d. properties of Oy,..., while those properties
are the basic factor in Theorem 2.2, and Theorem 2.4,; we rewrite Lemma 2.6
in the following symbolical form:

(2.10); p.g. uniform estimation for Ox., open map property for F¥—d.p. uni-
form estimation for Oy..

We prove Lemma 2.6 in three steps. First we introduce a type of auxiliary
estimation maps, which is used to fill the gap between the estimations in Theorem
2.2,, Theorem 2.4, and in Theorem 1.1, Theorem 1.3.

(i) Pred.p.c. map. Denote by D, D’ the parameter space (R xR*2)
xZ* xR*? and (R* x R*2) x R*2, on which the d.p.c. and p.g.c. maps operate.

* Cf. Definition 2.4 and (2.7){
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Then we make:
Definition 2.5. By a pre d.p.c. map we mean such a map: \\E V

(2.11), E:D-D', where E is written as E=pr-E, with a D

d.p.c. map E (Definition 2.4) and the projection pr: D—D'. Figure I.

Take p.g.c. and d.p.c. maps E{, E,. Then, for each t=(r; o; m; a)e(0, 1)
x B2 x £+ x Rf? and the pre d.p.c. map E as in (2.11),, we have:
(2.11)y E,(x)>E,-E (1), and E,(1t)>>E-E,(7), with suitable pre d.p.c. maps
E,, E,. (For the order >, see (1.6)5.)

(if) Letting the paramecter space Ax. and the linear function Ly . be as in
Lemma 2.5, we check that the symbol ‘C?" in Lemma 2.5 is changed by ‘Z?
(by using the pre d.p.c. map instead of the d.p.c. map). (In Lemma 2.6’ soon
below, the parameter (P; r; o;a) or o€ dx is as in Lemma 2.5. Also the
elements (11, m)e Z* x Z satisfies: /1> Lq x.(m).)

Lemma 2.6". (1) For a suitable pre d.p.c. map Ex we have (1=p<s):

(2.11); ¥ 2, (X (P)), OP), 1 (Fp)7H(0) |
e Fy 2ot (X, (P)), OL),,

with (r'; ¢'; &' )=E%(r; o; i1 a).
(2) For a suitable el-map Ly we have:
(2.11);,  s*(ZUe, (X)), 2 ")), , 0 (Fym~1(0))
S 2, (X1), D)), ¢,
with ¢' =%y (o).
Proof. The prool of (1), (2) is parallel. We prove only (1). For this we
first remark that. by applying Theorem 1.1 to the right side of (2.11),, we have:

(2.11);  s*(left side of (2.11),)coFm_C1™ (L, (X, (P)), D]((ph))u, (g=1),
where (r'; 0'; a')=E%(r; o; ni; o), with a pre d.p.c. map E%, which is determined
by E%.

(Remark that the estimation in Theorem 1.1 is given by a p.g.c. map, and from
(2.11)y, we have (2.11)]) Now, using (2.11);, the proof of Lemma 2.6" is
given inductively on p:if p=1, then, remarking that F: Ox—0% is injective,
we have (2.11), directly {from Lemma 2.5. Assume that p=2 and that (2.11),
(and so (2.11)}) holds for j<p. Take an element ¢ from the left side of (2.11),
and we writc @ as @=F0_ ", with ¢'eC "(bcfa-(f(r,(P)), //'?"Dg{pix))a,, Here
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(r'; 0" m'; o')y=Ex(r; o; #; o), with a d.p.c. map Ex as in Lemma 2.5. Ap-
plying (2.11)] for p=p—1 to d¢’, we have:

(a) s*p’ € Fu_,CU st (X, A P)), D(p22)), + 2ot (X, P)), Dp0),..,

X
with (#"; ¢”; o”)=Ex(r'; ¢’; rii’; &'), where the pre d.p.c. map Ey is determined
by the maps £y just above and Ej in (2.11), (cf. also (2.11),).

Finally, operating F_, to the both sides of (a), we have (2.11),. g.e.d.

(iii) Proof of Lemma 2.6. We derive Theorem 2.2, from (2.11),
Lemma 2.6’. The proof of Theorem 2.4, is given by using Lemma 2.6" in the
similar manner. Letting the linear function Ly(f)= L, x(f) be as in Lemma 2.5,
Lemma 2.6, we take a suitable linear map L(f). Then we have the following
for each integer m>0:

(a) m—m'>Ly(m’), with m'=[L(m)].

Now take an element ¢ e Z%(,(P), "Ox),, Where o, (P): =, (X,(P))(cf.
Theorem 2.2,). Then setting m’: =[L(m)] and #i: =m—m’, one can write
p=F7 ¢, with ¢"e CYZ(P), /"O%),- By (a) one can apply Lemma 2.6’
to d¢’, and we have:

(b) s*¢’ e F1 0t (X, (P), D0*2), + Z9(L, (X, (P)), D),

with (r'; 0'; o'y =Ex(r; 0; i; a). (Here Eyx is the pre d.p.c. map as in
Lemma 2.6.")

Operating F, to the both sides, we have:

©) s* € Fil, 2ot (X, (P)), D), .

On the other hand we see easily that the correspendence:

(d) (rio;m;a)— (' 0 m'; o)

defines a d.p.c. map, which is determined by Ey and L{t). It is clear that (c)

and (d) insure Theorem 2.2,. q.e.d.

By Lemma 2.6" we see that the open map property for #* in Lemma 2.5
suffices to get Theorem 2.2, and Theorem 2.4, from the p.g. uniform estimations
in Section 1. In n.4 we give a lemma, which is used to get Theorem 2.2,,
Theorem 2.1 {rom Theorem 2.2, (resp. Theorem 2.3, Theorem 2.4, from
Theorem 2.4,).

4. Letting the p.g. sheaves $, ' be as in Theorem 2.1, Theorem 2.3, we
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assume that §, $’ are in Coh’ (X),,, Coh’ (X'),, (cf. (1.4);). Thus H=D%, 9’
& Ok, with a suitable ke Z*. Then letting the parameter spaces zg, T4, and
the estimation maps EgeE;, and E; € Ej , have the similar meanings to
Theorem 2.1, Theorem 2.3, we have:

Lemma 2.7. We have the following inclusions:

s*(CU(A (X, (P)), /"O%). N CU(L, (X, (P)), D))

< 0y CHLy (X, (P)), L7 OF)w
s*(CUA(X"), D% )p.g N CU (L, (X), 9H))

S 0y CH(ty (X), L™ O% )¢5

(2.12)

where (r'; o'; m'; &) =Ey(r; 0; m; o) and (¢'; m')=Eg.(a; m), and the para-
meters (P; r; 0; m; ) and (0; m) are in to(cDxR*xR{?xZ* xR{?) and
in vy (cR{2xZ™*). Moreover, wg: O% -»0%,... are the first resolution of
9,...(Remark 1.1).

We prove Lemma 2.7 in Section 4.2. Note that Lemma 2.7 concerns the
exact complexes, and is of Artin-Rees theorem type. The role of Lemma 2.7

in our d.p. estimations in Section 2 is similar to that of the above theorem in
the completions of rings (cf. [12]). Here we check the implication:

(2.13) Th.2.2,+Lemma 2.7 — Th. 2.2, - Th. 2.1 (and Th. 2.4, +Lemma 2.7
—Th. 2.4, - Th. 2.3).

(From a simple observation,*) we see that Theorem 2.2, ,, together with Theorem
1.1, imply Theorem 2.1. Here we check the first implication in (2.13).) The
key fact for (2.13) is the following inclusion, which is similar to (2.11);:
2.14)  s*(ZUL(X(P)), /0K, N Z, (X, (P)), H))

< 0y Z4(s, (X, (P)), /"0K),.
(This follows using the similar inductive arguments to n.3 (on the length of §).)

Actually, remarking that Z(Z(X.(P)), /™9),<(left side of (2.14)), we easily
have Theorem 2.2, from (2.14), and we also have the first implication in (2.13).

We will conclude Section 2.3 by the following proposition.

Proposition 2.3. For the proof of Theorems 2.1-2.4, it suffices to prove
Lemma 2.5, Lemma 2.7 and Lemma 2.3.

For the proof of these lemmas, see Section 4.2.

*) As in n.3, we consider only the case of the local variety XeAn,,.
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Remark 2.2. Here we make some remarks, which are used in the later
arguments. First, we recall that we saw the following implication in (2.10),:

(2.15), Lemma 2.5 — Th. 2.2,.

Next we remark that the open map property in Lemma 2.5 is given in terms of
the symbol ‘C?. Using the similar (syzygy) arguments to Lemma 2.6’, we see
easily that Lemma 2.5 and Theorem 2.2, enable us to change the symbol ‘C?” in
(2.12) in Lemma 2.7 to the one ‘Z?’. (Namely we have the following inclusion):

(2.15), s*(Zt,(X,(P)), £mOP)), ¢ N (F)71(0))

< Fp 29ty (X, (P)), £m O™ 0), .
By (2.15),, we have the following implication:
(2.15), Lemma 2.5 — (2.15),.

Thirdly, as we checked in (2.14), the symbol ‘C?’ in Lemma 2.7 is changed to
‘Z? (by using Lemma 2.7 and Theorem 2.2,). This fact, together with (2.15),,
insures the implication:

(2.15)4 Lemma 2.5+ Lemma 2.7 — (2.14).
We use (2.15),_; in the proof of Proposition 4.2 (in n.4, §4.2).

§3. Application to Analytic de Rham Theory

Here we summarize our applications of the cohomology theories in Section 1,
Section 2 to the analytic de Rham theory. As was mentioned, we use here our
results on C®-de Rham theory for certain stratified spaces and real analytic
varieties, which were announced in [15],_, and [16] (cf. Lemma 3.2 and
Lemma 3.3). The details of those results will be published elsewhere in a near
future (cf. [18]).

1. Letting the smooth local variety X=X,—D and the smooth affine
variety X’ be as in Section 1, Section 2, we set*).

o) X, rational differential forms,
(3.1, { " E } : =sheaf over { ! g} of { meromorphic differential forms
Qx(xD) 0 with the pole D.

Moreover, let the subvarieties ¥, ¥ of X, X’ in Section 2, we set:

* Similarly to Section 1, Section 2, X;,; and ¥, denote the algebraic varieties whose
underlying analytic varieties are X', V.
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(3.0 Q. (*D) : =1lim Qx(+D)|I0Q(+D),

«m

QX ,alg* "“hm QX alg/“V ‘lngX alg»

where 3, and J,. ,;, denote the ideal sheaves of ¥ and V7,,,. We write
V—D as ¥, and, taking a point Pe D n ¥, we denote by Xp, Vp the germs of
X, V at P. We then set:

(3.1)y H*X,, C): —hm H“(X nU, ©), where U exhaust all neighborhoods of
P in X, (and we deﬁne H'"(VP, C) similarly).

Then we have®):

Theorem 3.1. H*(X,, €)= H*(Qx(+D)p), and H*(X', )= H*(I'(X},,
Qxr a1g) -

Theorem 3.2. H*(Vp, €)=~ H*(Qx(+D)), and H*(V',C)= H*(I(V 44,
QX’,alg))'

(Theorem 3.1 is given to the smooth varieties X, Xp, while Theorem 3.2
is a generalization of Theorem 3.1 to the varieties ¥, f/,,, which have in general
singularities.) Except the concrete style of the formulation, Theorem 3.1 is the
well known theorems of A. Grothendieck in [5]. The second algebraic iso-
morphism in Theorem 3.2 is due to P. Deligne (cf. [7]). The first analytic iso-
morphism in Theorem 3.2 seems to have been not known. In the both theorems,
the analytic isomorphisms are stronger than the algebraic ones. (The analytic
isomorphisms, together with standard Gaga arguments, lead to the algebraic
ones. The proof of the former is harder than the latter (cf. [5]).) We note
that the arguments in [5], [7] use the resolution theorem of H. Hironaka. We
also note that, in the proof of the first isomorphism in Theorem 3.1, [5] uses a
comparison theorem of H. Grauert-R. Remmert (on the behaviors of coherent
sheaves under proper maps). As we will see soon later, our proof of Theorem
3.1 and Theorem 3.2 is largely different {rom the arguments in [5], [7]. Our
proof is more close to that of the holomorphic de Rham theorem for Stein
manifolds (cf. H. Cartan [1]):

(3.1), H*(Y, CO)=H*(I'(Y, £y)), where Y is a Stein manifold and Qy is the
sheaf of holomorphic differential forms over Y.

As is well known, (3.1); is a formal consequence of the following facts:

*) See the footnote *), p. 425.
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(3.1), H*(Y, Qy)=0(g=1), HUY, Qy)=TI(Y, Qy) (Theorems A, B of H. Cartan
for Qy).

(3.1); Exactness of Qy: 0— C—> Q% .- — Q¢ -4, ... (Poincaré lemma).

Theorems A, B are a main result in the theory of Stein varieties, while (3.1); is
based on the analytic contractibility of the analytic manifolds. Our proof of
Theorem 3.1 and Theorem 3.2 is patterned on the proof of (3.1); indicated
above. We also use a topological fact (Lemma 3.5), whose correspondence does
not appear in the proof of (3.1);.

2. First letting Qx, 25 be the sheaves of holomorphic differential forms
over X, X/, we set: Qy: =lim Q/3I2Qy and Q. : =lim Q. /I Qy., where I,
and 3, denote the ideals of ¥, ¥'. Then, from our main results, Theorem 1.5,
Theorem 1.6 and Theorem 2.5, Theorem 2.6, in Section 1, Section 2, we have:

Lemma 3.1. (1) HY(X,, Qy),,20, HY(X', @x.),,~0, and HYXp, ),
gQX(*D)Pa HO(X,, 'QX' p.ggF(X;lg’ QX’,alg) .

(2) HYXp, 2y, =0, HY(X', Qx),,=0(q21), and HO(Xp, Qx),,
= Qx(+D)p, H(X', QX’)p.ggr(Xz,ily QX',alg)'

Lemma 3.1 corresponds to (3.1), in our p.g. cohomology theory and in
p.g. cohomology theory in the completions. As in the proof of (3.1);, Lemma
3.1 will play the most basic roles in our proof of Theorem 3.1 and Theorem 3.2.
Also we note that Lemma 3.1 concerns the Stein and the algebraic properties of
X, X', which may be the most important properties of these varieties (cf. also

Introduction).
3. Next let jy be the injection: C & Q%., and we define:
(3' 1)4 Cq(X,a C)p.g: = hm Cq(Ma(Xl)a C)p.g ’

where CH (X'), C),q: =) 'CUAL(X), 2% )y, and the p.g. covering 7, (X')
is as in Theorem 1.3.
We define CUX,, C), . similarly to the above. Then we have:

Proposition 3.1 (P.g. Poincaré lemma). The following complexes are
exact:
0— CU(Xp, C)p.g — CUXp, Q%)p.g —4— CU(Xp, Q%)p.s —

3.1 {
G-Ds 1o, cix, €),., —> CUX', Q%),., —4> CUX', QB), o —

where d denotes the exterior differential operator.
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Proposition 3.1 will correspond to (3.1)5 in our proof of Theorem 3.1. The
proof of Proposition 3.1 is essentially very elementary (cf. the end of Section
5.2). Next letting the finite sets #=(f})5=y =I'(Xo, Ox,) and " =(f})5=,
cl'(X’, Oy ), be as in Section 2, we set:

(B2)5 Qb= mQ%ed S7IAQE, Qf i = LM% +d SN QR
and
(32)3 Cq("do(xl)a QX’,m)p.g: =F,m(Cq('Ma(X’)5 'QX’)s)p.g

+d A Ci (AL (X)), Q-
Also letting the p.g. covering «,(P), attached to Xp, be as in Corollary 1.2, we
define the p.g. complex C%Z,(P), Qx m),., similarly to the above.

Lemma 3.2 (P.g. open map property for de Rham complex). We have the
inclusions:
(Cq(M”(P)’ 'ng,m)p.g n d—l(O))C dcq("du’(P)s Qgttnln')p.g }
(Cq(Ma(X,)’ Qg(’,m)p.g n d_l(o)) < dcq(da'(Xl)9 Q§7,lrﬁ')p.g
(p21,920),

where the parameters p’, ¢’ are chosen suitably in the manner as in Lemma 2.3.
Moreover, m’=[Lx(m)] and ' =[Ly.(m)], with linear maps Ly(f)=cyt and
Ly()=cx -t; cx, cx >0.

For the proof of Lemma 3.2, see Lemma 4.7 (cf. part B, §4.1) and the end

G2e |

of Section 5.2. Our proof of Lemma 3.2 uses certain open map properties for
Koszul complexes and a.d. properties of (topological) contractibility of analytic
varieties (c{. §5.2). Lemma 3.2 is no longer, of obvious nature. Now ap-

plying Proposition 2.1, to the open map property in Lemma 3.2, we have:

Lemma 3.3 (P.g. Poincaré lemma in the completion theory). The fol-
lowing complexes are exact:
3.2), {0——»cq<r7p, Clp.s— C'(Pp, Qg — -~ C' (P, OR)p  —

0—CUV’, C)p.g— CIV', Q%) p.g— - 4 CI(V', Q%) p.g —

(In Lemma 3.3, the varieties in question are ¥, ¥’ (instead of X, X’ in
Lemma 3.2: by a simple observation of p.g. properties of the imbedded varieties
V, V', we have: CY(Vp, Q%),,= CUXp, 0P, g---(cf. [18])). Then, also from
a simple observation, we easily check that d~!(0) at the first steps in (3.2),
coincide with C4(Xp, C), ,,...(cf. [18])).

Now, from Lemma 3.1-Lemma 3.3, we easily have:
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Lemma 3.4. We have the following isomorphisms:

(3-2)s
{H*()fp, C), 2 H*(Qx(*D)p), and H*(X', C), = H*(I' (X3, Qx,,alg))}
H*(VP’ C)p.g;H*(QX(*D)P)’ a”d H*(Vls C)p.g;H*(r(V;lg’ QX',alg)) .

These isomorphisms summarize our applications of the p.g. cohomology
theories as in Lemma 3.1-Lemma 3.3. In order to get Theorem 3.1 and
Theorem 3.2, we should drop the term ‘p.g’ from the cohomology groups
H*(Xp, €),4,-.. in the left sides in (3.2)s. In this step we will use our main
results on p.g. C*-de Rham theory for certain stratified spaces in [15],_,, [17].

4. Let C" be the ambient (euclid) space of the local variety® X and the
affine variety X'. We identify C" with the real euclid space R?” in a natural
manner, and we fix coordinates x =(x;)2; of R?". The symbol e will denote
the sheaf of C®-(differentiable) differential forms over R?". Taking an open
set Y of R?" and a p.g. function g: Y ->R?, we set:

(32) &(Y;9)pe:={pee(Y); p=3 g @rdxX satisfies the following for each
suffix K and each element J e (Z* y 0)3":

(3.2) |Dy;px(P)|<oyg(P) in Y, with a suitable a;e R}2, where D;=07/0x".}
Next taking subsets Z, Z’ of X, X', we define:

%,(Z) }

VA
22" : =g-p.g. covering of {Z’} of size ¢ in C" (= R?*"),

(3.2) {

where g is the p.g. function |hx!| or |z|+1 of X or X’ (cf. Theorems 1.1-1.4).
We use the symbols N (Z), N, (Z") for supp #,(Z) and supp #,(Z'). We may
call N(Z), N(Z') the p.g. neighborhoods of Z,Z' in C" of size ¢. Such
p.g. neighborhoods are suitable for investigations of the p.g. properties of im-
bedded varieties (cf. [19]). See also Proposition 4.6, Section 4.2 of the present
paper, where we discuss p.g. properties in connection with extensions of cochains
from imbedded varieties to their ambient spaces.) Now we set:

(3.2
e(Xp)y.: = lim e(N,(X,(P)), o> €7 1)y ¢ = lim e(Vo(P,(P), 0.5
8(X' )y g = lim e(N,(X), )p.uo 6V )y 5 = lim €N, (¥"), )y

*) Recall that X is of the from X=X;— D, with a variety X; in U,. We are assuming that
U,cCn.
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where g =|hz!| or |z|+1. Also the manifold X,(P): =X n U(P), where U/(P):
=disc in C” of center P and radius r, is as in Theorem [.1. Moreover, we set
V.(P): =¥n U,(P). Then our main result in [17] insures™:

Lemma 3.5. We have the following isomorphisms:

H*(Xp, €)= H*(e(Xp),.p)> H*(Vp, C)= H*(e(Vp), ) } _

(3.2), {H*(X', C)Q—’H*(S(X')p_g)a H*(V', C)QH*(E(V/)p.g)

Note that the right sides in (3.2); may be regarded as C*-analogues of the
analytic de Rham cohomology groups as in (3.2)¢, Lemma 3.3. Also note that
the left sides in (3.2), are the topological cohomology groups H*(X,, C),...,
while the left sides in (3.1)¢, H*(Xp, C), ... contain the suffix ‘p.g.” (This
difference occurs from the following situation: first, in the definition of
H*(Xp, C), ,, we used the p.g. coverings N (X,(P)), which are attached to X(P)
(cf. Definition 1.6,), and our use of such p.g. coverings is a main source for the
suffix ‘p.g.” mentioned just above. On the other hand, our proof of Lemma
3.5 is based on a type of stratified spaces attached to real analytic varieties, which
we call normalized series of stratified spaces (cf. [17]). Such stratified spaces
admit what we call p.g. simple coverings, where the word ‘simple’ is used in the
similar sense to the ‘simple covering’ in the C”-de Rham theorem in [21]. The
simpleness as above insures that the above coverings satisfy the standard Larey
condition for the constant sheaf Z (and so for R and C), and they are used to
determine the topological cohomology groups H*(X,, C),... Such coverings are
also suitable for treatments of the p.g. properties of C*-differential forms over
analytic varieties. Using the above stratified spaces and the p.g. simple coverings
of them, the proof of Lemma 3.5 is formal (cf. [17] and [18]. See also Remark
3.1 at the end of Section 3.)

5. Finally we will see that Theorem 3.1 and Theorem 3.2 are derived from
Lemma 3.3 and Lemma 3.5 in a formal fashion. For this we first let ey, ey
denote the sheaves of C®-differential forms over X, X'. Letting the subsets
Z, 7' of X, X’ be as in (3.2)y, we define ‘p.g. complexes of C*-differential forms’:
(3.2); ex(Z),, and ex.(Z'),, (in the similar manner to (3.2),, by using the

coordinates of X, X' instead of those of € as in (3.2)).

*) Lemma 3.5 is given in [17] for local analytic varieties, and is applied to the variety Xp.
On the other hand, Remarking that, the affine variety X’ is compactified (in P*(€)>C")
and, applying the local results just above to each point of the completion of X’, we get
Lemma 3.5 for X'.
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Moreover, we use the symbols #.(Z), #.(Z') for the p.g. coverings of Z, Z’
in X, X' of size ¢ (cf. also (3.2)5). We also use the symbols N (Z), NAZ')
for supp #.,(Z), supp ZAZ'). (Thus N(Z), N(£') are the p.g. neighborhoods
of Z,Z' in X, X'.) Then, corresponding to (3.2){, we define:

ex(Xp)p.s0 = lim ex (N (X,(P));.50 ex(Pp)p.5: = Lim ex(Vo (V)5

(3.2); { k .
ex (X)), o= llril ex (No(X))p.po ex (V') gt = 1121 ex (No(V')p.g -

Then it is not difficult® to check: H*(ex(Xp), )= H*(e(Xp),),-.., and Lemma
3.5 is rewritten in the following manner:

H*(Xp, €)= H*(ex(Xp),.5), H* (¥, C) ;H*(ex(h)p.g)} _

(3.2), {H*(X', C}%H*(é’x'(X’)p.g)n H*(V', C)E’H*(Sx'(V/)p.g)

Now we denote by 7, 7 the natural homomorphisms from the analytic de Rham
groups to the p.g. C*-de Rham groups:
(323 T:Qx(xD)p — ex(+D), 4 : Qx(+D)p — ex(Vp), -
Moreover, {from a simple observation, we have natural homomorphisms** :
(B2a i H*ex(Xp)yg) — H¥(Xp, €©)pg f: H*(ex (Vr)y )

I H*(VPs C)p.g .
Then we easily have the following diagrams

H*(Qx(xD)p) % H*(Xp, €),, H*(Qx(+D)p) 2% H*(Vp, C), ,

| u

H*(ex(Xp), o) 2% H¥(Xp, €)  H*(ex(Vp),.0) % H*(Vp, €)
Figure L

T “

(and the similar diagrams for X’ and ¥'.) It is clear that the above diagram
insures the implication:

> Th.3.1 and Th.3.2.

(3.2); Lemma 3.34+Lemmaz 3.5

Remark 3.1. As may be clear from the content of Section 3, the most

P

From that X, X’ are smooth, this isomorphism is rather easily checked (cf. [18]. See
also Proposition 4.6 for treatments of the p.g. neighborfoods.)

Such homomorphisms are constructed, by using similar arguments to the one in [21],
which attaches, to the closed differential forms, their cohomology classes. See also the
arguments in Section 5.1 and n.5, n.6 in Section 5.2, where we give some cohomological
arguments. (Such arguments have similar algebraic structures with the arguments in

211

k)
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important topological fact in getting Theorem 3.1 and Theorem 3.2 is the p.g.
C®-de Rham isomorphism as in Lemma 3.5. Also we use some a.d. properties
of (topological) contractibility of analytic varieties in getting the open map prop-
erty of the de Rham complex as in Lemma 3.4 (cf. [15],. Also see the end of
Section 5.2.) The underlying basic fact for the above topological facts is the
existence of stratified spaces for analytic varieties (=normalized series of strat-
ified spaces), which were mentioned previously. The details of the above
topological facts are in [15],_, and the author’s forthcoming paper [18].
(The first three are outlines of what are mentioned soon above, while [18] will
contain the details.)

As may be from the context of Section 3, the above topological facts are
indispensable in getting Theorem 3.1 and Theorem 3.2. However, as in the
case of the holomorphic de Rham theorem (3.1),, and in the proof of Theorem
3.1 in [5], the most important facts in getting the analytic de Rham theorem
(as in Theorem 3.1, Theorem 3.2) are the results on the coherent sheaves in

Lemma 3.1.

Remark 3.2. At present, our results on the analytic de Rham theory are
given separatedly, according as we are concerned with the analytic or topological
aspects. The present paper covers the necessary analytic facts for the proof of
Theorem 3.1, Theorem 3.2, while the necessary topological facts are sum-
marized in [15],_,, [17] and in [18]. The author plans to write a survey paper
on the analytic de Rham theory, which will include (1) even treatments of the
analytic and topological parts as above and (2) comparisons of our methods
indicated as in Section 3 and the methods taken in [5], [7].

Chapter II. Uniform Estimations on Homomorphisms of Coherent Sheaves

In Section 4.1 we summarize our non cohomological uniform estimations
on homomorphisms of coherent sheaves (Lemma 4.1-Lemma 4.7). Using
cohomological versions of them, we prove all the lemmas in Chapter I, Lemma
1.2-Lemma 1.4, Lemmas 2.3, 2.7 and Lemma 2.5, which concern the p.g. and
a.d. uniform estimations in Chapter I (cf. §4.2. Also see Introduction). Our
cohomological version of Hilbert zero point theorem® and our non coho-
mological version of the main lemma, Lemma 2.5, in the d.p. cohomology

*) Cf. Introduction.
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theory in Section 2 are given in n.2-n.4, Part B, Section 4.1 (cf. Lemma 4.2—
Lemma4.4. Also see Introduction). The proof of the estimations in Section 4.1
is given in Section 5. In proving the open map properties® in Section 4.1, we
see that these are checked easily for smooth points of the varieties in question.
We then show that those properties for the smooth points lead to the properties
Sor ‘all points’ of the varieties (§5.2). Such a method may be interesting in
connection with treatments of the a.d. properties of varieties with singularities.
Finally, thc procedure in Section 4.2, which rewrites the non cohomological
estimations in Section 4.1 in cohomological forms, is essentially algebraic; large
parts of Section 4.2 is given in an abstract fashion in terms of the g-sheaves
(Definition 1.4;). The content of Section 4.2 may be useful for general treat-
ments of the p.g. and a.d. properties of g-sheaves.

§4. Uniform Estimations with Bound and Algebraic Divisions

§4.1. Non Cohomological Estimations

In Parts A, B we give non cohomological estimations of local forms, which
concern the first and second properties in the title. In C we give a global
version of the results in A, B.

A. Uniform Estimations with Bound

1. Geometric underlying data. In a similar manner to Section 1.2, we

start with giving the following geometric datum:

4.1) X:=(C"(z2), Uy, Xy, Xg, Py) consisting of an analytic variety X, (3 P,)
in an open set U, of a euclidean space C"(z) and a subvariety X of X,.

The variety X may be empty, but should satisfy:
(4.1)p X: =X,— X, is smooth, and X contains Py, if X#¢.

(When X is the divisor of an element hel(X,, Oy,), the datum X is of the
form which was used in Section 1.2: X € An,, (cf. (1.8),). Note that, in this
case, X =X,— X¢ is a Stein variety. In Chapter II we do not require this con-
dition. The datum X is more general than geometric data in Am,,in Section 1.2.)
We fix the geometric datum X in the remainder of Chapter II. The underlying

*) Sce the footnote *), p. 432.
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variety of X will be X=X,—X,;. Moreover, for convenience of the formula-
tions of the estimations in Section 4, we fix subvarieties X, X, of X, satisfying

4.Dg XX 2X,0X,.

2. Parametrizations. Next we will define certain sets of cross sections to
coherent sheaves, which are parametrized in an explicit manner (cf. (4.1), soon
below). The parametrization here is of non cohomological form and is simpler
than the one in Section 1, Section 2. However, the formulation of the former
has some similarities to the one in the latter: first setting X,: =X, — X, we
define a parametrization of open manifolds in X (=X,— Xjg):

4.1);  ug,: pg: =X xR*su=(P;r)
‘ — Ouwv(X)3 U/(P): = {Qe X; d(P, Q)<r},

where d is the natural distance in €"(z) (cf. n.1, § 1.2).

Next taking a matrix K: O%—D%(u, v>0), whose entries are in I" (X, Oy,),
we write the image KO%(<=0%) as 8. (Here Dy, Oy, are the structure sheaves
of X, X,.) We use the symbols 8, 05 for the g-structures of K, which are
induced from K: 0%—K and the injection: 8 & L4 (Definition 1.4,). Setting
Ag,:= pg, x R, we take an element (P; r; a)e g (=X, x R* xRf). Then the
sets of the cross sections, which are used in Section 4, Section 5, will be of the

form:

r(ﬁr(P)a Ra gﬁ)a
rU.(P), &; 0g),

lp(Q)lg<a
lp(Q)|e<a

where | |g, | |p are the 65- and Og-absolute values (Definition 1.4,).
Note that, by the definition of f,..., the above sets are explicitly as follows:

(4.1), { };={<per(ﬁ,(P), R);{ }in ﬁ,(P)},

41), I(O(P), &; 05),=KI (T (P), D; O),,
@02 L(OLP), §; 0),=T(T(P), O; 6,0 I'(T(P), K,

where 0, 0" are the standard g-structures of 0%, OY% (Definition 1.45).

3. FEstimation maps. Letting M denote the collection R+ x R* — R*

of all positive monomials (n.5, §1.1), we set M: =Mx M, l,q M,
and we regard an element M=(M,, M,) eM=Mx M as Rt xRt — _é+
a map (cf. also Figure I): Figure L

(4.1); I:R*xR*>(r; a) — R* x R*>(M,(r), My(a/r)).

We use such a map in the remainder of Section 4.1.
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4. Bdd® uniform estimation — 1. Letting the matrix K be as in n.2,
we take an open subsel U, =U, (3 Py) of U, and an element o=0y e R{2.
We then form the following paramelter spaces:
(4.1), g ={P; NeU, nX)xR*: r<{og(P)}"'},
with g(P)=d(P, X,)"'*%, and Ax: = px x Rf.

Lemma 4.1’ (Uniform estimation with bound — 1). Take a suitable
MyeM. Then we have:
(4'1)5 I*F(Ur(P)'- Rw H}t‘)aCF(Ur'(P)a ‘Rn 69‘):1'5
with (' a')y=M(r; a), where the parameter (P; r; a) is in 2g(c X, x R* x R})
and i=inclusion: U,.(P) U(P).

We prove Lemma 4.1’ in Section 5.1.

5. Bdd uniform estimation —2. Here we give an another uniform estima-
tion, which is derived from Lemma 4.1’ (cf. §5.1) and is sharper than Lemma

4.1" in some aspects (cf. Remark 4.1): first take a sel #={h}42,cI'(X,, Ox,)
satisfying n ,D,= X, where D,=divisor of h, on X,, and we set:

(4.1)¢ Coh(X,; #):=collection of all coherent sheaves $ over X, which admits
a resolution of the form:

4.1)¢ 00— Of Koot ... K1, Okt Ko, §(=O%) — 0,
where K (0<j<p) are matrices with entries in I'(X, Ox) and satisfy:
4.1)¢ the entries of K are in I'(X,, Dy (*D,)) (for each j, u).

Here Oy (*D,) denotes the sheaf over X, of meromorphic functions with pole
D

Now taking an open subset U, ,(2 P,) of U, and an element o, e B2, we
form parameter spaces g,(c= X, X R*) and 4,: =g, x R} in the similar manuer
to (4.1)4 (by using (U, ;, 6,)). Then we have***):

Lemma 4.1 (Uniform estimation with bound — Coh (X, h) = M
2). There are maps &: Coh(Xy; £)39—M> i, g l
and ¢ : £%— M which are factored as in Figure I, Zr___ B
and with which we have the following for each $He Figure IL#*%)

*) ‘Bdd.’=bounded.
**) When X;=¢, we understand that d(P, X,;)=1.
**%) ‘1g’ in Figure 11 is the length map (cf. (1.4),).
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Coh (X,; #):
(4'1)7 I*I—(Ur(P)i 55, Bf(g)acr(Ur'(P)ﬁ 55, 9&3)a'7

with (r'; a’)=Z‘~I@(r; a), where the parameter (P;r;a) is in A(cX,xR*
x RY).

We derive Lemma 4.1 from Lemma 4.1’ (cf. §5.1).
Here we give a remark on the formulation in Lemma 4.1’ and Lemina 4.1, which

we use in getting Lemma 4.1 from Lemma 4.1’ (cf. §5.1).

Remark 4.1,. (1) Take an element h e I'(X,, Oy,), and let Oy (*D) denote
the sheaf over X, of meromorphic functions with pole D (=divisor of ). Then,
replacing the condition: ‘the entries of the matrix K are in I'(X,, Ox,)’ in Lem-
ma 4.1’ by ‘those are in I'(X,, Oy (*D))’, we get also the similar inclusion to
(4.1)s (in Lemma 4.1") for K (after the above change). Actually remark that
K=hiK are in I'(X,, Oy,), with a suitable de Z*, and we apply Lemma 4.1’
to K. Then, recalling the explicit form of the estimation: (r; a)—(r'; a’) as
in Lemma 4.1’, we get easily the inclusion mentioned soon above for K from
the application of Lemma 4.1’ to K.

(2) Lemma 4.1 is sharper than Lemma 4.1’ in the point that (a) the para-
meter space g, is independent from the individual sheaf $ e Coh (X,; h) and
(b) Lemma 4.1 satisfies Figure IT (as in that lemma). The latter is used to get
the similar diagrams in Corollary 1.1, Corollary 1.3 and in Lemma 1.2. Con-
cerning the first, we remark that the open set U, =U, y in the parameter space
i (cf. (4.1),) is taken independently from the individual matrix K as in Lemma
4.1. Actually, take an open set U;=U, x (3 P,) of U,, and finite points P, ,
€(Uy,x N Xo), and we attach to each P, , a parameter space gy , (=X xRY)
of the form (4.1),, by means of a suitable element o, ,€ Rf? and an open subset
Uk,, (3P ,)(cUy). Then, by Lemma 4.1' (applied to g ,), we have the
similar inclusion to each (P,; r)e gy ,. Also assuming that U, xc U,cU,
with a suitable open subset U, of U,, one can assume that U Ui,o2 Uy x-
From this we see that, by taking a suitable element o € Rf? and forming a para-
meter space gy by means of (Uy,y, o), we have the similar inclusion to (4.1)s
for each (P; r) € pi, with a suitable estimation map My e M. This insures the
independence of the first factor, U, x, of the parameter space z¢x mentioned just
above.

(3) The similar independence from the first part of the parameter space
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.k also holds, by assuming that the entries of K are in I'(X,, Oy (*D)) (cf. (1)).

Remark 4.1,. In Lemma 4.1, Lemma 4.1, we used the subvarieties X,
X, of X,. Inlater applications, we take (X, X,) to be (X, Xg .ing) Or (Xo, D),
where D is a divisor of X;. The use of the varieties X ,, X, as above is convenient
for the proof of Lemma 4.1. In B, Section 4.1 soon below, we use the pair
(X1, X,) asin (4.1)p. Similar remarks to the pair (X, X ;) just above also hold
for the estimations in B.

B. Algebraic Division Uniform Estimations

This part concerns mainly uniform estimations on open map properties of
Oy-homomorphisms (Lemma 4.2-4.5). Such results are our main results on
non cohomological uniform estimations in this paper*). The proof of the results

of Section 4.2 will be given in Section 5.2.
1. A.d. estimation maps.*® We begin Section 4.2 by the following
Definition 4.1. By an a.d. estimation map we mean the one:
(4.2); E:R*"X(Z*xR")3(r;m;a)— R*x(Z*xR*)s('; m'; a’),
where ' =M ,(r), ' =[L(m)] and a’=M,(a/r)-exp Ms(m). Here M; (1=5i<3)
are positive monomials and L is a linear function: L=ct; ¢>0.

We then set: R*x(Z*xRt)— R*xZ+

e [peise

Rt x(Z*xR")— R*xZ+
Figure 1.

(4.2); E,q4: =collection of all a.d. maps.

Letting E€E,4 be as in (4.2); we call M,
and L the first and a.d. parts of E. The map
E is factored as in Figure I. (In Figure I, the factor ‘R*" in the right side is
the first factor of R* x(Z* x R*).)

