# On v-Sufficiency and (h)-Regularity

By

Satoshi Koike\*

#### §0. Introduction

In local differential analysis, one of the most fundamental problem is to determine the local topological picture of the variety of  $C^k$ -map-germ  $f: (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^p, 0)$ , with  $n \ge p$ , near  $0 \in \mathbb{R}^n$ , where  $k = 1, 2, ..., \infty, \omega$ , as R. Thom stated in [5]. We may expand f into Taylor's series up to degree k. Then, a natural problem is to find the smallest integer r ( $r \le k$ ) such that all terms of degree > r can be omitted without changing the local topological picture of the set-germ  $f^{-1}(0)$  at  $0 \in \mathbb{R}^n$ . Thus, T. C. Kuo ([3]) introduced the notion of v-sufficiency of jets.

Let  $\mathscr{E}_{[k]}(n, p)$  denote the vector space of germs of  $C^k$ -mappings  $(\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^p, 0)$ , where  $k = 1, 2, ..., \infty, \omega$ . For a map-germ  $f \in \mathscr{E}_{[k]}(n, p), j^r(f)$  denotes an *r*-jet of *f*, and  $J^r(n, p)$  denotes the set of all jets, where  $r \leq k$ . For two map-germs  $f, g \in \mathscr{E}_{[k]}(n, p)$ , they are said to be *v*-equivalent at  $0 \in \mathbb{R}^n$  (where "*v*" stands for "variety") or  $f^{-1}(0)$  and  $g^{-1}(0)$  have the same local topological picture near  $0 \in \mathbb{R}^n$ , if there exists a local homeomorphism  $\sigma: (\mathbb{R}^n, 0) \rightarrow (\mathbb{R}^n, 0)$  such that  $\sigma(f^{-1}(0)) = g^{-1}(0)$ . An *r*-jet  $w \in J^r(n, p)$  is said to be *v*-sufficient in  $\mathscr{E}_{[k]}(n, p), k = r, r + 1, ..., \infty, \omega$ , if for any two  $C^k$ -realizations *f* and *g*, they are *v*-equivalent at  $0 \in \mathbb{R}^n$ .

In the case where k=r, r+1, an analytic criterion of *v*-sufficiency for  $C^{k}$ -realizations has been obtained by T. C. Kuo ([3]). But, in the case where  $k=r+2, r+3,..., \infty, \omega$ , no characterization has been known on *v*-sufficiency for  $C^{k}$ -realizations.

In this paper, we shall introduce the notion of  $(\bar{h})$ -regularity, and give a geometric characterization in order that an r-jet  $w \in J^r(n, p)$  is v-sufficient for  $C^k$ -realizations  $(k=r+1, r+2, ..., \infty, \omega)$  in terms of  $(\bar{h})$ -regularity.

Communicated by N. Shimada, August 6, 1980.

<sup>\*</sup> Department of Mathematics, Kyoto University, Kyoto 606, Japan.

In introducing the notion of  $(\bar{h})$ -regularity, we have some hints in T. C. Kuo-Y. C. Lu [4], and D. J. A. Trotman [6].

### §1. Statements of the Result

As stated above, concerning v-sufficiency in  $\mathscr{E}_{[r]}(n, p)$  or  $\mathscr{E}_{[r+1]}(n, p)$ , T. C. Kuo has obtained the following result.

**Theorem 1** (T. C. Kuo [3]). For an r-jet  $w \in J^r(n, p)$ , the following conditions are equivalent.

(a) w is v-sufficient in  $\mathscr{E}_{[r]}(n, p)$  (resp. in  $\mathscr{E}_{[r+1]}(n, p)$ ).

(b) There exists a positive number C (resp. There exist positive numbers C and  $\delta$ ) such that

$$d(\operatorname{grad} w_1(x), \dots, \operatorname{grad} w_p(x)) \ge C|x|^{r-1}$$
  
(resp. d(grad w\_1(x), \dots, grad w\_p(x)) \ge C|x|^{r-\delta}),

where  $x \in H_r(w)$ , a horn-neighborhood.

