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On v-Sufficiency and (h)-Regularity

By

Satoshi KOIKE*

§0. Introduction

In local differential analysis, one of the most fundamental problem is to
determine the local topological picture of the variety of C*-map-germ f: (R", 0)—
(R?, 0), with n=p, near 0eR", where k=1, 2,..., o0, w, as R. Thom stated
in [5]. We may expand f into Taylor’s series up to degree k. Then, a natural
problem is to find the smallest integer r (r k) such that all terms of degree>r
can be omitted without changing the local topological picture of the set-germ
f71(0) at 0e R*. Thus, T. C. Kuo ([3]) introduced the notion of v-sufficiency
of jets.

Let &y, (n, p) denote the vector space of germs of C*-mappings (R”, 0)—
(R?, 0), where k=1, 2,..., 0, w. For a map-germ fe&yy(n, p), j'(f) denotes
an r-jet of f, and J"(n, p) denotes the set of all jets, where r<k. For two map-
germs f, g € &yy(n, p), they are said to be v-equivalent at 0e R" (where “v”
stands for “‘variety’’) or f~1(0) and g~!(0) have the same local topological
picture near 0 e R", if there exists a local homeomorphism o: (R", 0)—(R", 0)
such that o(f~1(0))=¢g"1(0). An r-jet we J"(n, p) is said to be v-sufficient in
Ew(n, p), k=r,r+1,..., 00, w, if for any two C*-realizations f and g, they are
v-equivalent at 0 € R".

In the case where k=r, r+1, an analytic criterion of v-sufficiency for
Ck-realizations has been obtained by T. C. Kuo ([3]). But, in the case where
k=r+2, r+3,..., ©, w, no characterization has been known on v-sufficiency
for Ck-realizations.

In this paper, we shall introduce the notion of (h)-regularity, and give a
geometric characterization in order that an r-jet we J'(n, p) is v-sufficient for
Ck-realizations (k=r+1, r+2,..., 00, w) in terms of (h)-regularity.
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In introducing the notion of (h)-regularity, we have some hints in T. C.
Kuo-Y. C. Lu [4], and D. J. A. Trotman [6].

§1. Statements of the Result

As stated above, concerning v-sufficiency in &.(n, p) or &, 15(n, p), T. C.
Kuo has obtained the following result.

Theorem 1 (T. C. Kuo [3]). For an r-jet weJ(n, p), the following
conditions are equivalent.

(a) wis v-sufficient in &(n, p) (resp. in &y 41, P)).

(b) There exists a positive number C (resp. There exist positive numbers
C and 6) such that

d(grad wy(x),..., grad w,(x)) = C|x|""!
(resp. d(grad w,(x),..., grad w,(x)) = C|x|9),

where x € H (w), a horn-neighborhood.

Remark 1 (J. Bochnak and S. Lojasiewicz [1]). Especially, in the case
where p=1, we can take a neighborhood |x| <« («>0) instead of a horn-neigh-
borhood.

Definition 1. Let M,, M, be manifolds, M;2A4,3a,, and M,24,3a,.
The germ (A,, a,) in M, and the germ (4,, a,) in M, are said to be topologically
equivalent relative to M, and M ,, if there exist a neighborhood U, of a, in M4,
a neighborhood U, of a, in M,, and a homeomorphism h: (U,, a,)—(U,, a,)
such that (A, N U,)=A,nU,. Then, we write (4, a,) rel. to M,=(4,, a,)
rel. to M,, and we often omit a, and a,. Especially, in the case where M,

=M,=R", they are said to be topologically equivalent, simply.
Let X, Y be smooth manifolds embedded in R", and ye Y n X.

Definition 2. Let S bc a submanifold in R™, dim S=s=codim Y, and
I1Sk=w.

(1) X is said to be (t*)-regular over Y at y, il for any Ck-submanifold
S which is transversal to Y at y, there exists a neighborhood U of y in R™ such
that S is transversal to X in U.

(2) X is said to be (h*)-regular over Y at y, if for any Ck-submanifold S
which intersects transversally with Y at y, the topological type of the germ at y
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of the intersection of S and X is independent of the choice of S.

(3) X is said to be (h*)-regular over Y at y, if for any Ck-submanifold S
which intersects transversally with Y at y, the topological type relative to S of
the germ at y of the intersection of S and X is independent of the choice of S.