2. Algebraic and analytic a.d. properties. Take a finite set 2 =( fi5=1
cI'(X,, Oy,), which vanishes at P, e X, (cf. (4, 1),) and satisfies:

(4.2); f;#0(X, ) for each f; (1<j<s) and each irreducible component X, ;
of the germ of X, at Py.

Then the set A =(f")5=1, the m-th homomorphism F™: Oy—Oy and the
sheaf /"Oy:=Fm"O%(<=Dx) will have the similar meaning to n.2, Section 2.1.

As in Section 2 we use ™ to measure the a.d. properties of Ox-coherent sheaves.

*) Cf. also the beginning of Chapter IL
**) A.d. =algebraic division (cf. §2).
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On the other hand, letting V' be the locus of f, we also use® the ‘distance
| #(P)l: =2%5=1 |f{P)| to V’ to measure such properties. We will compare the
above two means for the measure of the a.d. properties. For this taking an open
subset U, g, (2 Py) of U, and an element o5, € R}?, we form a subset gy,
of X, xR* in the manner in (4.1),, by using (Uy%,, 0%,). Also taking an

clement meZ™ we set*®: v5 : =pz xZExRi. For an element (P; r; m; a)
ety (X xR*xZ* x R) we definc:
(4.2),

{F(Ur(P)’ /”‘Dx)a} .

{F"’f(ﬁr(l’), 0%; ), (cf. (4.1)3) }
r.(p), Oy '

{pel (U,(P), Oy); l9@)|=al #(Q)|"in U.(P)}
In the above 6 is the standard g-structure of D% (cf. (4.1), and Definition 1.4,).
We then have:

Lemma 4.2 (Algebraic and analytic comparison of a.d. properties). For

a suitable a.d. map Ez €E, 4 we have***
(4.2); *I(O(P), Ox)z<I(U,(P), " Ox)ar

with (r'; m'; a’)=Eg (r; m; a) (¢f. (4.2);). Here (P;r;m;a)isin vy, (cX,
xRt xZ* x R").

Treatments of the left side of (4.2); are sometimes easier than the right
side; Lemma 4.2 is useful in treatments of the a.d. properties of O,. Next we
may regard Lemma 4.2 as an analogue of the comparison of ‘p.g. and mero-
morphic” (as in Theorem 1.6) in our treatments of the a.d. properties. Moreover,
as we will see in n.3, Lemmad4.2 implies Hilbert zero point theorem for 4
(Lemma 4.3"). Lemma 4.2 may be a basic fact in the a.d. properties of Oy.

3. Koszul complex — 1. Taking a finite set #=(g;)}=; <I(X,, Oy,)
satisfying the similar condition to (4.2);, we denote by ¢ the Koszul complex

for #: 09, 9o, ---S,(j’) Ce, ... Ge=1, 9,50, We assume:
(4.2)} the locus Wof # <V (=locus of A

Now taking an open subset Uy 4(3 Py) of Uy and an element o, € Rf2, we
form a subset g, (=X, x R*) in the manner in (4.1),. Also taking an element

#*) By Lojasiewicz inequality, we may regard | #(P)| also as the distance to V.
) Z+r={meZ; mzn} (cf. the introduction of Chapter. I).
#%%) Precisely, the map Ex, depends on also /. The set , is a basic underlying datum
in Chapter 1I, and we use the symbols E; , instead of Eg, ,,....
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m=mgyeZ™ weset: 7,: =p, X ZExRT.

Lemma 4.3 (Open map property for Koszul complex). For a suitable
a.d. map E,eE, 4 we have 1Sp=t—1):

42, #IOLP), 0P, 0 G 0) =G, [(T,(P), om0 1)),

with (r';m'; a’)=E,(r; m; a), where (P;r;m;a) is in 4 (cX, xR*xZ+*
x RY).

We check that Lemma 4.2, 4.3 give a cohomological generalization of
Hilbert zero point theorem. For this, taking a point Pe X, n W, we form
a filtered complex #%:0-%%—..-—%5 %2, .. ¢ 1> %,L»0, where %5: =
{/’"D,(é’l w=1 and the degree one map is G, (0<p=t—1) (cf. n.1, §2.1).

Lemma 4.3'. (1) The complex €% satisfies the open map property (De-
finition 2.1,). (2) The open map property for €% at the final step®: O%
~Ge=1, 0,0 is equivalent to Hilbert zero point theorem for (/s 7): #Ox.p
> /"Ox,p, with a suitable e Z*.

Proof. The check of (2) is easy. To see (1) take an element « e R}2.
Then f;=0 on W implies: |f(Q)|<o-d(Q, W) in a small neighborhood Up of
P in X. By Lojasiewicz inequality we have: |[f(Q)"|Sa-|7(Q)I™, with
suitable m, m e Z* and aeR*. Applying Lemma 4.2 to g, we have:f"-
Ly p<= Ok p. By (2) this implies the open map property for G,_;: O4—>Oy.
Finally, Lemma 4.3 insures the open map property for G, (0 p<t—1), and
we have (1). g.e.d.

Hilbert zero point theorem may be the most basic fact on the a.d. properties
of analytic varieties. Its cohomological generalization, Lemma 4.2 and Lemma
4.3, may be also basic in treatments of the a.d. properties. (Lemma 4.3" is given
for the germ Oy p. Formulations of semi-global and global versions of Lemma
4.3’ will be left to interested readers.) We use Lemma 4.2 and Lemma 4.3 for
computations of the Cech complexes, which are defined from Koszul complexes
in the standard manner (§5.2). Though our use of those lemmas are in an
elementary level, the open map properties as in Lemma 4.2, Lemma 4.3 may
be worthwhile pointing out in connection with the very basic roles of Hilbert

zero point theorem and of Koszul complexes for algebraic and analytic varieties.

*) This means that G,_(/™0%,p)D » ™Dy for m>»0. Here m’'=c(m), with a map c: Z*
— Z* satisfying lim ¢(m)= oo (cf. Definition 2.1).
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4. Koszul complex — 2. Lemma 4.3 concerns the single Koszul complex
G. Here we will be concerned with the family # = {#™}5_, of the m-th Koszul
complexes F™: O»DXi---—»D,(;’) —f—"’"—w--—&)}i?;‘» Oy —0 (cf. n.1, §2.3):
letting the parameter space gy, (=X, xR*) be as in Lemma 4.2, we take a
suitable linear function Ly(t)=cyt; ¢q>0. Then we have:

Lemma 4.4 (Open map property for the family F ={F™}*_,). Choose a
suitable a.d. map Eg €E, . Then we have the following for each me Z*(1
Ss<p—1):

@.2), #{T,(P), /"0P),n (kernel of F1)}
< Py LU, (P), 7 0%),,

where (r'; W'; a’)=Eg (r; i a). Moreover, (P;r) is in p%, (cX, xR"),
and the a.d. exponent meZ* of /™ satisfies: i > Lo(m) (cf. also Lemma 2.5).

If we fix an element m € Z*, which characterize the complex F™, then (4.2)5
follows from Lemma 4.3. The independence of the map Eg, from such me Z*
is the key fact in Lemma 4.4, We use Lemma 4.4 to get the corresponding
cohomological version, Lemma 2.5 (cf. §4.4), which is the main lemma in the

d.p. uniform estimations in Section 2.

5. Exact complex. Letting the set #={hjie,cI'(X,, Oy,) be as in
Lemma 4.1, take a coherent sheaf $eCoh(Xgy; #) of the form in (4.1);:
0—->Oke Ke-1, ... Ki Ok Ko, 6 (=Dk)—0. Moreover, taking a suitable open
subset U; =U, (3 Py) of U, and elements 6 =0, e R}?, m=myeZ*, we form
parameter spaces g and 7 by®

(425 gy ={(P;NeX nU) xR*; r<{og(P)} "}, vg=py x Z5 x RY.

Lemma 4.5 (Open map property for exact complex). For a suitable

a.d. map EyeE, 4 we have:
4.2)s *(OLP), L"OY),NIOLP), D) =Kol (T, (P), ™Dk,
with (r'; m'; a’)=Egy(r; m;a). Here (P;r;m;a) is in tq(cX, xR*xZ%
x RY).
Note that Lemma 4.5 concerns an inclusion of Artin-Rees theorem type

(cf. §2.1), and is used in the proof of the corresponding cohomological fact
(cf. Lemma 2.7, §2.3. Also see §4.4). As we will see in Section 5.2, the proof

*) Cf. also (4.1),.
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of Lemma 4.5 is easier than that of Lemma 4.3, Lemma 4.4, which concern

the open map property of Koszul complexes. (Note that the Koszul complexes
are not, in general, exact.)

6. Comparison of filtrations. Here we add a lemma, which is used in the
proof of the comparison of the filtrations in Lemma 2.3. For this letting the
sheal $eCoh(X,; #) be as in Lemma 4.5, we define Oy-homomorphisms:

(4.2)7  Kon:=Ko+F": O +0%30,+ ¢, — D43 Kop, +Fp,,

where we use the symbol F™ of the homomorphism: 0%— Oy also for its k-times

direct sum: O%: =0%+-- + 05— 0% : =0y +--- + Oy (cf. n.2, §2.1).

Also we use the symbol §,, for the image of Kg ,,: 9, =K, (0% <0k,
Next, in Lemma 4.6 soon below, we use an estimation map, which is slicely

different from the a.d. maps in Lemma 4.2-Lemma 4.5. For this we set:

(4.2)5 E.4:=collection of all maps E': R* xZ*x R*a(r; 111; a)»R* x Z* x
R+>(r'; 'y a’), where (+';a’)=M(r;a), m'=[L(m)], with a map MeM
(cf. n.1, §4.1) and a linear map L=ct; ¢>0.

Rt xZ* xR — R x Z*
Similarly to n.1, Section 4.2, we call the maps

M:Rtar—>Rt*arand L: Ztsm—Z*>m’' the
first and a.d. parts of E'.

P e
Rt*xZ*xR* — R*xZ*
Figure II.

Lemma 4.6 (Comparison of filtrations).

For a suitable map eq: Z*31m—E, 43 Eg ; Z+ B
> L d

satisfying Figure IIl, we have: ‘;L l”
(4.2), *(L(T(P), D%, n [(TLP), H5)) {0} — M xLn
CKO,ﬁr'(Ur'(P)a fo‘“")m Figure ITL*)

with (r'; m'; a')=Eg ;(r; m; a), where (P; r; iit; a) is as in Lemma 4.5.
(In Figure II1, we set Ln: ={L(f)=ct; ¢>0}. Also M: =collection of all

positive monomials. The map n:E, 3 E'—-MxLn>(M, L) attaches to E’
its first and a.d. parts.)

Remark 4.2. We make a remark on the estimation maps in Lemma 4.2—
4.5 and in Lemma 4.6. For this, for an a.d. map E€E, 4 as in (4.2),, we define

a series {Eg ;}m=; of maps Ep , €E; , which satisfies Figure III, as follows:

*) The set {0} consists of the single element 0Z+U0. Thus Figure III claims that the
first and a.d. parts of Eg,, (msZ*) are independent from meZ+.
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(42)s Epa:R*xZ*xR *a(r;m;a) — R*xZ*xR*('; w’; a’),

with (r'; a’)=(M(r), M,(a/r)exp M;(m)) and m’'=[L(m)]. (The first and
a.d. parts My, L of E€E_ 4 and the positive monomials M,, M, are as in (4.2),.)
The estimations in Lemma 4.2-Lemma 4.5, for example in Lemma 4.5

are given as follows:
(4.2)5 (', ii'; a’)=Ey 4(r; m; a), where E€E, ,is as in Lemma 4.5.

The dependence of E; ,, on meZ* is quite clear, and the estimation (4.2)g

is sharper than (4.2), in Lemma 4.6.

7. De Rham complex. Here we assume that X, is irreducible at the origin
P, of X,. We also assume that the pair (X, X,) is of the form: (X,, Xjy),
with a subvariety Xg of X, and that the coordinates z'=(z,..., z;) provide a
local parameter at each Pe(X,—Xg). We identify the sheaf Q% (cf. §3) with
D,(;’) in the standard manner: Q%3 3 ; @ dx! -“_,D,(;’) 3 (@), where I exhausts
all indices of the form: (i; <. <---<i,), with 1<i, <---<i,=<k. Letting the
parameter space Tx be as in n.2, part B, Section 4.1, we take a parameter
(P;r;a;,merty (X xR xR x Rf xZ+), and we set:

7 ~ k
(4.2)5 [OP), 7 Q0 =i T(OP), "0,
Then, letting dy be the exterior differential operator on X, we have:

Lemma 4.7 (Open map property for de Rham complex). For a suitable
a.d. map Exe E, 4 we have (p=1):

(4.2), *I(OP), £mQ%), N dx () =dxl(T,(P), /" Q5 Ny,

with (r'; m'; a’)=Ex(r; m; a), where (P;r';m’;a’) is in vy (c X xR*xR*
XRIxXZ™).

Lemma 4.7 is derived from Theorem 1.2,, Lemma 4.3 and from our uniform
estimation on the a.d. properties of (local) contractible properties of analytic
varieties (cf. [15],). The latter concerns some topological properties of the
varieties, and the details of it will be given elsewhere in a near future. We
summarize the key points of the proof of Lemma 4.7 at the end of Section 5.2.
Lemma 4.7 is used in the proof of our ‘p.g. open map property for the de Rham
complex’ as in Lemma 3.2. The relation of Lemma 4.7 to Lemma 3.2 is also
summarized at the end of Section 5.2.

Now, letting the parameter (P; r) be as in Lemma 4.7, we form a filtered
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complex €¥(P) by

(4'2)g, 0 > F(fjr(P)a C) EE— {F(ﬁr(P): g(,m)};'nj=0
e 22, {T(U(P), Q% )} e=0 —
where we set:

(4.2)¥ Q%= " Q5+ (5= S dx ) A QL

Corollary 4.1. (1) The direct system {Z*(P); re(0; 1)} satisfies the open
map property.
(2) The following complex is exact (formal Poincaré lemma):

0—¢C

> e,

>1£r}399(//"'-99(~—>--- dx)....___,lilggi//mgg(

The first follows easily from Lemma 4.7 (by dropping the explicit estimation
in it), and the second follows from the first by Proposition 2.1,. It is in the
form of (1), Coroilary 4.1 that S. Lubkin conjectured the open map property
for the de Rham complex (cf. §2.1). The formal Poincare lemma (4.9); was
proved by R. Hartshorue®* and by A. Fujiki*® independently, by using the
resolution theorem of H. Hironaka. (Their methods are also independent.)
The open map property in (1), Corollary 4.1 is also proven by A. Fujiki by using
the resolution theorem. (His proof also uses some local contractible pro-
perties of analytic varicties.)

Remark. The content of Part B, Section 4.1 contains all examples of
complexes, which we know, where the open map property hold. From the basic
property of Artin-Rees theorem in the completion theory as well as from the
scope of our examples of the open map properties as above, it looks like that the
open map properties deserve to be studied for more general types of (geometric
complexes). The author hopes that the content of Part B call attention of
analytic geometeres, who are working with complexes of geometric nature {on
analytic varieties).

8. Some remarks. Here we summarize some remarks for Lemmas 4.1-
4.6, which will be used in the proof of those lemmas (cf. §5).

(1) Terminologies. We begin n.8, by arranging some terminologies for
later convenience. First recall that the estimation in Lemma 4.1’ was given to

e 31 71
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points of X,=X,—X, and that the underlying homomorphism was: K: 0%
—O%; we will use the terminology:

(4.3), Lemma 4.1’ holds for (X, X,; K)

as a synonym for ‘the estimation (4.1)5 (in Lemma 4.1") holds’ for the parameter
(P; r; a) as in (4.1)s. Here (P; r; a) should be in the parameter space of the
form A as in (4.1)s, and the estimation map should be of the form MyeM
as in (4.1)s. Similarly to the above we use the terminology:

(4.3); Lemma 4.2 holds for (X, X,; /) (resp. Lemma 4.3 holds for (X,
Xa /s %), Lemma 4.4 holds for (X, Xz;/), Lemma 4.5 holds for (X,
X,; Yt 9) or Lemma 4.6 holds for (X, X,; yt 9))

as a synonym for the following:

(4.3); the estimation (4.2); (resp. (4.2),, (4.2)s, (4.2)¢ or (4.2);) holds for the
parameter (P; r; m; a) as in (4.2); (resp. (4.2)3,...).

(Here note that (4.2);—(4.2)¢ are the explicit estimations in Lemma 4.2-Lemma
4.6. Also remark that /,(/,9),... are the underlying geometric data in
Lemma 4.2-Lemma 4.6.) Moreover, for the first terminology in (4.3),, the
parameter (P; r; m; a) should be in the parameter space zg, as in Lemma 4.2
and the estimation map should be of the form E;z €E, 4 as in Lemma 4.2. For
the other terminologies in (4.3),, the parameter spaces and the estimation maps

should be understood in the similar manner to the above.

(ii) Next taking subvarieties X}, X5 of X, satisfying: X1>X,, X5cX,,
we have the following implication:
(4.3); Lemma 4.1’ for (X1, X5; K) — Lemma 4.1’ for (X,, X,; K).

This is checked easily, by remarking that the estimations in the left and right
sides are given to points in (X; —X3) and (X, —X,) and that the estimation in
the left side is applied to the right side. (See also the explicit estimation in
Lemma 4.1'.) By (4.3); we have:

(4.3)5 Lemma 4.1’ for (Xo, Xo,sing) — Lemma 4.1’
(= Lemma 4.1’ for (X, X,; K)).

We prove Lemma 4.1’ in the form of the left side. The similar implications to
the above hold for Lemma 4.2-Lemma 4.6.

(iii) Chain property. Thirdly take a subvariety X; of X, satisfying
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(4.3)4 X2 X 12X,2X35X5.

Then we have the following implication, which will play a role in the proof of
Lemma 4.1’ (cf. §5.1):

Proposition 4.1. Lemma 4.1’ for (X;, X;,,; K) (i=1, 2)>that for (X,
X5; K). The similar implication to the above also holds for Lemma 4.2—
Lemma 4.6.

Note that ‘Lemma 4.1’ for (X,, X,; K)’ and ‘that for (X,, X;; K)’ concern
the same homomorphism K, and the inclusions in them are similar (cf. (4.1)5),
except that

(4.3); the point P in question (cf. (4.1)5) is in X; — X, or in X, — X3, and that
the size ‘r’ of the manifold T (P) (cf. (4.1)5) should satisfy:

(4.3), r<{ad(P, X,y 1}"! or r<{cd(P, X;)~1}"!.

It is easy to get ‘Lemma 4.1’ for (X, X5; K)’ from the above two estimations.
(The former is given to points Pe(X,—X,), and the size r of U,(P) should
satisfy the inequality of the form: r<{ed(P, X;)"1}71. It is easy to fill the
gap between what is mentioned just above and (4.3)s ¢, by using elementary
distance properties of analytic varieties; see also the author’s forthcoming
paper [18].)

(iv) Here we add a technical remark for the proof of Lemma 4.1 and
Lemma 4.5, Lemma 4.6: recall that the sheaf $ in these lemmas is in Coh (X,;
#)p.g» Where £ =(h,)u, is a subset of I'(X,, Oy). We then have:

(4.3); Lemma 4.1 for (X,, Xj; K) for the case: #4=1=> that for the general
case: #4=2, where Xy=locus of # (and the similar fact for Lemma 4.5 and
Lemma 4.6).

Actually, let £#={h,}42, be as in Lemma 4.1, we apply the left side of (4.3),
to each h, (u=1,..., uy). Then the inclusion of the form in (4.1);, Lemma 4.1
holds for each Pe X,—D,, and the size of the manifcld U,(P) (cf. (4.1),) should
satisfy: r<{od(P, D,)"'}"'. (Here D, is the locus of h,) But Xy=n,D,.
Also, by the Lojasiewicz inequality, we have:

4.3)g c'dP, Xp)<> ,d(P, D)< c-d(P, X;), with suitable ¢, ' e R*2,
This implies:

4.3)y Fd(P, Xp)<d(P, X,), with a suitable index u, where the element & R+2
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is determined by the element ¢ in (4.3);.

From this the inequality mentioned just above is replaced by r < {ad(P, Xp)~ !},
and we get (4.3), (cf. also similar arguments in (iii)).

(v) A key proposition. Here we give a key proposition for Lemmas 4.2
4.5. We take an element h e I'(X,, Dy,) satisfying D> X, ;.., with the divisor
D of h. We assume the following:

(4.4) Lemma 4.4 for (X,, D; /) (resp. Lemma 4.3 for (Xo, D; /, %) or
Lemma 4.5 for (Xo, D; /, 9)) (cf. (4.3),), where the Koszul complex G and
the sheaf e Coh(X,; h) are as in Lemma 4.3, 4.5.

Now take a suitable openset U; =U, , (3 P,) of U, and an element 0 =0, R}2,
we define the following parameter space (cf. (4.1)s):

(44 g ={(P; 1) € (D~ Xg 5509) N U)X R"; r<{0d(P, Xo 10)"'} 7'} .

Also we take a suitable d=d,eZ*, an a.d. map E,€E, 4, a linear function
Lo y=¢o,nt; €o,,>0 and an element m=m,eZ*. Then from the estimations
in (4.4), we get the following weaker version of Lemma 4.2 for (D, X ;445 A )seees
Lemma 4.5 for (D, Xo sing; 4> D)-

Proposition 4.2. We have the following inclusions:
4.5 *RC(U(P), Ox)i=T (U (P), /" DOx)es
(4.5): MR(CUP), £0P),06;1(0)
Gy T(U,(P), p7OP™)), (1p<d),

@5); FRTULP), £OP), 0 ER)I0)

cFpI(U(P), £*DP), (p<s),
(4.5)s PFRUT(U(P), ™00 NT(U, (P), H)) = Kol (U, (P), " 0%),.
The estimations is given by (¥';m'; a)=E,(r; m; a). Moreover, (P;r) is in
pi(c(D—Xg ging) X RY).  The element meZ* in (4.5),,, 4 satisfy m=m, and
(m, myeZ*xZ* in (4.5); satisfies: mi>Ly(m). (The homomorphism K, in
(4.5), is as in Lemma 4.5.)

We prove Proposition 4.2 in Section 4.2. Note that if, we drop the term

*) Precisely, the data (U,,,,,) and (d,, E,),... depend also on G or H, according as we
are concerned with (4.5), or (4.5);. (The above data also depend on /. As in Lemma
4.2-4.6, we write E,,... instead of Ej ,,....)
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h¢ from the left sides of (4.5),_4, we have Lemma 4.2 for (D, X sing; ) -
For the role of Proposition 4.2 in the proof of Lemmas 4.2-4.5, see Section 5.2.

C. Global Version of the Results in A, B

Taking an analytic variety® X=(C"(z)xC"(z"), X=C"x Up, P}) € An,
(cf. (1.7)o) and an affine variety® X' e C*(z) (cf. (1.11),), we give here a global
version*® of Lemma 4.1 to X*: =X or =X’ and that of Lemma 4.4-Lemma
4.6 to X’. (In the above the euclidean space C"(z),... and the open set
Ug (3 Pp) in € are as in (1.7),.)

1. Global version of Lemma 4.1. First taking an open set Uj (3 Pp) of
Up and an element 0 =o0x. € B2, we attach to X* the following parameter space
(cf. also (4.1),):

(4.6)0 x={(Q; e XT xR r<{ogx(Q)}7'},
where X7¥: ={C"§,U{} and gye: = {E: i i}, according as X* = {§,} (Recall
that gx. is the p.g. function of X* and Z=(z, z") (cf. n.l and n.5, §1.2).)

(4.6)6 zxf: =F¢x* XR?.
Next we set:
(4.6)4 Coh* (X*), ¢ =Coh’ (X), ; or Coh” (X",

(cf. (1.4) and (1.18),).

(Recall that such collections consist of the p.g. coherent sheaves over X* satisfying
certain algebraic conditions (as in (1.4), and (1.18),).) For an element $
€ Coh* (X*), ,, the g-structures 0, 0 will be as in (4.1),. Also for an element
(P;r;a)e Age (cXFxR* xRY), the set of the cochains I'(U/(P), $; 0g),
where 0y =0g or 05, will have the similar meaning to (4.1),. (Here, asin (4.1),,
we set U/ P): ={QeX*: d(P, ¢)<r}, with the natural metric d in Cn(z)
x C(z") or €(z2).)

*) As in Chapter I, we use the symbol X also for its underlying variety X. Also recall
that the alfinc variety X’ in (1.11), consists of the data (C*(z), X', Hg’), where X’ is the
underlying variety of X’ and Hx- is the resolution of the structure sheaf of X" (cf. (1.11),).
We also use the symbol X' for its underlying variety X”.

*#) Similar global results to Lemma 4.2, Lemma 4.3, also hold for X*=X or X’. Also,
for X*=2X, similar global facts for Lemma 4.4-Lemma 4.6 hold. But we do not use
such facts (cf. §2).
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Lemma 4.8, (Uniform estimation with bound for Coh* (X*)p_g—si‘L M

X*=X or X'). There are maps® ex.: Coh* (X*), 5 G 1
355-—»1‘?9]\71@ and & Z+—-M, which satisfy the é* Exs M
factorization in Figurel and with which we have Figure I¥

the following**) for each $ e Coh* (X*),,:
(4.6), i*I(U,(P), $; 04)a = (U, (P), H5 O)ur»
with (r'; a')=My(r; a). Here (P;r;a) is in Ax (X¥xR*xRY).

We prove Lemma 4.8, in n.3, and we derive Lemma 1.2 from Lemma 4.8,
in Section 4.4.

2. Globalization of Lemma 4.4-Lemma 4.6 to X'. In n.2 we let the set
' =(f)5=1=T (X, Ox)p g the m-th Koszul complex #'™ for /': 0-Ox
E,--.AD‘Q)F_;’"'_,..._,D%,E_’LDX,AO and the sheaves /"Oy. (=F™D%) be
as in Lemma 2.5, Section 2.3. In Lemma 4.8, ; we globalize Lemma 4.4
Lemma 4.6 to X’, by using the sheaves A'™Ox5.... The estimation maps in
Lemma 4.8,_, will be in E, 4 (cf. (4.2)7). We use the symbols =y, n, for
the assignments: E, ;3 E'>M, L, where M, L are the first and a.d. parts of
E’. Then, taking a suitable linear function Ly=Lg x(f)=cot; co >0, we globalize
Lemma 4.4 to X' in the following manner:

Lemma 4.8, (Open map property for the Koszul complexes {F'™}2_,).
There is a map ex.: Z* 2 m—E, 33 Ex. 5, which satisfies the similar factoriza-
tion to Figure Ill, Lemma 4.6, and with which we have the following for each
(m, m)e Z* x Z* satisfying m>Ly(m)(1Zp<s):

4.6), *T(OLP), /""Dg’))n nF;H10)

SFy [(T,(P), f* 01,
with (r';m'; a")=Ey z(r;m;a). Here (P;r;a)e(XxR*xR{) is as in
Lemma 4.8;.

Next letting the sheaf §’ (D% ) and the homomorphism Kj: D% —9’
be as in*** Lemma 2.7, we define a sheaf §, and a homomorphism

*) For the sets M, M of the estimation maps and the map ‘Ig’,..., see Lemma 4.1,
Section 4.1.
#%) j—inclusion: U,(P)sU,(P). When there is no fear of confusions, we use the symbol
‘¢’ for the inclusion in question, without mentioning it (cf. also §4.1, §4.2).
**%) The map Kj is the first resolution, denoted by wy- in the sheaf H’ in Lemma 2.7. The
symbol ‘K}’ is concordant to the one in Lemma 4.5, Lemma 4.6, and is convenient for
the arguments on Lemma 4.8;.
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o.m: O™ 59! (meZ*) in the similar manner to (4.2);:
(4.6); Kom: OR+O¢230,+¢, — Ok 3 Kop1+F "o,
and ,,:=K} 0% (c0k).

Moreover, taking suitable 0 =04 € Rj? and m=mg € Z*, we form parameter
spaces:
(4.6); po:={(P;r)eX' xR*;r<{ogx(P)}™'}, Tty 1=pe xZH xR} .

Lemma 4.85. There is a map ¢y : Z*3m—>E, 43 Ey 5, which satisfies
the familiar factorization to Figure IIl, Lemma 4.6, with which we have the
following :

(1) (Open map property for the sheaf $'):

4.6); I (ULP), "Dk NI(TP), HN=KI(U,(P), /'™ O
(2) (Comparison of filtrations):
(4.6), HI(T,P), D)0 [(ULP), Sp) =Ko o T(T,(P), D5,
In the above (r'; w'; a')=Eg z(r; m; a), and (P;r;mi;a) is in vy (c X' xR*
x Lt x RY).

We use Lemmas 4.8, 3 in the proof of Lemmas 2.3, 2.5 and Lemma 2.7
(cf. §4.2).

3. Proof of Lemmas 4.8,_;. (i) For the proof of Lemmas 4.8,_;, we will
give a natural compactification (=completion) of X*=X or =X'. For this
we first set:

4.7; PYC):=U"_,C with C§:=C". (Namely, P"(C)=projective space,
which is the natural completion of C*. Moreover, € are euclidean spaces,
which cover P*(C).)

@.7), X*:=P"(C)x U, (cf. (4.6),) or the completion X' of X’ in P*C), and
(4.7); D*:=Dx U} or DnX', with D: =P"C)—C".

We then take a point P e D* and a small neighborhood U of P in X*. Also
taking an element o=0, € R}?, we form parameter spaces gp, 4p similarly to
(4.6)o:

“Ds  pr={Q; Ne(@-DMxR*; r<{ogx(Q)}71}, 2p: = ppx R} .

Then the following analogue of Lemma 4.1, Lemma 4.4 at the ‘point at infinity’
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P e D* will suffice to insure Lemmas 4.8, ,:

Lemma 4.1". Take a suitable map ep: Coh (X*)p_gasj—»Ms ]\7;_). Then
ep satisfies the similar factorization to Figure I, Lemma 4.8, and we have the
following for each $ e Coh* (X*),,:

(4'8)1 I*F(Ur(Q)’ '6; Gl@)ac F(Ur’(Q)7 5; g@)a’ >
with (r'; a')=My(r; a). Here (Q; r; a) is in 4p (=(U—D*)x R* xRY).

Lemma 4.4'. Take a suitable map ep: £*31W—E, 43E,; and a linear

Sfunction Ly=Lg p(t)=cot; cg>0. Then we have the similar factorization to

Figure IlI, Lemma 4.6 and we also have the following for each (iii, m)e Z* x
Z* satisfying m> Lo(m) (1<s<p):

48, *(I(0,@, 2 "0P). 0 F)1©0) S
<Fp, L (0,(Q), /"0,

with (r'; m'; a’)=Ep 5 (r; 11; a), where (Q; r; a) is in Ap.

Actually, take finite points {P )¢, in D* and neighborhoods U, of P,
in X*, so that Lemma 4.1” holds® for (U,, U, n D*, §). Also take finite points
{P,}v2, in X* so that Lemma 4.1 holds for® (U,, ¢; $). By the compactness
of X*, we may assume that X*<(u,0,)u(u,0,). Thus, to each Qe X*,
one can apply Lemma 4.1 or Lemma 4.1” (resp. Lemma 4.4 or Lemma 4.4');
comparing the explicit formulation of Lemma 4.8; to that of Lemma 4.1,
Lemma 4.1” we have the implication:

(4.8); Lemma 4.1+ Lemma 4.1” — Lemma 4.8, .
Similarly to the above, we have**):
(4.8), Lemma 4.4+ Lemma 4.4 — Lemma 4.8, .

The proof of Lemma 4.8; is given similarly to (4.8),, by taking Lemma 4.5 and
Lemma 4.6 as the starting point and by giving the corresponding facts to these
lemmas at the point at infinity**¥*). We omit the proof of Lemma 4.8;.

® {J, is a neighborhood of P, in X*. Also, for the terminology ‘Lemma 4.1 for (U,
é; 9), see (4.3);. We use ‘Lemma 4.1” for (P,,...)" in the similar manner.

#*) The estimation maps in Lemma 4.4°, Lemma 4.8, and in Lemma 4.4 are respectively
a series of maps in E] ; and in E, 4. This gap is filled by the comparison of these
maps in Remark 4.2 (cf n.6, part B, §4.1).

***) We do not give here the explicit form of these facts. However, it is similar to Lemma
4.4, and one can give it easily from the proof of Lemma 4.4 soon below in (iii).
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(ii) Check of Lemma 4.1” and Lemma 4.4'. For the proof of the lemmas
in the title, we let z/=(z])j., the standard coordinates of €% (cf. (4.7),),

and we denote by T; the transformation: C"—C":
(4.8)4 DI=Ti(z), where z{=z/z;(k=})), zi=1/z;.
We then set:

T#. = {T; x identity : C" x C" — C" x C"']

PR O f°
) (€ xCr, Crx e
48y { (¢, C’-‘").={( nx o, O ,
(@8)a  ( j (C", €) I

(z*, -*): = {g: Ej;’ z ))}, (d*, d*¥)=natural distance in (C*", C¥").
Next we fix an element je[l,..., n] satisfying C¥"> U. For an element (Q; r)
e(U—D*) x R* we set:
(4.8)% Uj(Q): = {Re X*n C¥"; d¥(R, Q)<r}.
Then the following distance comparison between d* and d% is checked easily,
by using (4.8);:

Proposition 4.3. For a suitable positive monomial Mpe M, we have the
following for each (Q; r)e(U—D¥*)xR* satisfying r<{Ggx(Q)}~!. with a
suitable & € R}2.

4.8)s T#(U,.(Q) < Ui(Q), and T*(T(0))= UL(Q), with ' =Mp(r),
where the open set UQ) is as in Lemma 4.8,.

Now, Lemma 4.1” is checked as follows: taking an open set U (3 P) in the
ambient space C*" of U (= X*) satisfying U n X*= U, we define a local analytic
variety X3 € An,, (cf. (1.8),) by
() X§:=(C¥(z*), U, U, 2}, Py),
and we attach the collection Coh” (X¥),, to X3 by (1.18),. Then, remarking
that D* is the divisor of z}, we have:

(b) Coh* (X*), ,=Coh” (X3),, (cf. (4.6)7).

By this we apply Lemma 4.1 to*) $ e Coh (X*), 4 Then, we have the similar
inclusion to (4.8);, Lemma 4.1”, by changing the open set U/(P), which is

*) Recall that Lemma 4.1 is also applied to such a sheaf § by (1), Remark 4.1 at the end of
Part A, Section 4.1.
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required in Lemma 4.1”, to U(Q): using Proposition 4.3, we can replace U/.(Q)
by U, (Q), and we have Lemma 4.1” from Lemma 4.1.

Next, the check of Lemma 4.4’ is similar to the above, and is as follows:

first we remark that
(), A'i=(z)¢ ' =T (U, Dp), with a suitable de Z*,
and that /'"'DX, =/’"’DX, in U—D*. Then we easily have:

(©), r@, /m™Ox)e=I(U, /"Ox)u
(0, /"Ox)ecI(U, 7"Ox)a
where a' = Mp ,(a/r), with a positive monomial Mp ,,, which is independent from
Qe U—D*. (Here we write U,(Q) as U..)
Using a similar argument to the proof of Lemma 4.1", we see easily that
the comparisons of the distance and cochains as in Proposition 4.3 and (c), lead

to the implication:
(d) Lemma 4.4 — Lemma 4.4".

(Here we apply Lemma 4.4 to the set //7’ at the point at infinity Pe D.) Thus
we checked Lemma 4.1” and Lemma 4.4', and we also have Lemma 4.8; and
Lemma 4.8, (cf. (1)).

4. Finally we add here an elementary uniform estimation on local para-
metrization of the variety X=(C"(z), Uy, Xo, Xg, Po) (cf. (4.1)g). We set
X=X,—X;, and we assume that Xo=X, ... Also taking a suitable open
subset Uy y (3P,) of U, and an element oxeR}?, we form a parameter space
2x:={(Q;Ne(U x N X)xR*; r<{ox-gx(P)}7'}, with gx(P):=d(P, Xp)™".

Proposition 4.4. For a suitable positive monomial MxeM we have the
following for each (P; r)e pex (= X x R*):

(4.9) there is an analytic map w: U, (P)—U/P), which is the identity on
U, (P), with r':=Mx(r). Here U(P):={QeC":d(Q, P)<r}, and U/P):
=U/(P)n X.

We use Proposition 4.4 for the proof of Lemma 1.4 (for the local variety
X eAn, as in Lemma 1.4). The check of Proposition 4.4 is given in Part A,
Apendix I.

Mext letting the affine variety X'<C"(z) and the divisor ScC"x U, be
as in Lemma 1.4 and Lemma 1.3, we take elements 6 =04, 6§ =365 R}? and an
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open subset U’ of U, and we form parameter spaces:

(a) px:={(P;r)e X' xR"; r<{ogx(P)}™'}, and
#s:={(P;Ne(Sn(CxUy)xR*; r<{dgs(P)}™1},

where the p.g. function gy of X' is as in Lemma 1.4, and we set gg: =|w|, with
the coordinate of C (cf. Lemma 1.3).

We then have the following analogue of Proposition 1.4 for X’ and S.

Proposition 4.4°. For suitable positive monomials My., Mg, we have the
Sfollowing for each (P; r)e pex and (P'; r) € ges:

(4.9)" there are analytic maps w: U, .(P)-»(U(P)NX") and o': U, (P
—->(U/P)Nn S), which are the identities on (U.(P)n X"), (U.(P)NS), where
r'=Mx (r) and r"=Mg(r). Also the discs U, (P), U(P') in €C"(z), C(w) x C"(z)
have the similar meaning to the one UP) in Proposition 4.4.

We use Proposition 4.4 for the proof of Lemma 1.4 for X' and of
Lemma 1.3.

Proof. Let X' and S denote the completions of X', S in P*(C), P(C)
x Uy. Then, taking points Pye X'~ X’ and Pye(P(C)—C)x U,, we have the
similar fact to Proposition 4.4 for (X', P,) and (S, P}) (using similar arguments
to Lemma 4.1"). Then, using the distance comparison, Proposition 4.3, and the
similar arguments to the ones in n.3, we have Proposition 4.4’ from the above
analogues of Proposition 4.4 at the points at infinity P, Py and from Pro-
position 4.4 (applied to finite points P e X' and P’ € S). g.e.d.