Remark 1 (J. Bochnak and S. Lojasiewicz [1]). Especially, in the case where p=1, we can take a neighborhood  $|x| < \alpha$  ( $\alpha > 0$ ) instead of a horn-neighborhood.

**Definition 1.** Let  $M_1$ ,  $M_2$  be manifolds,  $M_1 \supseteq A_1 \ni a_1$ , and  $M_2 \supseteq A_2 \ni a_2$ . The germ  $(A_1, a_1)$  in  $M_1$  and the germ  $(A_2, a_2)$  in  $M_2$  are said to be topologically equivalent relative to  $M_1$  and  $M_2$ , if there exist a neighborhood  $U_1$  of  $a_1$  in  $M_1$ , a neighborhood  $U_2$  of  $a_2$  in  $M_2$ , and a homeomorphism  $h: (U_1, a_1) \rightarrow (U_2, a_2)$ such that  $h(A_1 \cap U_1) = A_2 \cap U_2$ . Then, we write  $(A_1, a_1)$  rel. to  $M_1 \cong (A_2, a_2)$ rel. to  $M_2$ , and we often omit  $a_1$  and  $a_2$ . Especially, in the case where  $M_1$  $= M_2 = \mathbf{R}^m$ , they are said to be topologically equivalent, simply.

Let X, Y be smooth manifolds embedded in  $\mathbb{R}^m$ , and  $y \in Y \cap \overline{X}$ .

**Definition 2.** Let S be a submanifold in  $\mathbb{R}^m$ , dim  $S = s = \operatorname{codim} Y$ , and  $1 \leq k \leq \infty$ .

(1) X is said to be  $(t^k)$ -regular over Y at y, if for any  $C^k$ -submanifold S which is transversal to Y at y, there exists a neighborhood U of y in  $\mathbb{R}^m$  such that S is transversal to X in U.

(2) X is said to be  $(h^k)$ -regular over Y at y, if for any  $C^k$ -submanifold S which intersects transversally with Y at y, the topological type of the germ at y

of the intersection of S and X is independent of the choice of S.

(3) X is said to be  $(\bar{h}^k)$ -regular over Y at y, if for any  $C^k$ -submanifold S which intersects transversally with Y at y, the topological type relative to S of the germ at y of the intersection of S and X is independent of the choice of S.

By the definition, it is clear that  $(\overline{h}^k)$  implies  $(h^k)$ .

Remark 2. In general, for the case where codim  $Y \leq s \leq m$ , we can think (*t*)-regularity and (*h*)-regularity. Then, we say  $(t_s^k)$ -regular and  $(h_s^k)$ -regular respectively.

**Theorem 2** (D. J. A. Trotman [6]). For  $1 \leq k \leq \infty$ ,

$$(h_s^k) \text{ implies } (t_s^k), \text{ if } \begin{cases} k=1 \\ or \\ k>1 \text{ and } s> \text{codim } X. \end{cases}$$

*Remark* 3. Especially, if dim  $X > \dim Y$ ,  $(h^k)$  implies  $(t^k)$   $(1 \le k \le \infty)$ .

Now, we introduce the variety  $V_F$ , determined by w. Let an r-jet  $w \in J^r(n, p)$  be identified as  $w = (w_1(x), ..., w_p(x))$ , where  $w_i(x)$  are polynomials in  $x = (x_1, ..., x_n)$  of degree r. Consider

$$F(x; \lambda) = (F_1(x; \lambda^{(1)}), ..., F_p(x; \lambda^{(p)})),$$

where  $F_i(x; \lambda^{(i)}) = w_i(x) + \sum_{|\alpha|=r} \lambda_{\alpha}^{(i)} x^{\alpha}$ ,  $1 \le i \le p$ . Here  $\alpha = (\alpha_1, ..., \alpha_n)$  is a multiple index,  $|\alpha| = \alpha_1 + \dots + \alpha_n$ ,  $x^{\alpha} = x_1^{\alpha_1} \dots x_n^{\alpha_n}$ . The coefficients  $(\lambda_{\alpha}^{(i)})$ , with a fixed ordering, form an Euclidian space, denoted by  $\Lambda$ . Consider the variety