By the definition, it is clear that (i*) implies (h*).

Remarhk 2. In general, for the case where codim Y<s<m, we can think
(t)-regularity and (h)-regularity. Then, we say (1¥)-regular and (h*)-regular
respectively.

Theorem 2 (D. J. A. Trotman [6]). For | £k=<Z o0,

k=1
(hY) implies (t%), if { or
k>1 and s>codim X .

Remark 3. Especially, if dim X >dim Y, (h*) implies (t*) (1= k < o0).

Now, we introduce the variety Vg, determined by w. Let an r-jet w e J*(n, p)
be identified as w=(w(x),..., w,(x)), where w{(x) are polynomials in x
=(Xy,..., X,) of degree r. Consider

F(x; A)=(F(x; AM),..., F(x; A®)),

where Fyx; AN=w(x)+ > 1,Px* 1<iZp. Here a=(a,,...,%,) is a mul-
la|=r

tiple index, |o|=o;+ - +a, x*=x;%---x,%. The coefficients (Z,"), with a

fixed ordering, form an Euclidian space, denoted by A. Consider the variety
Vs Fi(x; AA0)=0,..., F (x; A(P)=0

in R"xA. Then, grad F;, I<i<p, are linearly independent except the set
{(x, )eR"x A|x=0].

For a positive integer s, let n,: J'**(n, p)—J"(n, p) denote the canonical
projection.

Theorem 3 (T. C. Kuo and Y. C. Lu [4]). The following conditions are
equivalent, where 1 £s< 0.

(a) Vg is (t5)-regular over A at 0.

(b) Any jet zemn,"Y(w) is v-sufficient in &, 4(n, p).

(c) w admits at most a finite number of Cr*s-realizations whose germs of

varieties at 0 are non-homeomorphic.

Consider the following conditions on a jet we J"(n, p) and a variety V;:
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(Sy) wis v-sufficient in &py(n, p).

(#5) Vg is (t5)-regular over A at 0.

(hs) Vg is (h)-regular over A at 0.
From Theorem 3 and Remark 3, it is easy to see that the following implications
hold:

(Sps1) = (Sp42) — = (S) — (So)

l l ......

@™ — @) —— () — @)

| T ...... I

() = (B) —e—s (h°) — ().

Remark 4. The sets Vp—A and A are semi-analytic submanifolds in
R"x A. Therefore, we consider (t@)-regularity and (h®)-regularity also.

Our purpose in this paper is to show the following theorem, concerning
v-sufficiency and (h), (h)-regularity.

Theorem. Let w be an r-jet in J"(n, p).

() The following conditions (a), (b) are equivalent.
(i) In the case where s=1, 2,....

(@) wis v-sufficient in &, . 4(n, p).

(b) Vg is (h%)-regular over A at 0.

(ii) In the case where k=00, or w .
(a) w is v-sufficient in &p,(n, p).
(b) Vg is (h¥)-regular over A at 0.

(II) Especially, in the case where p=2 and s=1, 2,..., the following con-
dition (c) is also equivalent.

(c¢) Vg is (h%)-regular over A at 0.

§2. Proof of the Theorem

Let M? denote a Cs-submanifold (s=1, 2,..., ©0, w) of dimension n in
R" x A, which contains 0. If M" is transversal to A at 0, then there exists a family
of Cs-functions 4,0)(x), 1<i<p, l¢|=r, 4,7(0)=0, and M? is defined, near
0, by

A =2, D(x)=0, |a|=r, 1Zi<p

='=FV>
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in R"x A. We shall identify the set R" x {0} with R~.

Proof of (I). We shall show (I) in the case where p=1, as the arguments of
the proof in the case where p=2 are quite parallel except the difference of proofs
of Lemma 3 and Lemma 3'.

(b)=>(a). Let ¢(x) be any Cr*s-realization (resp. C*, C®) of w. Expand
¢ into Taylar’s series up to degree r,

P(x)=w(x)+ xaT;—-r Ao(X)x%,

where A,(x) are Cs-functions (resp. C®, C?®), and 1,(0)=0. Therefore, we have
P(x)=F(x; Ax)).