§4.2. Proof of the Lemmas in Chapter I

In n.1-n.3 we give a cohomological version of Lemmas 4.1-4.8, and,
using such a result, we prove the lemmas in Chapter I, Lemma 1.2 and Lemma
2.3, Lemma 2.5 as well as Lemma 2.7, which concern the uniform estimations
on the sheaf homomorphisms. Also, using the results in n.1-n.3, we prove
Proposition 4.2 in n.4. Moreover, we prove Lemma 1.3, 1.4 in n.5, n.6, by
using Proposition 4.4.

1. Comparison of cohomological and non cohomological estimations. Here
we give propositions, which play a key role in the proof of the first set of the
lemmas just above (cf. Proposition 4.5, ,). Such propositions will be given in
an abstract manner in terms of g-sheaves and is more general than the one
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used in the proof of the lemmas. In n.1 we fix g-sheaves® (&, (), (9, 03) and
a homomorphism w: 8 =% (of abelian sheaves). Also we fix a p.g. function
g: X—-R} and a distance function d: X x X—[0, co] satisfying d=0 on the
diagonal 4y (= X x X) (cf. Definition 1.4, and Definition 1.6,). Moreover, we
fix an element ¢ € Rf?, and we assume the following for each Pe X:

(4.10), 9(Q)/2<g(P)<29(Q)

for each Qe Uy(P; g): ={Qe X; d(P, Q)< {dg(P)}™'},
(4.10); the triangle inequality: d(Q,, Q5)=d(Q, Q,)+d(Q,, Q3): holds for
any Q;e Uy(P; g) (1Zi<3).

For a point Pe X and an element (r; a) e R* x R we set:

(4.1055 I (U.(P), $; 05),: ={0 e [(T(P), 9); l9(Qly<a in T(P)},

where | |;=0g-absolute value®) and U/(P): ={Qe X; d(P, Q)<r}.

(We use the similar notation for (8, 8gy).) Also, for the formulation of Pro-
positions 4.5, ,, we fix a subset Y of X, and we form the following parameter
spaces (cf. also (4.1),):

(4.10)g Ly ={(P; e YXR"; r<{Gg(P)]7], Ay: = py x RT.

(i) Bdd estimations— p.g. estimations**). First taking an estimation map
M=(M,, MZ)EM=M><M (cf. n.1, §4.1), wc assume the following uniform
estimation for w: K>H on Y:

(4'10)1 l*r(ﬁr(P)v '65 OQ)acwr(fjr'(P)’ R; eﬁ')a' >

with (#'; a’y=M(r; a), where (P;r;a) is in Ay (cYxR*xR{) and i=in-
clusion: U,.(P) S U (P).

Note that (4.10), is of similar form to the estimation in Lemma 4.8;. In Pro-
position 4.5; soon below we give a cohomological version of (4.10),, which is
of similar form to the estimations in Lemma 1.2. In Proposition 4.5; we fix
an estimation map***) Zel:R2xR*25R2 x R*2, which is determined by
MeM. (For the explicit dependence of £ on #, see (4.10)-, (iii) in the proof of
Proposition 4.5,.)

Proposition 4.5, (Bdd estimations— p.g. estimations). For each element

#*) Cf. Definition 1.4,.
##) The estimations of the left and right sides in the title of (i), (ii), concern respectively non
cohomoiogical and cohomological uniform estimations (cf. Lemmas 4.8;_; and Lemma
1.2, Lemmas 2.5, 2.7...,).

#e#) T,=L (L, with the collection L of all el-maps (cf. n.5, §1.2).
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(Y'; 0;0)e2¥ x Ri2 x R2 we have:

(4.10), s*CUA(Y"), 9;05),c0CU L, (Y'), R:0g),, with (cr’:oc’)=.,?7(a; o),
where

g-p.g. coveiring of Y' in X of size o (Defini-
tion 1.6,), set of (g, 0g)-0-growth cochains
with value in H (¢f. (1.3)¢).

o, (Y’

(4.10), { )
Ci(L,(Y"), H;05),

Moreover, s is the p.g. refining map: oZ,.(Y") & o (Y') (cf. Definition 1.6,).

We prove Proposition 4.5, in (iii). In n.2 we use Proposition 4.5, for the

proof of Lemma 1.2.
t;sk Fm Dk Dsh Fm Dh

(ii) A.d. estimations—d.p. estimations™’. \ | og \ ()D

We give here a key proposition, Pro- Oum G o, o},
position 4.5,, for the implication: Figure I.
(4.10)3 Lemmas 4.8, ; —— Lemmas 2.5, 2.7 and Lemma 2.3.

For this we fix a sheaf O of ring over X, and we assume that (1) &, $ are O-
modules, and (2) &, $ are homomorphic images of O, D(h, k>0): OF 22, &

-0, O" 2%, $-0. Moreover, we fix an abelian sheaf %’ and series of homo-
morphisms w,,: K-9, w,,: H-H' (n=1, 2,...) satisfying w,,- 0, =0. Further-
more, we fix a subset //=(fj -1I(X, Ox; g),q (cf. (1.3)7), and we use the
symbol F"(=m-th homomorphism for A Os—O also for its k- and h-direct
sums: Osk— Ok Osh O (cf. n.2, §2.1. See also Figure I.) For an element
(P;r; M a)e X xRYxZ* x Rt we set:

(4.10); I(OL(P), /™*R),: = wgF*I(U,(P), D*), (cf. (4.10)3 and Figure I).

(We use the similar notation for $.) Now taking a linear function Ly(t)=cyt;
¢o>0and an a.d. map E'€E_4 (cf. n.1, §4.2), we assume the following uniform
estimations for the series {w,,}, {@,} (meZ*):

(4.10); For each (i, m)e Z+ x Z* satisfying > Lo(m) we have:

4.10)5  *(IOLP), £9), 0 0T O) =@, L (T, (P), £ R),

with (r'; m'; a)=E'(r; 1; a), where (P;r;a) is in Ay (Y xR*xRY) (cf.
(4.1008).

Note that (4.10); is a similar inclusion to Lemma 4.4. In Proposition 4.5,
soon below, taking a d.p. estimation map E€E,, (cf. n.4, §2.1)%, we give a

*) See the footnote **), p. 454,
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cohomological version of (4.10)5, which is similar to Lemma 4.8,:

Proposition 4.5, (A.d. estimation—d.p. estimation). For each (1, m)eZ*
x Z* satisfying m> Ly(m) we have:
(4.10), sHCHALLAY"), 7Dy N 0 (0) € 0, CH (Y, L™ Ry, with (515
o' )Y=E(o; m; a), where (Y'; 0; a) is in 2¥Y x RE2x R}2, and
(4.10), CHH,(Y"), /’”35),: =left (> g)-d.p. filtered set of cochains with value
in § (cf. (2.3)s,9).

(iii) Proof of Propositions 4.5, ,. (1) Letting the positive monomials M,
M be the first parts of the estimation maps M, E’ in (4.10), ,;, we first define
el-maps Z;, Z;: R*236—R*23¢’, ¢” by the equation:
(4.10)5; (') =M, ((ct)™Y),(¢"t)"t=M}((ot)~), where t is a variable. Then
taking an el-map %,: R*25(a,, a,)—>R*2 3 (4a,2%2, a,), we define:
(4.10)5 $1=$0'§1‘.?0, g’1=$0'.711'$0-
Such el-maps will be the first components of the desired estimation maps .2, E
in Propositions 4.5, , (cf. (4.10);). Then, letting 6 e R}? be as in Propositions
4.54,,, we set:
(4.10)2 " =Zy(0), 5" =Z,(¢") and &' =2,(5") (=%,(0)), where (£, Z;)=
(-?1: "gl) or (?/15 —?,1)
Next taking an element ¢’ € #9127, (Y") (cf. Propositions 4.5, ,) and a point
Qel|’|, weset: o =s(f') e /11 (Y'), where s=p.g. refining map: ;. (Y')
G Z(Y') (Definition 1.6,). Then we have the following from (4.10); and
(4.10),, (4.10)y:
@107 |#1>040)>0,(@)>la'|, where r={a"g(Q)}™", r'={5"g(Q)}".

(Note that, by (4.10)%, we have: =M ,(r), with M, =M, or M’ (cf. (4.10),,3).
The relation (4.10)5' will be a key fact for the proof of Propositions 4.5 ,.

(2) Now taking elements ¢e CU,(Y'), H; 05), and ¥eCl,(Y"),
A"9), satisfying @, P=0, we writt ¥ explicitly as P=wF"¥, with
¥ e CiA,(Y'), Osk), (cf. (4.10); ,). Then from (4.10), we have:

(4.10)§ 9B, |¥(R)<a:=a-g(Q) in U(Q), where o= (a;2%2, &) with

a=(0y, %3).

*) As in Proposition 4.5;, the map E€E, , is determined by E'€E, ; by in a simple
fashion (cf. (4.10),).
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We will apply (4.10);,; to ¢, Y, in U, Q). Then there are elements ¢,
eI(0,(Q), 8), and ¥, e(U,(Q), /™ R), satisfying

4.10); o, ,=we,, ¥, ,=w,¥,, with (r'; a’)=M(r; a) and (+"; m'; a")=E'(r:
1i1; a), where the estimation maps M e M and E’€E, , are as in (4.10),_s.

We write ¥, as ¥, =wgF"¥,, with ¥, el (U,(Q), O%), (cf. Figure I). We
note that (4.10)g implies:

(4.10)¢ lpsl<a’ and |¥,|<a”.

Then from that r={G"g(Q)}~! (cf. (4.10);) and (4.10),, together with the explicit
forms of the estimation maps M, E’, we easily see that (4.10) is rewritten in the
form:

(4.10), {I%(R)I<a’-g(R)} ith {a’=—9’z(a+a) }

1¥1(R)|<o"-g(R) o’ =exp M(ii1)- Z5(o+0)
where the el-maps .%,, %% and the positive monomial M are determined by the
maps M, E’ in (4.10);.
Finally, letting L: Z*—Z* be the a.d. part of E' (cf. (4.2);), we define
a map & el=LxLanda d.p.c. map E€E, , by the following.

Z:R2xR*?3(0; a) — R*2xR*23(Z,(0), £,(a+0))
(4.10), [E: R7Z2xR*2xZ*3(0;0;m) — RP?2xRT2xZ*3(% (o),
exp M(m)- Z5(a+a), L(11)) .

We take the estimation maps L and E to be the desired ones in Propositions
4.5, ,. Then remarking that the restrictions ¢’, ¥’ of ¢, ¥, to &’ satisfy:

(4.10)4 s*o=we’ and s*P=0,¥,
we have (4.10), 4. q.e.d.

Proposition 4.5, will be used in the proof of Lemma 2.5, when the variety
is the local one X € An,,(cf. n.3, §4.2). Here we give a slice modification of
Proposition 4.5,, which is used in the proof of the other lemmas in Section 2.

Remark 4.3. (i) First take a series {F;}2-, of estimation maps F;eE, 4
(cf. (4.2);), which satisfies the similar factorization to Figure III, Lemma 4.6,
and we make the following change of the estimation in (4.10)3:

(4.10)4 (r; m; a)— (r'; m'; a’)=Fu(r; m; a).
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Then, letting the el-map .¢}: R*2—>R*2 and the linear map L be as in (4.10)5 ;,
we have the following inclusion, which is similar to (4.10),, from the arguments
in the proof of Proposition 4.5, (cf., in particular, (4.10)s_g):

(4.10)g  s*(CHHL(Y"), L7D)p g N0} H(0)) =@, CH(AL (Y), ™ K), g, With (075 1i1)
=(Z1(0), [L()]). (For the p.g. subgroup as above, see (2.3)¢.)

We use the above remark in the proof of Lemma 2.5, when the variety is X’ € Aff.

(2) Next we assume that the homomorphisms w,,, w,, in Proposition 4.5,
are independent of meZ*: w=w,=w,=,... and ®' =w|=w)=,... Also take
an element e Z*. Then, assuming the similar inclusion to (4.10); for each®
m = m, we obviously have the similar inclusion to (4.10), for such e Z+. We
use this fact for the proof of Lemma 2.7 (given to X € An,,). Finally, we assume
that the similar inclusion to (4.10); holds for each ;i =in, by changing the
estimation in (4.10); to (4.10)g. Then we have the similar inclusion to (4.10),
for each m=m. We use this for the proof of Lemma 2.7 (given to X'e Aff).
(We also use a slice modification of Proposition 4.5, in the proof of Lemma 2.3.

Such a modification is given in ihe proof of Lemma 2.3 in n.3, §4.2.)

2. Proof of Lemma 1.2. Here we derive Lemma 1.2 from Lemma 4.1,
Lemma 4.8, by using Proposition 4.5, :

Prop.4.5;

(4.11); non cohomological estimation in Lemma 4.1, Lemma 4.8, >

cohomological estimation in Lemma 1.2.
For this we set:

X*: =XGA110, XeAn,, or X' e Aff (cf. Lemma 1.2),

@) {Coh* (X*),.4: =Coh’ (%), ,, Coh” (X),_, or Coh” (X'),_, (cf. (1.4)g(1.18),).

Also we denote by ey. the map: Coh* (X*), .3 H—M> My as in Lemma 4.1%%
or Lemma 4.8, (according as X*=X or X, X'). Moreover, we set:

(b) ¥*:=C"xU;(cX),U;nX(<X) or X'. (For the open set U}<=C",
U,cCr see (4.1), and (4.7),.)

Then one can apply, to each $e Coh*(X*),, and Qe ¥*, the estimation
in the left side of (4.11), (cf. also the explicit formulations in Lemma 4.1, Lemma

*) Precisely, we replace the inequality: 51> Ly(n) in (4.10); by m=s.
**) When we apply Lemma 4.1 to X*=Xec An,,, we understand that X=X;— X} in Lemma
4.1 is of the form: X=X,—D, where the divisor D of X; is as in Section 1.
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4.8,). Now let the manifold® Y*:=X,(P’), X, (P) or X', the p.g. covering
A (Y*) and the sets of the cochains CU(Z(Y*), H; ¥V),, CUL(Y*), H; V'),
be as in Lemma 1.2. Then, by applying Proposition 4.5; to the non cohomo-
logical estimation mentioned soon above, we get the desired inclusion of the
cohomological form in Lemma 1.2 (cf. §1.3):

(©) SCULLY™), §; V), = CUty (Y*), H; ¥),, where (073 o) =Ly(a; o), with
the element %, € L (=L x L) determined by M o (cf. () in the manner in (4.10),.

Next recall that, in Lemma 1.2, we imposed the factorization on the map:
Coh* (X*), .2 $—-L> ,S?@ (cf. Figure 111, Lemma 1.2)**%). This follows from the
corresponding facts in Lemma 4.1, Lemma 4.8,, and we finish the proof of
Lemma 1.2. g.e.d.

3. Proof of Lemma 2.5, Lemma 2.7 and Lemma 2.3. The proof of the
first two lemmas is similar to Lemma 1.2. We summarize the key point of it.
First letting the Koszul homomorphism F7: D,(;’)—»D;(g”s“) for the local
variety X € An,, be as in Lemma 2.5, we set (w,, w,)=(F7_,, F7). Applying
Proposition 4.5, to (w,,, ®,,), we have:

(4.11), Lemma 4.4—Lemma 2.5, when the variety is X € An,,.

Next, from (1), Remark 4.3, we have the following in the similar manner to
(4.11),:

(4.11)5 Lemma 4.8,—Lemma 2.5, when the variety is X' € Aff.

Moreover, from (2), Remark 4.3, we have:

(4.11), Lemma 4.5, Lemma 4.8;~>Lemma 2.7 for X € An,,, X' € Aff.

Finally, the proof of Lemma 2.3 is a little involved than Lemma 2.5, Lemma
2.7, and is as follows. (The proof of Lemma 2.3 for X*=Xe An,, or =X’
€ Aff is similar. Here we prove Lemma 2.3 for X e An,,.) Letting the sheaf
$ and the homomorphism K, ,: O%**—$,, be as in Lemma 4.6, the key fact
for the proof of Lemma 2.3 is the following inclusion:

*) By Remark 1.4 (cf. the end of §1.3), the proof of Lemma 1.2 for such a sheaf $ suf-
fices for that of Lemma 1.2 in its original form as in n.2, Section 1.3. X.(P’)=C»
x U(P’) and X,(P)=XNU.(P), with the discs U,(P’), U.(P) in C*, C" of center
P, P and radius r (cf. Lemma 1.2).  Also note that Y*c ¥* (cf. Lemma 1.2), and one
can apply Lemma 1.2 to Y*,
#*) Letting M,: R*—R* be the first part of the estimation M ,@elﬁ' in Lemma 4.1,..., the
first part &;: R**->R*? of & is determined uniquely by M; (cf (4.10);). We use this
fact in getting the factorization in Lemma 1.2.
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(@.11),  sMCUy D) N CU (s DY)y ) < Ko e CU Ay, OF ™)y, with m’ =
[Ly(m)]. Here the p.g. covering 27, is as in Lemma 2.3, and the suffix u’ of the
p.g. covering &7, satisfies: p'>p (cf. (2.8),). Moreover, L, is the a.d. part of
the estimation map Eg ,, € E; 4 (as in Lemma 4.6).

This follows from Lemma 4.6 as follows: letting the open set U,(P),..., be as
in Lemma 4.6, we write (4.2),, Lemma 4.6 explicitly as follows:

(4'11);- i*(r((‘jr(P), D§ a n F(ﬁr(P)' 5m)) < KO,m'r(Ur'(P), D;Kﬁ-s,‘)a’ ’ Wlth (r’;
a")=(M(r), M,,(a/r)), where M, is the first part® of E,, and the positive
monomial M, ,, is also determined by E,, ,, (cf. also (4.2),).

We see easily that the application of Proposition 4.5;, together with® the
independence of M, from meZ+, leads to (4.11),.

Now we derive Lemma 2.3" from (4.11), as follows. (Also recall that
Lemma 2.3 follows from Lemma 2.3".) First we write § explicitly as: D%
K, O KXo, § (= D% —0, and we define the homomorphism K, ,: D™
—O¥ similarly to K, ,, (cf. also (4.2);). We set 9, ,,: =K, (0% ") (<= D¥).
Then we have the exact sequence:

Ko = H(=0%)
T .], Hm
(a) D§z+sk1 LSTLN D;? umKo 55//m5
D;‘KZ—”’/’;“ (Here u,, is the natural homomorphism.)

Next, by the definition of the right d.p. filtration (cf. (2.3),), we have:
(4'11)2- Cg(&{;u /mg))p.g=K0(Cq(d;v D;l)p.g n Cq(du’ 51,m)) .
Applying (4.11), to the sheaf $, ,, we have:

(411)21” S*Cg('fdw /mg)p.g < KOKl,m’Cq(Mu’a D§2+Sk1)p.g: WIth m, = [L(m)]
(Here the linear map L is determined by {K, ,}w=;.)
Recalling that K, ,:=K;+F": D +O¢:1— O¥, we have the desired inclu-

sion** in Lemma 2.3":

@10y S*CUHy 7Dy KoF™ CUstyy, D%y 5 (=CH Ay 7 Dy,

*) By the factorization in Lemma 4.6, the map M, is independent from meZ+.

*%) When the length of $=1 (i.e., 0 —> D% £ $(cD%)—0, we understand that K, ,, :
=Fm: D¢¥1— D% and that 9y,,:= ¢ ™0%. For such (K, m, 91,n), the similar in-
clusion to (4.11), holds (cf. n.6, §5.2), and we also have its cohomological version, which
is of the form in (4.11),.
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and we finish the proof of Lemma 2.3.

4. Proof of Proposition 4.2. Here, using the implications (4.11),_,, we
prove Proposition 4.2. First we prove (4.5); (cf. Proposition 4.2), which is a
key fact for the proof of Lemma 4.4 (cf. §5.2). For this letting the element
heI(X,, Ox,) and the divisor D of h be as in (4.5);, we have the following from
(4.11),:

(a) ‘Lemma 4.4 for (X,, D; /)’ — ‘Lemma 2.5 for (X,, D; /).

Now, letting the parameters (P; 7)€ g, (=(D— X sing) X RY), a€ R and the
elements (1, m)e Z* x Z* be as in (4.5);, we define:

(b), o:=(a, )eR}?, F:=r/2 and o:=(/r, 1) e R}2.
Then, for the set of the holomorphic functions as in (4.5);, we easily have:
(b), I'(O.(P), /'ﬁDJg’) Yo Z9((X(P)), /""’D,(:”))a, where the p.g. covering
o, (X(P)) and the set Z°(---) in the right side are as in Lemma 2.5 (cf. §2.3).
Applying Lemma 2.5 to the right side (cf. (a)), we have:
B LR, PP, 0 (Fp)10)

CF';—lzo(Mo"(X‘r’(P))a /ﬁ,Dgpil))a’ s
with (#'; ¢’'; m'; &')=E(r; o; #i; o), where the d.p. map E is as in Lemma 2.5.
On the other hand, applying®’ Theorem 2.2, to the right side, we have:*):*%)
(b)4 S*ZO(‘MU’()?H(P)); /ﬁ"DX)a’ CFﬁI”ZO('Md"(X.'-r"(P)), D%)a"i Wlth (l"”; O'”; m”;
a)=E'(r'; ¢’; m'; '), where the d.p. map E'eE,, is as in Theorem 2.2,.
From (b); 4, we have:

(b)s (left side of (b);) = Fm_,(F™ Z%( sl X;-(P)), D,(g’fl)‘ )s»» With (7; 6”5 m”;
&")=E(r; o; m; «), where the d.p. map E is determined by E, E'.

Finally we write 4" € R}2 as (4", d”) and [d"+1] as d. Then we easily have
the following inclusion, which is converse to (b),:

(b)e hiZ%( L5 (X;(P)), Ox)a» < T(U3(P), D)z

Also recalling the explicit form of the d.p. map E€E,, (cf. n.4, §2.1), one can

*) Recall that Lemma 2.5 implies Theorem 2.2, and the inclusion of the form (b),
(cf. Remark 2.2 at the end of §2).
**) For the homomorphism Fm=Fm ,, see n.2, Section 2.1 and Section 2.3.
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easily write the elements d e Z* and (7'; m"”; d")e R* x Z*+ x R} as follows:

(b), d=[L(1)] and (7'; m"; @")=E'(r; m; a), with a linear map L and an
a.d. map E’ (Definition 4.2), which are defined by E€E, .

(In (b),, the element ‘1 e€Z* in d=[L(1)]" is second component of «eR72)
Finally from (b), 5 and (b)s, we have

O hITLP), 0P, 0 (FR) 1)< FpyT(0ru(P), - 0P 0.

This inclusion, together with (b),, insures the desired inclusion (4.2);, which is
given to the Koszul complexes #™ (cf. Proposition 4.2).
Next, the proof of (4.5), is given similarly to the above, by taking ‘Lemma
2.7 for X € An,,’ as the starting point (cf. (4.11);).¥> Moreover, for the proof
of (4.5),, we note that the application of Proposition 4.5, to ‘Lemma 4.3 for
(Xo, D5 ¢, @)’ insures its cohomological version, which is similar to Lemma
2.5, Lemma 2.7. Then using the similar arguments to the above, we have (4.5),.
Finally, the proof of (4.5), is given similarly to the above, by taking ‘Lemma 4.2
for (X, D; ) as the starting point, and we finish the proof of Proposition 4.2.
g.e.d.

5. Proof of Lemma 1.4. (i) Take an open set U of a euclidean space
C"(z) and a subset X of U. Also taking a p.g. function g: U-»R} and an
element ¢ € RT? we assume (cf. also (4.10),):

(4.12)y 9(Q)/2<g(P)<2g(Q) for each PeU and QeU; (P;g)nU, where
Us(P: g): ={QeC"; d(P, Q)<{6-g(P)}"}.

For an open subset U’ of U we say that U is a (g, §)-d-envelope of U’, if
(4.12)5 U«Q; g)cU foreach Qe U’.

We fix such an open set U’ in the remainder of n.4. Now take an el-map %,
of the form %,: R*25(0,, 6,)=»R*235 (40, -a°2, 6,) (cf. n.1).
Then setting

(412)1 Ua(X; g):=UPsX Uﬂ'(P; g)’
we easily have (6>6):

(4.12), U (Q;9)nX=¢ foreach Qe U —U(X; g), where ¢’ =Zy(0).

*) Note that this cohomological version in terms of ‘C? instead of ‘Z?. Using the similar
remark to Remark 2.2, one can replace C? by Z¢%, and we get a similar inclusion to (b),, 3
(for the homomorphism K| as in (4.5),).
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(This follows also if U is a (g, ¢”)-d-envelope of U’, where ¢" € R}? satisfies:
¢">0'))

(i) Extension of cochains. Here we give a key proposition for Lemma
1.4. For this we assume that X is an analytic variety in U and that there are
open sets U, U, in C" and varieties X, X, in U, U, satisfying

(@) U, 0, are (g, 6)-d-envelope of U, U, and X=X,nU, X=XnU.
Also taking a positive monomial M (cf. n.5, §1.1), we assume the following
uniform estimation (cf. Proposition 4.4): for each Qe X and reR* satisfying
r<{dg(Q)}~!, there is an analytic map

(4.12); w: U (P)S U(P), which is the identity on U.(P). Here r'=M(r),
and we set U (P): ={QeC"; d(P, Q)<r}, U(P)=U,P)n X,.

For an element o € R;? we set:

L, (X) }

= covering of { } in { } of size
: -p.g.- T 4
B,(U") gp-E g U’ Cr

(Definition 1.6,).

(4.12), {

Next we define an el-map #': R*2->R*? from M in the manner in (4.10)s, and
we set L' =L L %, where &, is as in (4.12),. Also denoting by &} the
el-map: R*230-R*25.%,(2-0), we set:

~

(4.12)5 Li=LpZL.

Then, denoting by Dy, O and wj§ respectively the structure sheaf of X, C" and
the natural homomorphism: D—Oy, we have:

Proposition 4.6 (Extension of cochains). For any o€ R}? and a=(a,, a,)

€ R? we have a map:

(412)6 e*: Zq(da(x)a DX)a o Cq('%a"(U/)a D)a' 5
where o =(4a,2%2, a,), 0'=%(0),

which satisfies w§de* =0 and
(4.12); F=wie*, with the p.g. 1efining map s: o, (X) S L (X).

(The similar facts to the above holds by changing (U’, ¢’) to (U, &), with an
open subset U’ of U’ and an element & € R{? satisfying® 6'>a'.)

Proof. (1) First we extend cochains on X to its small p.g. neighborhood.

*) Note that this implies that U is a (g, §”)-d-envclope of U’.
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For this setting %,(X): =g-p.g.-covering of X in C" of size ¢ (Definition 1.6,),
we show the existence of a map:

4.12), e*: ZY 7, (X), Oyx)y & CUH,A(X), D)., satisfying wy.0e*=0 and s*=
w¥e'*, with the p.g. refining map s: o7,.(X) & (X)),

where the element ¢” € Rf? is defined as follows:

(4.12); "' =%y(0), 6" =2'(6"), and 0" =%,(6")(=ZL'(0)).

Take an clement #'={B/}t} e #"9*14%,.(X) satisfying | 2’| n X # ¢, and we set
o' ={A}}4%], with A;=B;n X, and & =s(£’) e /" 1£,(X). Then, taking a

j=1

point Q € |&7'|, we have:

@, 11> 0/Q), UAQ)> 8’|, with r={6"g(Q)} %, ' ={6"g(Q)}* (=M())
(cf. (4.12)5 and (4.10);).

By (4.12); take an analytic map w: U,(Q) S U,(Q), which is the identity on
U,(0). Now, for an element ¢eZ(,(X), Ox)p We set @ :=w*@, €
I(|#’'|, O). Then we have:

(@) wiPe =@, and @5 (R)|<«'g(R) in |Z'|.
We then define an element ¢’: =e’*¢@ by
(@), @l =0kl or=0, according as [#'|nX#¢ or =¢.

Then it is easy to see that (a), insures (4.12),.
(2) Next setting 6'=2-¢" and o' =%y (¢")(=Ly(a"), we set &': =
{U(Q; 9); Qe U’ nsupp Z;(X)} (cf. (4.12);). Then we have a refining map

(b); % S BA(X) sothat (U (Q; 9))=U,(Q; g), if QeXnU’.
Also we note that (4.12), insures:*)

(b)2 U (Q; 9)nX=¢, if Qe U'-supp Zz(X),

Then we set:

b)s &I F(UN)=HT"1B"U Z", where B":={H, e N1 F,(U'); where
one of elements U,(Q; g) € #,, satisfies: Q &supp %;}.

Note that (b), implies:
(b)s |ZnX=¢ if Z,caB".

*) (b), holds for the pair (U”, ) as in the remark soon below Proposition 4.6, and also the
remark itself holds.
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Now letting ¢’ =e’*¢ be as in (a);, we define an element ¥Y=e*p e CY%,(U"),
D), by the following:

(c) Y=t*@' on #97'%’, and =0 on £".
By (b);-4 and (a); we easily have (4.12),. g.e.d.

(iii) Proof of Lemma 1.4. Now Lemma 1.4 follows from Proposition 4.6
almost directly as follows. First let the local variety X € An,, be as in Lemma
1.4. Then letting the parameter space gy (=X x R*) and the positive monomial
My be as in Proposition 4.4, we assume the estimation (4.9) in Proposition 4.4
for (ux, Mx).® The symbol %y denotes the el-map: R*2—R*2, which is
formed from My in the manner in Proposition 4.6. Next let the manifolds
Y(P)=U/(P)—Dy, X(P)=Y,(P)NX and their p.g. coverings 7 (Y.(P)),
(X, (P))in C*, X be as in Lemma 1.4.**  Then choosing suitable neighbor-
hoods U’, U” of the origin P, of X (cf. (1.8),) in €", and an element ¢ € R}?,
we have:

(a) U’ — Dy (resp. U" — D) is***) a (g4, 0”)-d-envelope of
U"— D, (resp. Y(P)) .¥**%)
Thirdly, let Ex be the first part of the p.g.c. map Ex asin Lemma 1.4. Then

setting (r'; ¢’)=Ex(r; o) we have the following from the explicit form of the
map Ek (cf. n.5, §1.1).

(b) Y,(P) is a (gx, 0')-d-envelope of Y ,.(P), and ¢’ >%x(0).
By (a), (b), one can apply Proposition 4.6 to (o, (Y,(P)), «Z,(X,(P))) and the
structure sheaves Oy, O of X, C": writing the p.g. resolution $Hy of Oy over

Uy—Dy in the form: -9 %, $Hx—0, where Hy coincides with Oy as the co-

herent sheaf over U— D, we have a map e* from (4.12), in Proposition 4.6:
(© e*: ZY A (X (P)), Ox),—ZU L, (Y, (P)), Dx)w» Which satisfies: s*=w}e*.

(Here s=p.g. refining map: (X, (P)) & (X, (P)), and we use the symbol
w%: O—>9Hy also for the obvious homomorphism: Hx—Ox. We note that the

*) 'When we apply Proposition 4.4 to X, we assume that the pair (X;, X}) in Proposition
4.4 is of the form: (X, X;)=(X,, D), with the divisor D of X; as in Lemma 1.4.
(=DyN Xy, with the divisor Dy of Uy).

**) U(P): ={QeC"; d(P, Q)<r} (cf. (1.17))).
***) From the explicit form of the parameter space g4, one can take U’, U” independently
from the manifold Y,(P) in Lemma 1.4.
#4435 gx(=lhgl™t, where hye (U, Dy,)) is the p.g. function for X (cf. §1).
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map wy in Lemma 1.4 was used in the latter sense.)
It is clear that (c) insures the desired inclusion in Lemma 1.4:
(d) S*Zq(da'(xr(P))s Dx)acw}t'zq(&{a’(yr’(P))a SjX)a’ s

and we have Lemma 1.4 for the local variety X € An,,. For the affine variety
X’ € Aff, we note that the ambient space €" is (gx, ¢)-d-envelope of C” itself for
any o € R}2.  Using this remark and Proposition 4.4 for X', the proof of Lemma
1.4 for X' € Aff is given similarly (and more easily) to the case of X € An,,, and
we finish the proof of Lemma 1.4.

6. Proof of Lemma 1.3. Let the divisor ScX:=C(w) x Uy (cC(w) x
C"(2)) be as in Lemma 1.3 (cf. also (1.16),). Then for points 0 €S, Qe X=
Uo,—D and o € R?, we set (cf. Lemma 1.3):

U,(0; gs)} , _{Re S:d(@, R)<(ags(Q))‘1} with {gs} _ ={le }
U,(Q; 9x) ReX; d(Q, R)<(ogx(@)~)’ 9x Izl
(Here hyeI'(Ugy, Dy,) and its divisor D in U, are as in Lemma 1.3 (cf. also
(1.15),). Next take a suitable open subset Uy of Uy, an element 6 =04 € R}?
and an el-map Zy: R*2—R*2 (cf.n.5,§1.1). Then, from a simple observation,

(4.13), {

we have the following comparison of the p.g. properties of S and X:

Proposition 4.7,. (1) gx(©)/2<g5(0)<29x(0).
Q@ (T A0)cT,(Q) and n(T5(0)=>T,(Q), with o =Lx(0).
Here (Q; 0) is in (Ux—D)x R*2, and § =n5'(Q). Moreover, ny is the natural
projections: S—»X=U,—D (cf. n4, §1.3). Also we write U(Q; gs) as
Uo(D)s--- -

Letting the point Pe D and the element re R*, 6 e Rf? be as in Lemma
1.3, we set:
(@), S/(P):=Sn X/(P), with X,(P): =Cx U/(P), and X,(P): =U/(P)— D, (cf.
(1.16),),®

'Ma(Sr (P)) gS Sr (P) S
(a), [.M‘,(X,(P)) ] L= [ Js }-p.g. covering of [ X,(P)] of size ¢ in [X} .
"Q[U(Xr(P)) gx Xr(P) Cn

Then from Proposition 4.7, we easily have:

* U,(P): = {ReC"; d(R, P)<r} (cf. n.4, §1.3).
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Proposition 4.7,. There are (natural) refining maps sg and sy:
“@.13) {ss : o, (S,(P))20,.(0) — n)—(lpqz(,(X,.(P))anil(UU(nx(Q)))} vith
U Lk A (X(P)) 20, (Q) — s, (S.(P)) 2 7x(T, (nx1(2)) I
o' =%(0).

Thirdly let the estimation: (r; o; a)—(r': ¢': a")=Ex(r; o; a), where (r; o;
x)e R* x R{?x R7? and Ex€E, .
form of Ey (cf. Definition 1.5), we easily have:

be as in Lemma 1.3, Then from the explicit

(b) X,(P) is a (g, o)-d-envelope of X,.(P) (cf. (i). n.5, §4.2).

By this we apply Proposition 4.6 to (Z,(S,(P)), «,(X,(P))) (cf. also Proposition
4.4), and we have:

Proposition 4.74 (Extension of cochains). There is a map:

4.13); e*: Z9A,(S(P)), Og), — ZU L, (X, (P)), ), , with (¥';0';a)=
Ex(r; 0; o), which satisfies: s*=wge*. Here the homomorphism wg: H3—Og
isasin Lemma 1.3 and s: =p.g. refining map: oZ,(S,(P)) & Z(SP)). (Note
that Proposition 4.75 insures, in the similar manner to n.5, the following

inclusion:

(4.13), wfZYAL (X, (P)), Ds)y 2 *ZUL,(S(P)), Dg),, where the correspond-
ence (r; o; )~ (r'; ¢'; o') is as in (4.13);.)

Now, it is easy to get the comparison of the sets of the cochains
Z"(M,(X,(P)), 9s), and ZY A (X (P)), Oy), in Lemma 1.3, which are defined
respectively for Cx €" and U, — D, from Propositions 4.7, ; and (4.13),. Thus
we have Lemma 1.3, and we also finish the proof of all the lemmas in Chapter I,
which is postponed in Section 4.

§5. Proof of Lemma 4.1-Lemma 4.6

In Section 5.1 we prove Lemma 4.1, and, in Section 5.2, we prove Lemma
4.2-Lemma 4.6. The geometric datum X =(C"(z), Uy, Xo. X5, Po) consisting
of varieties Xq> Xg (2 Py) in Uy Quv(C"(z)) will be the one in Section 4.  Also
letting the subvarieties X ;, X, of X, be as in Section 4, we assume that (X, X,)
=(Xy, Xp) and that Xg: =X, ;.- We assume, moreover, that the germ of
X, at P, is irreducible. From (4.3); and a simple observation, the above
assumptions are harmless for the proof of Lemma 4.1-Lemma 4.6.
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§5.1. Proof of Lemma 4.1
In n.1-n.4 we prove Lemma 4.1’, and in n.5, we prove Lemma 4.1.

1. Reduction of Lemma 4.1'. Letting the matrix K: D%—-0% (X=X,
— Xp) and its image K&: =KOY% (=O%) be as in Lemma 4.1’, we make some re-
ductions of Lemma 4.1’. First we see that the proof of the following special
case of Lemma 4.1’ suffices for the proof of Lemma 4.1" in its original form in

n.4, Section 4.1:
Lemma 5.1'. Lemma 4.1 holds for (X, Xo; K), when (X, Xo)=(Uy, ¢).
(For the terminology as above, see (4.3),.) Here we check the implication:
Proposition 5.1. Lemma 5.1'—>Lemma 4.1'.

Proof. We let (X,, Xg) be of the general form as in Lemma 4.1°, and we
take an open subset U, (3 P,) of U,. We then take matrices K, G, whose en-
tries are® in I'(U,, Oy, ), which satisfy the following:**

(a); m(K)=K, and n(G)=0, where n: =natural homomorphism: Oy, —DOy.

(@), m(@p)eRpe=0,cF, for each PeU, and ope Of, p, Where***) &:
=FOytv', with the matrix F: =[K, G].

Now, take an element ¢ e (U (P), &, 03), as in Lemma 4.1’. Then, by
Proposition 4.4, we have an analytic map:

(b) w: U,(P)- U (P), which is the identity on U,(P).
Here r': = Mx(r), with the positive monomial My as in Proposition 4.4, and

(b)y UJP):={QeC";d(Q, P)<r}. (Also, as in Section 4.1, U(P): =U,(P)n
X))

We apply ‘Lemma 4.1’ for (U, ¢; @)’ to @=w*p. Then we have an ele-
ment****) ¥ e ['(U,.(P), Oy+*"),, satisfying FP =@, where (r"; a')=Mg(r'; a)

*) Dy, : =structure sheaf of U,.