$$V_F$$
;  $F_1(x; \lambda^{(1)}) = 0, ..., F_p(x; \lambda^{(p)}) = 0$ 

in  $\mathbb{R}^n \times \Lambda$ . Then, grad  $F_i$ ,  $1 \le i \le p$ , are linearly independent except the set  $\{(x, \lambda) \in \mathbb{R}^n \times \Lambda \mid x=0\}$ .

For a positive integer s, let  $\pi_s: J^{r+s}(n, p) \rightarrow J^r(n, p)$  denote the canonical projection.

**Theorem 3** (T. C. Kuo and Y. C. Lu [4]). The following conditions are equivalent, where  $1 \leq s < \infty$ .

- (a)  $V_F$  is  $(t^s)$ -regular over  $\Lambda$  at 0.
- (b) Any jet  $z \in \pi_s^{-1}(w)$  is v-sufficient in  $\mathscr{E}_{[r+s]}(n, p)$ .

(c) w admits at most a finite number of  $C^{r+s}$ -realizations whose germs of varieties at 0 are non-homeomorphic.

Consider the following conditions on a jet  $w \in J^r(n, p)$  and a variety  $V_F$ :

 $(S_k)$  w is v-sufficient in  $\mathscr{E}_{[k]}(n, p)$ .

- $(t^s)$   $V_F$  is  $(t^s)$ -regular over  $\Lambda$  at 0.
- ( $h^s$ )  $V_F$  is ( $h^s$ )-regular over  $\Lambda$  at 0.

From Theorem 3 and Remark 3, it is easy to see that the following implications hold:

Remark 4. The sets  $V_F - \Lambda$  and  $\Lambda$  are semi-analytic submanifolds in  $\mathbb{R}^n \times \Lambda$ . Therefore, we consider  $(t^{\omega})$ -regularity and  $(h^{\omega})$ -regularity also.

Our purpose in this paper is to show the following theorem, concerning v-sufficiency and (h),  $(\bar{h})$ -regularity.

**Theorem.** Let w be an r-jet in  $J^r(n, p)$ .

- (I) The following conditions (a), (b) are equivalent.
  (i) In the case where s=1, 2,....
- (a) w is v-sufficient in  $\mathscr{E}_{[r+s]}(n, p)$ .
- (b)  $V_F$  is  $(\bar{h}^s)$ -regular over  $\Lambda$  at 0.

(ii) In the case where  $k = \infty$ , or  $\omega$ .

- (a) w is v-sufficient in  $\mathscr{E}_{[k]}(n, p)$ .
- (b)  $V_F$  is  $(\bar{h}^k)$ -regular over  $\Lambda$  at 0.

(II) Especially, in the case where  $p \ge 2$  and s = 1, 2, ..., the following condition (c) is also equivalent.

(c)  $V_F$  is  $(h^s)$ -regular over  $\Lambda$  at 0.

## §2. Proof of the Theorem

Let  $M_s^n$  denote a  $C^s$ -submanifold  $(s=1, 2, ..., \infty, \omega)$  of dimension n in  $\mathbb{R}^n \times \Lambda$ , which contains 0. If  $M_s^n$  is transversal to  $\Lambda$  at 0, then there exists a family of  $C^s$ -functions  $\lambda_{\alpha}^{(i)}(x), 1 \leq i \leq p, |\alpha| = r, \lambda_{\alpha}^{(i)}(0) = 0$ , and  $M_s^n$  is defined, near 0, by

$$\lambda_{\alpha}^{(i)} - \lambda_{\alpha}^{(i)}(x) = 0, \quad |\alpha| = r, \quad 1 \leq i \leq p,$$

in  $\mathbb{R}^n \times \Lambda$ . We shall identify the set  $\mathbb{R}^n \times \{0\}$  with  $\mathbb{R}^n$ .