Put Mr={(x, )eR"x A|L,=2,x), la|=r}. Then, M? is a C*sub-
manifold (resp. C®, C®), and M?” is transversal to A at 0, near 0e R* x A. Near
0eR" x A, we see that

M Ve={(x, A)eR"x A|F(x; A(x))=0} rel. to M"
(1) Al
¢71(0) ={(x,0eR"x A|F(x: A(x))=0} rel. to R"x {0} .

On the other hand, from the fact that w(x)=F(x; 0), we see that
(@) wi0)=Vy N R"x {0} .

From (1), (2), and (b), we have ¢~1(0)=w~1(0), as germs at 0 R". Therefore,
w is v-sufficient in &, g(n, 1) (resp. &rwy(n, 1), Erpi(n, 1)).

(a)=(b). It is easy to see the following lemma by simple calculations.

Lemma 1. For a family of Cl-functions A(x), |a|=r, 1,(0)=0, there
exist positive numbers C, d such that

|lgrad (l lE_ A()x*) | =Clx[", x| <d.

Let J be an open interval which contains I=[0, 1], and let we J"(n, 1).
Let 1,(x), |o| =7, be the same as Lemma 1. Put
F,(x)=w(x)+tI > Au(x)x® for telJ.
al|=r

From the calculation of Lemma 1 and Remark 1 (Theorem 1), we see the
following lemma.

Lemma 2. If a jet weJ'(n, 1) is v-sufficient in &, 11(n, 1), then there
exist positive numbers C’, d’, 6, such that
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lgrad F(x)| =C’'|x|"?, |x|<d’ forany tel.

Lemma 3. Let a jet weJ'(n, 1) be v-sufficient in &,y 11(n, 1), and A (x)
be a family of C'-functions for |o|=r with 1,(0)=0. Put

d(x)=w(x)+ MZW A (X)X,
Then, we have ¢~ (0)=w~1(0), as germs at 0 R*,
Proof. Put
G(x, =1 —w(x)+1tP(x) for ted.
Consider the vector field,

0

Y7 if x=0,

—%TG |grad, G|~%grad, G +
X(x, 0)=
¥ if x=0.
We write the vector field X as X,+(0/dt). From Lemma 2 and the fact that
0G [0t = ¢p(x) — w(x), there exist positive numbers C”, d”, such that

3) X <C'Ix|™*0  |x|<d”  for ted.

Recall the proof that |grad w(x)|=Cl|x|""? implies v-sufficiency (C°-
sufficiency; cf. T. C. Kuo [2]) in &[,,4(n, 1). Then X is C% and X is C}(C")
outside the t-axis. Therefore, the following properties hold:

(P,) the integral curve of X is unique outside the t-axis;

(P,) no integral curve of X can enter the f-axis, and no integral curve of X

can leave the t-axis (from (3)).

Thus the flow of X gives the local homeomorphism which we demand.

In our case, (P,) also holds from (3), though X is not C' even outside the
t-axis. And so, we do not know whether the flow of X gives the local homeo-
morphism, or not. But from Lemma 2, G~'(0)— {t-axis} is a C!-submanifold
of dimension n of R* x R in the cylinder around the z-axis (or G~1(0)— {t-axis}
is empty, then Lemma 3 is trivial). Similarly, V;=w"1(0)—{(0, 0)} and V,
=¢~1(0)—{(0, 1)} are C'-submanifolds of dimension n—1.

Consider the flow of X near the t-axis. From (P,), the flow carries the
points of V] to the points of V,. As X is nearly parallel to the t-axis, the integral
curve of X which traverses the plane, t =0, does not traverse it again. Therefore,
if the flow carries the points of different connected components of V; to the same
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connected components of V, (or the contrary holds), G~*(0)— {t-axis} is not a
submanifold. Hence the flow of X gives one-to-one correspondence between
connected components of V; and V,. Thus we have

(Q,) near 0eR", w~(0) and ¢~!(0) are homeomorphic, as topological
spaces (not germs).

As w is a polynomial, we have

(Q,) the number of components of V| is finite, and so is that of V,.

From the consideration above, we have

(Q3) w~1(0) and ¢~1(0) are ““in the same position’’ in the following meaning;
two flows which start in different components of ¥, never intersect en route.
(For example, in Figure 1, W, and W, are homeomorphic, as topological spaces,
but they are not in the same position.)

Figure 1.

Put
O(x)=w(x)+ h(x), where h(x)= | ‘I: A X)x%.