**) Take a base fi,..., [, of the ideal of X, (over U,), and we set §: =[fy,.., f,]. Then
r f: 05 R 0 —l

we form the u > v’-matrix G, where v': =uXw, to be: G: = : _|
i 0 H
=V e > 1

}u. Then we

easily see that F: =[K, G] satisfies (a);, .

##%) y’: —length of colums of G (cf. the remark in #x) soon above).

*¥x%) (UAP), Pyy)a: =I'(UAP), Oy,; 0)a, with the standard g-structure ¢ of Dy, (cf.
Definition 1.4; and (4.1);). We use the similar abbreviation in Section 5.
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with an element M eM (cf. (4.1);); by restricting ¥ to X, we have ‘Lemma
4.1’ for (X, Xg: K)’ (cf. also (a), ,), and we have Proposition 5.1. g.e.d.

2. We will prove Lemma 5.1 inductively on n=dim U,. For this we
add a lemma, which is slicely stronger than Lemma 5.1’ and is convenient for
the inductive proof: take a variety V (3 Py) in U, arbitrarily. Then taking a
suitable subvariety V' of V and an element 6 =0, ,. € R?, we form a parameter
space g = gy - in the similar manner to (4.1)4:

), pi={(Pi DU, N (V=) xR*; r<{og(P) ™},
where U; =U), y , is a suitable open subset (3 Py) of U, and g(P): =d(P, V')"1

We set A: =g xRf. Then taking an estimation map M =M, , e M: R~ x R*
—-R*x R*, we have:

Lemma 5.1. We have the following inclusion:
(5.1), (I (U(P), Of,)a N Kp) = KI'(U,(P), Of ),

where (r'; a')=M(r; a) and (P; r; a) is in A (c(V—=V')xR* x R}). Moreover,
we set:

(5.1); (left side of (5.1),): ={p e (UP), Ot;,)a; ¢p € Kp} .

(The matrix K is as in the beginning of n.1, by understanding that (X,, Xg)
=(U0’ ¢))

Actually, we clearly have: (left side of (5.1),)>I(T/(P), &; 03),, and we
have the implication: Lemma 5.1—‘Lemma 4.1" for (V, V'; K)’ (cf. (4.3),).
From this and from the chain property for sheaf homomorphisms (cf. Propo-
sition 4.1), we easily see that Lemma 5.1 leads to Lemma 5.1’. Next we make
some remarks on Lemma 5.1: first we check that the proof of Lemma 5.1 for
the case of u (=number of columns of K)=1 suffices for the case of u=>2:

Proposition 5.2,. Lemma 5.1 for u=1-that for u=1.

Proof. Assuming that u>2, we write K as '‘K=[*K,, 'K,], where K, is
of type (1, v). Denote by K; (c©¢ ) the kernel of the homomorphism K :
Ly —Oy,. Choosing elements {g;};., =I'(U,, Of,), which generate Kj, we
set K":=[g4,...,9,] and K5:=K,-K". Then the equation Kx=y, where
ty=(¥1,-.., ) is solved as follows: first find a solution x° of K,x°=y, and we
solve: Kjyx!'=y'— K,x% where 'y': =[y,,..., ¥,]. Then we have: K(x°+ K"x?)
=y. Using this remark, we check easily Proposition 5.2,.
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By Proposition 5.2, we henceforth assume that u=1 and that K: =[f,...,
f.] satisfies: f;#0. Then seiting Y: =divisor of f;, we have:

Proposition 5.2,. Lemma 5.1 holds for (V, V' nY; K).

Proof. From the explicit form of Lemma 5.1 and from Lojasiewicz in-
equality, we easily see that the proof of Proposition 5.2, in the case: V=U,
leads to the general case: V<o U,. Now take a point Pe U; —Y and an element
re Rt satisfying r<{c%(P)}~!, where g(P): =d(P. Y)™! and ¢° is a suitable

element of Rf?. Then Lojasiewicz inequality insures:

(a) [f1(P)|> ¢d(P, Y), with a suitable c=r, e R*2.
From this we easily have:

(b) 21£,@N> /(P> f1(Q)/2] in ULP).

Take an element ¢ e I'(U(P), Oy,).. Then we clearly have ¢ =Ky, with *y:
=(¢/f1, 0,..., 0). Using (a), (b) and that r<(a%g(P))"!, we easily have:

(c) lp/fil<a-M, ("), with a positive monomial M, .o,
and we have ‘Lemma 5.1 for (U,, Y; K)". g.e.d.

3. Now we prove Lemma 5.1 inductively on n=dim U,. First, if n=1,
then Proposition 5.2, insures that the check of Lemma 5.1 for the case of (V,
V', K)=(P,, ¢; K) suffices for the proof of Lemma 5.1 itself (cf. also Propo-
sition 4.1). To see the former, take an element ¢ € I'(U(P), Oy,), (cf. (5.1),),
and we assume that m: =degf, >degf; (j=2). Then we have: |f,(Q)|> ¢,
|zm|, with an element ~; € R, in a neighborhood of P, (in C). (Here z is the
coordinate of C). Remarking ¢p,=0(f,), we estimate the holomorphic function
¢/ f, at the boundary of U,(P) (by means of the maximal principle). Then we
have: |o/fi|Sc;a/r™ in U, ,,(P). This insures Lemma 5.1 for n=1. We
henceforth assume that n=2 and that Lemma 5.1 holds for i<n. By Propo-
sition 5.2, we assume that V<Y (=locus of f;). Moreover, without loss of

generality, we assume that

(5.1)s the germ of V at P, is irreducible, f; (1< j=<t) are Weierstrass poly-
nomials®*) at Py, and m>degf; at Py (j=2), where m=degf; at Py,

We then define an element m € Z* and a subvariety V" <=V by:

(a) degfi=m ateach PeV—V", and degf,>m at each point Pe V".

*) Weierstrass Polynomial in the last coordinate z, of .
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Now we prove the implication:
(5.1)5 Lemma 5.1 for i=n—1 —— that for fi=n,

using the standard methods of the proof of the coherency theorem of K. Oka

(cf. [14], [4D.

4. Proof of (5.1)5. We begin n.4 by summarizing some (elementary)
estimations, which are used in the proof of (5.1)s. For this we take suitable
elements o=o0y ., x=0y , € R*? and an estimation map ]\71'=1\7I,,,V,el\~/1.
Then letting the open set U,(3 P,) of U, be as in Lemma 5.1, we have the
following for each Pe U, nN(V—V’) and each reR" satisfying r<{og(P)}"!,
with g(P)=d(P, V')™'.

Proposition 5.3. (1) One can write f, as fi=¢-f1, with f{, ee [(U{P),
Qy,)- Here f} is a Weierstrass polynomial at P and ¢ is a unit in I'(U/(P),
Dy,)- Moreover, ¢ satisfies:

(5-De (@), le” (D)l <o - {d(Q, V')™'} for each Qe U/P).
(2) For an element ¢ € I'(U(P), Oy,), (a € RY) we have:

(5.1); @o=0,f1+@,, where ¢, ¢, are in I'(U,(P), Oy,),» and ¢, is a poly-
nomial in z, of degree<m. Moreover, (i'; a’)= M(r; a).

We prove Proposition 5.3 in Appendix I.

Proof of (5.1)s. Letting ¢ and ¢, be as in (5.1),, we assume that ¢ € K.
Then @,: =¢- @, is also in K. Remarking that @, is a polynomial of degree
m—11in z,, we write $,=2 7= g,zk, and we form a vector x: =(g,)r=s. More-
over, we denote by 7 the projection: C"(z)»>C""(z,,..., z,_;). Without loss of
generality for the proof of Lemma 5.1, we assume that U, is of the form U,
=Uyx Ug, where Ug is a polydisc in €"~! and Ug is a disc in €. We set
P'=1(P).

(i) First we have the following estimation:
(a) xe(U(P), OF.),, with (r'; a')=M (r; a),

where the estimation map 1\7Ifl is in M, and we set U(P):={QeC""'; d(Q, P')
<r'}.
To check this we first note that the inequality [e(Q)|™!>x-d(Q, V') leads™® easily

*) Also note that the element r&R* in Proposition 5.3 satisfies: r< (¢-d(P, V’)"1)~1. Using
this, we get easily (a), (cf. also (c) in the proof of Proposition 5.25).
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to the inequality:
(a), [e(Q)| <M, (1/r"), with a positive monomial M, .

From this and from that |@,|<a’ (cf. (5.1),), we have:
(a), |l <a’:=a’-Mg(1/r").

Writing @, as @, => 124 gi(z,— z,(P))*, we estimate g} in the following form
(by means of Cauchy integral formula):

(a)s 9i € T(UpAP"), Oy)er, with (r"; a")=(r'/4; @’ - (2/r')™).

Finally, rewriting @, as @, = Y124 g,z¥, we have (a).
(i) Next, applying the standard method of the proof of the coherency
theorem (cf. [4]) to the pair (K, @,), we have elements @; € Oy, p satisfying

(b) @¢,=X%-,P,f;, and ®; are polynomials of z, of degree<m—1.

Here the key fact is, as in the proof of the coherency theorem, that the coefficients

f; of the above equation are independent from PeV—V'. We write ®;=
-3 gpzk, and we form vectors X, y by* 'X:=(0, 'x) and 'y: = (yy,..., ¥»)

with y;: =(g)i=j. Then (b) is equivalent to

(¢) x=K'y, with a matrix K’, whose entries are the polynomials of the

coefficients of f; (1< j=wv), and are holomorphic in U

(iii) Now we derive Lemma 5.1 for i=n from that for i=n—1 (applied
to the matrix K’). For this recalling that V=Y (=locus of the Weierstrass
polynomial f;), the map t: V—V :=1(V) is integral*® and is surjective. Then,
taking a suitable subvariety ¥’ of ¥, the induction hypothesis insures ‘Lemma
5.1 for (V, V'; K'Y, Setting V”: =1"4(V’)nV and V"=V" U V', we assume
that the point P is in ¥~ V". Also we assume that the element r e R* in (5.1),
satisfies¥**): r<{a-d(P, V")"1}7!, with an element oc=o0y, . R{2. Setting
K':=K'D§,(=Df,), where #: =m-v, we note that xe Rp.. Then, applying
‘Lemma 5.1 for (V, V’; K')’ to the element x, we have:

*) 9: =m-th O-vector.
**) Precisely, ‘integral’ at the origin P, of V.

##%) Note that, to apply ‘Lemma 5.1 for (¥, ¥'; K’)’, the element reR* should satisfy:
r<(¢-d(P, V')"1)~!, with an element 6=0p 7 Ri% But from the Lojasiewicz ine-
quality and a simple observation, we have: d(P, V")<cd(P’, V'), with an element
ceR*?2. From this one can assume that the inequality soon above is satisfied (because
r’<((e-dP, V"))
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(d) xeK'I(U.(P), by)ar» Where (r"; a")=M.(r; a) with an estimation map
My eM.

By the equivalence of (b) and (c), we have®:

() ¢,=X;8;-f;, with &, [(U;(P), Oy,)s, with (F'; @")=M(r; a).

Finally, setting @’;: =®;/e, we have: ¢,= 3 ; @’ -f;. Also, applying the similar
argument to (a), to the estimation of |¢7!| in (5.1)¢, we have the similar esti-
mation to (¢) for @}. This implies ‘Lemma 5.1 for (V, V"; K)’, and we also
finish the proof of Lemma 5.1 (and so that of Lemma 4.1").

5. Proof of Lemma 4.1. Here we derive Lemma 4.1 from Lemma 4.1,
by using a cohomological method as follows: (i) first, for a subset Y of X =X,
— X, and elements t, a € R*, we define:

Z(Y): ={0,0); Qe Y}, where U(Q): ={Re X; d(R, Q)<t
(cf. (4.1)1)],
(5.2)0 | CUHAY), Ox)o: ={p e CYHA(Y), Ox); lp(Q)<a
for each e /17 (Y)},
ZY((Y), Ox),: =CHA(Y), Ox), N 071(0).

Also taking an open set Uy of U, and an element o, € Rf2, we form the follow-
ing parameter space:

(52) Ax:={(P;r;t;0)e(Uy N X)xR*x R*xRT; r, t <{oxgx(P)}"1}, with
gx(P): =d(P, Xo)™".

Moreover, setting M:=MxMxM, where M: =collection of all positive
monomials (cf. n.5, §1.1), we define the following map for each M=(M,)3,
eM:

(5.2)5 M:R*"xR*xR*>3(r;t; a)»R*xR*xR*3 (M (r), My(rt), M;(a/rt)).
Then taking an estimation map Mye M, the following lemma will play a key
fact for the proof of Lemma 4.1%%):

Lemma 5.2. s*Z%2(U/(P)), Ox), < 6CT (. (T ,(P)), Ox)s (q=1), with
(r'; t'; a')=Mx(r; t; a), where the parameter (P;r;t;a) is in Ax (cX xR*

*) In (e) we understand that the estimation map My is of the desired form as in Lemma
5.1.

**) The refining map s in Lemma 5.2 is defined similarly to Definition 1.6, s: o7, /(U (P))
2U(Q—(U(P)>UQ).
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x R* x RY).

For convenience of the proof of Lemma 5.1, we add here the following

weaker version of Lemma 5.2:
Lemma 5.2'. Lemma 5.2 is true, if (X,, Xp)=U,, ¢).

We prove Lemma 5.2" at the end of Section 6. Also we derive Lemma 5.2
from Lemma 5.2" in (iii). In (ii) we derive Lemma 4.1 from Lemma 4.1’ and

Lemma 5.2.

(ii) ‘Double complex’. Next letting the sheaf $eCoh(X,; #) be as
in (4.1)g, we assume that #4 =1 (cf. (iv), n.7, §4.1). For notational convenience,

we write $ as follows:
(52, 0—— Ok 2, Ok 2, 0k, Ok/s 0,

where we use the symbol §,, for the matcices K,,... in (4.1)s, and the homomor-
phism in the final stage is the natural one: D% —O%/$ (with H=640%").
Then, for the parameter .=(P;r;t; a)edy (c(Ux N X)xR* xRt xRT), we
set:

Cra(2) C(,(0.(P)), D). (0=5<p, ¢20)
(5.2), { Z’l’q(l)} t= { C?(2) N 631(0), Z"P4(2): =CP4(2) n 671(0) ¢ .

Zba(l) Z'P(A)n Z"P(4)
Next taking an element o, € Rf?, we form a parameter space 4y (= (U n X)
x R* x R* x R}) similarly to (5.2)p, by changing the condition on the third
term: ‘t<{oxgx(P)}"!" by ‘t<{o4gp(P)}"'’: with g,(P):=d(P, D)"! where
D: =divisor of h on X,.

Proposition 5.4,. We have the following inclusions:
Z'P(P;r;t;a)=0gCP (P ri s ) (ﬁzl)} i
Z'P(P; r;t;a) < 0CP N (Pt d) (g2 D) )
{(t’; a)=My(t; a) }
(r';t;a)=Mx(r;t;a))°

.25 |

where the parameter (P; r; t; a) is in Ay or in ly (c X xR* xR* xRY), and

the estimation maps Mg, My are in M and M.*

Proof. The second inclusion is a rewriting of Lemma 5.2. The first one is

*) In Proposition 5.4;, the first factor (U3NX) of 4 is independent from the individual
9eCoh (Xy; 4). This is insured by (2), Remark 4.1,.
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derived from Lemma 4.1’, using a similar procedure to Proposition 4.5; : letting
the estimation: (r; 1)—(M (r), M,(a/t)) be as in Lemma 4.1’, we define a map
Mge ‘M (t; a)—~(M(1), M,(a/4t)), where M):=My-M,-M,, with a map
M,: t—t/4. Then using the similar inclusion to (4.10)s in Proposition 4.5,,
we have the first inclusion, which is a cohomological version of Lemma 4.1'.
g.e.d.

Next letting the estimation map M eM be as in (5.2)5, we call M,: R*>r
—R* > M,(r) the first part of M, and we use the symbol = for the projection:
MasM-MsM,.

Proposition 5.4,. There is a map g: Coh (Xy; #)39H — IVESM&
Coh (Xo; £)2 9—>M> My, which is factored llg
as in Figure 1, and with which we have the Zr— M

following map (p=p=1): Figure L

0 :ZP°%P:r;t;a)SZ0(P; 8 a)

’ 5 ,with (r';1;a')=Mgy(r; t; a),
0 Z9KP; rit:a) S ZPOP; Ky 1 a) (505 a)=Mg(r; 1; a)

SR

which satisfy:
(1=0"-0)ZP%P:r;t:a) S0, Z"F10(P; /5 15 a’)
05:@2”‘7—1 O(P: r; t, a)L)(SZIOﬁ—l(P; i',,', tl’ a/) ?
with (' 5 t';a')=Mg(r; t; a)

(5.5 |

and the similar facts for (1—0-0)Z°% and 6Z°7 ' (by changing the role of
Oy and 8). (In the above the parameter (P, r; t; a) is in Ay (c X x Rt x R*
x R).)

Proof. It suffices to check the similar fact for Z?4: =Z4(P; »; t; a) and
Zrvarl. =Zpvat(Pyopst; q), where 1Zp<p, q=0. For this take an ele-
ment ¢ € ZP 9 (resp. ¢’ € ZP~12*1).  Then, by Proposition 5.4,, we take elements
¢y, 7 from the right sides in (5.2); satisfying d50,=0¢, dpi=0¢'. We set
¢=0¢p, and ¢'=04¢). Then we easily®) see that the maps 0;,: p—@, 0%,:
@'~ @' satisfy the similar fact to (5.2),. q.e.d.

(Proposition 5.4, , correspond to the degeneracy theorem in the spectral
sequence arguments. Our arguments as above are suitable for the explicit

*) Note that the estimation map MyeM in Proposition 5.4, is independent from the
individual $=Coh (X, 4). while the map & ,\;,EM does not operate out the first term
reR+ (or, operates on r as the identity). The factorization in Figure I follows from
these remarks.
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estimations, and are patterned on the algebraic arguments in [20].) Now from
Proposition 5.4, , we easily have:

Proposition 5.5. ZPO(P; r; t; a)cdxZ"P~1O(P; v'; t'; a') (pZ p=1), where

!

the estimation: (r; t; a)—(r'; t'; a’) is as in Proposition 5.4, ,.

Finally we define an obvious map:
(5.2)5 u: Z"89(P; r; t; a) & (U (P), D).
We easily see:
(5-2)¢ ut: I(O(P), D%)y © 270 (P; /25 1[2; a).
From (5.2)s ¢ and Proposition 5.5 we have:
(52,  (I(U,P), O¥).n 6510) =6, (T,(P), OF 1) (1SF<p),
where the correspondence: (r; a)—(r'; a’) is as in Proposition 5.4,.

This inclusion and the factorization in Figure I, Proposition 5.4, insure Lemma
4.1, and we finish the proof of Lemma 4.1.

(iii) Here we check the implication: Lemma 5.2'—>Lemma 5.2. In (iii)
we assume that X, is irreducible at the origin P, of X,. This assumption is
harmless for the proof of Lemma 5.2. Now letting the parameter (P; r; t)
eXxR*xR* be as in Lemma 5.2, we take a suitable projection® t: C"(2)
—C%(z"), where z'=(z;,,..., z;,) with k=dim Z,, and we set P': =7(P). Then

we have the following refining maps:

sp: o, (0,.(P))3U,.(0) — 171 (T,(P)) 27 1(0,(z(0))) }

s P2 0.(0) o 2t (DY) 2D -0

with (r'; t')=(Mx(r), Mx(t)), where My is a positive monomial. (This follows
from Proposition 2, Appendix II.) It is then easy to see that, by using the above
cofinal relation between (U, (P)) and «4(U.(P’), Lemma 5.2 (given to X) is
reduced to Lemma 5.2’ (given to C*). As was mentioned, the check of Lemma
5.2" is given in the end of Section 6.3.

§5.2. Proof of Lemma 4.2-L.emma 4.6

Here we prove the lemmas in the title, by using Proposition 4.2 and some
elementary computations on the a.d. properties of coherent sheaves (cf. Lemma

*) ‘suitable’=suitable choice of coordinates z'z. After fixing the coordinates z’, 7 is
the natural one: C*(z)3z—->C*(z")>z’.
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5.3 and Lemma 5.5). In n.l-n4 we prove Lemma 4.2-Lemma 4.4. We
prove Lemma 4.5 and Lemma 4.6 in n.5 and n.6. As in Section 5.1, our under-
lying variety is X : =X, — X, with X¢: =X ging -

1. Key lemmas for Lemma 4.2-Lemma 4.4. (i) First letting the sets /,
#<I(X,, Ox,) and the Koszul complexes &#™, ¢ (which are determined by
/, /) be as in Lemma 4.2-Lemma 4.4, we prove the following in n.1-n.4:

(5.3)o Lemmas 4.2, 4.4 for (X,, Xo; ) and Lemma 4.3 for (X,, Xo; /5 9).

(By (4.3)3, the proof of (5.3), suffices for the proof of Lemma 4.2-Lemma 4.4
in its original form as in n.2-n.4, §4.2). We give here a lemma, which is our
starting point of the proof of (5.3),:

Lemma 5.3,. There is a subvariety Y of X, satisfying™
(5.3) Yo X4 (=Xging), and dim(Y—X5)<dim X,—-2,
and with which the following three uniform estimations hold:

(5.3), ‘Lemma 4.2, Lemma 4.4 for (X,, Y; )
and ‘Lemma 4.3 for (X,, Y; #, 9) .
We check Lemma 5.3; in Part B, Appendix I. Note that Lemma 5.3,
implies:

Proposition 5.6. [f dim X,=1, then Lemma 4.2-Lemma 4.4 hold.

Setting k: =dim X,, we assume the following for the remainder of n.1-
n.4:

(5.3), k=2, and Lemma 4.2-Lemma 4.4 hold for k<k.

Remark 5.2. We may phrase Lemma 5.3; by saying that ‘the estimations
in Lemma 4.2-4.4 hold for general points of X:=X,—X; (cf. also the
proof of Lemma 4.2-4.4 in Appendix I). Also as we will see in the course of
n.1-n.4, our proof of Lemma 4.2-4.4 may be regarded as insuring the im-
plication:

(5.3); ‘estimations in Lemma 4.2-4.4 for general points of X’—‘those for
all points of X°.

*) Precisely, we require (5.3)] for the germs of Y, ... at the origin P, of X, (cf. the begining
of §5). For the local variety X, we use similar terminology to (5.3), in later arguments
(cf. Lemma 5.3, and Proposition 5.7).
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We prove this by using an inductive argument on k and Proposition 4.2, which
is essentially a cohomological result (cf. the proof of Proposition 4.2 in n.4,
§4.2). The implication (5.3); and its proof may be interesting in connection
with treatments of the a.d. properties of analytic varieties.

Now, the essential part of the proof of Lemma 4.2-4.4 is given in n.2-
n.4. Here we make some reductions of the above lemmas: For this we fix a
variety Y as in Lemma 5.3,, and we assume that (Y—Xg)#¢. (Otherwise,
Lemma 4.2-4.4 are true.) Then the following lemma suffices to insure Lemma
4.2-4.6:

Lemma 5.3,. There is a subvariety Y' of Y satisfying (1) Y'=Xg, (2)
Y' — X% Y— X, and with which we have (cf. n.7, Part A, §4.1):
(5.3); ‘Lemma4.2,44 for (Y, Y’; A and ‘Lemma 4.3 for (Y, Y'; 2, 9).

Actually, by the chain property in Proposition 4.1, (5.3), ; insures the
following:
(5.3), ‘Lemmas 4.2, 4.4 for (X,,Y’; /)’ and ‘Lemma 4.3 for (X,, Y'; /, g).
Remarking that (2), Lemma 5.3, insures: Xo—Y'&X,— Y, we easily see that
a finite repetition of the above procedures leads to (5.3),. In (ii) soon below,
we will give explicitly a variety Y’ as in Lemma 5.3,.

(if) Take a suitable element hel(X,, Oy,), and we denote by D the

divisor of h. Then from a simple observation, we have:
Proposition 5.7. Taking a suitable subvariety D' of D, we have:

(5.3)s DoYU Xy, D'oXy,D'DY, and dh#0 at any Pe D—D’. (Here d =ex-
terior differential operator on X,.)

(5.3)¢ The elementsf,-e/, g;€¥ (1Siss, 1< j=1) satisfy: f;, ;%0 (D,) for
each irreducible component D, of the germ D at Py satisfying D,¢ D’.

Weset Y': =Y nD'. Then we easily see that (1), (2) in Lemma 5.3, hold.
To show (5.3); in Lemma 5.3,, it suffices to prove the following:

Lemma 5.4. The following four facts hold (cf. also n.7, part A, §4.1):
(5.3); ‘Lemmas 4.2, 4.4 for (D, D'; /)’ and ‘Lemma 4.2 for (D, D'; S5 9)

Actually, from that D> Y U X§, one check easily that one can replace (D, D’)
in Lemma 5.4 by (Y, Y’). Thus, by (5.3),, the remaining task for the proof of
Lemma 4.2-4.4 (cf. also (5.3),) is to prove Lemma 5.4. This will be done in
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n.2-n.4 soon below.

2. Proof of Lemma 5.4. First we give a proposition, which reduces
Lemma 5.4 to Proposition 4.2. For this we fix a suitable® d=d,eZ*, an ele-
ment (o; m)=(op, Mp)e RT2xZ* and a linear function Ly (=co pt; ¢o p>0).
Moreover, letting the open set U, p (2 P,) in €", we form a parameter space
#p (c(D=D)xR*) by pp:={(P;r)e(D-D)nU,p)xR*; r<{og(P)}7},
with g(P):=d(P, D")~'. Then, letting the Koszul homomorphisms F%, G,,
be as in Lemma 4.2-Lemma 4.4, we have**®):

Proposition 5.8. (1) For a suitable E e E, 4 we have:

(54), *(Fp [(OP), L0y, 0 IO, D))
chiFy_ F(T(P), ,wOP*V),

(0<p<s), with (r'; m'; ay=Ep(r; im; a). Here (ifi; m)eZ* xZ* satisfies:
> Lo(m).

(5.4), *(I(OLP), #"Dx), 0 [(TLP), hDy) < hil (T, (P), "Dy,
with (r'; m'; a"y=Ep(r; m; a). Here meZ™ satisfies: m=mi.

(2) For a suitable a.d. map Ep ,€E, 4, we have (0<p<t):
(545 *G,I0P), 0P ), 0 10 (P), hiDP))

ShG, [(TAP), 7DDy,

with (r'; m'; a'y=Ep 4(r; m; a). Here meZ™ satisfies: m> hi.

In the above (P; r; a) is in gep xR (c(D—D")x Rt x RY).

We prove Proposition 5.8 in n.3, n.4. Here we check:

(5.5); Prop. 5.84+Prop. 4.2—‘Lemmas 4.2, 4.4 for (D,D’; /)" and ‘Lemma 4.3
for (D, D'; Ve Z)’.

Actually, by (4.5);, Proposition 4.2, we have:
(555 i#hi(T(TLP), LHOP), n (Fm)-1O) <y, I(T,(P), »* O™y,

with (#'; 111’5 a’)=Ex(r; #it; a). Here the a.d. map Ex€ E, 4 is as in Proposition
4.2. From this and (5.4); we have the desired inclusion to insure ‘Lemma 4.2
for (D, D’; /)’:

*) When we are concerned with (5.4),, the data dp, ... depend also on &: dp=dp. g, ... .
**) For the sets of the cochains in Proposition 5.8, see (4.2), and Proposition 4.2.
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(55, FTOLP), L 0P, 0 (Fp)10) < Fp LT, (P), £7OF),,

where (r'; ’; a’)=Ep(r; m; a), with an a.d. map E; € E, 4, which is determined
by Ej, Ex as in (5.4),, (5.5);.

Thus we have the first fact in the right side of (5.5);. The remaining two
facts in the right side of (5.5), follow from (5.4), ; and from (4.5), ; in Propo-
sition 4.2. Thus, the remaining task for the proof of Lemma 5.4 (and so Lemma
4.2-4.4) is to prove Proposition 5.8. This is done in n.3, n.4, soon below.

Remark 5.3. By a simple induction on d € Z* we easily see that the proof
of Proposition 5.8 for d=1 leads to that in the general case: d=2. The proof
of Proposition 5.8 will be given for the case of d=1.

3. Proof of Proposition 5.8 —-(1). Note that the uniform estimations in
Proposition 5.8 were given to each Pe U; N (D—D’) and to Koszul complexes
Fm,..., which are defined on X,. We will derive Proposition 5.8 from the
uniform estimations on Koszul complexes,... on the divisor D, of X, which are
insured by the induction hypothesis (5.3), (cf. (5.6);, and Proposition 5.9 soon
below). For applications of such estimations, we begin n.3 by arranging some
geometric data, which are attached to D: first we set:

(5.6); Op=structure sheaf of D, and n=natural homomorphism: Oy ->Op,
(5.6)5 /= (fi)§=1, 7= (gj)§'=1a where fi=7r(.fi)7 gj=n(gj) .

We use the symbol #m (resp. /) for the m-th Koszul (resp. Koszul)-complex
for / (resp. for j):

m
Fs-l

(5.6)} gm0l op T, T Lo,
g7; 0 So, ., Dl(,;’) S, G-y, O, —0.
We then use the induction hypothesis (5.3); in the following specified form:

(5.6); ‘Lemma 4.2, Lemma 4.4 for (D, D’; /)’ as well as ‘Lemma 4.3 for
(D, D'; 7, ) hold.
In the remainder of n.3 we summarize some (direct) consequences of (5.6).

First we check that the a.d. property of the holomorphic functious is preserved
by the extension from D to X,:

Proposition 5.9,. (Extension of a.d. property). For a suitable a.d. map

E,€E, 4, we have:
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(5.6); i"*I(OyP), /"Op)ocnl (T, (P), /™ D)us
with (r'; m'; a")y=Ep(r; m; a).

Here the parameter (P; r; m; a) is, as in Proposition 5.8, in gepx Z% x R
(c(D-D"YxR*xZ*xRY). Also we set:

(5.6)1 0P)=0,P)nD(={QeD; d(Q, P)<r}),
and i': =inclusion: U..(PY-UL(P).

Proof. First, by its definition, the left side of (5.6), is written as follows:
(a) I(OUP), /"Dp)=F "I (T}(P), Dp)s (cf. (4.2),).

Next by Proposition 4.4 there is an analytic map w: U,(P)- U.(P), which is the
identity on U’.(P). (Here r' =M, (r), with a positive monomial M, as in Propo-
sition 4.4.) This implies: ['(T.(P), Op),=nl'(U,.(P), Oy)., and we have:

(b) i*L(TP), /D p),cnFA[(T(P), D%),- q.e.d.

Letting the a.d. maps Ej, E,, be as in Proposition 5.8, we give the fol-
lowing slicely weaker version of (5.4), ; (cf. Proposition 5.8):

Proposition 5.2,. We have the following inclusions:

i#(Fpr(O,(P), 0P, nI(T,(P), BOFH)) e

(5.6), - e (3) ~ ©)
Fg(F(Ur'(P), /m DXP )a’ n F(Ur'(P)a thp ))
with (r',wm',a)=Ep(r; m;a)
i*(G,I(U,(P), 0%, nI(0,(P), OFH))) <
(5.6)3

G (r @(P), #»O)), a1 (0, (P), 0PN
with (F;m';a)=Ep ((r; m;a)

Proof. Take elements ¢=F} ¢', ¥=G,¥’' from the left sides, where
o', ¥ arcin [(O(P), L"OP), ¥ e I(UP), #"OP)), (cf. (5.6),5). We set
¢ =n¢’ and ¥'=n¥’. Then, by ‘Lemma 4.4 for (D, D'; /)’ and ‘Lemma 4.3
for (D, D'; /; &), we have: ¢'=Fn_ @}, ¥'=G,_, ¥, with @, el(T.(P),
/’ﬁ'D,()”i‘))a. and ¥, e [(T.(P), /7“'D£”£1))a,, where (r'; m'; a')=Ey(r; mi; a)
and (7; m'; a")=Ep 4(r; i; a). (In the above we assume that p=1. If p=0,
then (5.6), ; is obvious, because F%, G, are injective.) By Proposition 5.9, we
extend @}, P} to X,. Writing the extensions as ¢}, ¥}, we set 0y=0¢'—F3_,01,
Y,=%—-G,_¥;. We then have: np,=n¥,=0 and Fro,=9, G,_¥>="Y.
From this and the estimations: (r; #; a)—(r'; #i’; a’),... soon above as well as
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the one in Proposition 5.9,, we easily have (5.6), . q.e.d.
4. Proof of Proposition 5.8~ (2). We first check the implication:

(@) (5.6); — (5.4),.

To see this, take an element @ € [(T(P), #"Oy), N I(U(P), hOy) (cf. (5.4),).

We take a suitable linear map® L:R*tsm—-R*scm;c>0. Letting m'=

[L(m)], m=m—m’', we have:

() e FrI(0,P), /"0%).NT(U(P), hOyx) (cf. (5.6),).

By the choice of the map L, one can assume®): Ly(m')<iit, with the linear

function L, in (5.6),, Proposition 5.9,; applying (5.6}, to the right side of (a);,

we have:

@, i*peF" (0, (P), /%O, NI, (P), hD%), where (s i’ a’) =

Ex(r; m; a) is as in (5.6),.

Remarking that** I'(U,.(P), /’" %)=L (U,(P), O%).» We apply the bdd.

uniform estimation, Lemma 5.1, (applied to the homomorphism h: D% 3 ¢—0%

3 he) to the right side of (a),. Then we have:

(@), i@ e Fm'. ji. (T (P), O%),, With ("; a”)=M,(r"; a').

Here the map M,: R* x R*->R* x R* (e M) is determined by the homomorphism
h as in Lemma 5.1. This inclusion is of the desired form in (5.4),. Moreover,
we easily check that the map: (r; m; a)—('; m’; a’), which is determined by
the maps L, Ex and M, as in (a);_3, is also of the desired form in (5.4),. (Name-
ly, that correspondence is written as ('; m'; a’)=E(r; m; a), with an a.d. map
E determined by L, Ex and M,.) Thus we have the implication (a). Next,
it is easy to see that the application of (5.4), to the right side of (5.6), ; leads to
the following implication:

b) (5.6),+(5.4),~(5.4);, and (5.6);+(5.4),—>(5.4);.

Thus we have Proposition 5.8, and we have Lemma 5.4 and so Lemma 5.3,
as well as our original lemmas, Lemma 4.2-Lemma 4.4 (cf. (5.5),, (5.3); 4 and

(5.3)0)-
5. Proof of Lemma 4.5. Letting the sheaf $ be as in Lemma 4.5, we

*) For the treatment of the ‘a.d. exponents’ m,... here, see also (iii), n.3, Section 2.3 (in the
proof of Lemma 2.6), where the similar arguments are given.
*#) Recalling that /' =0 at P,, one can assume that | /| <1.
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assume that $ is of the form in (5.2),. We write 6, 9% (= O¥)as 9, (1< p<p).
(Thus $=9,.) Also we denote by D the divisor of*) h on X,. Then, letting
the variety Y« X, be as** in Lemma 5.3,, the following lemma will be our
starting point of Lemma 4.5:

Lemma 5.5. Lemina 4.5 holds for (Xo, Y:9;) (1= p=p), and Y> D,
Y—DcV (=locus of yat

(For the proof of Lemma 5.5. see Part B, Appendix I.) Next taking an
open subset Uy, of U, and an element o, € RT?, we form parameter spaces:
(5.7 Ao:={P;ria)e(Uy n(Y—D))x R* x RT; r<{o,g,(P)}™'}, with g,(P):
=d(P, D) !, and vy =2y x £*.
(If YD, then Lemma 4.5 holds. We henceforth assume that Y& D.) For
convenience of the proof of Lemma 4.5, we fix a set #=(g;)i-,=I'(X,, Oy,)
satisfying Y=N{_, D;, where D;:=divisor of g; on X,. Also taking an
element d e Z*, we set g¢: =(g;§ 4_,. Thirdly taking a parameter (P; r; a; m)
€Ty (c(Y-D)xR* xR} xZ%), we sct:
(5.7); CBU(P;r;a:m):=Y, (g " -T(OP), frOL), (§=0,0<F<p), where

I exhaust all indices of the form [=(i;<---<iz,,) and g{: =g{---g¢,. .

The homomorphism d, operates on C?4(t), with t=(P:r; a; m): d5: CHi(r)
—CE*14(7).  We denote by d,« the Koszul homomorphism for C24(r):
(5.7); 844t CA(T)2 X, pf/g, with @ e I(ULP), 08,

— CiTr (D)3 2, 04/99
where (¢,);—(p,); is defined by the Koszul homomorphism defined for ¢
(cf. n.3, part B, §4.1).

We then set:

(5.7); ZF4(r):=C5(x) n654(0), Zj?i(x) : =C4%(x) N 6,4(0), and
2 ()= ZP () N Zg(7)

Take a suitable element***) ¢=e, e £* and an a.d. map E,€E, 4 (cf. n.1, B,

*» The element he (X, Dy ,) is also as in (5.2):.
*#) Precisely, we understand that the divisor D plays the role of the subvariety X, in Lemma
5.3,. InLemma 5.3, we assumed: dim (¥Y—X;)<dim X;,—2. Here we do not assume
the corresponding fact: dim (Y—D)<dim X, —2.
**%) When we are concerned with the second inclusionin (5.7),, the data (ey, Ey) depend
also on #: cp=ey, 7 and E,\;,zE,D,/.



484 NOBUO SASAKURA

§4.1). Then we have:
Proposition 5.10,. We have the following inclusions:

(ZFA(P;ria;m)cd,CE (P s a s m') (1321)}
L Z94(P; r; m; a) C0,CPI V(P d s m') (G21) )
with (r';a' ; m')=Eg(r;m;a).

(5.7

Proof. The first inclusion follows from Lemma 5.5 and Proposition 4.2.
Moreover, the second follows from Lemma 4.3 or Lemma 4.2, according as
g < or =q (cf. also the proof of Lemma 4.3"). q.e.d.