*Proof of* (I). We shall show (I) in the case where p=1, as the arguments of the proof in the case where  $p \ge 2$  are quite parallel except the difference of proofs of Lemma 3 and Lemma 3'.

(b) $\Rightarrow$ (a). Let  $\phi(x)$  be any  $C^{r+s}$ -realization (resp.  $C^{\infty}$ ,  $C^{\omega}$ ) of w. Expand  $\phi$  into Taylar's series up to degree r,

$$\phi(x) = w(x) + \sum_{|\alpha|=r} \lambda_{\alpha}(x) x^{\alpha},$$

where  $\lambda_{\alpha}(x)$  are  $C^{s}$ -functions (resp.  $C^{\infty}$ ,  $C^{\omega}$ ), and  $\lambda_{\alpha}(0) = 0$ . Therefore, we have  $\phi(x) = F(x; \lambda(x))$ .

Put  $M_s^n = \{(x, \lambda) \in \mathbb{R}^n \times \Lambda \mid \lambda_\alpha = \lambda_\alpha(x), |\alpha| = r\}$ . Then,  $M_s^n$  is a  $C^s$ -submanifold (resp.  $C^{\infty}$ ,  $C^{\omega}$ ), and  $M_s^n$  is transversal to  $\Lambda$  at 0, near  $0 \in \mathbb{R}^n \times \Lambda$ . Near  $0 \in \mathbb{R}^n \times \Lambda$ , we see that

On the other hand, from the fact that w(x) = F(x; 0), we see that

(2) 
$$w^{-1}(0) = V_F \cap \mathbb{R}^n \times \{0\}$$

From (1), (2), and (b), we have  $\phi^{-1}(0) \cong w^{-1}(0)$ , as germs at  $0 \in \mathbb{R}^n$ . Therefore, w is v-sufficient in  $\mathscr{E}_{[r+s]}(n, 1)$  (resp.  $\mathscr{E}_{[\infty]}(n, 1)$ ,  $\mathscr{E}_{[\omega]}(n, 1)$ ).

 $(a) \Rightarrow (b)$ . It is easy to see the following lemma by simple calculations.

**Lemma 1.** For a family of C<sup>1</sup>-functions  $\lambda_{\alpha}(x)$ ,  $|\alpha| = r$ ,  $\lambda_{\alpha}(0) = 0$ , there exist positive numbers C, d such that

$$|\operatorname{grad}\left(\sum_{|\alpha|=r} \lambda_{\alpha}(x) x^{\alpha}\right)| \leq C|x|^{r}, |x| < d.$$

Let J be an open interval which contains I = [0, 1], and let  $w \in J^r(n, 1)$ . Let  $\lambda_{\alpha}(x)$ ,  $|\alpha| = r$ , be the same as Lemma 1. Put

$$F_t(x) = w(x) + t \sum_{|\alpha|=r} \lambda_{\alpha}(x) x^{\alpha}$$
 for  $t \in J$ .

From the calculation of Lemma 1 and Remark 1 (Theorem 1), we see the following lemma.

**Lemma 2.** If a jet  $w \in J^r(n, 1)$  is v-sufficient in  $\mathscr{E}_{[r+1]}(n, 1)$ , then there exist positive numbers C', d',  $\delta$ , such that

 $|\operatorname{grad} F_t(x)| \ge C'|x|^{r-\delta}, \quad |x| < d' \quad for \ any \quad t \in J.$ 

**Lemma 3.** Let a jet  $w \in J^r(n, 1)$  be v-sufficient in  $\mathscr{E}_{[r+1]}(n, 1)$ , and  $\lambda_{\alpha}(x)$  be a family of C<sup>1</sup>-functions for  $|\alpha| = r$  with  $\lambda_{\alpha}(0) = 0$ . Put

$$\phi(x) = w(x) + \sum_{|\alpha|=r} \lambda_{\alpha}(x) x^{\alpha}.$$

Then, we have  $\phi^{-1}(0) \cong w^{-1}(0)$ , as germs at  $0 \in \mathbb{R}^n$ .