From Lemma 1 and Remark 1 (and Lemma 2), we have

C

) gradw(x) _ grad ¢(x) | o | grad 4(x)
Cl

lgrad w(x)| |grad ¢(x)|! = | grad w(x)
0<|x|<min (d, d').

1%,

=

Suppose that 0<|x|<d". Let (6(x), 1) denote the set onto which the flow of X
carries (x, 0). For any yea(x), put y=x+¢,. From (3), we have

&) led =2C"Ix|1*2, x| <d”.

Therefore, we have
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X Yy |_|x _ x+te <7@< ny 18
©) = e e 2 s ot

Putting v=min (d, d’, d”)>0, the inequalities (4), (5) and (6) hold for any x
satisfying 0<|x|<v. Taking v sufficiently small, from (4), (5), and the continuity
of grad (w+ h)(x)/|grad (w+ h)(x)|, the tangent space T,(w~(0)—{0}) is quite
near to T(¢~1(0)—{0}) (we write T (w~!(0)—{0})~ T,(¢~*(0)—{0})) for any
0<|x]|<v.

Here, we introduce the notion of the tangent cone. For an algebraic set
V (& RM) which contains p, we define the tangent cone at p of V, C(V, p), as
follows; we shall say that a vector ve RN satisfies condition (x), if there exist a
sequence {x,}—p of points of ¥ and a sequence {a,} of real numbers such that
a,(x,—p)—v. Let C(V, p) be the set of lines & through p in R", whose direction
v satisfies (*).

For the variety ¢~1(0), we define the tangent cone C(¢~1(0), 0) as above.
For any ©# e C(w™1(0), 0), there exists a sequence {x,} of points of w™!(0) such
that x,/|x,|—>v. Taking y,eo(x,), from (6), we see that y,/|y,|ov. Therefore,
e C(¢~1(0), 0), and so C(w~1(0), 0)= C(¢~1(0), 0). Considering the flow of
the contrary direction, we see that C(w=1(0), 0)2C(¢~(0), 0). Thus we have
(7 C(w™(0), 0)=C(¢7%(0), 0).

As (Q,), (Q,), and (Q3) hold, from (7) and the fact that T, (w=1(0)— {0}) =~
T(¢~(0)— {0}), near 0 e R", we can take a set U whose boundary is a cone of
an algebraic set and which contains w™1(0) and ¢~!(0), and we can constract a
homeomorphism h: U—U such that h(w™1(0))=¢~}(0), by using the normal
direction of the tangent cone. (For example, in the case where n=2, w=1(0)
and ¢~1(0) are graphs from the tangent direction to the normal direction as
Figure 2.) From (Q;), (Q,), (Q3), and the form of U, we can extend A to the
homeomorphism from a neighborhood of 0 e R" to a neighborhood of 0e R”.
Thus we have shown w=1(0)= ¢~1(0), as germs at 0 e R".

71(0)
w=1(0)
> C(w™1(0), 0) =C(¢7%(0), 0)

/

i\

/

Figure 2.




ON v-SUFFICIENCY AND (/)-REGULARITY 573

Lemma 3'. Let a jet weJ'(n, p) be v-sufficient in &, q11(n, p), and
1.9(x) (1Zi<p) be a family of C'-functions for |a|=r with 4,9(0)=0.
Put

di(x) =wi(x)+ | > A9(x)x*, 1=iZp,

|=r
and
P(x)=(¢1(x),..., P,(x)).
Then, we have ¢~1(0)=w~1(0), as germs at 0 e R".

Proof. Recall the proof that (b) implies (a) in Theorem 1. In a similar
way as Lemma 3, we see that (Q,) and (Q,) hold. Here, connected components
of w=1(0)— {0} and ¢~!(0)— {0} are C!-submanifolds of codimension p in R".
As p=2, we do not need consider (Q;). The remainder of the proof follows
similarly.

By using Lemma 3, we shall show that (a) implies (b) (it is easy to see that
(a) implies (h**s)).

Let M?, s=1,2,..., 0, w, be a Cs-submanifold transversal to A at 0.
Then, there exists a family of Cs-functions A,(x), |¢|=r, 1,(0)=0, such that
near 0e R"x A,

Mi={(x, D eR"x A| L, =A(x) (la|=1)}.
Putting ¢(x)=F(x; A(x)), we see that near 0 e R" x 4,
MrnVe={(x, )eR"x A| F(x; Ax))=0} rel. to M
©)) ]
¢~ 0)={(x, 0)e R" x A| F(x; A(x))=0} rel. to R"x {0}.