Applying the similar algebraic arguments to n.5, Section 5.1, we get the

following from Proposition 5.10,.
Proposition 5.10,. We have the following inclusion (§=1):
(5.7)s Z5O(P; 15 a; m)<SoZir i O(P; ' a's m'),
where the correspondence: (r; a; m)—(r'; a’'; m') is similar to Proposition
5.10,.
Finally, by comparing the set of the cocycles, Z? °(P; r; a; m) and the set

of the holomorphic functions I'(T,(P), "O4), in a similar manner to n.5,

Section 5.1, we get easily the desired inclusion in Lemma 4.5:
(5.7 IO (P), Lm0 5510) =85 (T (P), ™ -Dhi-1), (1SF=p),

where the correspondence: (r; a; m)—(r'; a’; m’) is similar to Proposition
5.10,. (Precisely, from the explicit form of the parameter space Ty, (5.7)s
insures ‘Lemma 4.5 for (Y, D; $;)’ (1=p=<p). But, using the chain property in
Proposition 4.1, we have ‘Lemma 4.5 for (X,, D; )’ from the above (cf. also
n.1, §5.2), and we also have Lemma 4.5 (cf. also (iii), n.8, B, §4.1).)

6. Proof of Lemma 4.6. Finally we derive Lemma 4.6 from Lemma 4.5
and Lemma 4.4. In n.6, the sheaves $;=0,0%:-1(<=Dk?) (1Sp=p) are as
in n.5. Next take a positive monomial M and an a.d. map E€E, ;. We then
define a map
(5.8)g E:R*XR*xRt*xZ*3(r;t;a; m)-»R* xRt xRt xZ*s(r';t';a’;m'),
where #"=M(r) and (¢t'; a’; m")=E(rt; a; m).

We write the collection of all such maps as E. Moreover, the parameter space
Ay (c X xR*xR* xRY) is as in (5.2)y, and we set T4:=AxxZ*.
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Now, we give itwo propositions, which are the key fact for the proof of
Lemma 4.6. (In Propositions 5.11, ,, we fix an element mye Z*.)

Proposition 5.11,. For a suitable estimation map Ey € E we have:

(5.8); s*ZUA(U(P)), "Ox)a=F" Zt,(U,(P)), O%)wr> with (r'; 15 a’s m’)
=Ex(r; t; a; m), where we set:

(5.8)y CU(T(P)), /"Dx)y: = F*CUL (U, (P), O%)w  (cf. (5.2)0), and
Z(st(U(P)), "Oy),: =(left side) n 671(0).

Propesition 5.11,. For a suitable Eg € E, we have (I p=p):

(5.8), *ZUA(ULP)), /"O§), N 657(0) < 62 A U, AP)), ™ -DOx)y, with
(s t';a' s m)=Ey(r; t; a; m).

In the above®), the parameter (P;r;t;a)is in Ay (=X x R* x Rt x RY), and the
element me Z* satisfy: m=my.

Note that, by applying Lemma 5.2 to the right side of (5.8), ,, we have

(5.8); left side of {(5'8)} [ OF"C (L, (0, (P)), "D%)

(5.8), Iascq Yot (T, (P)), 2"D%)
Also note we gave cohomological versions of Lemma 4.4 and Lemma 4.5 in
Lemma 2.6’ and (2.14) in the proof of Lemma 2.6 (cf. (iii), n.3, §2.3). Propo-
sitions 5.11, , are similar to those results, but are more simple than them,

(qzl)}.

because Propositions 5.11, , do not contain no p.g. conditions on neither the
sets of the cochains nor the coverings «(U,(P)) in (5.8);. The proof of Propo-
sitions 5.11; , is given in a similar algebraic pattern to that of Lemma 2.6’ and
(2.14). The estimations in the former are much simpler than the latter. We
omit the check of Propositions 5.11, .

Proof of Lemma 4.6. We derive here Lemma 4.6 from Propositions
5.11,,,. For this taking a positive monomial M and an estimation map E'e E’
(cf. (4.2)7), we define an estimation map:

(5.8); E":R*xR*xRixZ*3(r;t;a;m)»Rt*xR* xR xZ*>(r';t;a ;m’),
with r'=M(r) and (¢'; a’; m")=E(rt; a; m).

Writing the estimations: R*sr—R* s and: Z*am—>Z*2am’ as M, L we call
the maps M, L the first and a.d. parts of E’. We use the symbols E and M, Ln

*) Precisely, the parameter space =y in Proposition 5.11; also depends on $:7gy=7g, x.
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for the collections of all maps as in (5.8)5 and of their first and a.d. parts. More-
over, we use the symbol = for the map E'sE'—-MxLna(M, L).
Now, let the homomorphism K, ,,= Ko+ F": O+ O¥—%,, (=D%) be as

in Lemma 4.6. Then we have:

Proposition 5.11;. There is a map ey: Z*am—E’

3 E@.,,, satisfying the diagram in Figure I, and with which Y AN
we have: l
{O} — MxLn

(5.8); s*(ZuUt(U(P)), D%), N Z4A(T(P)), )

- Figure 1.
< KO,m‘Zq('Jyt’(Ur’(P))a D§1+5k)a' ’

with (r'5 t'; @’y m')=Eg(r; t; a; m), where the parameter (P;r;t,a;m)e
X xR*xR*x R} x Z* has the similar meaning to Proposition 5.11,.

(For the diagram in Figure I, compare the similar one in Figure 111, Lemma
4.6.)

Note that, by comparing the sets of the cochains in (5.8); (in the case of
q=0) and the sets of the holomorphic functions in Lemma 4.6, we see easily
that Proposition 5.11; implies Lemma 4.6. We prove Proposition 5.11; soon
below. We add hcre an inclusion, which we use in the proof of Proposition
5.115:

(5.8)s S*ZUA(T,(P)), D), 1 651(0) < 3gC4(4(T,.(P)), Dfe=1),, with
(r'; t'; a")y=Mgy(r; t; a), where the parameter (P;r;t; a)edy (=X xR* xR*
xR}) is as in Proposition 5.11, and the estimation map My is in M (cf.

(5.2)0).
(This follows easily from Proposition 5.5 and Lemma 5.2.)
Proof of Proposition 5.115. Take an element ¢ from the left side of (5.8),,

and we apply (5.2); to the homomorphism K, ,. Then one can write ¢ as fol-

lows:
(@) @=Kop,+F"p,, with ¢, € Ci(,,, Of), and ¢, € CU,,, O¥2),,

where (t'; a')= Mg, ,(t; a), with an estimation map 1\71@,,,, €M (cf. (4.1);). (Here
we write (U (P)) as o,.) Next we apply (5.8); to ¢: =K,0¢,, and we have:

(a), O0Ky(p,;—})=0, with an element ¢} e C% s, /’""D,’gt),,", with (#'; t";
a”; m")=Eg(r; t'; a'; m"). (The estimation map Eg €E is as in (5.8),.)

Thirdly, writing the sheaf $ explicitly as: —»Okz K1, Oko Ko, 5,0 we apply
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(5.8)5 to (K, 6(¢p; —@})). Then we have:

(a); (p,—;+K,07)=0, with an element ¢7 € C¥(f,;., O%2);. Here (1";4")
=Mg(t"; a”), with an estimation map Mg e M (cf. (4.1)3).

Now, we set @,: =¢, —¢;+ K ¢|. Then one can write:

(a), Pp=(Kop, +F"0;)=Kop, +Fmp,— Ky} (and we have 63, =0).
Setting ¢, : =F"¢p, — Kq¢}, we have the following from (a), , and (a),:

(@)s Py € ZU A i, /’""Dx)f." .

Finally, we apply (5.8)) to ¢,. Then we have the desired inclusion in (5.8),:
@) s*p€KoZ Ay, O%)ar + F™ ZH iy OF)ars

with (773 7"; a@”; m")=Ex(r'; ¥} a3 1),

where the estimation map Ey e E is as in (5.8);.

Thus we finish the proof of Lemma 4.6. (We should check that the estimations
in (a);_¢ yields the one of the form in (5.8);. But this is checked by a tedious
observation). g.e.d.

By the proof of Lemma 4.6, we finish all the non cohomological uniform
estimations in Section 4.1, which are the basis of the cohomological estimations
in Section 1, Section 2. Finally, we make remarks ou the p.g. Poincaré lemmas
(Lemma 3.3 and Proposition 3.1), which we used in the application to de Rham
theory in Section 3.

Remark 3.4. We summarize here the key facts for the proof of the p.g.
Poincaré lemma, Proposition 3.1 and Lemma 3.3. The details of the content
here will be given elsewhere®). First we remark that the p.g. Poincaré lemma
in Proposition 3.1 is of similar form to Lemma 1.2 (except that the sheaf homo-
morphism in Proposition 3.1 is the exterior dgifferential operator d, while that in
Lemma 1.2 is an Ox-homomorphism.) Thus, by Proposition 4.5, we see that
similar non cohomological uniform estimation (for the operator d) to the one
in Lemma 4.1 suffices for the check of Proposition 3.1. But such a non cohomo-
logical estimation is checked very easily, and Proposition 3.1 is essentially of
very elementary nature®*).

= Cf, [17].

**) When the pair (Xy, X;) (as in Lemma 4.17) satisfies: X;=U, (€ Ouv (€*), such an
estimation is easily checked. In the general case, we get the estimation from those
for X,=U,, by using the simillar arguments to n.5, Section 5.1.
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Next, we recall that the p.g. Poincaré lemma, Lemma 3.3, is a formal con-
sequence of the p.g. open map property, Lemma 3.2. On the other hand, by
Proposition 4.6, we have the implication: Lemma 4.7—Lemma 3.2. Thus, for
the proof of Lemma 3.3, the proof of Lemma 4.7 is sufficient. The proof of
Lemma 4.7 has, in its algebraic structure, similarities to the one of Lemma 4.5.
We summarize here the key facts for the proof of Lemma 4.6: first, by an ele-

mentary computation, we have:

(5.9); Lemma 4.7 holds for (X, Y; d), where Yis a subvariety of X, satisfying
(1) dim Y<dim X,—2 and (2) Y<V (=locus of A

(This terminology should be understood similarly to (4.3);. In the proof of
Lemma 4.5, we gave a similar fact to (5.9); (cf. Lemma 5.5). The proof of
(5.9), is given differently from the one of Lemma 5.5. But the proof of (5.9),
is very elementary, and we omit it.) Assuming (5.9),, the key point of the proof
of Lemma 4.7 is as follows: first we let the finite set #¢=(gg)i-, =I'(X,, Oy,)
and the parameter (P; r; a; m)e(Y—D)xR* xR}f xZ* be as in (5.7),. (Here
we assume, as in (5.7),, that N; D;=Y.)

(5.9, CPuP;r;a;m): =3, =3(g9) e I(O(P), ,"2%) (p,§20), where g is
as in (5.7),, and the set of the holomorphic differential forms in the right side is
as in (4.2),.

(5.9, Z'Pa(r):=Crat) nd~'(0), Z"71(r): = C?4(1) N 6,4(0), and Z?4(7):=
Z'?9(t) n 2" (1), where we set 1=(P; r; a; m).

In the above 6,4 is the Koszul homomorphism as in n.5, Section 5.2 and d

denotes the exterior differential operator.
Then the key fact for the proof of Lemma 4.7 is as follows:

Proposition 5.12,. We have the inclusions:
(5.9)s Z'P4P;r;a;m)cdCr ! AP;r';a’; m')
(5.9), Z"°U(P;r;a;m)cdy,aCPI Y (P;1';a’;m'), with (r'; a’; m)y=Ex(r; a; m),
where the estimation Ey is in E_ 4 (c¢f. Definition 4.1) and the element ee Z* is

similar to Proposition 5.10,.

The first inclusion is same as the second one in (5.7),. Also we see easily
that the similar argument to Proposition 5.10, insures the implication:

(5.9)5 Prop. 5.12, — Lemma 4.7.

In the remainder we summarize the key points of the proof of (5.9);, which is
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based on Theorem 2.2, and an a.d. estimations on C®-differential forms (cf.
Proposition 5.12,): first we note that, from a simple observation, the proof
of (5.9); for the case of #g =1 leads to that of the case: # # =2. We henceforth
assume that # #=1. In order to make the notation concordant to the one in
Section 1, Section 2, we write # as #={h]. Also letting the parameter space
x (cDxR*xR}?) be as in (1.9),, we form a product zyx:=pgey x Rf x Z+
(cDxR*xRf{?xRf?x Z*). Taking an parameter t=(P; r; 0; a; m) in 7y
(cDxR*xR{?xR{?x Z*), we form a double complex as follows:

(5.10); Ch%r): = {9 e CULX(P), 2%); |@|-|h¥| < a| £|™}, where the p.g.
covering .oZ,(X,(P)) is as in Theorem 1.1.
(5.10), ZFY(r): =Ci) nd~0), Z7"*(): =CE(r) n 674(0),

and ZBU(t): =ZFUt)nZP(7).

Now, let the a.d. map E, and the element ee Z* be as in Proposition 5.12,.
Proposition 5.12,. We have the following inclusion:

(5.10); ZP4YP;r;0;a; mcdCe-119(P;r';0';a'; m)
(5.10), ZPPUP;r;a;a;, m)cdCli" Y (P;v';06';5a;m'),
where (r'; a'; m)=Ey(r; a; m) and ¢’ is an element®) of R}?2.

Proof. First, using the entirely parallel arguments to the proof of Propo-
sition 4.9, (cf. n.4, §4.2), we have (5.10), from Theorem 2.2,. (As in n.4,
§4.2, (5.10), is a non cohomological version of Theorem 2.2, (which is the
cohomological inclusion as in Section 2.) Next we get (5.10); from (5.9),
easily as follows: first, using Proposition 4.5,, we have the cohomological version
of (5.9), (in the manner as in Proposition 4.5,). Then, using the similar argu-
ments to the ones in n.4, Section 4.2, we have:

(@) (5.9), —PBree- 341, cohomological version of (5.9), —»(5.10), .
This finishes the proof of Proposition 5.12,. g.e.d.

Next, to the double complexes C5(7), we will apply the similar arguments to
Proposition 5.4,. Then we have*™®):
Proposition 5.12;. There are maps 0:Z5%P; r; 0; a; m)—»Z%?(P; v';

ag';a';m')and 0': Z$P(P; r; 0; a; m)—ZEO(P; v'; 6'; a’; m'), which satisfy:

*) The dependence of the element ¢’ R}? is clear from the proof soon below. We do
not use the explicit form of ¢’ R}2.
**) The estimation: (r; o; a; m)—>(’; ¢’;a’; m’), ... are as in Proposition 5.12,.
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(5.10)s (1—0"-OZ5%P; r; 0;a; m)ycd—>ZP"1%P;¢v';0';a"; m'),
dZ""=1%(P;r; 0; a; m)coZP P (P v 6’5 4’y m)

(and the similar relation for 6-0',... (c¢f. also Proposition 5.4,).

Now, using Proposition 5.125, the proof of the following suffices for the
proof of (5.9);.

Proposition 5.12,. Z5°(P;r;0;a; m)coZPL P Y (P;¥';0';a’; m').
Actually, by Proposition 5.12;, the inclusion just above insures:
(5.10)¢ ZEO(P;r; 05 a; m)=dZPP~Y(P; 1", 0’5 a'; m').

Then, comparing the sets Z5° in Proposition 5.12; and the sets Z,7° in (5.9);
(using the similar arguments to (5.2)s_, and (5.7)¢), we easily see that (5.10)¢
insures the desired inclusion (5.9);).

Finally we remark that the both sides in Proposition 5.125 are contained in
Z%L(X(P)), €C) and C1 Y (,(X.(P)), C) and are endowed with the a.d.
properties. Thus Proposition 5.125 is of topological nature, and the key fact
for the proof of Proposition 5.12, differs from our arguments on the coherent
sheaves in the present paper. The details of the proof of (5.10) isin [17]. Here
we only remark that (1) Proposition 5.12, follows from our estimations on the
a.d. properties of the (topological) contractibility of (local real analytic varieties)
(cf. [15],). Applying the standard chain homotopy arguments in the proof of
C”-Poincaré lemma to the explicit contraction in Lemma 2, [15],, one get a
similar C-version of (5.9);. From such an inclusion, we get rather easily Propo-
sition 5.12,. (2) The a.d. property of the (topological) contraction mentioned
just above is elementary once we assume the existence of what we call normalized
series of stratified spaces and some quantitative properties of such stratified
spaces (cf. §3. See also [15],_, and [17]). The details of Proposition 5.12,
and of what are mentioned in (1), (2) just above will be given in [17].

Appendix I. Elementary Computations — 1

Here we prove Proposition 5.3, Proposition 4.4 and Lemma 5.3;, Lemma
5.4. The geometric datum X=(C"(z), Uy, Xy, Xp, Py) will be as in (4.1),,
and the structure sheaf DOy, of U,,... will have the similar meaning to Section 4,
Section 5. We prove Proposition 5.3, Proposition 4.4 in Part A and Lemma
5.3;, Lemma 5.5 in B.
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A

1. An estimation of Weierstrass polynomials. In A we assume that U,
(=€) is of the form Uy =Ugx U, where Uy and Uj are polydiscs in &#~1(z),
C(z,), where z=(z’, z,). We assume that the radius of Uj, Ug coincides and
that d (=this radius)<1i. We use the symbols 7, n, for the projections:
Cr-Cr 1, C.

(i) Take an element fe I'(Uy, Op,). We assume that f is already defined
in Uy=04x U}, where the polydiscs U, U have the same center as Uy, Up
and the radius of them=2d. We set:

(1) K:=max(l, K'), with K": =supgy, | f(Q)+ 2=, [0f(Q)/0z;| .

Next take a point Pe Uy= 0} x U%, where the polydiscs U}, U% have the same
center as Uy, Ug and the radius of them=2"1.d. We assume that m: =degf
in z, at P>0. Seiting Z':=z"—2z'(P), Z,: =z,—2,(P), we expand f at P as
fE 2)=2F0f{Z)Z]. Then, for 2'=0, we have:

)y fO, 2)=2"fu(0)+Z,fm(0, Z,)), with a holomorphic function f},, which
is estimated for |Z,] <d/8 as follows™ :

()7 1f(0, 2,)] < M,(K/d), where the positive monomial M,, depends only on
meZ*. (We note that, for M/, =(8m+1K/dm+1), the above inequality holds.)

From this we easily have:

7 1£Q, Z)1 2271251 | £(O)] for |Z,| <min (d/8, 277 - | £,,(0)] - M (K /).

For convenience of the estimation soon below, we set:

(DY e, - =min (1, | f,(0)]).

Now take positive monomials M,,, M,,, which depend**) only on m, and we
take an element r=(r,, r,) € R*2 satisfying

(1)‘{ ry é Mm(dem/K)’ ry éM;n(TZ) .

We set U,:=U,;, x Uy,, where U;, Uj, are the polydiscs in C"~1, € of radius
ry, r, and center m,(P), n,(P). Moreover, we take an element c=(c,, c;)
e R*2, which depends**) only on m. And we set:

*) This is gotten by applying Cauchy integral formula to f7,.
*#) One can take M, to be (#/2). Starting with this positive monomial, the choice of M’
c=R*? is clear from the proof of Proposition 1.
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DY W,:={ZeU;, xC; |Z,|S|Z'|, where Z=(Z,Z,)}.

Proposition 1. We have the following inclusion.

), U>W,>U.nX, where X:=divisor of f.

Proof. Take an element Z, € C satisfying |Z,|=r,, and we take an element
Z' satisfying

~ . Zn /
(@) 17| <min (d/2, K)"- [ £,O)] - 220). .
Then we have the following from (1)7 . 0/ 3
(b) |f(2'; Z,,)] #0. Figure 1.

Now, by a choice of the positive monomial M/,, we have: M, (r,) <right side of
(a) (cf. also (1)), and we have (b) for |Z'|<M,(r,). Finally, setting u=M,(1),
we define an element £ e R*2 by t=¢-u. Then, clearly, we have the first in-
clusion in (1);. Also, by (b), the inequality |Z,|<¢-|Z’| insures: f(Z, ') #0,
and we have the second inclusion in (1),. g.e.d.

Proof of Proposition 5.3. We set ry: =M, (de,/K), and r{: =M_,(r9)/2.
For each [Z'| <1, let {;(z') (1< j<m) denote the roots of f(Z,; Z)=0, and we
form Weierstrass polynomial f'(Z,; Z') by

() J'Ens 2): =TTy (G —Li(2)).
Note that (1), implies that Z,—{(Z)|>rJ/2, for |Z,|=r), and we have:
D3 Lf'(Zs 2| 2(r9/2)™ for |Z,|=13.

Also, from the explicit form of rJ and M,,, we have (cf. also (1)] and (a), (b)
in the proof of Proposition 1).

D3 lf(Z, 2)|Z M, (r9) for |z|=r§ and |2'|=79,
with a positive monomial M,,, which depends only on m.

Remarking that |f|<K in U, and |f’'| ()™, we easily have
(1); e:=f[f" and ¢': =f'/f satisfies: |e], |¢'| <M}~1(de,/K) in U? x UP,, with
a positive monomial M* depending only on me Z*.
Comparing this with the explicit formulation in (5.1)s, Proposition 5.3, we see
easily that (1)5 insures (5.1)¢, Proposition 5.3.

Next take a holomorphic function ¢ e I'(U,, Oy,) satisfying |¢p|<a in U,.
(See (5.1),, Proposition 5.3. Here we understand that U,:=polydisc in C"
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of radius r and center P, and we assume that r<r$.) Then, setting r,: =r9/4
and ry: =M, (ry), we write ¢=¢,f +¢, (cf. (5.1);) in Uy xUy,. Here Uy,
and U, are the polydiscs in €"~! and € of radius r}, ry and of center n,(P),
n,(P). Then ¢, is given by the following integral formula (cf. p. 70, [4]):

(s Cay=Dpi={ 0. OIC-2)dL, where ,:={L; It]=73/2) and 6,: =
o OIfE . T
From this and from (1);, we easily have:

Ms e <My, (a]r)in Uy, x U,,, where the positive monomial M, is inde-
pendent from the point P satisfying deg, f(P)=m.

Moreover, ¢, =@ — @, f is estimated in the similar manner to (1)s, and we have
(5.1),, Proposition 5.3. Thus we finish the proof of Proposition 5.3.

2. Proof of Proposition 4.4. In n.2 we assume that X, is irreducible at
the origin P, of X,. By a simple observation, this assumption is harmless for
the proof of Proposition 4.4. Wefixaset #=(f)izf<I'(Uo, Dy,), k=dim X,,
satisfying (1) f=0(X,) and (2) §,: =|det 0 £/0(zy 4 1,---, Z)| EO(X,). We assume
that ~ is defined in U, (cf. the beginning of (i), n.1), and we define:

2o K:=sup..y, L+ Z1=F(1fil + X751 10£:/0z;)) .

Moreover, we fix an open subset U, (3 P,) of Uy, and, for a point Pe U, n X,
satisfying §,(P)#0, we define:

2o g/P): =min (1, §(P)).

Next we choose positive monomials M;=M,,,, (n=i=1), which depend
only on (n, k), and we take an element r=(r;)"_, € R*" satisfying
(2 raSM,(dg(P)/K), r;sMrjs) (n—12jz1).

We then define:

2. UP):=[1}=1 U,(P)=C" (=Cx - xC), UP): =Tk~ U,(P)),

where U, (P) denotes the disc in the j-th component C of €, whose radius is r;
and center is Po:=m;(P). (Here m;, denotes the projection: C*(z)—C"(z7),

with z/:=(zy,..., z;).) Moreover, taking an element c=c,,eR*2, which
depends only on (n, k), we set:

@3 W (P): ={z=(2"; zxs1,..., Z) EUP) x €% (= €™, where |z,—2z/(P)|
< |(Men(2) = (P (n 212 k+1)].
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Then, setting X: =X, —(locus of §,), we have:
Proposition 2. We have the inclusion:

@Gr* U(P)>W,(P)>U(P)NX, and
3%+ m,: (ULP)N X)—>UXP) is biregular (and is surjective).

Preof. First we note that (3)§:57! follows easily from Proposition 1. We
also note that this implies Proposition 2 for the case of n=2. We assume that
nz3 and that Proposition 2 holds for i<n. We will derive (3)1:4 for ksn—2
from (3)7:57! and (3);3!**. For this we set:

(a)O gfl: = |af1/azk+1 |3 /’: = (fl""’fn)r and gz’: = Idet a/,/a(zk+2"'-’ Zn)l .
Then, assuming that the indices (1,..., n) are suitably chosen, we have:
(a), g7 (P), §(P)>g(P)|M,,(P), with a suitable M, , e M.

(To check this, we first note that g, (P)-§(P)=§(P)/n. From this and the
relation §;,(P), §,(P)< M, (K), which is easily checked, we have (a),.)

(i) Denote by Y, the locus of f; in U,. We summarize here the appli-
cation of (3)7:37! to ¥;. For this we choose pos1t1ve monomials M;=Mj, .
(n=iz1) suitably, and take an element r' =(r))1-, € R*" satisfying

(d), Fy<Mid-g(P)K), ry<Mi(hyy) (n—12j21).

Also we choose an element «'=¢; , € R*2, which depends only on (n, k), and
we form manifolds U.(P), W,..{(P) and U '(P) in the similar manner to
(2),.5. To make clear that we are concerned with the indices (n, n—1), we
write the first two manifolds as U»""'(P) and W»">'(P). Then we have:

(3)3::,11—1 Un n— ](P)DW" n— I(P)D(Un n— I(P)n Yl): and Tye it (Un n— I(P)n
Y,)—Ur"Y(P) is biregular.

(To check this, we first define the invariants K, of f; in the manner in (2),, and
we set g, (P):=min(l, §,(P)). Also, we let M;=M,,,_, be as in (3),.
Then, for an element r=(r;)%-, satisfying: r, <M, (dg,,(P)/K;) and r; <M r;. )
(n—1=j=1), we have the similar fact to (3)y>*~! from (3){>»~!. But, assum-

ing that M, is suitably chosen, (a), insures:

(®), M, (dg(P)|K)<M,(dg,(P)/K).

Thus, by understanding that M;=M; (nZ j=1), we have (3)3-""1.
For purpose of the arguments henceforth, we arrange some data: we define
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an element 7: =(7;)"7-, e R*" by
(bs) For=M(dg; (P)K), Fj:=MyF;s,) (n—1zj2z1).
Also, setting P':=m,_, ,(P), we define: Un(P): =114z Us(P)=C"! (cf.
(2),). Moreover, we set /’:r—(_f'j)'!:i, with jj.—(n,, 1*(f). We regard
that f’ is defined in Uj(P").

(2) Denotc by Y, the locus of /~’ in Uy(P"), and we surmamarize the appli-

cation of (3)f;** to Y,. For this take positive monomials M}=M",,_,,
(n—1Zjzk). We then define an element 1" =(r7)12} e R*"~1 by

(c), Fi-1t SML_(dg(P)K), ri<Mrii) (n—22j21).

Now, letting the manifolds U :%(P')cC"',... have the similar meaning to
(3)5"-n=1 (cf. also (2);), we have:

@By bk UL P WisL KPS U b5 (P)nY,, and m,_,: (U HKP)N Yy)
— Uk (P) is biregular.

(The element "= ¢"""1:k e B2 depends ouly on (n—1,k).) We check (3),7~1-*

soon below. Here we remark:
@ )i+ ()t k — ()1

(This is easily checked, once we remark that, letting U/(P) be as in (3)1:%, we
have: U(P)n X =(UJ(P)n Y,)=(locus of /’).)

Now the check of (3),*~1:¥ is as follows: first, we define the radius d’ of
Ug(P') to be: d': =7, (cf. (b);). Also we define the invariant K" of /’ (which
is defined in Uy(P’)) in the manner in (2),. Also we define: g;:=
|det & /7/6(_7,‘.“,..., z)l and g,(P):=min(1, g,(P)). Moreover, letting the
positive monomials M;=M;,,_,, (n—1Zj=1) have the similar meaning to the

one used in (3)* (cf. also (2),), we define: an element r=(r)1z} by
(C)Z rn: gMn—l(d,g‘i’/K”), and 7.j§MJ(r‘)+1) (n J>1)
Also, letting the element ~ e R*2 be the one used in (3)3!'%, we have the similar

fact to (3)}";"* (given in terms of (r; <) instead of (+"; #”)) from (3)§3+*. But,
choosing a suitable positive monomial M, ,, we have:

(0)3 d an k(dgt/K)s K,<Mn k(dgl(P)/K) and gl(P) n,k(dgl(P)/K)‘

(We check this soon below.) Thus, assuming that M, is suitably chosen, we
have:
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(©)s M;_(dg;/K)>M,_(d'g7/K"),

and, by understanding that M;=Mj (n—2=j=1), we have (3);""!**¥ from
(3)771+* (in the form given soon above (c);). Finally, the first inequality in (c);
is checked easily from the explicit form of d=r, (cf. (b);). To check the second
and third, we remark: 6//;/82]-=f”+(f,.j/f1,k+1) -fix+1 With f;:=0f/0z;
(2=ign—k,n=j=k+2). The second inequality follows from this relation
and (a);. Moreover, by a simple computation, we have: §;.=(g9,)™""*-§,,
and from (a); we easily derive the third inequality in (c);. Thus we have (c);
and (3);"~1:k. By (d) we also finish the proof of (3):4. g.e.d.

B. Proof of Lemma 5.3, and Lemma 5.5

1. First we prove the part of Lemma 5.3;, which concerns Lemma 4.2
and Lemma 4.4 (cf. n.1, §5.2). For this we let the set /' =(f)5=1 =I'(Xo, Ox,)
and the Koszul homomorphism F7': D,(;’)ab,(("‘s”) be as in Lemma 5.3, (cf.
also Lemma 4.2).

(i) Take an element (p=((p,),e53,((;) (1<s=<p-—1), where I exhausts all
indices of the form: I=(i; <---<i,), and we assume that F¢=0. Then we
easily have:

(GON @=0, if ¢, =0 for each I of the form: I=(1<i,<---<i,).

(ii)) Next letting the subvariety X,, X, of X, be as in Section 4.1, we take
an open subset U, (3 P,) of U, and an element o € RY2. For each Pe U, n X,
where X, =X,—X, is as in Section 4.1, we set: U,(P; g):={QeX; d(Q, P)
<(og(P))~'}, with g(P):=d(P, X,)~'. Moreover, taking an element =
(cq, ¢;) € R*2 satisfying ¢; £1=¢,, we have:

Proposition 1,. If the following holds for each Pe U, n X :
ON If{@lIzc-| £(Q) in T, (P;g),
where j is an element of [1,...,s], then Lemma 4.2 and Lemma 4.4 hold for
(X1, X325 2) (cf. (4.3)y).

Proof. Take an element (r; #i; a) e R* x Z+ x R} satisfying r<{og(P)}™!
and an element ¢ e I'(U,(P), Oy)# (cf. (4.2),). Then, taking an element me Z*
satisfying mc, <, we have:
(€)) lp(QfHDN=a’| A(Q)™, with (a'; m)=(a/c]; r—c,m).
This insures that ¢': = ¢/f™ is in I' (TP), Ox)o (cf. (4.2),), where
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(b) a"=a’ or a"=a'-M™, with an element M=M,cR{, according as™®
f(Pg)= or #0.
The condition: 1t >c,m is satisfied, by setting m: =[#/2c,]. From the explicit
form of the estimation: (a; #1)—(a”; m’) as above, we have ‘Lemma 4.2 for
(X1, X33 #) (cf. (4.3); and the explicit formulation of Lemma 4.2). Next
assuming that j=1, we take an element @=(¢,); e I'(U.(P), /'?'D,(j’))a (1=<p
<s—1) satisfying F"p=0(meZ"). We then define an element ¢’ =(¢j),
eI(T,(P), 0*1)) by

@5 f1, where J'=(1, J), if J is of the form (j, <" <j,—1),
(b) ¢):= with ji>1,

0, otherwise.
By (4)o we have: o —F%_,¢'=0. Moreover, if #>2c,m, then (a) implies:

(¢) |o'|Za’-|f|™?, where the element a’ € R} is given in the manner in (a).

We then apply ‘Lemma 4.2 for (X, X,; #)’, whose explicit form is given
soon above. Then we have o eI'(U/(P), /""D,(("il));,,, with (a’; m')=
(M y(a) exp M,(m), [L(m)]), where the positive monomials M; and the linear
map L are determined by the element ce R72. Thus we have ‘Lemma 4.4 for
(X1, X253 2) (cf. (4.3), and the explicit form of Lemma 4.4). g.e.d.

(iii) Thirdly let X and V denote X, ;,, and the locus of A
Propesition 1,. The pair (X, X,)=(Xq, XU V) satisfies (4);.
Proof. First, by Lojasiewicz inequality, we have**):

(a) I/(P)I >ag(P) for each Pe U, n(X,—X,), with an element « € R*2.

Take an index j satisfying |f;(P)| Z| /(P)/sl. Then, assuming that the element
o € R}? is sufficiently large, we have:

(®) (DI If((PIZ (D)2
and [2f(QIz1f(P)21f(Q)/2] in U,P; g).

The condition (4), is easily derived from (a), (b). g.e.d.

Next we assume that dim (V—Xg)=k—1, where k=dim X,. We choose a

*) Py is the origin of the variety X, (cf. the beginning of this appendix).
*#*) Recall that g(P)=d(P, X;) (cf. the beginnig of (ii)). We use the symbol ‘g’ in this sense
in the remainder of Appendix I. Note that the variety X. depends on the geometric
situation in question.
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suitable subvariety V' of V satisfying dim (V' — Xg)<k—2.
Proposition 15. The pair (X, X,)=(V U Xg, V' U Xg) satisfies (4),.

Proof. Denote by V, the locus of f;, and we write V|, as V,=V U V|,
where V' has no common irreducible components with V at P, (=origin of X).
Weset V': =V n V). Then, letting the neighborhood U_(P; g) be as in Propo-
sition 1,, we have: d(Q, V)=d(Q, V}) in U,(P; g). By Lojasiewicz inequality,
we have:

(a) 1f1(QI=F-1f(Q)] in U P; g), where BeR*? is independent from P, and
we have Proposition 1.

It is easy to see that Propositions 1, ; insure the part of Lemma 5.3,, which
concerns Lemma 4.2 and Lemma 4.4.

2. Next we check the part of Lemma 5.3;, which concerns Lemma 4.3.
The set g e ['(X,, Dy,) and its locus W (on X,) are as in Lemma 4.3.

Proposition 2,. Lemma 4.3 holds for (Xo, WU X5; &, 9).

Proof. Setting (X, X;)=(Xq, XU W), we apply Proposition 1, to
# and U, (P; g). Then we have:
(@) 194D >al#(Q)] in U,(P; g), with a suitable x e R}2.

Thus, assuming that o e R}? is sufficiently large, we have: |1/g,(Q)|<1/r for
each r e R* satisfying r<(og(P))"!. Now take an element ¢ € (T (P), f"Oy)a
where the element (r; a; W) e Rt x R} x Z* is as in Proposition 1,. Then, from
the inequality just above, we directly have:

(b) (olg;) EF(U,(P), f™0x),, With a’:=a/r.

Finally, taking an element ¢ e I'(U/(P), f '“D,((;’))a satisfying G, =0, we define
an element ¢’ eI'(U/(P), fﬁ'Dgg’il)) satisfying ¢=G,_,;¢’ in the manner in
Proposition 1, (by changing (F7, f;) to (G, g;)). Then, from (b), we have:
o' e(T(P), fﬁ'D,({"il))a,, and we have Proposition 2, (cf. also the explicit
formulation of Lemma 4.3). g.e.d.

Assume that dim (W— Xg)=k—1, and we choose a suitable subvariety ¥ of
W satisfying dim (W—X,—Y)<k—2. Then we have:

Proposition 2,. Lemma 4.3 holds for (X, X,)=(W U X3, Y U Xp).

Proof. Letting W, be the locus of g, we write W, as W, =W U W, where
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W, has no common irreducible components with W. Recall that Vo W (cf.
(4.2),), and we write Vas V=W U V¥, in the similar manner to the above. Then,
setting Y: =W n (W, U V,), we have the following similarly to Proposition 15:
d(Q, W)y=d(Q, W))=d(Q, V) in U(P: g). Applying Lojasiewicz inequality to
(g1, f), we have:

(a) g, (@) =2l f(Q)] in U, (P; g), with an clement x e R*2.

Now let the element ¢ e I'(T,(P), f"O,), be as in Proposition 2,. Then taking
an element de Z*+, we write @ as o =F"d¢’, with ¢’ e [(TU.(P), fi0¥%),. (Here
we take deZ* to be: d>u,, with the second component x, to «, and we may
regard that d e Z* depends only on « € Rf2.) By (a), we have:

(b) o¢/g, eI (U(P), [ 9Dy),, with a’: =a - K, with an element K=K, , e R} .
Finally, for an element ¥ e I'(U(P), /’7’53,((;’))“ satisfying G,¥ =0, we define an
element ¥’ e I'(U(P). D,(("ll)) satisfying G,_¥'=¥ in the similar manner to
Proposition 2;. But, by (b), we have:

© v e [(TP), fr405 1),
and we finish the proof of Proposition 2,. g.e.d.

1t is clear that Propositions 2, , insure the part of Lemma 5.3,, which con-

cerns Lemma 4.3, and we also finish the proof of Lemma 5.3,.

3. Finally the proof of Lemma 5.5 is quite simple, and is as follows:
letting the variety X, and its divisor D be as in Lemma 5.5, we take the subva-
riety Y (required in Lemma 5.5) to be the locus of . Also we take a matrix
K: O4—0% (s, t>0), whose entries are meromorphic functions over X, (with
the pole D). Now take a point Pe U, N (X,—(Y U D)) and an element (r; o; m)
eR* xR} xZ* satisfying r< {od(P, YU D)}~'. (For the open set U, and the
element o€ R{?, see the beginning of part B.) Also we take an element ¢
e(U(P), /™Oy), N [(U,(P), R), with K: =KD (=D%). By (b) in the proof
of Proposition 1,, we have: (2“1)-1/(Q)l<i/(P)|<2~]/(Q)I in U(P), and we
also have: |p(Q)|<a’: =(2"'-|/(P)'"|). Wec apply Lemma 4.1" to (K, ¢), and
we have an element ¢’ e I'(U,.(P), OY),, satisfying ¢=K¢’, where the esti-
mation: (r; a')—=(r'; a”")=(M g(r); M, (a'[r)) (with the positive monomials
M;x) are given as in Lemma 4.1’. From this explicit estimation, one can rewrite
the estimation as above in the form:

(@) le"(@)<a - |f(Q)y"|, with (r'; @'; m'y=Eg(r; a; m), where the a.d. map E
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(Definition 4.1) is determined by M, .