Proof. Put

$$G(x, t) = (1-t)w(x) + t\phi(x) \quad \text{for} \quad t \in J.$$

Consider the vector field,

$$X(x, t) = \begin{cases} -\frac{\partial G}{\partial t} |\operatorname{grad}_{x} G|^{-2} \operatorname{grad}_{x} G + \frac{\partial}{\partial t} & \text{if } x \neq 0, \\ \\ \frac{\partial}{\partial t} & \text{if } x = 0. \end{cases}$$

We write the vector field X as  $X_x + (\partial/\partial t)$ . From Lemma 2 and the fact that  $\partial G/\partial t = \phi(x) - w(x)$ , there exist positive numbers C'', d'', such that

(3) 
$$|X_x| \le C'' |x|^{1+\delta} \quad |x| < d'' \quad \text{for } t \in J$$

Recall the proof that  $|\operatorname{grad} w(x)| \ge C|x|^{r-\delta}$  implies v-sufficiency (C<sup>0</sup>-sufficiency; cf. T. C. Kuo [2]) in  $\mathscr{E}_{[r+1]}(n, 1)$ . Then X is C<sup>0</sup>, and X is C<sup>1</sup>(C<sup>r</sup>) outside the t-axis. Therefore, the following properties hold:

- $(P_1)$  the integral curve of X is unique outside the t-axis;
- (P<sub>2</sub>) no integral curve of X can enter the t-axis, and no integral curve of X can leave the t-axis (from (3)).

Thus the flow of X gives the local homeomorphism which we demand.

In our case, (P<sub>2</sub>) also holds from (3), though X is not C<sup>1</sup> even outside the *t*-axis. And so, we do not know whether the flow of X gives the local homeomorphism, or not. But from Lemma 2,  $G^{-1}(0) - \{t\text{-axis}\}$  is a C<sup>1</sup>-submanifold of dimension *n* of  $\mathbb{R}^n \times \mathbb{R}$  in the cylinder around the *t*-axis (or  $G^{-1}(0) - \{t\text{-axis}\}$  is empty, then Lemma 3 is trivial). Similarly,  $V_1 = w^{-1}(0) - \{(0, 0)\}$  and  $V_2 = \phi^{-1}(0) - \{(0, 1)\}$  are C<sup>1</sup>-submanifolds of dimension n - 1.

Consider the flow of X near the t-axis. From (P<sub>2</sub>), the flow carries the points of  $V_1$  to the points of  $V_2$ . As X is nearly parallel to the t-axis, the integral curve of X which traverses the plane,  $t = \alpha$ , does not traverse it again. Therefore, if the flow carries the points of different connected components of  $V_1$  to the same

connected components of  $V_2$  (or the contrary holds),  $G^{-1}(0) - \{t-axis\}$  is not a submanifold. Hence the flow of X gives one-to-one correspondence between connected components of  $V_1$  and  $V_2$ . Thus we have

(Q<sub>1</sub>) near  $0 \in \mathbb{R}^n$ ,  $w^{-1}(0)$  and  $\phi^{-1}(0)$  are homeomorphic, as topological spaces (not germs).

As w is a polynomial, we have

 $(Q_2)$  the number of components of  $V_1$  is finite, and so is that of  $V_2$ .

From the consideration above, we have

 $(Q_3) w^{-1}(0)$  and  $\phi^{-1}(0)$  are "in the same position" in the following meaning; two flows which start in different components of  $V_1$  never intersect en route. (For example, in Figure 1,  $W_1$  and  $W_2$  are homeomorphic, as topological spaces, but they are not in the same position.)



Put

$$\phi(x) = w(x) + h(x)$$
, where  $h(x) = \sum_{|\alpha|=r} \lambda_{\alpha}(x) x^{\alpha}$ .