Moreover, we have
O(x)=w(x)+ MZ; A(X)x.
In the case where s=co (resp. w), 4, is C® (resp. C®), and so is ¢. Therefore,
it is clear that (a) implies (b) for s= o0, w.
Next, we shall show in the case where s=1, 2,.... Expand A, into Taylor’s
series up to degree s— 1, for || =r,

A X)=0(X)+ T, OF(x)x?,
1B155-1

where v,(x) is a polynomial of degree s—1, 05(x) are C!-functions, and 63(0)=0.
Therefore, we have
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O(x)=w(x)+ | ‘l/:= v, (x)x*+ ‘ |=Z 05(x)x*x?

Bl=s—1
=v(x)+ X P,00x7,
ly|=r+s—1
where v(x)=w(x)+ 2 |4=r V(X)x* is a polynomial of degree r+s—1, ¥, (x)
are C'-functions, and ,(0)=0.
Remark 5. In the case where s=1, (a) implies (b). For, from Lemma 3,
we see that

¢ 10 =w 1(0)={(x, 0)e R"x A| F(x; 0)=0}.
Hence, Vi is (h')-regular over 4 at 0 from (8).

On the other hand, as w is v-sufficient in &, 4(n, 1), any zenzl(w) is v-
sufficient in &, +4(n, 1), and
9) z71(0)=w~1(0) as germsat OeR".
Put

Glx; Y)=v(x)+ 3 ¥,x7,
ly|=r+s—1
where the coefficients (y/,) form a Euclidean space I'. For any zeJr*s71(n, 1),
we define the variety Vp_ in a similar way as Vj (cf. §1). Then, V;_is (h!)-
regular over I" at 0 R" x I' from Remark 5. Put
‘Mi={(x, V) eR"xI'|Y,=¢(x) (Iy]=r+s-1)}.

Then, near 0eR"x I', ‘M7 is a C'-submanifold, and ‘MY is transversal to I' at

0. Therefore, we have
v~ 1(0)={(x, 0)e R"x I' | G(x; 0)=0} rel. to R"x {0}
(10)  'M#n IIE“ ={(x, ¥,)eR"xT'| G(x; ¥,(x))=0} rel. to ‘M
(/)‘1(0)21 {(x, 0)e R" x I'| G(x; ¥,(x))=0} rel. to R"x {0}.
From (8), (9) and (10), we see that
O~ O)y=Mrn Ve rel. to M?
w‘zln(O)={(x, 0)eR"xI'| F(x; 0)=0} rel. to R"x {0}.
Thus Vi is (hs)-regular over A4 at 0.

Proof of (II). As (b) implies (c), we shall show that (c) implies (a).
Let Vi be (h%)-regular over A at 0. Any zen;!(w) is v-sufficient in
&r+5(n, p) from Remark 3 and Theorem 3. Therefore, it is enough to show that
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w1(0)= z71(0), as germs at 0 e R" for any zen;'(w). As zem;!(w), we have
z(x)=w{x)+ ¥ A,P(x)x*, 1=i<p,
la|=r
where A4,)(x) are polynomials of degree s, and 1,9(0)=0. Put
M, ={(x,0)eR"x A} and M,={(x, A(x))e R"x A}.

M, and M, are Cs-submanifolds, and they are transversal to 4 at 0. From
(c), we have M, N VypxM, N V;, as germs at 0e R" x A. Therefore, we have

(11) M,nVyg=M,n Vg astopological spaces.
On the other hand, we sce that

( My Vp=w"40)

\
(12) 1 M,NVp rel. to M, = z71(0) rel. to R"x{0}.

From (11) and (12), we have w~1(0)=z7(0), as topological spaces. And from
Theorem 1, w=1(0)— {0} and z~1(0)— {0} are C*-submanifolds of codimension
p=2 (or w(0)—{0} and z7!(0)— {0} are empty, then (II) is trivial). Further,
w™1(0) and z~!(0) are algebraic sets. Thus, we see that w™!(0)x=z~!(0), as
germs at 0 e R".
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