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On the Order of Certain Elements of J(X)
and the Adams Conjecture
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§1. Introduction

The Adams conjecture [2] was proved by several mathematicians in dif-

ferent methods (cf. [7], [8], [9], [10], [14], [15] and [19]). But in their

methods, the localization plays an important role and so we cannot estimate the

order of an element

Let rjn be the canonical (complex) line bundle over CPn and k an integer.

Let m(n, k) be the minimal positive integer such that

which exists by the Adams conjecture for complex line bundles [2], We put

e(n, fc) = m([n/2], fc).

Then the purpose of this paper is to show

Theorem 1. If X is an n-dimensional CW complex, then

/Ce(w'*>J°0/ffc-l)(x) = 0

for any xeK(X).

On the other hand let

} e(n, k) if k is odd

e(n, /c)+l if k is even.
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Then by a quite similar method, we have

Theorem 2. If X is an n-dimensional CW complex, then

ke'<n'UJo(\l/k-l)(x) = Q

for any element x e KO(X).

To prove the above theorems, we do not use the Adams conjecture for general

vector bundles. So as a corollary of Theorem 2, the Adams conjecture is proved.

The proof of the above theorems is similar to the proof of the Adams conjecture

of Nishida [14] and Hashimoto [10]. But we use relations between the in-

duction homomorphisms and the Adams operations in [12] instead of the local-

ization. We also use the cellular approximation of the Becker-Gottlieb transfer

used by Sigrist and Suter in [18] instead of the usual Becker-Gottlieb transfer [8].

The paper is organized as follows: In Section 2 some properties of the

Becker-Gottlieb transfer are reviewed. Theorem 1 and Theorem 2 are proved

in Section 3 and Section 4 respectively. A property of the real induction

homomorphism used in this paper is proved in Appendix.

By a quite similar method to the proof of Theorem 1, we can prove

Theorem 1 of Sigrist and Suter [18].

§ 2. Properties of the Becker-Gottlieb Transfer

In this section X is an n-dimensional finite cell complex, G is a compact

Lie group and H is a closed subgroup of G. Let E be the total space of a prin-

cipal G-bundle over X. Then p: E/H-»X is a fibre bundle whose fibre is a

compact smooth manifold G/H and whose structure group is a compact Lie

group G acting smoothly on G/H. Let t(p): (E/H)+-+X+ be the s-map defined

by Becker and Gottlieb in [8]. Since X + and (E/H)+ are finite complexes,

t(p) is represented by a map

t: Z1AX+ >Zl/\(EjH) +

for some /. Let (E/H)(n) be the w-skelton of E/H (for some cellular decom-

position) and j: (E/H)(n) cE/H be the inclusion. Then by the cellular ap-

proximation theorem, there is a map

t': I1 A X+ > I1 A ((E/H)(»>) +

such that
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Zl A X+ — '— > I1 A (E/H) +

commutes up to homotopy. Define p\ by the commutative diagram:

P]

K(X)

where a is the suspension isomorphism defined by the Bott periodicity theorem

([4]). The Becker-Gottlieb transfer p,: K(E)-+K(X) is defined by a similar

way. Then by definitions the following diagram is commutative:

K((E/H)W) ^- K(E/H)
p'\\ / P\v *

K(X) .

Let V be a complex If -module and a: R(H)-*K(E/H) be a homomorphism

defined by V-+(E x HV->E/H). Define

by a' =j*oa. Then we have

Lemma 2.1, The following diagram is commutative:

R(H) -£-

where Indj| /s ^/7^ induction homomorphism defined by Segal [16] (see a/so

[10]).

Proq/. This is an easy consequence of the commutative diagram

R(H) — a-

J lndf

R(G) - * > K(X)

which is Proposition 5.4 of Nishida [14].

Let Sph*( ) be the generalized cohomology theory defined by the stable

spherical iterations and Sph(X) = Sph°(X + ). Define
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j4:K((E/H)<»>) — >K(X)

and

p'*:Sph((EIH)W)—+Sph(X)

by a similar way to p\ using the suspension isomorphisms defined by the infinite
loop space structures defined by the T-structures (cf. Segal [17]). Since J is
an infinite loop map with respect to these infinite loop space structures, we have
(cf. Nishida [14]).

Lemma 2.2. The following diagram is commutative:

IP; pi

K(X) - 1 - > Sph(X) .

By May [13], the infinite loop space structure of BUxZ defined by the
F-structure is equivalent to that defined by the Bott periodicity theorem. Then

P'i=P* and so we have

Theorem 2.3, The diagram

R(H) -«!> K((EIH
j lnd^ I pi

R(G) — «_> K(X) - *- - > Sph(X)

is commutative.
Quite similarly we have (cf. Hashimoto [10])

Theorem 2.4. The diagram

RO(H) -s

RO(G) — ̂ L-^ KO(X) - J- - > Sph(X)

is commutative where Ind^ is the induction homomorphism of real rep-
resentation rings defined by Hashimoto [10].

§ 3. Proof of Theorem 1

First recall the following lemmas.

Lemma 3.1. Let f: Y-+Y' be a (continuous) map and yeK(Y'). If
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keJ°(\l/k-i)(y) = Q9 then keJo(ij,k-1)(/*(}>)) = 0.