We apply Lemma 4.2 for (X,, YUD; f) to ¢’, and we have: ¢’ e I'(U.(P),
/’W %)a» Where the estimation: (#'; @'; m')—(#'; a’; m') is given similarly to
(a). Tt is clear that this, estimation, together with the equation: K¢'=¢, in-
sures Lemma 5.5, and we also finish the proof of all the facts, which are used in
Section 4 and Section 5 and whose proof are remained in Appendix II.

Chapter III. Polynomial Growth Uniform Estimations for the Structure
Sheaves of Complex Euclidean Spaces

The main purpose of this chapter is to prove Theorem 1.7, which concerns
the uniform estimations in the title. The proof is given by the reduction:

) Theorem 1.7—p.g. estimations for Cousin integrals on C.

The main part of (1) will be certain algebraic arguments on types of filtrations,
which are suitably applied to the sets of the cochains in Theorem 1.7 and its
variants (§6.1). The contents of Chapter IIT are as follows. In Section 6.1
we give the variants of Theorem 1.7 which are convenient for the use of the
filtrations. The algebraic arguments on the filtrations are given in Section 6.2
and in Part A, Section 7. Using these arguments, the proof of Theorem 1.7
is given in Section 6.3 and Part B, Section 7. Very roughly our algebraic

arguments enable us to give the following implication:
o)) EYi=0(q21, pe p)=HYK*=ES® (¢20),

where K* is a filtered complex in question and EP-? is its spectral sequence.
Also EI:J is the spectral sequence of a complex K, where the complex {K}},
is defined from the geometric situation in question. Note that the standard

degeneracy theorem, applied to our situation, is read as follows:
2 EP4P=0(q>p20) = HY(K*)=E$° (¢420).

Thus, our sharpening (2), where the assumption is given at the lowest filtration
degree p=0, will give a strong sharpening of (2), as well as the main part of the
reduction (1). The key facts for (2) are the construction of the families of the
complexes K and some reduction arguments using such families. These will
be given in Section 6.2 and in Part A, Section 7. (For the first, see n.3, Section
6.2. The main part of A, Section 7 will be devoted to the latter.)

Cohomology theories with growth conditions have been developed
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systematically since the works of L. Hormander (cf. [8], [9]), chiefly by means of
the d-estimations. On the other hand, the very basic method of Cousin integrals
in function theory seems to have been regarded as not so adequate for the
cohomology theories with growth conditions (cf. for example, p. 90, [8]). Our
algebraic arguments on the filtrations enable us to take the Cousin integrals as
the analytic base for our p.g. cohomology theory. Also, our sharpening of the
degeneracy theorem indicated in (2) (cf. also Lemmas 7.2-7.5) may be worth-
while pointing out; the content of Chapter 1If may owe its own interests aparting
from the applications to Chapters I, II.

Remark. The necessary p.g. estimations on Cousin integrals and the
algebraic arguments on the filtrations will be found in Part A, Appendix Il and
in Section 6.2, Part A, Section 7. Interested readers in the above analytic and
algebraic arguments may first read those parts. The estimations and the
algebraic arguments mentioned soon above may deserve to be tried their ap-
plicabilities to more wider situations. The author hopes to try possible gener-
alizations in a future.

§6. Cousin Integrals and Spectral Sequences

§6.1. Key Theorems for Theorem 1.7

1. FElementary coverings. We begin Section 6.1 by introducing certain
coverings of domains of a complex euclidean space C"(z) (n>0) (cf. n.1, §1.2),
which are of quite simple nature and are suitable for explicit estimations on
Cousin integrals (cf. Appendix II).

First let U=(a, a+b); b>0 be an open in- k=
! |
terval in a real euclid line R. We mean by ele- a X; a+b
mentary covering of U of size n=(k; e)e(Z* y0) Figure I.

x (0, 1/2) the following element of *) Cov, (R):

6.1) { {Ui}keo, where U;: = {xeR; |x—x;|<Eb/k} (k>0)
"1 (U9}, where U%: = {xeR; |[x—x°|<&b} (k=0).

Here x;: =a+(ib/k), x°: =a+(b/2) and &: =g+271.

Next by an elementary figure in €"(z) we mean a product U=]]32, U;

*) For a topological space X, we set: Covy (X): =202 (V) (cf, the end of the introduction
of Chapter 1).
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< R?"(=C"), where U, is an open interval in the j-th component of R?". For
an element j=(4; &) e (Z* U 0)2" x (0, 1/2), where £=(k;)3%,, we make:

Definition 6.1,. By elementary covering of U of size 7j, we mean an ele-
ment Z(U) € Cov, (C*) as follows:

(6.1), Z(U): ={TT3, &, (c R2"=C)},

where .«Z;, runs through the elementary covering of U; (= R) of size #;: =(k;; ¢).

Jny
When k;=k,=---(=k), we write oZ(U) alsc as «,(U), with n=(k; ¢).
Thirdly, we define a covering of €”, which may be a most simple one among

elements of Cov, (C"). For this we decompose C" in the form:

(6.1); €"=\Uiez2nTy, where Tr=T134,(i;, i;+ ) cC" (2R2"), with [=(iy,...,
iln)‘
Then, taking an element n=(k, ) Z* x (0, 1/2), we make:

Definition 6.1,. By elementary covering of C" of size n, we mean an
element of Cov, (C") as follows:

(6.1) A(C"): =\Uez2n o, (T;), where o (T;) is an elementary covering of T;
of size #.

Tt is classically well known that such a covering is suitable for computation
of Cousin integrals. Our key theorem, Theorem 6.1, will be formulated in
terms of such a covering (cf. n.2 soon below).

Remark 6.1,. Let the elements f=(4, e)e(Z* U 0)2"x (0, 1/2), n=(k, &)
€Z*x(0,1/2) and the elementary coverings «Z(U), &£,(C") be as in (6.1), 4.
In our arguments henceforth, we use such coverings in the case: e=1/4. For
notational simplification, we use the symbols «7,(U), o (C") for the elementary
coverings «Z(U), #,(C").

Finally, for purpose of the formulation of Theorem 6.1, we fix a euclidean
space €% (z') (n>0). Wc write (z, z') as Z. The symbol D will denote the
structure sheaf of C"x C"".

2. A key theorem. Now, letting k be an element of Z, we take a suitable
k'e Z* and an el-map %, ,: R*2»R*2, which depends only on (n, k). Then
we have (g=1):

Theorem 6.1". For each «cR2 and an open set D' <C", we have:
q 1 P
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(6.2) s*ZUA(CMx D', O),cd6CI Y (C") x D', O),., where 2'=%, (o) and s
is a suitable refining map: ZAC") x D' & A (Cm)x D'.

Here we set:

(6.2) CUL(LMyx D', O),: =set of (|Z|+1)-a-growth cochains with values
in O (cf. (1.3), and (1.4)),

and we write the element {D'} e Cov, (C") as D'.

(The element D' e Cov, (€C"') is just additional to o4 (C"). But it is con-
venient to include this element for our application of Theorem 6.1 to the proof
of Theorem 1.7 and for the proof of Theorem 6.1 itself (cf. §6.2 and §7).)

Remark 6.1,. In Theorem 6.1 we do not give an explicit form™ of the
correspondence: Z*sk—Z*3k'. Also we do not give an explicit dependence
of the el-map .%, , on ke Z*; the estimation in Theorem 6.1 is of relaxed form
(relative to the ones in Chapter I). But, the formulation of Theorem 6.1
suffices for the proof of Theorem 1.7. (In the proof of Theorem 1.7, we use
Theorem 6.1 only in the case of k=1; see Section 6.2.)

Remark 6.15. Except our concrete formulation, Theorem 6.1 is of familiar
type in J-estimations (cf. [9]). However, as we will see in the course of Chapter
I, our proof of Theorem 6.1 differs entirely from the ones depending on
d-estimations (cf. also the introduction of Chapter III).

3. An another key theorem. Recall that the elementary covering 7 (C")
in Theorem 6.1 is much simpler than the p.g. coverings in Theorem 1.7. We
give here a theorem, which will fi]l the gap between Theorem 6.1 and Theorem

1.7 stemming from the above difference of the types of the coverings.

(i) P.g. elementary coverings. First we give a type of coverings of do-
mains in C" x C*, which is convenient to fill the gap just above: taking an element
E=((; e)e Z*2x (0, 1/2) and an elementary figure U' <= C"', we set:

(6.3)) Sp=T13(—&+i, i;+&)cC" (=R?), with &:=¢+27!, and I=
(i)3n,eZ? (=C).

(6.3); H«S;,xU’): =elementary covering of S, ,x U’ of size ({(|I|+1), ¢)
(Def. 6.1,), with [I|: =i |+ - +]izl

*) We can take k’: =[L,(k)], with a linear map L, depending only on n. (Here [ ] is the
Gauss symbol, cf. Appendix II and §6.3.) However, we do not use this fact in this
paper.
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We then make:

Definition 6.2. By p.g. elementary covering of C"x U’ of size £=((, ¢),
we mean the following element of Cov, (C" x C"):

(6.3), HUC" X U"): = Upezgan Le(S1. x U").

Concerning the p.g. elementary covering & ; =.o7(C" x U’) we remark that
(6.3); each element of &} is an elementary figure in C*x C"",
and that

(6.3), the size of the elements of &/ becomes smaller in the p.g. order with

respect to g=|Z|+1.

By (6.3);,3, the p.g. elementary coverings have similarities to the p.g. and
elementary coverings as in Theorem 1.7 and Theorem 6.1; the p.g. elementary
coverings, which are essentially of technical nature, are suitable to fill the gap
between Theorem 1.7 and Theorem 6.1 (cf. §6.2).

Remark 6.2. If e£Q (=field of rational numbers), then, by a simple ob-
servation, we see that the expression (6.3), is the disjoint union:

(6.3)s AL Y(C" X U)=]Trez2n LSy, x U"),
and one can define a map
(6.3); L(CxU')3 AT, Z2" 31, where (S, xU")3 4.

We use this map in later arguments. Henceforth, by a p.g. elementary covering
L e(C"x U’), we mean such a one with {&Q.

(i) Now we give an another key theorem, Theorem 6.2, for Theorem 1.7,

by using the p.g. elementary covering. For this we first set:

(6.3)¢ Ouv,, (€C"): =collection of all elementary figures in C*",
(6.3); Ouv,, (C"): ={U’eOuv, (C"); df. <1}, where, writing U’ as U'=
2, (aj, a;+b)(=C")(b;>0), we set: dij.: =max; (max (b, 1)).

Also, for later convenience, it is convenient to set:
(6.3)g dy:=min; (min (b;, 1)).
Moreover, for an element m € R, we set:

(6.4); U,,:=clementary figure in C" with center=that of U’ and size=
m x (size of U’), where, writing U’ as []3%, (a;, a;+b;)(b;>0) = C” (=R2""),
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the ‘size of U"’: =(b;)3%; cR*?"",

In the remainder of (ii) we fix an element® ¢=g;€e((0, 1/2)—{), where 7i:

=(n, n'), and we form the following collection of elementary coverings in
CrxC:

(6.4), A= (C"x U'); (U ) eOuvy (CV)yx Z+2] .

For an element 277, € A'* and an element a € R{? we set:

(6.4), CYAy, O),:=set of (|Z|+1)-a-growth cochains with value in O (cf.
(1.4),).

Next we form a collection of estimation maps as follows:

(6.4); E':=Lx(MxL), where L and M are the collections of all el-maps and
positive monomials (cf. n.5, §1.1).

To an element E'=(%;, (M, %)) E'=Lx(MxL) we attach the following
map:
(6.4); E:Z72x(R*xR¥2)a((;r;0)»Z2xR*23(’, a') by {'=[£,()] and
o' =M"(r)- ZL(a+¢). (Here, [ ] is the Gauss symbol. More precisely,
writing {': =.%,({) as ({1, {5), we understand that {': =([{{], [{5]).)

Now, using the sets of the cochains and the estimation maps as above, our
key theorem for Theorem 1.7 is as follows:

Theorem 6.2%. There are an element & =e; € ((0, 1/2)—Q) and an estima-

tion map Ej e E', with which we have:

(6.5), S*ZAA(C" x U'), D), @ 6CT 1 (o (€ x Upp), D)y, with (' o) =
EL(C; 1/dg.; ) (cf. (6.3)g), where the parameter (U'; {; a) is in Ouvl, (C")
xZ*2x RY?, and s is a refining map: o, Sty

For the proof of Theorem 6.2, see Section 6.3. Here we check the following
implication.

Proposition 6.1. Theorem 6.2— Theorem 1.7.
Proof. Let the elementary figure U’ be as in Theorem 6.2. Then we set:

(a) H,(C"xU’):={|Z]|+1}-p.g. covering of C"x U’ in C"xC" of size g€ R}?
(cf. Def. 1.6,).

*) The element ej is fixed (in an arbitrary manner) in the remainder of Chapter II1. It
is convenient to regard that ¢; depends only on 7.



506 NOBUO SASAKURA

Then, taking a suitable el-map %;: R*2—R*2 and a positive monomial M, we
see that if there is a relation between ¢ and {=({,, {,) € Z*? of the form:

(6.6), o>K. L) (resp. {>M,(1/dg.)Z(0)), with K=1-+sup...y-|2'|,

then we have a refining map™®:

(6.6); s: A (C"xU)S (€ x U')(resp. s': AL (C"x U') S A (C*x UY)).

From this relation and from a comparison of the estimation map E;eE’ in
Theorem 6.2" and the p.g. estimation map in Theorem 1.7, we easily have
Proposition 6.1. g.e.d.

By Proposition 6.1, the proof of Theorem 6.2 suffices for the proof of Theo-
rem 1.7. The proof of the former is given by the following implications:

(6.6); Theorem 6.1""!— Theorem 6.1” (n=2), Theorem 6.1" — Theorem 6.2".

(For details, see §6.3.) The key facts for the above implications are certain
filtrations and algebraic arguments concerning them. These will be discussed**)

in Section 6.2 and in Section 7.

§6.2. A Type of Filtration

Here we introduce a type of filtration (Definition 6.3), and we arrange some

data for such a filtration, which are used in later arguments.

1. A type of fiiltration. Let X be a topological space, & an element of
Ab (X) and o an element of Covy(X). We also take an (abstract) set & and
amap n: & —%. Fora subset C? of C4z, K), we make

Definition 6.3. By a filtration in C? induced from n: o/ — %, we mean the
following decreasing sequence of subsets of C?:

(6.7), FyCt:=CioF,C'>--DF,,,C10,
where
(6.7, F,C':={pe(?; ¢,=0 for each &' e 49" o/ satisfying #n(")<p}.

Assuming that C?=C*%«7, &), we write the spectral sequence of (C*, F,)
as El*P. Note that E{°=Z{°:={peF,C" dpeF,, ,C171}, and that

*) Cf. Part B, Appendix II. We summarise necessary estimations on refiningmaps (used
in §§6, 7) in Part B, Appendix II. The estimations will be found to be essentially of
very elementary nature.

**) Cf. the introduction of Chapter III.
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(E%9, d,)=(Z%°, §) is a subcomplex of C* in a natural manner:
s Z90 _di, Z4+1,0

(6.7) [ !

—-C1 ¢ ,C

Next, for a subset &7’ of ., we mean by* ‘u-quotient’ of &/’ by = the following

atl .,

element of Cov, (X):
6.7 (o'/m),: = {supp w'~'(B); Be (")},

where n’: = restriction of 7« to »#’. (Here ‘supp n'~1(B)’ is, as usual, defined to
be: U, A, where A,en’"!(B).) Denoting by r the refining map: &/ 354,—~
(|m)y 3 supp n~Y(n(B)), we easily have

Proposition 6.2. We have the following diagram:
C*((# M) R) == (ETO, dy)
(6.7), C
C*(«, R).
Proposition 6.3. We have the following implication (degeneracy theorem):
(6.7); ERTPx=0 (q>p)=> H¥«, 8)= E$ (= HY(C*([7),, R))).

2. Concrete filtrations. (i) First let X,, X, be topological spaces and
o, o, elements of Covy(X,), Covy(X,). We denote by & the product
=gl X oty ={A; xAy; A;e L (i=1,2)} eCovy (X), with X:=X; x X,,
and we denote by = the projection 7:.o/=9f X, 3(4; % A,)>,3 A,.
Then we easily have

(6.7 (o [m), = (supp ;) x o5 € Cov, (X))

Let &, =24(C") and «: =4/ (U) be as in Definition 6.1, ;, and write " as
Cr=CxC" 1, £ as £=(k;)2, and U as U=U, x U,, with elementary figures
Up,U,in C,C"'. Weset By :=(C" ') and B,: =4, (U,), with £":=(k;)3272,
and we define maps

6.7)5 . &, — B and 7 A, — B,

in the manner in the beginning of n.2, by using the product structures of .7, <7

as above. Then, by (6.7),, we have:
(6.16 (/m),=Cx B, and (/n,),=(supp ;) X &, with & : =4, (U)).

*) ‘4’ is taken from the initial of ‘union’.
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Next, take an open set D' of C", and use the symbols , 7, also for the
maps T XD 3(AxD)>%, 3w (A) and 7,: & xD'3(AxD)>%,37n(A).
We write the filtration induced from =, 7, as F,(Definition 6.3), and write the
spectral sequences of (C*(s, x D', D), F,) and (C*(, xD’, D), F,) as El: P
and EZ*7?. Then Proposition 6.2 and (6.7) insure that

(6.7); E$9=H%®,x (CxD'), D), EL°=H(%B,x (D" x D), D), with D":
=supp «; (=C)

Thus the E%%-terms for 4(C"), o(U) (defined for C”) are isomorphic to
the cohomology groups in the right sides, which are defined for C*~1. We use
a p.g. version of (6.7); for our inductive proof of Theorem 6.1” on n=dim C"
(cf. §6.3).

(i) Next let the p.g. elementary covering &;=2:(C"xU’) be as in
Theorem 6.2, and let the map =, be as in (6.3)s:

(6.7)g e ALy — L2,
Then we easily see that the u-quotient of =, is written as follows:
6.7)% (os/mg), = {supp (S, x U"); I €227},

where S;, € Ouv, (C") and the elementary covering (S, xU’) are as in
(6.3);. Thus, the E,-term of the spectral sequence of (C*(&, D), F,), where
the filtration F, is defined by 7, is as follows (cf. (6.7);).

(6.7)s E3 = H(of ¢mg)u O).

Concerning the right side, let «/,,=.7,(C") be the elementary covering of C"
of size (1; &) (cf. Def. 6.2). We then easily check the existence of a unique
refining map i: ./, xU S (ofy/ny),. Also taking an elementary covering
o =L(C"), k>0, of C* and a refining map u: 4 xU' G, x U’ in an
arbitrary manner, we have:

oy ('M%/né)u
Proposition 6.4’. We have refining maps s, v ; ,
satisfying Fi I. (InFi I th i
sfying Figure ( n igure emap r is A U ot
defined as in Proposition 6.2 and the p.g. ele- I I
u s
mentary covering &% (=% (C" x U} is as i ,
y ring oz ( & 1/2)) is as in AL XU’ v oL
Theorem 6.2.) Figure I

We check Proposition 6.4 in Part B, Ap-
pendix II. We note here that, letting the natural homomorphism p*: E4:°—
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H(s%, O) be as in Proposition 6.2, we have the following diagram from
Porposition 6.4.

(6.7 E$0—— 2, HY(A O) —— HY(L}, O)
2 / o
HY(H7e)y O) 2 HU (o, xU’, O) £ HU (s x U, D)
Roughly we may ‘identify’ E%-°~H%((sf;/ny),, D) with Hi(sz;,x U’, D).
Proposition 6.4. We have the following implication:
(6.7) 4 u*HY oty ,x U, O)=0 == s*p*E$:9x0.

A p.g. version of Proposition 6.4 will be a key fact for the reduction of
Theorem 6.2 to Theorem 6.1 (cf. § 6.3 and the end of §6.1).

3. Admissible family. Let the element o € Covy(X) be as in n.1. We
attach to .« a family of elements of 2#(i.e., a family of subsets of &), which is
important for our treatments of the filtrations in Definition 6.3. For this we
first set (p, g=1):

A ={d,co; |L|# bt =g}, LV = (L, e A D ¥nl,=p},

(6.8) { )
Dol =1,

Recalling the explicit form of the filtration in Definition 6.3, we may regard
&/ as un underlying set theoretical datum for the filtration. Analysys of &y
will be useful for studies of the filtrations. (See Part A, §7.) Here we make an
observation for o} : take a subset &, of 2¢ satislying

(6.8)} #n(sZ,) = p for each &, e F .

Definition 6.4. We say that %,/ is admissible, if there is a map (admis-
sible map) 1. oy — F, satisfying
(6.8)] (o) >, for each &, ey, and () =1(,), if n(4,) =7(s7,) .

Take an admissible family %,,,«. We write the restriction of = to
A, €F, 1 as m,. Using the symbol F, also for the filtration induced from
n,: o,~n(,), we write the spectal sequence of (C*(«,, ), F,) as EZ*°P,
The following proposition insures that the vanishing property of each Ef;,*~7;
ot €F, . suffices for that of EF-*~F of the original complex (C*(«, K), F)).

Proposition 6.5. E{:1"7=0 for each o, € #,, o =>E} 1P =0.

Proof. Takeanelement peZf?7:={peF,CU, K); dpeF,, C1" (L, K)}.
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Then ifp e Z4(,, R) for each «, €%,, o, where i,: =inclusion: o/, & .
Remarking that F;,,;C%(«,, 8)=0(f=p) and E}?P=H4(F,C*(«,, K)), we
have an element ¢, € F,C171(,, 8) satisfying d¢, =iyp. We define an element
¢'eF,, CoY(«, K) by

0, if &' e %o/ satisfies: gn(F')#p+1
(a) QL ={ value of @, at &', if #n(«/')=p+ [, where the index u
is defined by &7, =1(«7’), with the admissible map .

By (6.8); we easily have o =69’ e F ., ;C4. q.e.d.

Remark 6.3. Detailed uses of the admissible family #,o will be given
in Part A, Section 7. Here, for convenience of the arguments in the rest of
Section 6, we illustrate uses of such a family in our studies of the filtration of the
form in Definition 6.3: first note that Proposition 6.5 is given for a fixed pe Z*.
In later arguments we consider a series {#,&},.z+ of admissible families
(cf. A, §7). We then define a set theoretical operation: &, & —»%,« and a
homomorphism from complexes defined for elements of &, ;%7 to those defined
for elements of #,o. (The above two operations will be our main parts of
treatments of the filtrations in Definition 6.3; see Parts A and B, §7). Using
such inductive treatments of the families &#,.2/, we will have the implication of
the following form:

(6.8), EV:1 =0 for each o, € F & = E}:77=0 (¢> p) for each &, €
Fpr1 (pz1).

This, together with Proposition 6.5, insures:
(6.8)5 E%:i~0; oA eFof = EPTP=0 (¢g>p).

(For the precise formulation, see Lemma 7.3 and Lemma 7.5. For technical
reasons and for purposes of applications to our p.g. estimations, Lemma 7.3
and Lemma 7.5 are given slicely different form from (6.8);.) Lemma 7.3 and
Lemma 7.5 will be the sharpening of the degeneracy theorem mentioned in the
introduction of Chapter I1I and are main tools for the proof of Theorem 6.1
and Theorem 6.2. In the remainder of Section 6, we first attach to the coverings
&, & (in Theorem 6.1, Theorem 6.2) admissible families in a concrete
manner. We then formulate key lemmas for Theorem 6.1, Theorem 6.2 in terms
of such admissible families.

Example 6.1. Let .o/ be a collection of elementary figures in C"(z) (cf. §6.1)
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and 7 a map from « to #. We assume:
(6.8)1 tn!(B)< oo foreach Be & .

Setting #r): ={B' <« B; $B'=p)}, take an element #'e HP1 and an ele-
mentary figure U'=C". We form a subset &/(#’'; U’) of & as follows:

(6.8)4 A(BU) ={A,ed;n(A)eB', A,NU#d}.
We then set:

(6.8)y Flo:={of, cuor; o/, is of the form o), =o/(#'; U)}, where the pair
(#’, U) satisfies: [(n~YB")[n), |2 U (cf. (6.7),).

Noting that

(6.8)s (w7 (#")[n)= U ||, where &” is an element of &y satisfying
(L )=%B'.

we see easily that # 9. satisfies (6.8);. Moreover, we have:
Proposition 6.5'. Assume that

(6.8)s suppn~!(B) is an elementary figure for each Be #. Then F9 is
admissible.

Proof. We define an admissible map t by
(6.8); 11 A3, — FOA >, =HL(#';U"), with Z':=n(s,) and U':
=|n"(2")[n),l.
(By (6.8), U’ is an elementary figure, and we have: .o/, € #9«.) The right
side is determined by #’=rn(<,), and we have (6.8)].

The family %% is completely of experimental nature and is concordant
to the inductive treatments on pe Z* sketched soon above. (For detailed uses
of #9o, see n.6, A, §7.) We examine the structure of #9=, which is most
important for later applications. For this we set:

(6.8)s Covg (C")r: ={H(U): (U; £#)e Ouv,, (C") x (Z+ y 0)*", where (U) is
the elementary covering of U of size £ (Def. 6.1)}.

We assume that, for each Be #, we have:
(6.8)0 7~ Y(B) € Covgy (C%),; -

Then setting
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(6'8)9 'g'-(l)"wlB: ={M#€5‘-?ﬂ, 7[(&’1“)=B},
we easily have the following.

Proposition 6.5". F9)z={, € Cov, (C"),,; where each element (=ele-
mentary figure) of <, is contained in n~'(B)}. Roughly, #9sp is the col-
lection of all elementary coverings of elementary figures, which are constructed
Sfrom n=1(B) e Cov, (C").,.

(An interested reader may picture F.o; and will find that #9./p has a
simple geometric meaning for n7(B).) Let the p.g. elementary covering 2%
=¢(C"x U’) be as in Theorem 6.2 and the map =,: &~ ZB(=Z?2") be as in
(6.3)s. We see easily that the map n,: o/;— % satisfies (6.8);. One can apply
Proposition 6.5 to «#;. We use the simple structure of F# 9.5 in the proof of
Theorem 6.2 (cf. §6.3).

Example 6.2. Let the elementary covering 7 : =24(C") be as in Theorem
6.1. Note that® .o, does not satisfy the finiteness condition (6.8);. Here we
attach to ./ an admissible series, which is useful for studies of 4. For this
letting B : ={B<B,; $B=p, | B|+# P}, we set:

6.9), F ey ={n; (B'); B' € BP}.

We easily see that the map

(6.9), T (g 2 A — F Lt 3 mil(m()) is admissible.

We use the above admissible family in the proof of Theorem 6.1 (cf. §6.3).
Note that n;!(#’) is written also as 4(C) x |#'| (cf.n.2, §6.2) and that
|z W(#")|m)|=C x| #’|. Thus we have:

6.9)3 (B =~(%'; U), with U=Cx|Z'|.

This shows that our family F,°.«4 has a similarity to the one in Example 6.1.

§6.3. Main Lemmas

Here we give our main lemmas for Theorems 6.1, 6.2 (cf. Lemmas 6.1, 6.2).
These lemmas will be an application to Theorems 6.1, 6.2 of our sharpening of
the degeneracy theorem (cf. also the introduction of Chapter III). The sharpen-
ing in general forms will be given in Section 7 (cf. Lemmas 7.3-7.5). We also

*) We understand that the map z;: of— % is defined in the manner (6.7);.
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give some facts, which fill the gaps between Lemmas 6.1, 6.2 and Theorems
6.1, 6.2.

1. Sets of cochains. We should begin Section 6.3 by arranging certain
sets of cochains, which we use in Lemmas 6.1, 6.2: first let .« be a collection
consisting of (1) elementary figures 4, in C" x G or (2) geometric figures of the
form A4, x D’ with an elementary figure 4,cC" and a (fixed) open set D' <C"'.
Also take a map n: &/ >, where & is an (abstract) set. We use the symbol
F, for the filtration induced from = (Def. 6.3). First, concordantly the nota-
tion in spectral sequence theory, we set*):

Zh 1P (gof, D) (@eF,Cl(A, D); dpeF,,C*"(«, D)}
(6.10)1[ B%:47P (o, D) ] : ={ oF,CI" (o, O)
Zg7r (o, D) {peZp*7"(«, D); 690 =0}
We use the symbol i for the injection: Z& 47 P(of, D) 2%/, O). Next, for
an element o € R{2? we define:
6.10), {Zﬁ!““’(w’, ), } ={ ZE 1P (o, O) N CU, O),, where ¢c=1 or «©
By 1P (s, D), OF,C*"Y(, D),,

where
(6.10)] C%««, D),: =set of all (|Z|+1)-a-growth cochains in Ci(ez, D).
Thirdly, assuming that .o is of the form in (2), we write o/ as &' x D', with a

collection &’ of elementary figures in €". Denoting by & one of & (as in (1))
or /', we set:

(6.10)% ALy = {Ay; A e L} (meRY)  (cf. (6.4))).
We define:
Ci(af, O™ Yot,, O),
(6.10); (D) }:=im{c(d o) b
Ci(a£' x D', O)™ Ci (L, x D', D),

{ where i,,: =refining map:
L34, — ALy A, 0t X' XD'3A4'X D — o, x D'34,,xD".
(We define Ci(e#, O)", CY(t’' x D', Oy by dropping the term o from (6.10),.)
Then letting .« be one of the form in (1) or (2), we define:
(6.10) { Z2 UL, On):=Z297P(4, O)n CYL, O)" (c=1 or o)
T BB (o, Q) =0F,CT (o, D).

We define Z2-9P(oz, O)* and B2 P(of, Oy" by dropping « from (6.10),.

*) As hitherto, the symbol O denotes the structure sheaf of C»x C*’.
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(Such sets will be useful, when we are concerned with refining maps of the form
in Theorems 6.1, 6.2,...) Finally, for a collection & of elementary figures in C",
take elements 4,, A,€«. We write them as 4,=T713%, (a;,, a;,+b;,) (b;,>0)
cC"(=R?"),... We set a,,:=max;b;,/b;, and we define ratio number of
& by

(6.10), a,:=supa,, where A,, A,e.of satisfy: A, NA,#¢.
(This number will play a role in our treatments of p.g. properties of elementary

figures.) Letting o =£(U) or =4(C") be as in Definition 6.1 ,, we easily
have:

(6.10), a=1.

For the p.g. elementary covering &;:=uw/[(C"xU"), {=((y, {;)eZ*?, as
in Theorem 6.2, we easily have:

(6.10)s a,, <ct, with an element c; e R which depends only on #i=(n, n’).

c =%n
We use (6.10)4 5 in later arguments.
2. Main lemmas. Here we give main lemmas for Theorem 6.1 and
Theorem 6.2. The data for such lemmas are as follows:

L X D' St x D', where o : =5, (C"),...
(6.11), refining map s: { L5 1 =L (C"xXU') S AL (C*x U’), where {=
(&), E=(;¢)arein Z*2x (0, 1/2).
(The data as above have similar meanings to the data in Theorem 6.1 and
Theorem 6.2).

According as we are concerned with Theorem 6.1 or Theorem 6.2, the admissible

families:

(6.11)g F P (=F P (C") and FoA (= F 9L (C"x U'))

will play the basic roles (cf. Examples 6.1 and 6.2, §6.2). For each &7, € #1°.2,
and <, € F s ; We set:

(6.11)g s,: =restriction of s to &, &}, and m,, m,, are the restrictions of the
maps m, T, to &, &,. (For the maps m, n, see (6.7)5 and (6.3)s.))

When we are concerned with the original <4, &%, we use the filtrations F,
induced from m, m, (cf. Def. 6.3 and n.2, §6.2). When we are concerned

with 7, ¢, the filtrations F, will be the ones induced from =, ;. Using
such filtrations, the sets of the cochains in Lemmas 6.1, 6.2 soon below will
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be of the form in (6.10),_;, which are specified to &, & and &/, &7.

Lemma 6.1" (Sharpening of degeneracy theorem for Theorem 6.1). As-
sume the following for each o, € F°s.:

(6.11)%1  s¥Z99(s, (), O)y =By 4(,, O),., where the estimation o’ =L(a) is
as in Theorem 6.1.

Then we have a map 1*: s*Z% o, O)—Z%%,., O) satisfying

(6.11)] (1 —i*t*)s*Z9(7;, ), cdCI Y}, D),y with the inclusion i¥Z3,0 74
(cf. (6.10),).

Lemma 6.2" (Sharpening of degeneracy theorem for Theorem 6.2). Assume
the following for each o) € F9 ;:

(6.11)%¢  Z9-9(,, O)yr <B4, O)i (q=1), where the estimation: a—o
is as in Theorem 6.2. Moreover, the elements m, m’ e R} are of the form:
(6.1)F m>c,ae, m'=mf(d,a;), with the ratio number a. of <" (cf. (6.10);),
and the elements c;, d; e R*2? which depends only on i:=(n, n’).

Then we have a map t*: s*ZY A, D)a——»Zf‘J;O(M':,, 0), satisfying
6.11)4 (1= i*t*)s*Z%( st ;, 0),<dCI (L, D), -

(The integer n in Lemma 6.1 (or 6.2) satisfies: n=2 (or=1). Also the integer
q satisfies: g=1.)

s*Z4 A, 0), 5 ZL%(Ay, 0)y  s*ZU AL, D)y Zggo(,e{'é., ),
| |
Z4( sy, ), 0CT A, D)y ZU A, O)—— 6C Ay, O)y
Figure 1.

Lemmas 6.1, 6.2 will play the most basic roles in the proof of Theorems
6.1, 6.2, and will be a special case of Lemma 7.5. The latter lemma will be a
sharpening of the degeneracy theorem (cf. Introduction) in a more or less general
set up (cf. B, §7). Note that the conclusions (6.11)¢ , in Lemmas 6.1, 6.2 are
regarded as a p.g. version of the standard consequence of the degeneracy theorcm
(cf. Proposition 6.3). By this reason, we used the term ‘sharpening of the
degeneracy theorem’ in Lemmas 6.1, 6.2. The proof of Lemmas 6.1, 6.2 will
be given in B, Section 7, after giving some algebraic arguments on the filtration
of the type in Definition 6.3. Here we give a consequence of Lemmas 6.1, 6.2.

Proposition 6.6,. We have the following implications:
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(6.12)

{ Theorem 6.1""1 —— Theorem 6.1"
Theorem 6.1" > Theorem 6.2" .

Proof. This is proved by giving a p.g. version of (6.7), and Proposition 6.4,
First, corresponding to (6.7); we easily have:

(@) ZEU(A(C)x D', D), = Z9(A,(C"1) X (Cx D)),
Applying Theorem 6.1"~! to the right side, we have the first implication. To
check the second, we have the diagram corresponding to (6.7)y:

Zgo'o(&[::’ Q)a —_ Zq(ﬂéa D)a'__s:‘_) Zq(dléa D)a'

N -

Zq((dé/ né)u’ D)a "’l:—') Zq(dle X Ua D)a e Zq(dk(("n) X Uli D)a"

where the p.g. elementary covering «&7;: =/ (C"x U’) is as in Theorem 6.2.
Also the refining maps in (b) have the similar meanings to (6.7)s. Apply
Theorem 6.2 to z*Z%(«#,,x U’, O),. Then, from (b) and from the comparison
of the explicit forms of the estimations in Theorem 6.1 and Theorem 6.2, we

have the second implication. g.e.d.

By Proposition 6.6,, the remaining task for the proof of Theorem 6.1 and
Theorem 6.2 is to prove Theorem 6.1! and the assumptions (6.11)%:4 in Lemmas
6.1, 6.2. The former is proven in Appendix II by giving explicit estimations of
Cousin integrals. In n.3 soon below, we check (6.11)%:4.

3. Note that the assumption (6.11)34 in Lemma 6.2 concerns finite
collections o7, € #9.; of elementary figures. Here we give a p.g. estimation
for finite elementary coverings. For this, letting the collection Covg (C*),, of
finite elementary coverings be as in (6.8)g, we form a parameter space:

(6.13), A" =Covy (€") x Ouv (C™) x Rf2.
For an element (&f;, D', a) € A"=Covy (C"); x Ouv (C") x Rf2, we set:

(6.13)y C4«#;, x D', D),: =set of all (|Z|+ 1)-a-growth cochains with valuc
in O (cf. (1.3)g and (1.4)g).

Next, for a finite collection & of elementary figures in C", we set:

(6.13)g l,: =%, rl,: =max (1, diameter® of supp <),

*) Letting ¥ be a subset of C", we understand that diam (Y) :=sup p,od(P, Q), where P,
Q, are points in Y.
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and r3:=min, (min (I, d7 ), where A, runs through .7 (cf. also (6.3)s). For

each &, € Covq (C")., we write I, , 15, as [, ry.  Such numerical invariants
are used in the p.g. estimation just below. Thirdly, for the explicit estimation

below, we make:

Definition 6.5 By an elementary p.g. estimation map, we mean a map of
the form:

(6.13)5 E: R*2x R*23((uy, uy), a= (a5, %3)), R230": =M (u,)- M5(uz)":-
L(a), where u;=M;j(x,) and M,;, ¥ are positive monomials and an el-map
(n.5, §1.1).

Now taking elements c,, d,€ RT and an elementary p.g. map E we have:

Lemma 6.3" (n=1). We have the following inclusion.

(6'13)1 Zq(‘Ml XDls D)zlcécq_l(dl X D’, D)Z]” (q>0)a with a/=En(ll/r;5 ’"ria
o), where the parameter (&f;, D", o) is in A" and m, m' € R satisfy: m>c,
and m'=m/d,.

As may be clear from the formulation, Lemma 6.3 is a finite version of
Theorem 6.17. The proof of Lemma 6.3 is accordingly easier than that of
Theorem 6.1". Here we give a lemma for Lemma 6.3, which corresponds to
Lemma 6.1 in the proof of Theorem 6.1. For this we assume that n=2. For
notational simplification, we set A4":= Cov,(C").,- We write an element
A, A" as o, =, xB,;, with e A, #,e A1, and we define the map
n,: &, — %, in the manner in n.2, Section 6.2. We then set:

(6.13), B":={#,},, n":={n;},, where o7, € 4", and A": = (4", B", n").

(Such notation is also used in Part B, §7.) For each &, 4", we define a
family #92, € 2% by (6.8),, and we set:

(6.13); fng": ={«,; where &, is in F%o;, with an element =7, € 4"}.

For each Mue?‘gai" we denote by «; the element of A" satisfying <,
€ #yo4,, . Then letting (D, «) e Ouv(C") x Rf? be as in Lemma 6.3, we have:

Lemma 6.4" (1=2) Assume the following for each o7, € 9?!5".
(6.13)%4 ZyU(e,x D', D)< BY4(£, x D', D)y (¢>0),

where o' =E,(l; [r7 ,mr],oa) and the correspondence: m—m’ are as in

Lemma 6.3. Then, for each o7, € A", we have the following diagram (similar
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to the one in Lemma 6.1):

Z(otyx D', Q) ~¥__

Z%°(s,x D', D)y
ZU(sl,x D', O)" i

(6.13)4

such that
(6.13)4 (1=i*t*) 24, x D', D)< 6CT Yo, x D', D)1,

where the estimation: (m; o)—(m'; ') and (m’, o' )—(m", &) are as in Lemma
6.3.

Similarly to Proposition 6.6,, we have the following implication:

Proposition 6.6,. Lemma 6.3""!'—Lemma 6.3" (n=2).

Proof. Letting o, € Covy (C"),; be as in Lemma 6.3, we write 7, ex-
plicitly as follows: o7, =, (U) =&, (U") x &,.(U"), with U=U"xU"
€ Ouv,, (C")(=O0uv,, (C" 1) x Ouv,, (C)) and k= (k", kK"YeZ?"(=Z?""2 x £?).
Then, the p.g. version of (6.7), implies:

(a) ZL%( L (U)x D', O)rxZU £, (U)x (D" x D), O)yr, with D":= Supp
'Mk"( U”)m‘
Applying Lemma 6.3#~! to the right side, we have Lemma 6.3".

Check of the assumptions in Lemmas 6.1, 6.2. Here we check the as-

sumptions (6.11)}:4 in Lemmas 6.1, 6.2, which are given for the lowest degree

p=0:
Proposition 6.6;. We have the following implication:

(6.13) Theorem 6.1' — (6.11)¢:9, Lemma 6.3 — (6.11)3:4.
We also have the following implication for the assumption in Lemma 6.4.

Proposition 6.6., Lemma 6.3' — (6.13)%:9.

The proof of Proposition 6.6, is easier than that of Proposition 6.65.

Here we prove only Proposition 6.6.

Proof. Let the coverings &.:=u4(C") and &;:=L(C"xU’) be as
in Lemmas 6.1, 6.2, and the maps m,, 7, the ones attached to o, & (cf. (6.7)s 4).
We set B,: =my(of)) and %;: =n (). By the definition, these sets are of the
following forms (cf. (6.7)55):
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(a) B, = (C"") and B.=Z*".
For an element B e %, or 4%, we easily have:

(b) m'(B)=A(C)xB and n'(B)=sZ(Sp,x U’). (For the latter set, see
(6.3)1.)

Next recall that the assumptions (6.11)%:4 are given to the admissible
families 7 %« and # Q«/:. Setting(sz, F\): =(st,, F) or (% F9), we ues
the filtration of F .5 as in Proposition 6.5". Remarking that #7~!(B)=o0 or
< oo, according as &7 : =, or &, we divide the arguments henceforth in two
parts:

(i) The case of == (C"). We easily see that F %o 5 consists of the
single element «7,: =4 (C)xB. Apply Theorem 6.1' to .7, and we have:

(¢), s*ZU(C)x (BxD"), O),=6C1 (£, (C)*x(BxD"), O),, where the esti-
mation: oa—a’ and the refining map s is defined in the manner as in Theorem
6.1

Take a suitable refining map s,: o (C" 1) A (C"1), and we set: s:=s; XS,
L AC") x D'(=(L(C) x D') X L, (C" 1)) S A (C") (=(£,(C) X D) x o, (C™1)).
From (c), have:

(©), sEZ%(s(s,xD"), 0),c6C (L, xD', D),, with the refining map s,:
L, x D' s,(e2,)x D’ as in Lemma 6.1.

Finally, noting that #B=1, we change the symbol Z% 6C¢ ! in (c), to Z{°
and B$:“. Then we have (6.11)%-9.

(ii) The case o/=s/;. In this case the check of (6.11)3:% is essentially
an easy consequence of Lemma 6.3. The unique key point is to check the
explicit forms of the estimations in (6.11), and Lemma 6.3. First the collection
FQ4|p is of the form: {«,},, where 7, is an element of Cov,(C"xC"),,.
(This follows from Proposition 6.5” and the explicit form of B in(a).) Also note
that &7, consists of elementary figures in &x(Sp,x U’) (cf. (6.3)}). Applying
Lemma 6.3 to &7, we have:

(¢);  ZUHA,, O)ycoCi~\ (&, Oy, with o' =E, . (L,[ry; mri; a),

where the estimation map E, ., and the elements (m, m’) are as in Lemma 6.3.
Also the numerical invariants /,, 7§ of .7, are defined in the manner in (6.13);.
The desired estimation (6.11)9:1 follows from (c); as follows: first from a simple
observation, the invariants /,, r¥ are estimated in the following fashion:
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(d); L=[UBI+1)]2*m), ro = (dy. /1), and ry =c,,, with an element c,, €

R} depending only on (n, n').
For each ze|«,|, we easily have®:|z—B|<c, ,, with an element c, , € R}.
From this we easily have:

@), C-(Bl+D<(z|+1), with {'=2, ({), where the el-map %, , (cf. n.5,
§ 1.1) depends only on (n, n’).

Now it is easy to rewrite the estimation in (c); in the form in (6.11)3:¢ (by
using (d), ,), and we finish the proof of Proposition 6.6.

Conclusion: Now we conclude Section 6.3 by the following.

Proposition 6.7. For the proof of Theorem 6.1, Theorem 6.2 and Lemma
6.3, the proof of the following suffices:

(6.14) Theorem 6.4', Lemma 6.3! as well as Lemmas 6.1, 6.2 and 6.4.
Proof. This follows easily from Proposition 6.6.

The proof of the first two facts are given in Appendix II. The second
three facts are proven in B, Section 7 after we develop certain algebraic argu-
ments for the filtrations in Definition 6.3.

Remark 6.2. Here we check that Lemma 5.2" follows easily from Lemma
6.3. The implication: Lemma 6.3—»Lemma 5.2" is very elementary. We sum-
marize only the key points of the proof of the implication: Lemma 6.3—Lemma
5.2’. Take an elementary covering &, =7(U)e A"(= Cov,(C").;), where
(U; k) is in Ouv (€™, x Z*2". We assume that £ is of the form: £=(k;)3z,,
with k;=k,=---. (We write ky, k,,... as k.) Letting the invariants rf of
&, be as in (6.12)y, we easily see that the inequality:

(6.15)] c,rifk<t(resp.t<c,r;/k), with an element c,eR}, which depend
only on n=dim C*, insures the existence of a refining map:

(6.15); s: (U) S ZY(U) (resp. s': Z(U) S (U)), where the covering 2(U)
is defined in the manner as in (5.2),.

The above fact suffices to get the implication: Lemma 6.3—Lemma 5.2". Actu-
ally, we first recall that the underlying geometric figure in Lemma 5.2’ is the
disc U, in C", while that in Lemma 6.3 is the geometric figures U as above.

*) Note that B is in Z” and is in €*. Using this {z— B| is well defined.
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The difference of these two geometric figures is quite small, and one can easily
get the similar relation among the coverings 2 (U) and «(U). Also, by
checking the explicit estimations in Lemma 5.2’ and Lemma 6.3, we easily get
Lemma 5.2’ from Lemma 6.3 (by using (6.15),).

§7. A Sharpening of Degeneracy Theorem and Polyncmial
Growth Uniform Estimations

The main purpose of Section 7 is to give the sharpening of the degerency
theorem (cf. Lemma 7.3 and Lemma 7.5) and to complete the proof of Theorem
6.1 and Theorem 6.2 by using such a sharpening. In Part A we give some
detailed computations on spectral sequences, which are used in the proof of the
sharpening mentioned just above. The applications of the arguments in A will
be given in B.

A. A Localization Method in Filtrations

In Part A the topological space X, the element .« € Covy(X) and the map
n: o/ —>% will be the ones in n.l, Section 6.2. We make the following ad-
ditional condition on n: & — 2.

(1.0);, =: /> is surjective and p: =$Z —1=1.

The main results in A will be Lemma 7.1-Lemma 7.1”. The applications of
such lemmas are found in the proof of Lemma 7.3 and Lemma 7.5 (cf. n.1 and
n.2, B §7).

1. An additional filtration. Letting pe Z* be the one fixed in (7.0),, we
set*):

(1.0), K% =F,C«, 8) (¢=0).

The purpose of A will be then to reduce investigations of K*: =3 ., K? to those
of certain complexes at the filtration degree j=p—1 and p=0 (Lemma 7.1).
For this we fix a total order < of #, and we set:

(7.0)5 B: =maximal element of &, and =n"1(B).
Using the order <, we introduce a filtration in K%:

Definition 7.1. By filtration of K? induced from <, we mean the following

*) The sheaf & is also as in n.1, §6.2.
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decreasing sequence of subsets of K7:
(7.1), GoK*:=K1>.-5GK!>:-2G,_,,, K*=0,
where

(7.1)f GK*:={peK’; ¢, ,=0 for each '€ "7/ satisfying B N')
<t.

We write the spectral sequence for (K*, G,) as E,***7*.  In n.2 and n.3 we give
a detailed structure of Ej*-terms.

2. Decomposition of Ej-terms. First, taking a subset &' of & and
integers g, p, t=1, we arrange the following notation, which is convenient for
later arguments (cf. also n.3, §6.2):

(7.1),
{ LW = (A" | AL # P, b A =g}, L0 = (A" €D $n(L") =P},
AV = (A" e LD $(A" 0 L) =1} .

Moreover, for an element 9 € .o/ ®), we set:

(7.1)4 AW ={L edP; (A" N A)=D}.
Then we obviously have:

(7.1)4 AWV = Il oY, where 2 runs through &/,
Next, we use the symbol ‘v’ for the map:

(1.1)5 v: N >0, —" D 397, where we forget the order of 7, in the
right side,

and we define:

(7.1)4 N4t =07 (L), N YUAL)) =07 (LHP), and
N YAt 5 =" (L GHY).

Now, taking an element 2 € ) we define:

(7.1); Klio:={peK’; ¢, =0, unless &' €N 1}(H) s} »
and we set:
(7.1);3 K!:= ®4K{|5, where 2 runs through L+,

It is then easy to see:

(7.1), (G,K%G,, K=K} (as abelian groups).
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We want to make this isomorphism as the one of complexes. For this, denote
by i, the inclusion: K{,, K and by r, the restriction map:

(T.D)y re: K%90 — Kl 53¢, where ¢, =0
for each &’ e 1i1()0,
and we define a degree one map d,: Kf,2 o—>Ki5' 3¢’
by Figure [. The explicit description of ¢'=3d,(¢) is as K% ¢ , gatl

follows: taking an element 2/’ € #"1}}(),9. We assume Ii*g lr;,.,
that the order of &’ is given in the form: K ;’lg& Kt
(7.1); &'=(", 2), where 2 is ordered in an arbitray Figure I

manner and " is an element of #"2X{7!(/) satisfying
n(ef")=2%—B. Moreover, A,<A, for each (4,, 4,)e " x 2.

Then ¢’,. is given as follows:
(7.7 @lyn o= (-—!)f‘(ps,;;,_@, with &}:=s/" — (j-th component of
d”) .

(From the explicit form of K}, (cf. (7.1)3), the attachment of ¢, for the
element &7’ € 4" f1}(),, suffices for the definition of ¢'=6,(p).) Then setting
00 =@&: Ki—-K{*!, we easily have the following.

Proposition 7.1. (K}, §,)=(®,G,K*/G,, [ K*, §), where 0 is induced from
Ki— K1 and the isomorphism is induced from @ ,i,.

By the definition of E-term (cf. n.1), we have:
Corollary 7.1. EV-7'=HUK})=@,HY(K},).

In n.3 we give an another description of E{-term in a convenient form for
our inductive treatments of the filtration F, on p=0, 1,...

3. Localization procedure. First taking an element 2 e.2/®), we make:

Definition 7.2. By localization of o with respect to 9 (resp. |2]), we mean
the following collections:

(g 1_={Mue.z/; n(~,) =% —B, |, N|2D|#} (Cn-l(g_B)}'

T4 Lt ) TVt 1912 ) (=Cove (121)

We use the localization .«#|5 in n.3.  The localization 7, will be convenient
for our explicit p.g. estimations (cf. n.4, Part A). We arrange here some data
which we use in later arguments: first we define an obvious bijective map:
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(7.2); r1esy: Ap3 A, — A 34,: =4,N|2], Ay — 22, .
T T
and we use the symbols w5, 15 for the restrictions 2 2]
of m to &/, and =, -res;! (cf. Figure II). Also, con- (#—B)
Figure II.

cordantly to n.1. we set:
(7.2); (Ha)$P:={A,€(H2)?; $7)0/(F) =D}, N E(Ha) :=0"1((H5)) V).

The map res;! induces an injective map: A Y|,) > A Y2p) in a natural
manner. (This map is, in general, not surjective.) We write this map also as
reszl. Now, using the symbol F also for the filtration induced from the map

T 9|, WE set:
(7.2), K{y: =F,_1C*(o)5), ), where DeLUD

We show that Kj;; and Kj,

] i ] N pi1(H))0) 2 (£, D)
are isomorphic®). For this we

bla|

. 09 -1
first define (set tl.leoretlcal) maps N () 5, res WIH(t,) 5 oL,
0i9)» 05 by Figure IIl.  (In
Figure III we fix an order of
2 arbitrarily*®), and the order of (&, 2) is given similarly to (7.1);. Also

note that 0, is defined for the image of res;!.) Now, using the maps 0,, 0,5,

Figure III.

we define:

Definition 7.3. By reduction and reverse maps 0, of,, we mean the
following isomorphisms of complexes:

o.
|2]
(7.2)s Kfjo30 == K{5{7'2¢" where ¢, : =0, With &, : =0,(}),
“la|
for each & e /' L7(H)5)).
(By Figure III we easily have |0,,(=,)| =|<,|, and one can easily check the
well definedness and the isomorphisms of the maps 0%, w¥%). From Definition

7.3 and Proposition 7.1, we have:

Proposition 7.2,. E"17 =@, HT " Y(K}).

*) Note that K¥ 5 is the subcomplex of K*=F,C*(g, &) (cf. n.2), while K’|"9|=F -1
C*( L9, R)(cf. (7.2);). The author believes that there is no notational confusions
between the above two complexes.

#%) Thus the maps #4, 05 and the resulting homomorphisms 0?‘91, ngl in Definition
7.3 depend on the order of . As we will see in the course of the arguments, the
latter arguments on HTQI, w’l"gl will work well for any choice of the order of 2.
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Using the injection i%: Kf;©K* and the restriction r§: K*—Kfj,
(cf. n.2), we have the homomorphisms 6%r%: K*—> K%~ *! and ijwk: Ki*!
—K*. When there is no fear of confusions we call such maps also reduction
and reverse maps and use the symbols 6%, w} also for such maps.

Remark 7.1. Let ¢ € K|, and the elements &), o, =0,(,) (=(}, 2))
be as in (7.2),. We then regard «, =(%,, 2) as the variable for the cochain
map: ¢@: NJ1i()93 ,—~I(#, 8). Then the idea of Definition 7.3 is to
regard the first and second variables o, and 9 respectively as the moving and
fixed variables. Thus our reduction method is concordant to standard reduction
methods obtained by regarding some parts of variables in questions as the fixed
ones. We also note that we use a similar reduction method for our cohomology
theories for certain stratified spaces (cf. [18]). The reduction maps as in
Definition 7.3 will be a key tool in the later arguments of Section 7.

E't-p-terms. Here we determine the limit case Ey»? (cf. (7.1),). For
this take an element 2 € &#¢* 1, and we set:

{F(I(%/ng).,l, K), if Y L EHIEV £ (cf. (7.1),)

7.2 Jyi= .
(7.2)s 2 0, otherwise.

We set Ji;: =@ ,J,, with 2 € #*D, and we define a degree one map:

(125 6s:J;30-JF 2¢", where ¢,:=33 (~1)@,,, for each e
N*2of . (Here 2;:= 2-(j-th component of 2.) Precisely, ¢5,:=p;@s,
with the restriction*® p;: I'(|(5,1/m5,)uls R)=>T((H5)/72))uls K).)

Next remarking that Ejr:=Z?:={peGK!'*?; dpeG,,KPt} (cKtP),
we define an element @’ eJ’; by attaching the following value to each 2 e
Nt (We write the correspondence: Ejf'?3 p—J'; 3¢’ as x.)

(1.2)s @5 =@s, . in |Z'|N|2] for each ' € /P satisfying n(«/")=% —B,
lZ'In|2|#¢. (Here, writing &' as &'=(A4;<---<A}), we understand that
(A< <n(A4p).)

(Remark that |(&,/n,).= U (|| N]|2]), where o' e #'PeZ is as in (7.2)¢
(cf. the footnote to (7.2);). Also we see easily that ¢ e E}"'F implies: ¢, -
=04 . in |20 n|L"| for such ', &". From the above we see that

* By (6.8)s this is same to say that z,(o/s)=% —B and [(fa/7s)ul#¢. We use this
fact in later arguments.
**) When o785 =¢, we understand that p; is the zero map.
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@5 is an element of J,=I(|(7,/7,),), 8).) From the explicit relation in (7.2),
we easily have:

Propesition 7.2,. (E*?, d))~(J%, 6;).

Finally we summarize the arguments in n.1-n.3. For this we use the
symbol F, for the filtration in C*(sZ, &) and C*(«/|,,, 8), which are induced
from the maps n: & —% and 7,5): &, ~%—B. Also we use ‘F,’” for the
filtration in J;, which is induced from the map n: #(=n"1(Z))—Z (cf. (7.0),).
Note that #B=1 implies that FoJ ;~J; and F,J;=0(p=1). We then set:

r|2]

(C*(M_@b R)a p)’ ( A Fp)) .

Lemma 7.1. Assume that

(7.2)8 {( E}Sr, BT, B i) :=spectral sequneces of ((C*(+, &), F,),
2)7

(7.2)4 ET |1@|‘1 '~0 for each 0<t<q—p and @ e L0+,
Then we have the isomorphism:

(7.2), ERGP

R

EY

4P
e

Proof. First, from that #ne/=p+1 and #ne|, = p, we have: F;C*(,, R)
~0(p>p) and F;C*(,, R)=0(p>p—1). This implies:

(a) ED 4P~ HY(K*) and E" 1,q t~ [a-t- 1(K|9|)

(For this also recall that K*=F,C*(#, &) and Kiy =F,C*(|,, &) (cf. (7.0)3
and (7.2);.) Moreover, by Proposition 7.2,, we see that (a) implies the

following:

(b) (7.2); — E{»17'=0 (0=1<p)

and, by the degeneracy theorem (applied to E"*-terms) and by Proposition 7.2,,
we have:

(©) HUK*) (=BRGP = EY? (RHIP(TD) .

Finally, remarking that F pJf;gO (p=1) implies: H"“”(JE);E?Z:{F , we have
(7.2),. q.e.d.

Corollary 7.2. If EY' %5720, then EZ% 7 ~0.

Lemma 7.1 and Corollary 7.2 insure that the Ef-terms for the original com-
plex C*(«, K) is ‘determined’ by the Ef~!-and Ef-terms for C*(«/,,, &) and
for J%, and will play a basic role in getting our sharpening of the degerency
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theorem in Part B¥). In n.4, n.5, we give p.g. versions of Lemma 7.1. Such
facts will be basic in the proof of Lemma 6.1-Lemma 6.3 (cf. n.3, Part B).

4. Reduction maps for localization .o7,. Here we develop similar arguments
to n.3 for the localization .7, (cf. (7.2);). In n.4 we assume that o/ consists of
elementary figures in C"(z) (cf. §6.1). We make this assumption for some
technical reasons® and, more importantly, for purpose of the applications to
the proof of Lemma 6.1-Lemma 6.3 (cf. Part B, §7). We also assume that

(7.3)y the ratio number a of &/ <o (cf. (6.10)5).

We begin n.4 by giving a proposition on elementary properties of elementary
figures, which we use in the later arguments:

Proposition 7.3,. (1) If A;jeof (1Si<3) satisfy: AinA;#¢ (124, j£3),
then N3-, A;=¢. Moreover, if A, N A, ¢, then we have:

(7.3), Ay w2 Ay, for any m, m' e Rf satisfying m>3m'a.
(2) For the maps resz' and 0,/(cf. (7.2),,3), we have:

(7.3)! {resgl C Ny (A a) — A UHA,) is bijective

0, () B A —— NN A) DA, satisfies: | | DL | -
(In (7.3)1, 4, ,,: =elementary figure with the same center as Ay and with the
size=m x (size of A,) (cf. (6.4)}). Also, writing s ={A,},, we recall that

Ly =A{ Ay}, (cf. (6.10)3).)
Proof. (1) is very elementary, while (2) follows easily from (1).

In the arguments soon below, we define reduction and reverse maps for o7,
from those maps for .|, (Definition 7.3). The bijectivity in (7.3)] is used in
the definition. The second condition is also used, as a technical convenience,
in such a definition (cf. Proposition 7.3 soon below).

Next we assume that the aheaf & is the structure sheaf O of C*. We use
the ‘principle of analytic continuation’ for O in the definition mentioned just
above. Taking an element m e R}, our complex will be of the following form:

(7.3); C*(of, OY(=i%CH*(L,,, O))(=C*o, D)) (cf. (6.10),), with the refining
map i,: o 3 A,>L, € A

We use the symbol F, also for the filtration in C*(27 )", which is induced from
the map n: &/ —%. In a concordant manner to (7.0)3, (7.1),, we define:

*) cf. Proposition 7.3,-Proposition 7.3,.
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(7.3)5  K*(m): =F,C*(o, D), K}jo(m): =K} N K*(m),
and Ki(m):=F,_,C*(,,0)".

(We use the symbol F,_; also for the filtration in C*(#/,, O)", induced from
Myt Fp—FB—B (cf. n.2).)
Now take elements m, m' and m"” € R} satisfying:

(7.3)5 m>3m’'-a, and m">3m'a.
We then have the following analogues of Proposition 7.2; and Definition 7.3:
Proposition 7.3,. For each @ € &+ (t=0), there are homomorphisms

{02: Kfig(m) — K5771(0m')

7.3
792 wB: K51 (m) —> KN3! (m)

which are characterized by

FigurelIV-1, and the homomor- K} o(m) LN Kfia P K3 a(m')
phism w%-0% satisfies Figure PE Gfglumfgl Tw"g
IY—'2 (and' 0% - % satisfies the K310 rest, Kt «-'fiK;(m)
similar diagram to Figure IV Figure IV-1.
-2).
(In Figures IV-1, IV-2, i,.,: = refining "
map: w3 Apr— A3 Aps ..., and we Kﬁg("g ——'"—"-"-'———>w*K;",9(m”)
set iy, =iqm.) N y
. K37 (m)
We call 6% and w% also reduction Figure IV_2.

and reverse maps. Moreover, as in n.3,
we call the homomorphisms:

(7.3); 03-r%: K*(m) — K57'7'(m), i§-w§: K577 (m) — K*(m'),

with the injection i%: K¥, & K* and the restriction r%: K*—KJ,, also re-
duction and reverse maps (and we use the symbols 0%, w? also for such maps).
(Proposition 7.3; follows easily from Propositions 7.2, 7.3,. Here we sum-
marize the technical key points of the proof. First setting ¢’ =03%(@), ¢’ = w¥(p),
where @, ¢ € K*(m), K3~*~1(m), we remark that ¢’, ¢’ are explicitly as follows:

(7.3); Q=0 P, =0, for each o e N[ (), With o, =0,(s)) .

(We understand that ¢,;, =restriction of ¢, € I'(|#,.|, O) to I'(|«,,|, D) and
@, should be understood similarly. Note that |7,|S|e/,| in general. But
(7.3), implies: |2l 2 | ,|.) The existence of the maps 03, w3 follows from
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(7.3),, while the uniqueness follows from the principle of the analytic con-

tinuation for O, applied to || |l

E'*-p-terms. Here we give an analogue of Proposition 7.2,. We assume
the following for each 2 e &+ 1):

(7.3)5 o U0 # ¢ (cf. (7.2)5), and |(,;/75),| is connected .
Corresponding to Proposition
7.2, we write the spectral E'* P(m) o, C*(of, D)"‘ E*P(m")
sequence of (K*(m),G,) as ji?‘,, ir_ - z,,,,,l
Et*"1(m). E#%p L, J*% % > Ei%:p
Proposition 7.3,. There Figure IV-3.

are homomorphisms:

0% Eor(m) — CHar, O EDI0m) T B ')
(7.3)4 {wi;: C*(of, O)" — E*P(m") » =
characterized by FigureIV-3. Moreover, C*(o, D)™
0’ -0% satisfies Figure IV—4 (and 0% - 0™ Figure IV-4.

satisfies the similar diagram.)

We call 8%, o’ also reduction and reverse maps. (The map y just above is
as in Proposition 7.2,. The map % is a natural map given soon below.) Pro-
position 7.3, follows easily from Proposition 7.2,. Here we also summarize
technical key points in the check of Proposition 7.3,: first recall that J:; =
® oJ (=T (1,1 5) ). O)) (cf. (7.2)5), and we take r’ to be the induced from the
restriction: I'(|2|, ©)—J,. Thus, for an element ¢ € E{*:?(m), the value of
¢'=0;(p) on 2 is the restriction of ¢, . to |2,,], with an arbitrary <’
e #%(;). (For convenience of the arguments, we understood that the order
of &7’ is concordant to n(«Z")=4%"'—B’.) By the first condition® in (7.3); such
an element o7’ exists®. Also by the second®), 0% is independent of the choice
of such an element .»#’. The definition of w® and Figure IV-4 follow easily
from Proposition 7.2,.

Finally, we give an analogue of Lemma 7.1. For this we set:

(7.3)5 (EELXP(m), EV:372(m), EP %" (m)) : =spectral sequence of ((K *(m),
Fp), (K3(m), Fp), (C*(J?f, o)™, p))!

*) For the existence of such an element .o7’, see also the footnote to (7.2);. Let o7’, o7 ” be
such elements. Then the connectivity condition in (7.3); implies the existence of such
elements {77} %-1, With o7 {=o7", of;=u/" and |.o7;|N|.ofs+1]#¢. The welldefinedness
of 8% follows from this.
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where the filtration F, in K*(m), K¥(m) and C*(o/, O)" is the one induced
fromn: A%, n,: Ly,—B—B and 1: & =1~ (B)—B (as in n.3).

Now taking elements <, o€ RT2, we assume the following for each 0+t
<g—pand 9 e LUV
(7.3) ik WEY 3 97PY(m)=0, where m, m'eR{ satisfy: m>ca, m'=m/a.

Lemma 7.1'. There are homomorphisms:

0% : ERLP(h) — EY 5P () EP:
(7.3)s {w:. . Etl)::;—p i) —s B2’ ji*, &
satisfying Figure IV-5 (and the similar E
d'ajram to Gf;-wf;). Here the elements Figure IV-5.
m, W' and wm" € RT satisfy:

~ "

(1.3 m>c,a, m'=na,, -aand W"=m'[7, ,-a, where
(71.3)s  €4p=L0)(€)s @4p=s,(&), with an el-map &, ,, which depends only

on (g, p) (cf. n.5, §1.1).

Proof. The algebraic structure of the implication: Proposition 7.3; ,—
Lemma 7.1’ is parallel to the proof of Lemma 7.1. The condition on the ele-
ments i,... is checked, by recalling that we imposed the condition (7.3); in
Proposition 7.3 ,. g.e.d.

Corollary 7.2. Assume that
(7.3)4 it EV 5P (m) =0, where m, m’ e R are as in (7.3)g.
Then we have:
(7.3), % AEDLP(M)=0.

5. A p.g. version of Lemma 7.1’. Here we give a p.g. version of Lemma
7.1 in a convenient form for the later arguments: for a subset ./’ of o7, an open
set D' < C"(z’) (cf. §6) and an element « € R}2, we use the sets of the cochains®
Z3%P(of x D, O)y. (For such sets of cochains, see (6.10);,.) Next, for
convenience of our explicit estimations, we take an s-times product R}s of R},
and we fix a collection E consisting of maps: RS x Rf2—>R}2. (We permit the
case s=0, or equivalently, the case R{* x R{2=R{2.) For maps E,, E € E, we
write E;>>E,, if E;(f; )>E/f; «) for any (f; «)e Rfs x Rf2. Moreover, we

*) The filtration here is induced from thc map: .oZX D' S(A4 X D")—ZFSn(A).
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define a composition E,: =E; - E, by

(7.4), E, R{sxR{?5(B; 0) — Ri230/: =E;(B; E(B; ).

Next we fixa map n,: ExE>(E,, E,)»>E>E, salisfying E;>>E,-E,. We then
define maps 7, (p=2) inductively as follows™®:

(7.4), Ny B,y =EPxXE3(E,, E,)—— E3E,:=n,(1,-,(E), E,).

For each p=1 we define a map:

(7.4), fi,y ESE —>ESE :=n,(E,..., E).

pi i—
Also, for convenicnce of the cstimation here, we fix an clement f=f_ e K2
Now we assume the following for each 0<r<g—p and @ € &2 (+1):
(1.4)s Zy b4 P (o, x D', O)y"c By 1 47P~1(of, x D', D), with o' = E(f; ).
where o is in RF2, and m, m’ e R satisfy: m> ca, m'=m|4a (cf. Lemma 7.1").

. * *
Lemma 7.1”. The reduction and reverse maps® 0; and w_; preserve the
p.g. conditions:

DO
X lll

(7.4)6
Z09=P(of x D', D) (/T

— ~/I__ ~1
M =]y, pa, 0" =il /g’q 4

with | '=E, (i), " =E, (f: ),

and also satisfy:
(7.4)6 (1 —w303) Z5 (£ x D', O)F = By 17P(f x D', O)

(and a similar inclusion to 0%-w¥). In the above, the element o, € R;?

is as in Lemma 7.1, and the map E,_ , is as follows:
(7.4 E,,=i/E), with an element e=e, ,e Z*, which depends only on (g, p).

The proof of Lemma 7.1" is given similarly to Lemma 7.1’, and is omitted.
Our main application of Lemma 7.1” will be given in Part B (cf. Lemma
7.5). Here we derive a key proposition for the proof of Lemma 6.1:

A key proposition for Lemma 6.1. Let the collection «4.(€") of elementary
figures be as in Theorem 6.1, aud the map n.: &4 (C")—> B} = A (C* 1) as well
as the family # % ,4(p=1) be as in (6.7)5 and (6.9),. Taking an element 27,

*) Here we assume that E is closed under the composition in the sense that if E, E,€E,
then therc is a map £, F satisfying E; >E,E,.



532 NOBUO SASAKURA

€ F 51, We set:
(7.5) #,: =n,(e,), with the restriction n, of m, to «&7,,,

and we fix an order < of #,, and we set ,ei;: =n"Y(B,), with the maximal

element B, of &,

Proposition 7.4,. Take elements® m,, d,e Rt and an el-map %,,.
Then there are maps 6%, w*:
ZyP (o, x D', O)un \0*‘

ZP 9P (o' x D', O)nr —a Z99M (oL x D', D),
1, I3 ) an

(7.5),

m=m,ld,, m"=m’'|d,

with {
a’ =Ln,k(a)s 0(” = Ln,k(a/) ’

which satisfy:
(7.5), (1 — 0*-0%) 2977 (of), x D', D) BE 7P (o), x D', D)™ (and the
similar relation for 0% w*).

Proof. Here we take the set of parameters (Rfs x R{2) and the collection
E of estimation maps in Lemma 7.1” to be: (R}*x R}?)=R{? and E: = set of
all el-maps**) R*2—»R*2. Then, by Lemma 7.1”, it suffices to check the
following***) for each 0<t<qg—p and 2 eM.,’}'“’ for the proof of (7.5),:
(7.5)3 Zy 1P (of o X D, O)pn e B~ 47P (o x D', D),
where the estimation: (m,, a)—>(m’; «’) is as in (7.5),.

To check this, we remark that the localization «7,, is a finite set, and is,
moreover, &, , is written as:
(@); Ao is in Fopo; (cf. (6.8),), with a finite elementary covering =/},
€ Cov, (C"),, (cf. (6.12),), which consists of elements of ..
We give here a proposition, which is applied to the finite collection 7, let
the collection 4"(=Cov,(C"),,), B"={B,}, and n"={r,}, be as in (6.12),.
Then we have the following for each ./, € #927, (p21) (cf. (6.8),):

Proposition 7.4,. Z§ %" P(f, x D', O)r < Bf-*"?(of, x D', D)1,
where o' =E,(1,[ry; mr}; ). (Here the open set D'cC", the element (m; «)

*) m,,d, and &Z,,; depend, respectively, only on n=dim C* and (n, k).
**) Cf. n.5, Section 1.1.
*H*) of . =localization of o7, (Definition 7.2).
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€ R} x R{? and the estimation map E, have the similar meaning to Lemma 6.4.)

Proposition 7.4, follows directly from our algebraic result®), Lemma 7.4
in Part B, Section 7, which is proven independently from the content here con-
cerning Lemma 6.1. Our use of Lemma 7.4 for Proposition 7.4, is legitimate.
Now letting the localization «#,, be as in (a),, the numerical invariants [, ,,
rE of o, (cf. (6.12)7) satisfy:

@; [l 15 and 1/ra<c,, with an element c¢,,e R}, which depends
only on (n, k). (This is checked easily by remarking that the radius of |2] is
estimated similarly to (a), and by recalling the explicit form of the localization
o, (cf. Definition 7.2).)

We then apply Proposition 7.4, to A,,. Then we have the similar inclusion
to (7.5);, by the following change of the estimation:

(@)s; &=E(l,0/r,s; m,i,5; o), with the estimation map E, as in Proposition
7.4,.

But, by (a), and the explicit form of the map E, (cf. Definition 6.5), we easily
see that the element o in (7.5); satisfies: a’>d’, and we have (7.5);. Finally,
by Lemma 7.1”, we know that (7.5); insures (7.5); ,, and we have Proposition
74,. g.e.d.

Next we derive a key proposition for Lemma 6.1 from Proposition 7.4,.
For this letting the refining map s: o, x D' G o, x D’ be as in Lemma 6.17, we
also take a suitable k"eZ* and a refining map s': 4. x D'S o x D', where
we set i = A (C"). We then take an element &} € F% - (cf. (6.9);),
and we set o/, x D' =s, (&2} xD"), &, xD'=s,(, xD"), with the restrictions
ss, of ', s to A xD', o, xD'. Also, letting the map n;: L—%;: =
(C*Y), where k=k, k' or k", by the one defined by

(6.7)s, we set: A S oy CE s
), J . J ) J
o s o o,
{nu, n, and m; =restriction of n; to 4,, 4, and 4, l" lnu ‘n:,‘
B, B, and &, =n(L,), n(f,) and n(L7). 53;“__4 g;‘ ;;"
We fix an order of %, and we use the orders of %,, Figure 1.

4%,, which are induced from £” (cf. Figure I). We
write the maximal elements of %}, #, and %, as B;, B, and B,, and we set

*) Precisely, ‘Lemma 7.4 applied to (4?, B*, =")".
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&/Z:-— W (B, M‘,——n;“‘(B;‘) and &/‘,=n;‘(3u). We assume that (6.11)9-9
holds.

Proposition 7.45. We have the following diagram:

(7.5)4
*Z" Pi(et, x D', 0), —0 Z94P (o, x D', D))

Z{.q—p(y; x D', O)"» % l o
(\

Z;{.q—}'z(&/z x D', )" Z9:9-P (o x D', O)"n s B 4P (£l x D', O)r

Proof. First wc easily have:
(a), s(A’xD")> A4;, x D' for each A’ € .,
and we have the first diagram in (7.5), from Proposition 7.4;. By applying
(6.11)%9 to Z9:47P(sz}, x D', O)m= (cf. (7.5),), we have the diagram in the right
side of (7.5),. The commutativity of w*, w'* and s'* is easily checked, we have
(7.5)4. g.e.d.
Now setting §: =s’-s we have:
Corollary to Proposition 7.45. For each o} € # 5 24,. we have:
(7.5)8:* SEZE ¥t x D', O), By x D', D),
where we set §,: =restriction of s to o, and «f,:=s(,). Moreover, the
estimation: a—a' is as in Lemma 6.1.

This covers the essential part of the proof of Lemma 6.1 (cf. B, §7).

6. Reduction condition. Let the collection ./ of elementary figures in
C"(z), the map n: &/ > % and the families # %2/ <2¥(p=1) be as in Example
6.1, n.2, Section 6.2. Take an element o, =/(#'; U')e #), o/, where &' is
a subset of & satisfying ##'=p and U’ is an elementary figure in C*(z). We
then fix an order in %, (=mn,(s,)), where m,: =restriction of © to ., in an
arbitrary manner. Setting B,:=maximal element of #,, ,Ju: =n,1(B,), we

casily have:
(7.6), o ,=o4(B,; U'), and is in #Z (cf. (6.8)5).
Also taking an element 2 € &2 ¢+1)(t=0), we also easily check:

(7.6), the localization «,, is of the form .,,=(%,—B,; U n|2|), and
(£, /m,),l is connected (cf. (7.3)3).
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By (7.6), 5, the series FOx/: ={Z%/}%_, is closed under the localization pro-
cedure: o7, —~,, and the procedure: dyﬁ.:zlﬁ,,: =n,;'(B,). This fact, together
with the second condition in (7.5),, makes it possible to apply the localization
methods in n.1-n.5 to the series F°«. Now tlaking a series F.ov={F ,};-,

of families & ,.of =2 satisfying (6.8);, we make:

Definition 7.4. We say that F./ satisfies reduction condition, if the fol-
lowing holds for each &/, e %, & (p21):

(7.6); fix a suitable order < of #’:=m,(s7,), where m,: =restriction of 7
to o7, Then setting B,: =maximal element of %, and «7,: =n;(B,), we have:

(7.6)5 ,q?ue.%‘?.d. Moreover, for each 2 e./*1(t>0), the localization

5 is in F o, and |(,,/7,),| is connected.