Proof. This is an easy consequence of the following commutative diagram:

K(Yr) f* > K(Y)

Sph(T) -£U Sph(T) .

Lemma 3.2, For any complex line bundle x over an n-dimensional

CW complex X,

Proof. Since A* =/*(^[n/2]) for some /: X->CP[II/21, this lemma follows

immediately from Lemma 3.1.

To prove Theorem 1, we may assume that X is a finite cell complex by

Lemma 3.1, since BUxZ is skeleton finite (under a suitable cellular decom-

position). So from now on X is an 7t-dimensional finite cell complex.

For any xeK(X) we may assume that x is an m-dimensional complex

vector bundle for some m. Let E be the total space of the associated principal

U(ra)-bundle. Let

be the first projection and

cm:U(m)—>U(m)

be the identity map. Put G=U(m) and If = 17(1) x f7(m - 1) c U(m). The

following is due to [11] (see also Appendix):

Lemma 3.3. IndSCU = '»-

Note that a(£m) = x. Since G is connected we have

Lemma 3.4 For any integer k, \l/k°lnd%£ = Ind^°\l/k.

A proof is given in [12].

Now we can prove Theorem 1. Note that ao\l/k = \l/koa and a'oi/rfc = ^fcooe'

by definitions and

= Jofcfr* - 1) (a(Ind£(O) (by Lemma 3.3)
= Joaolnd§o(^* - 1) (/y (by Lemma 3.4)
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= pf^joocfo(il/k _ i)(0m) (by Theorem 2.3)

= Pi°W-l)°«m,).

Since a'(Aw) is a complex line bundle over an w-dimensional finite cell complex

by Lemma 3.2. So

&*(»'*> Jo(^fc~l)(x) = ^^

This completes the proof.

§ 4. Proof of Theorem 2

Let r: K(X)-*KO(X) be the realization homomorphism defined by for-
getting complex structures. Then the following lemmas are well known:

Lemma 4.1. 2KO(X) a Im r.

Lemma 4.2. The diagram

K(X) -£-> KO(X)\ />
Sph(X)

is commutative.

If k is even, then kxelmr for any xeKO(X). So A:e'<"'*>J°0^--l)(x)

= /ce<«'fc>Jo(^-l)(/cx)=0 by Theorem 1.

From now on k is an odd integer. First we prove

Lemma 4.3. // X is an n-dimensional CW complex and xeKO(X) is

a linear combination of one or two dimensional real vector bundles, then

/<:^,fc)jo(^-l)(x) = 0.

Proof. By Theorem 1, Lemma 4.1 and Lemma 4.2,

But by the Adams conjecture for one or two dimensional real vector bundles
[2], Jo(i/ffc - 1) (x) is an odd torsion. This completes the proof. Q. E. D.

Lemma 4.4. Let G be a compact Lie group and H be its closed subgroup.
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// (|G/G°|, /<)=! (G° denotes the connected component of the identity), then

^Mnd& = Ind&o^ : RO(H) >RO(G).

A proof is given in Appendix.

In particular we have

Corollary 45. If G = O(2n + l) and H=0(2)xO(2n-l)cz«(2n + l), then

t// fcoInd^==Ind^oi//^/or cm)' 0rfc/ Integer k.

Let £ be the identity of G, v: H-*O(2) be the first projection and /*:

G-»0(l) be the determinant (cf. Hashimoto [10]). Then the following is

Proposition 5 of [10]:

Lemma 4,6, c = Ind §(v) -f jU.

Now using Lemma 4.3, Lemma 4.6 and Theorem 2.4 instead of Lemma 3.2,

Lemma 3.3 and Theorem 2.3 respectively, we can prove Theorem 2 by a

similar way.

Remark 4.7. We can prove Theorem 1 of Sigrist and Suter [18] by making

use of Theorem 2.4 and Lemma 4.6. In the proof of [18], the fact that s-map

induces a homomorphism of J" ([2]) is not clear, since s-map does not commute

with the Adams operations. Moreover the Atiyah transfer does not commute

with the Adams operations. The fact that the Atiyah transfer coincides with

the Becker-Gottlieb transfer, which is an easy consequence of the Atiyah-

Singer index theorem for elliptic families ([6]), seems to be necessary.

Appendix

Let G be a compact Real Lie group and RR(G) be the Real representation

ring. If we forget involutions, a homomorphism r: jRK(G)-»R(G) is defined.

As is well known r is a monomorphism (cf. Atiyah-Segal [5]). Moreover we

know the diagram

-£-» R(G)

i'//k l*k

j?U(C) -^ £(G)

is commutative. Let H be a Real subgroup of G and Indg- be the induction

homomorphism defined by Hashimoto [10]. Then the diagram
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RR(H) -£-> R(H)

Indg. Indff

RR(G) -+-> R(G)

is commutative (cf. [10]). Now applying Theorem 1 of [12], we have

Lemma A.I. J/(|G/G°|, fc) = l, then

^*olnd§ = Indiroi//fc: RR(H) > RR(G).

If the involution of G is trivial, then RR(G) = RO(G) and \l/k and Ind£ on

R0( ) coincide with those on RR( ). So Lemma 4.4 is proved.
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