We rewrite (7.6), , in the following form:
Proposition 7.5. The series FOgf satisfies the reduction condition.

In Part B we give a sharpening of the degeneracy theorem in the form of
Proposition 6.3 for a series F.of as above, which satisfies the reduction condition.

B. A Sharpening of Degeneracy Theorem

In n.1 and n.2 we give our main applications of the localization arguments
in Part A, and in n.3, we prove the main lemmas, Lemma 6.1-Lemma 6.3, in
Section 6.3, by using the results of n.1, n.2.

1. First let the collection &7 of elementary figures in C"(z), the map =n:
o/ — % and the series Fof = {F,7}%., of families # ,o/ =2 be as in Definition
7.4. We assume:

ratio number a of &7 < oo (cf. (6.10);)

7.7 { . . " y
(7-7o F .o satisfies the reduction condition (Definition 7.4).

For each &, € # o/, we set m,: = restriction of n to «,, and let EZ:f~P(m),

rou
mz1, denote the spectral sequence™ of (C*(s7,, O)", F,), where the filtration
F, is induced from m, (Definition 6.3). We fix elements ¢, &, € Rj2.

Lemma 7.2. Assume the following for each <7, € F o :

(7.1 i LESHm)=0 (g2 1), where m, m' € RY satisfy: m>c¢,a,m'=m| 4, a.

*) For the complex C*(.7,, D)™, see (6.10);.
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Then we have the following for each o, € # ,,. % (p21):

(7.DP igaEY (i) =0 (q>p), where m, m'eRY satisfy: m>c,,a, m'=
W/, ,a, with elements ¢, ,, o, ,€R}?, which are determined® by (¢,, /1)
and (4, p).

Lemma 7.3. Assume, in addition to (7.7):4, the following:

(7. each F,o (p=1) is admissible

(Definition 6.4). HY(C*(, D)) —=— ELS (")
Then we have a homomorphism li"_'"';’ p* ll’"m
HY(C*(, O)™) —* E$:9(")

. * m 20 (i’
(1.7, t*:HY(C*(o, O)") > ES: (") Figure L.

satisfying Figure 1.

In the above, E$:%(m) denotes the spectral sequence of the ‘original complex’
(C¥(, Oy, F,), and the homomorphism p* is the natural one: E%:9%—
HY(C*(o, O)"). Moreover, the correspondence: mi—’ is as in Lemma 7.2

and: m'—m" is given similarly to m—m’.

Proof. The proof of Lemma 7.2 is given inductively on p as follows:
taking an integer p>1, we assume (7.7)8>¢ for each p<p. For an element
A, € F,. 1, let the localization ,,€ %, and the inverse image .sai,,:
=n,'(B,) € #« have the similar meaning to (7.6);. By the induction con-
dition we see that (7.7){~1:97P~t and (7.7)9:9"? hold for .;aiu, 9. On the
otherhand, the key lemma, Lemma 7.1', insures that the above facts for «/,,,
.sziu imply (7.7)3:4 for </, and we have Lemma 7.2.

Next, to check Lemma 7.3, we recall that the admissibility of & ,,
together with (7.7){-4, for each 7, € &, ;. insures:

(1.5 imaERLP(m)=0 (g> p=0) (cf. Proposition 6.5).

Thus, applying the standard degeneracy theorem**) to this inclusion, we have
Lemma 7.3. g.e.d.

Lemma 7.2 and Lemma 7.3 are our sharpening of the degeneracy theorem

*) The map: (¢1, #1)—(eq, p» 27, p) IS given in the manner as in (7.3)".

*#) In Lemma 7.3, we are concerned with the subcomplex C*( o7, ©)™ of C*(o7, ) (instead
of #*(of, D)), and we use the homomorphism 7, ;. However, this gap is quite small,
and one get Lemma 7.3 from a slice modification of the standard proof of the degeneracy
theorem (cf. [22]).
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which is mentioned previously®, and the key point is that the assumption for
the ‘isomorphism’ in Figure I is reduced to the vanishing property for (7.7)9:¢
at the lowest filtration degree p=0. In n.2 we give a p.g.version of Lemma 7.2,
Lemma 7.3, which may be our substantial main lemmas in our treatments of the
p-g. uniform estimations in Chapter III.

2. A p.g. version of Lemma 7.3. In n.2 we start with a family 4={4,;
A€ A} consisting of data A , as follows:

(7.8)0 ‘4',1:(.91,1, %,, ;), where .7, is a collection of elementary figures in
C"(z), #, is an abstract set, and =n;, is a map: &/,—%,. For notational
convenience, we write:

(7.8) F={,},;, #={%,}, and n={n,},, where 4 runs through A.
We assume the following for each &7, € o:

(7.8)¢ the ratio number a, of &, < oo (cf. (6.10);).

Moreover, for each 4,e., we fix a series Fuo/;={F ,o}5-; of families

F o, <2¥~,  We assume that each & .« satisfies (6.8); and that
(7.8)y F.«, satisfies the reduction condition (Definition 7.4).

We then define:

(7.8)y F pfi: ={«,; where &, is an element of %, with an element
oA, €A}

For each &/, e # I,A~, we denote by «7; the element of o satisfying & o,
3 o,

Next, for the explicit estimation here, let the set of parameters R} x R}?
and the collection E of maps: (Rf*x Rf?)—»R}? be as in Lemma 7.1”. More-
over, for each o/, € .o, we fix an element §, € R}s.

Now, take elements ¢;, &; e Rj? and a map E, e E, and we assume the
following uniform estimation for &#,.27(q>0):

(7.8)1 Z9:%(st,x D', O)yr < BY-4(se#, x D', D)2 for any (&,;D';a)e F ol X
Ouv(C") x RY?, where o'=(E(B,,; ®), and m, m"e R} satisfy: m>ca, m'=
m/dﬂh,‘

Then we have the following p.g.version of Lemma 7.2, which is easily derived

*) Cf. the introduction of Chapter 1II, and the end of Section 6.3.
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from Lemma 7.1”, by using the similar inductive arguments on peZ* as in

Lemma 7.2:
Lemma 7.4. For each o, € #,,,94(p21), we have:

(7.8)1 Z7(, x D', D) Bf-4~F(of, x D', O)i(q>p), where o =Eq,p(ﬂ;“;
%), and m, ' e R satisfy: m> e, a, 1 =1|d,a, . Here the elements
c.pand &, , by¥(e,,2)) and (q, p). Also the map E, ,e E is given in the

form:
(1.8)1 E,,=i(E,), with an element e=e, ,e Z*, which is determined by
(q, p). (For the map fj,: E—E, see (1.4)5.)
Next we assume the following for each 7, € & :
(7.8); each # 4, (p=1) is admissible (Definition 6.4).

Then, using the similar arguments to Lemma 7.3, we have the following p.g.

version of Lemma 7.3:

Lemma 7.5. For each <7, € o/, we have***) map t,:

ZY o, x D', D)n 2
(7.8); = Zeex D, D),

Za(ot, x D', D)/ i

with {;ﬁ”:nﬁ/dqal, Iﬁ/',:——lﬁ'/dqaz ,
jod =Eq(ﬂl; 0!), a =Eq(ﬁ}.; o ) H

satisfying
(7.8)5 (1—i;p,)Zu(et, x D', D) cdC1 (s, x D', OY¥', and the similar rela-
tion for i,-1,.
In the above, the element ifie R} satisfies: m>c.a,, and ¢, &, e R{* are
determined by**) (¢, ;) and q. Moreover, the map E € E is given as follows:
(7.8)5 E,=n.(E,), with an element e,e Z*, which depends only on qeZ*.

Applications of Lemma 7.5 will be given in n.3 soon below.

3. Proof of Lemma 6.1-Lemma 6.3. (i) First we derive Lemma 6.2 from
Lemma 7.5. For this letting the collection 4’7", /i =(n, n'), of the p.g. elementary
coverings be as in Lemma 6.2 (cf. also (6.4),), take an element &/;eA’".

*.*%) The correspondence: (e1, @1)—(cy, p, @4, p) is as in Lemma 7.2 (cf. also (7.3)"). More-
over, one can take (¢, &) in Lemma 7.5 to be: (¢, @,)=(eq,q 25, 4)-
*##) For the set Z2° and the map 7, in (7.8)s, see (6.10),, (6.10);.
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Then, letting the map 7;: &Z;—Z2" be as in (6.7)s, we set:
(7.9); B'":={B.},, n'":={n.}. where we write Z?"(=n,(«})) as Z .

Next letting the element ¢, e Rf2 be as in the assumption (6.11)3:¢ in Lemma

6.2, we define an element ¢, , e R{2 by ¢, =2, (¢,) (9>0), where the el-map

na
Lpngis as in (7.3)g. Now, let the refining map s: &/ “«/ be as in Lemma
6.2. We write the p.g. elementary coverings &, & explicitly as o= (C"
xU’) and & (C"xU’), with &=((;e), &'=({";e)eZ*2%x(0,1/2) and U’
e Ouv'(C),, (cf. (6.3);). We define®: f.:=(dy; {)e R} x R{2. Now we

apply*® Lemma 7.5 to &/;.. Then we have the diagram:

Z(oL e, O)me’
(7.9), Z‘1E§’§,, D;{;ﬂ > ZL%(ALy, O)m, with o' =E, (Bza) .
In the above we set m,.: = ¢, ;- a,, with the ratio number a, of & (cf. (6.10)3).
Moreover, the maps: nmy—m’, m'—»m” are defined in the manner in Lemma
7.5. Furthermore, the estimation map E
x (M x L) (cf. (6.4);).
On the otherhand, we have (cf. (5), Part B, Appendix II):

nq 15, @s in Lemma 6.2%*%), in E=L

(7.9)4 s(L,) Ly, for each o, e ..

Thus one can apply (7.9), to s¥Z9(«s%, O),, and we have the conclusion®™***)
(6.11)4 in Lemma 6.2. This finishes the proof of Lemma 6.2.

(ii) Proof of Lemma 6.3. The proof of Lemma 6.3' is given in Part A,
Appendix 1I. Recall that the proof of Lemma 6.4" (n=2) suffices for the proof
of Lemma 6.3" (n=2) (cf. §6.3). But we easily see that, by applying Lemma 7.5
to the triple (4", B", n") asin (6.12),, we have Lemma 6.4. (In the application,
the estimation map E should be the elementary p.g. map as in Definition 6.4.
Moreover, for an element o, € 4", the invariant 8, is defined by*****) g =
(1,/r7: mr}), with the invariants [, r¥ of o, as in (6.12)y. Using these data,
the proof of Lemma 6.3 is given similarly to Lemma 6.5.)

*) For the invariant dy- of U’, see (6.3)s.
**) Precisely, ‘Lemma 7.5 for (4’7, B’*, =’").
*#+) The estimation: a—a’=E, (8,/; «) is given explicitly as in (6.4);.

**%%) Precisely, the estimation (6.11)] is of the form a’=E, (1/dy; <; 6). But, from the
explicit form of the map E,, ((cf. (6.4);), one can change the term £’ in (7.9); to &.
*ixik) The term meRY is independent from o7, 4™ (cf. (6.12),), and is not an invariant
of o7,. But we check easily that the proof of Lemma 7.4 and Lemma 7.5 is applied

to the element 8,=(/,/r;y; mr}) at the present situation.
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(iii) Proof of Lemma 6.1. Assume the assumption (6.11):? in Lemma 6.1,
and let the refining map s: 2. x D', x D' be as in Proposition 7.4,. (Here
we write 24(C"),..., as %4,...) Then, using the similar algebraic arguments as
in Lemma 7.5, we see easily that the check of the following suffices for the proof
of the conclusion (6.11)4 in Lemma 6.1:

(7.9 s*ZP4P(alyx D', ©), BB (el x D', ©), (g >p20),

where the estimation: a—a’ is as in Proposition 7.4; (or, equivalently, as in
Lemma 6.1). But Proposition 7.4; insures the similar inclusion for each .7,
€F 14y By the admissibility of %%, (cf. Proposition 6.5), the latter
insures (7.9),, and we finish the proof of Lemma 6.1.

By Proposition 6.7 and Proposition 6.1, the proof of Lemma 6.1-Lemma
6.3 insures Theorem 6.1, Theorem 6.2 and our original concern,

Theorem 1.7, and we finish the proof of Theorem 1.7, which is our basis for the
geometric arguments in Chapters I, II.

Appendix II. Elementary Computations — 2

In Part A we prove Lemma 6.3! and Theorem 6.1! (for the complex euclid
line), by using Cousin integrals. In B we summarize some estimations on the
refining maps, which are used in Section 6, Section 7.

A

In A we fix a complex euclid line €(z), z=x+./—1-y, and a complex
euclid space C"(z') (n'>0) (cf. n.1, §1.2). We set Z=(z, z’) and O: =structure
sheaf of Cx C". We use Ouv (C") x Rf? as the parameter space for sets of the
cochains in A.

Notation. Take a set &/ ={A4,}, of elementary figures in € and a map
n: o/ —>%, where # is an abstract set. For elements® (D’; &) e Ouv (C")
x R¥? and m e R{, we define the following sets of the cochains in the manner
in (6.10), ,:

0), Ci«xD', Oyr:=ikCisA, x D', O),, where**) o7, :={A,,}, and i,:
=refining map: &/xD'3A4,xD -, xD'35A4,,xD'. Moreover, the right

*) Quv (€C*"): =collection of all open sets in €.
**) A,n:==elementary figure with same center with A4, and size=m X (size of A,)
(cf. (6.10), ).
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side is the set of all & —(|Z] + 1)-growth cochains (cf. (1.3)¢ and (1.4)g).

0), Zp* 2 xD', O)y:={¢eF,CUxD", O);;peF,,,C" (£ x D', )},
and B§47P(ef x D', O)p:=0F,C" (& x D', O)r, where F, is the filtration
induced from n: &/ > 4.

1. Cousin integrals. The argument here is divided into two parts, ac-
cording as the collection .« is a finite or infinite set.

(i) Finite case. Take a rectangle U=(a, b) x (a’, b')cC(x=R?) and
elements k=(k, k') e (Z* U 0)?, e (0, 1/2), and we set:
(a), ,(U): =elementary covering of U of size n: =(k; &) (Definition 6.1,).
We write «&,: =24(U) explicitly as «,={U;; I€[0, k] x [0, k']}, where the
center P; of the elementary figure U, is characterized by the following condition:
(@); x(P)<x(P;), y(P)<y(P), with I':=14+(1, 0), I": =1+(0, 1).
Next setting %,: =[0, k'], we define a map:
(a), n,: &, 3 Uy —— %,3j, with I=(i; j).
The symbol (s,,/x,), denotes the u-quotient of 7, by =, (cf. (6.7),). Note
that, if k, k'>0, then («,,/x,), is explicitly as follows:

@); (Ayu/m)u={U(m)}e_o, where Uym):={zeC; —mré+a<x<b+mrg,
ly—y;l<mr'g}, with r=(b—a)k, r':=(b"~a")/k',&:=¢e+27! and y;:=a’
+jr’. Now, defining the numerical invariants I,, r¥ of «, by (6.12)5, we have:

Proposition 1. Take suitable ¢, d, e Rf and an elementary p.g.map E
(Definition 6.5), which depend only on 1=dim C. Then we have:
1), Z9UAyx D', D)y =By (L, x D', D) + F,C!(sf, x D', O)m }
(1)2 Zl((ﬂmn/nn)u X Dla D)acéco((dnm‘/nn)u X D’, D)a’
! - d
with {”f m|dy
o' =E(l,/ry; mr}; a),
where the parameter (D'; o) is in Ouv(C")xRf2 and the element me R}
satisfies: m>cy. Moreover, the filtration F| and the sets Z%:1,... are defined
in the manner in (0),, by the map =,

(ii) Infinite case. The arguments here are divided into further two parts:
first taking an element (a; b; e)e (R x R*) x (0, 1/2), we set:

) ya; b):={U;}2_, where U;;:={z€eC; |[x—i|<e+27, |y—a|<b+e},
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2y c:=max|a+b|.

Now take an element ¢ € Z!(oZ(a; b)x D', O),, where (D’; «) is in Ouv (C")
x Rf2.

Proposition 2. Tliere is an element ¢’ € Co(sZ(a; b)yx D', D) satisfying
2);, =069 and |p(P)<a'-(|Z|+c+1) in |A'| for each A'e . (a;b).
Here o': =M,(1/6).%,(x) and & =¢/d,, with a positive monomial M,, an el-

map %, and an element d, € R}, which depend only on 1=dim C.

We prove Proposition 2 in (iv). Next, for an element ¢ € (0, 1/2), we use
the symbol «7(C) for the elementary covering of C of size (1; &) (Definition 6.1,).
We define a map:

2), mn:H(C)> A— Z>j, where j=y-coordinate of the center of A.
Then the u-quotient (,(C)/n), of «,(C) by = (cf. (6.7),) is explicitly as follows:
@ (O )=V} T wn With Vyy:={z€C; [y—jl<e+271).

Then, letting the el-map %, the positive monomial M, and the element d, € Rf

have the similar meaning to Proposition 2, we have:
Proposition 3. We have the inclusions:

(), ZYNH(C)x D', D), eBi (o, (C) x D', D)y + F,C'(4,(C) x D', D),
()3 Z'(HA(C)[m), x D', D), =6C((#, (C)/n), x D', D),

where o' =M (1/6).Z (a) and ¢’ =¢[d,. Here (D'; a) is in Ouv (C"") x R}2.

The proof of Proposition 3 is also given in (iv).

(i) Proof of Proposition 1.¥) For an I "
) (AR A
index I=(i, j)e[0, k] x [0, k'] (resp. j€ [0, k']) —
we define arcs yf (resp. y7) by the following con It et r
dition (cf. also Figure I): Figure L

y-l‘. U y? . a(L]I,m” n UI’,m”) . I, . =I+ (0’ 1)
@) {vj uy; } ) _{G(Uj(m”) n Uj(m”))}’ with {m”: =m/2 } ’
x(yf)zx;2x(y7) . xpi=a+(@+27)r
IR g R WA
ri=(b—a)lk }

here §
VRV i =0 =) K

*) We prove (1), for the case k, k’>0. The proof of the case k=0, k’'=0 is given by a
slice modification of the proof given here.
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(The inequality ‘x(yf)=x;" indicates that x = x; for each x €y7,...). Now taking
elements ¢, ¢ from the left sides of (1), ,, we define:

Vi

®'r fo-({—=)""d¢
e, {2Lh={ T

¢'; Jo-({—2z)~"dl
We then define elements @ e C%(s,x D', D) and de COU(Aymr[Tpil, D),
where m’: =m/4, by the following:

+
}, where the integral is taken over {yi} .

i—1 . h—i o i-1 e h—1 o
(6), (pijzzgo(ptj"zi‘prjs ¢j:z Py — (e

t=0 t=j

It is clear that ¢ —o® e F,Cl(e,x D', D) and @—06®=0. Morecover, for all
indices I =(t, j) and f, which appear in (b),, we have:

© 1@ F@I 197 <@ry) Bmry) - /(12| +@mry)+1) in Upyy, Uym'),

with o'=.2,(x). Here the el-map #,: R*2-R*? depends only on 1=dim C.
(The first and second terms in (c) appear from the estimations of |{—z|™! and
the length of yF, y¥. The third term appears from the estimation of ¢, ¢ on
VF, yF. Precisely, we have: [(—z|<8mry in U, ,. and U;(m’). From this and
from that ||, || <a(|z|+|2z'|+1) on yF, yF, we have the third term.) From
(b), and (c) and from the relation soon below (b),, we have (1), , in Proposition

1. q.e.d.
(iv) Proof of Proposition 2 and
Proposition 3. We first prove Propo- Le ’———>l<—
Vo 12 e | vf
sition 2. For this, for each ieZ, we — : i LN —
define arcs yi by: y=a [——>|<—l
(@) yiUPr=0(Us NUsyy), &' =¢/2, Figure I.

and® x(yf)=i+2"' = x(y7) (cf. Figurel).
Letting the element ¢ € Z'(o(a; b) x D', D), be as in Proposition 2, we define:

_(le-C=) dt

(@) .
Jet }"{m-<c~a¢-—n-f-1dc

(b), 2n\/“211¢+( N } where the integral is
i\z
taken over y#.

We expand*®  ¢f(z) (i20) at the ‘origin’ (0, ay/—1): ¢f(2)=3; o)

*) The inequality here has the similar meaning to (@),, (iif).
*#) Precisely, ¢t is, as in (b),, the function of Z. In the proof of Proposition 2, we regard
z” as the parameter and - as the variable. We write ¢;*(Z) also as ¢7(z). This nota-

tion will clarify the main geometric situation in question.
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(z—ay/—1)J, and we set:

(b), o@i7:= Z‘}'=o (pfj-(z—a\/-—l)f, it = o —o;*, where = [a,+ 3],
with the second component a, of a € Rf2.

Next we define an element ¥;e I'(U;; x D', D), &: =¢/4, by:

()3 Vii=2Ed (e +oi") — iz 0T (120).
Then we easily see that
(b)a Yisr—¥i=¢; in (UgnNUx)x D" (i20).

Next we will estimate ¥; as follows: first, using the expression (b);, we have:
(©)4
lof il <(4/e)(2b+2)-J;-(i4271)7I7L, with J;: =a,(d7?)-(i+c+|2'|+1)*2
loF(2)|<(4]e)(2b+2)J; for zeC satisfying: |y —a|<b+(g/4),
x<i+2714(e/4).

(In the above one can take d, to be, for example, d,=4.) The terms J;, ™!
and (2b+2) appear from the estimation of ¢ on yf, |{—z|~! and the length of
y#.) From (c),, (b), we easily get:*)
©2 [0/ (2)|<@/e)(2b+2)-J;-(i' —|z—ay/ = 1])7V(z —ay/ = 1) [i'|F*!

for |z—ay—1])<i’:=i+271
Also from (c); we have**):
©5 |0 (2)|<@e)J;-o -(|Z]+c+1) for any zeC, where o' =.2 (a), with an
el-map .#,: R*2R*2, which depends only on 1 =dim C,
and, from (c); 3, and from (b),, we see that***)***¥)
(c)s @it is estimated in the similar manner to (c); for z € € satisfying the same
condition as in (c);.
Now, using (c),_,4, we have:
d), |¥3)|<l/e)-a'-(Z]+c+1)in Uy, where o' =& (), with an el-map #,
which depends only on 1=dim C.

*) (¢); holds by dropping the term (4/¢). The addition of the term (4/¢) is convenient
for later arguments (cf. (d),).
*¥) Nothing that |al, b<c, we replace (b+1) by (c+1) and |z—av—1}? by (|z|+1)+(c+ D)
<(2(]z]4+1)(c+1)8(j < B). Using this we easily get (c)s from (c);.
*#%) The estimation in (c), is less sharper than (c),- But (¢), holds for more general zeC
than (c);. (We use (¢), in the estimation of (b)s).
**%) Herc we use the similar trick to the ones in *%),
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Actually, we see easily that the first two terms in (b); are estimated® in the
similar manner to (d);, by using (¢c), 4. (Here we use the fact that ¢7(z) is
estimated in the form of (¢); in U;; (T<i).) WNext we write the third term of
(b), in the form:

(d), Eloi + X077, where 1:=[i+c+3].

We estimate the first term of this in the form of (d),, by using (c),. Moreover,
the second term, which may be the main term of (b);, is also estimated®) in
the manner of (d),, by using (c),. Thus we have (d),.

The arguments hitherto are given for i=0. We repeat the similar argument
to get ¥'# (i<0), which satisfy the similar facts to (b),, (d);. We then define
P, (ieZ) by
(d); P;:=Y¥,—[¥5d (i=0) and : = ¥;+ [ ¥sd( (i<0), where the integral is
taken over y§ (cf. (a)), and we set: 5”6:=(2n\/——1)“‘ -(Yo—¥)/((—2). Then
P, satisfies (b), for each i € Z, and is estimated in the manner in (d),, and we have
Proposition 2. g.e.d.

Proof of Proposition 3. First we check that (2), follows almost directly
from Proposition 2. To see this, letting the map =n: o/(C)—Z and the set
j; 271) (j e Z) have the similar meaning to (2)3, (2),, We note:

(a); (D= (j;27).

Now take an element ¢ from the left side of (2),. Then, letting i; denote the
injection: &Z(j; 27)©«Z(C), we fix an element ¢;e CoL;(j; 27)x D', D),
satisfying: i¥p=0¢;, where the estimation: (&; a)—(¢'; «') is as in (2);. Define
an element ¢’ € C%L(C)x D', O), by : ¢'=¢; on &,(j;27)xD'. Then it
is clear that ¢ —d¢' € F,CY{(,(C)x D', ©), and ¢’ is estimated in the manner
in (2),. Thus we have (2),.

Next, in order to prove (2);, we first summarize necessary facts from Propo-

sition 2: first for each pe Z* we set:
(b); L (0:p+27Y) = {V}; ) Fouu, Where Vi =V,
n{zeC; [x|<p+27'+¢c}, with V;, as in (2)5.

(Note that the collection «7; is of the form in (2)y, with the change of x and
y-coordinates.) Also we define a map**)

*) See the footnote ***#) p, 544.
**) For the cxplicit form of the u-quotient (oZ,(C)/x),, see also (2);.
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(b); 0, 40; p+271)3 V), — (A(C)/m),3 V..

Now take an element ¢ from the left side of (2);. Then, by Proposition 2, we
fix an element ¢, € C%«7(0; p+271) x D', D), satisfying

(b), O50=0¢, and |p,(2)|<a'(|Z|+p+1), where 2'=£,(a), with an el-map
£, which depends only on I=dim C (cf. (2),).

Next setting W,.(p): =supp «,(0; p+271), we define:
(C)l q’p:=¢p+1-‘/’per(m'(P)XD’, ‘D)a

and we expand ¥, at the origin 0 of C: ¥,=3, ¥,-z* Similarly to the

proof of Proposition 2, we set:

©n ¥=Xi_-0¥u-z ¥,:=¥,—¥,, where f=[as+3], with the second
component o of o’ € Rf? (cf. also (b), in the proof of Proposition 2).

Then setting

(©)s D=0, -2 V+ Y5, Py in Vj,x D’ (for each je Z),
we easily see that

(©)a & is independent of pe Z™*, and ¢=059.

Now we estimate @ as follows: first, using the integral representation: 277:\/_——1-
Y,i=f0,(0)-{77~1d{, where the integral is taken over the circle of radius

p+2~1 and center 0, we have:
(d), |¥,;l<a'(|2'| +2p+2)-(p+271) 7,
and we also have® (cf. (c)3).

d),; 1¥,(Dl<a"(lZ]4+p+1) for each zeC, with a”=#(x), where the el-map
£ depends only on 1=dim C.

From (d), and (b), we easily have:*

(d); ¥,(2) is estimated in the similar manner to (d), for ze Vj,,.
Moreover, using (d),, ¥, is estimated in a sharper form than (d);:

(D) P2 <a'(|12']+2p+2)(p+271)7F - |z|f*! for |z]<p-271.

Finally taking a point zeC, we choose an element (j, p)eZx Z™* satisfying
2€Vju1p—Vjwip-1» and we set: m: = |jl+p+3. We write®) the third term of

*) Also compare similar arguments in the proof of Proposition 2.



CoHOMOLOGY WITH PoLYNOMIAL GROWTH 547

(€); as: (€); XM, + X sm+1- We then estimate® the first two terms of (c),
and the first term of (¢); by (d), and (b),. Also we estimate the second term
of (¢)5 by (d),. Then we have the desired estimation of @ in (3);. g.e.d.

3. Proof of Lemma 6.3'. Let 4' be the collection {Ax(U);(U; k)
eOuv (C)x(Z* Uy 0)?} (cf. (6.12),). For each o, : o (U)eA?, k=(k, k'), we
set 4,:=1[0, k'], and we denote by =, the map: o/, —%, as in (a),, n.l. We
then set:

(3)y A':=(AY, B, o), with B'={%,},, n':={n,},, where .7, runs through
At

Then, from Lemma 7.5, we scc easily that the check of the following suftice for
the proof*) of Lemma 6.3':

32 Z9a(t, x D', D)< B 9(sA, x D', D) } with the estimation:

©N Z5%(ot, x D', O)y <3CT™ Wty x D', D) ) (m; o) — (m'; 0')

as in Proposition 1.

(Here <o is in 4" and &, is in #{s;,, with an element o/; e€A4') But (left
side of (3){)=0(¢22) and =Z'(|(Zu/m,)u X D', D), (¢=1) (cf. (1);). Thus,
applying (1),, Proposition | to Z!(---), we have (3){. On the otherhand remark-
ing that #m; (s7,)=1, one can write &/, as &, = ;(U), with an element
k" eZ*, and applying (1),, Proposition 1 to 7, we have (3)-4. g.e.d.

4. Proof of Theorem 6.1, Here we derive Theorem 6.1! from Propo-
sition 2 and Proposition 3: letting the element ¢e(0, 1/2) and the parameter
(D'; @) e Ouv (C") x R{? be as in Proposition 3, we have:

Proposition 4. We have the inclusion:
4), ZY(C)xD', D),coCi oA, (C)x D', D),, where the estimation: (¢; «)
—(&'; a') is as in Proposition 3. (Also «,(C)=<,,(C) as in Proposition 3.)

Proof. First, if ¢ =4, the left side of (4), =0. Also we see very easily that,
for g=3, (4); holds by taking (g; a)—(¢'; «’) to be the identity. Moreover, if
q=1, we get easily (4); from (2), ; in Proposition 3. (This casc is, of course,
the main part of Proposition 4.) Finally, assuming that ¢=2, we summarize
the key fact for the proof of (4),: first we let the map n: 2/(C)—Z be as in (2),.
Then we easily have:

(@) ZiNof,, O),2ZUA, O),, and Z2%o7,, O),=0, where we set o:=

*) For the sets of the cochains here, sce (0),, Proposition 1 and (6.10), .
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&,(C) x D', and the sets Z1-1,..., are, as in Proposition 3, defined by the filtration
F,, which is induced from the map = (cf. (2), and Definition 6.3).

To analyze the set Z}-1, we fix a subset Z#={j, j+1}=Z?2, and we set:

(b), Lz =17 (=) or j+1), gt =17 B) (=1L Hyjs ), and ;1=
s,;xD’,.... We then define the following subset of Z}-1(7,,4, O):

(b), Zi27 (L, O)p: ={@eGZ1 oA,y O),: 09 €G,,,Z}1}, where the fil-
tration G, is defined by the order: j<j+1 in & (Definition 7.1).

Then, defining the collection (j+27'; &), where §=¢/2, by (2),, we easily

have the following from Proposition 7.2%);

(b)s Zi (A gy ), 2 ZN (AL (j+ 275 8) x D', D),

Apply Proposition 7.2 to the right side. Then, by Proposition 7.2, we have:
(c), Zi! M;@,, S)QC(SGIC‘(.M;Q, D),, where the estimation: (&; a)—(g'; ")
is as in Proposition 4.

On the otherhand, for an element D € ;. ,, the localization ., , (Definition
7.2) is easily seen to be of the form: &, ,={A4;}3-,, where the elements 4;
en~!(j) are characterized by A;n|D|#¢. Applying Proposition 1 to <4 p,
we have: ZN oty px D', 0),<dC%ot,, ,x D', O),, where the estimation:
(e; )—(¢'; &') is as in Proposition 4. (The estimation is first given in the form
of Proposition 1, which is applied to 4,,,. From the above explicit form of
,q p (cf. also Definition 7.2), the estimation is rewritten in the form of Propo-
sition 4.) Applying Corollary 7.1 to the inclusion just above (cf. also Definition
7.3), we have:

©): ZP0 X olog x D', O)c0C (g X D', O)yr + G CH g X D', O)

Using the similar argument to Lemma 7.1 and Corollary 7.2, we have the
following from (c); ,:

(©)3 Zp (g X D', D), = 6F | CHyprg X D', D)y .

(To get (c); we also remark that G,Z}>'=~0 if t=2.) Finally, from the explicit
form of n~!(B), we easily see that

(d), {n~U(#B); #={j,j+1}}%-—u is admissible (cf. Definition 6.4).

*) See also (7.2)s for the explicit form of Z7%:!. Writing the complex J* in (7.2); explicitly
(in the present situation), we easily get (b);.
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Thus, by Proposition 6.5, the inclusion (c); for individual # < Z? insures the
similar inclusion for the ‘original collection” «Z(C):
(d), 2L (C)x D', 0), = 0CH L AC) x D', O)yp
which is the desired inclusion in (4),;. qg.e.d.

Finally, Theorem 6.1 is derived from Proposition 4 as follows: take an
clement keZ*, and we set n:=(k;¢), n':=(k; &), where the elements ¢, ¢’
€(0, 1/2)—Q arc as in Proposition 4. Letting mn, denote the biregular map:

C3z-C3kz, we have: m: .o, 3.7, (C)..... Using this we have the following

from a very simple observation:

(d); ZYA(C)x D', D), =6C1 (L, (C)x D', D), where 7 =(ok*2, o), with
the element o’ =(a}, ) as in Proposition 4.

Moreover, if an element k satisfies: k>4/e, there is*) a refining map s: o4;(C)
G, (C), with E=1/4. Using this refining map, one can easily rewrite (4),

in the form of Theorem 6.1', and we finish the proof of Theorem 6.11.

B

1. Let R be a euclid line, U=(a, a+b)(b>0) an interval in R, and let
Z,(U), where n=(k; &)e(Z7 U 0)x (0, 1/2), be the elementary covering of U of
size n (cf. (6.1);). For an element ':=(k':e')eZ* x (0, 1/2) and for each
PeU, we set (me R}):

) Uy(P):={xeR; |x—x(P)| <& -mblk'}, with §':=¢'+27!,
and we define:

(5% B,(U),y: = {U,(P),: Pe U}.

Now we assume:

(5); ¢'=e and k'>4mkle, with k:=max(1, k).

Then we check easily the following:

(N there is a refining map s: %,(U),, S«,(U).

The estimations on the refining maps in Sections 6 and 7 are derived from the
above simple fact:

*) cf. (5); in Part B of this appendix.
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(i) Assume that k>0 and that (5); holds. Then, for the elementary cover-
ings &, (C"), o, (C")(n=1) (cf. Definition 6.1,), we easily have:

(5), there is a refining map s: 27, (C"),, S, (C").

(For the collections &/, (C"),,,..., see (6.10),.)

(i) Next take elements k=(k;), k'=(k};) (1= j<2n)e(Z* U 0)*", and we
set n=(k;¢), n':=(k"; &'). Taking an elementary figure U (cf. n.1, §6.1) in
C" we denote «7,(U), o, (U) the elementary coverings of U of size 1, n’. Then
if
(5); ¢ =e¢, k}>4111Ej/c, with Ej: =max (1, k;) (1 £ j=2n), then we have:

(5); there is a refining map s: .o, (U)©=2,(U).

(ili) Thirdly take elements &=((;¢), &'=({";¢e)eZ*2x(0, 1/2) and an
elementary figure®) U’ of €', and let &;: =L (C"x U'), i =L (C"x U")
be the p.g. elementary coverings of €" x U’ of size ¢, &’ (cf. Definition 6.2). We
summarize some estimations on the coverings &/, & ¢ For this we first recall
that o} is the disjoint union &i= 1l ;520 s, Where % :=f(S;,xU’)
denotes the elementary covering of the elementary figure S;,x U’ of size (-
(] +1) (cf. (6.3)s.) See also (6.3), for the elementary figure S,,.) For each
A'e L, let P be the center of pr(A4’), where pr: = projection: €"x C" —>C".
We then attach to A’ an element I=1,e Z?" satisfying Pe S,;,. Also we set
I': =m(A"), with the map n.: o/ —2Z2" (cf. (6.3)s). Then we easily have the
inequality:

5 ct-(U'+ D)<+ D) <c(I|+1), with an element c=c,e R}, which
depends only on n.

Now writing {, {'e Z*2 as ({,, {,) and ({}, {3), we easily see from (5), that the
inequalities :

(5)s e2e, (hz0, and (4mfe){,c2={]

insure the existence of a refining map:

(5) s: > satisfying s(A)=1 for any A" es/;.

We use (5), in getting Proposition 6.4’ and in (7.9);. (When we get Proposition

6.4', we take I to be: w-u-v(A), where the refining maps v, 1 are as in Propo-
sition 6.4" and w denotes the map: o7 (C")> A—Z?" > I=center of A. When

*1As in Theorem 6.2 we assume that d;- - 1.
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we are concerned with (7.9);, we take m e R} to be : m=2c¢, ,-a;, with the ratio
number a, of A; and the element ¢, , € R}? as in (7.9);. Moreover, we define
IeZ? to be : I=mn A), with the map n,: &.—Z2" as in (6.7)g.)

(iv) Finally we check (6.6), ,, which is the key fact in the proof of Propo-
sition 6.1: letting the p.g. covering o7 (C" x U') and the p.g. elementary covering
& (C"x U') be as in Proposition 6.1, we let the elementary figure S, , (I € Z2")
be the one defined in the manner as in (6.3);. Also we use the symbols «7,(S,,
x U’) and (S, x U’) for the p.g. covering of Sy, x U’ of size ¢ and for the
elementary covering, which is defined in the manner as in (6.3),. For the proof
of the cofinal relation between the p.g. and p.g. elementary coverings &, (C" x U")
and Z(C"x U’) as in (6.6), ,, it suffices to show the similar cofinal relation
between ,(S;, x U") and «7;(S;;x U’). But, from (5),, we easily see that the
relation (6.6), in the proof of Proposition 6.1:

(a) o>K:2- 2,0 (resp. (> M, (1/dy) - Z,(0)), with K: = 1+sup...y|2z'|, where
the positive monomial M; and the el-map %;: R*2—>R*? depend only on

ii=(n, n’),

insures the existence of refining maps:

(b) 571, (Sp,, xU)SA(Sy , xU') (resp. s7:2:(Sy,, x U') S, (S; . x U")).
From this we have refining maps:

(€) s5:,(C"x U)oL (CrxU’) (resp. s': AL(C"x U') S L, (C"x U')),

and we have (6.0) ,.
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