From Lemma 1 and Remark 1 (and Lemma 2), we have

(4) 
$$\left|\frac{\operatorname{grad} w(x)}{|\operatorname{grad} w(x)|} - \frac{\operatorname{grad} \phi(x)}{|\operatorname{grad} \phi(x)|}\right| \leq 2 \left|\frac{\operatorname{grad} h(x)}{\operatorname{grad} w(x)}\right| \leq 2 \frac{C}{C'} |x|^{\delta},$$
$$0 < |x| < \min(d, d').$$

Suppose that 0 < |x| < d''. Let  $(\sigma(x), 1)$  denote the set onto which the flow of X carries (x, 0). For any  $y \in \sigma(x)$ , put  $y = x + \varepsilon_x$ . From (3), we have

$$|\varepsilon_x| \leq 2C'' |x|^{1+\delta}, \quad |x| < d'''$$

Therefore, we have

(6) 
$$\left|\frac{x}{|x|} - \frac{y}{|y|}\right| = \left|\frac{x}{|x|} - \frac{x + \varepsilon_x}{|x + \varepsilon_x|}\right| \le 2\frac{|\varepsilon_x|}{|x|} \le 4C'' |x|^{\delta}.$$

Putting  $v = \min(d, d', d''') > 0$ , the inequalities (4), (5) and (6) hold for any x satisfying 0 < |x| < v. Taking v sufficiently small, from (4), (5), and the continuity of grad (w+h)(x)/|grad(w+h)(x)|, the tangent space  $T_x(w^{-1}(0) - \{0\})$  is quite near to  $T_y(\phi^{-1}(0) - \{0\})$  (we write  $T_x(w^{-1}(0) - \{0\}) \approx T_y(\phi^{-1}(0) - \{0\})$ ) for any 0 < |x| < v.

Here, we introduce the notion of the tangent cone. For an algebraic set  $V (\subseteq \mathbb{R}^N)$  which contains p, we define the tangent cone at p of V, C(V, p), as follows; we shall say that a vector  $v \in \mathbb{R}^N$  satisfies condition (\*), if there exist a sequence  $\{x_n\} \rightarrow p$  of points of V and a sequence  $\{a_n\}$  of real numbers such that  $a_n(x_n-p) \rightarrow v$ . Let C(V, p) be the set of lines  $\bar{v}$  through p in  $\mathbb{R}^n$ , whose direction v satisfies (\*).

For the variety  $\phi^{-1}(0)$ , we define the tangent cone  $C(\phi^{-1}(0), 0)$  as above. For any  $\bar{v} \in C(w^{-1}(0), 0)$ , there exists a sequence  $\{x_n\}$  of points of  $w^{-1}(0)$  such that  $x_n/|x_n| \rightarrow v$ . Taking  $y_n \in \sigma(x_n)$ , from (6), we see that  $y_n/|y_n| \rightarrow v$ . Therefore,  $\bar{v} \in C(\phi^{-1}(0), 0)$ , and so  $C(w^{-1}(0), 0) \subseteq C(\phi^{-1}(0), 0)$ . Considering the flow of the contrary direction, we see that  $C(w^{-1}(0), 0) \supseteq C(\phi^{-1}(0), 0)$ . Thus we have

(7) 
$$C(w^{-1}(0), 0) = C(\phi^{-1}(0), 0)$$

As  $(Q_1)$ ,  $(Q_2)$ , and  $(Q_3)$  hold, from (7) and the fact that  $T_x(w^{-1}(0) - \{0\}) \approx T_y(\phi^{-1}(0) - \{0\})$ , near  $0 \in \mathbb{R}^n$ , we can take a set U whose boundary is a cone of an algebraic set and which contains  $w^{-1}(0)$  and  $\phi^{-1}(0)$ , and we can constract a homeomorphism  $h: U \to U$  such that  $h(w^{-1}(0)) = \phi^{-1}(0)$ , by using the normal direction of the tangent cone. (For example, in the case where n=2,  $w^{-1}(0)$  and  $\phi^{-1}(0)$  are graphs from the tangent direction to the normal direction as Figure 2.) From  $(Q_1)$ ,  $(Q_2)$ ,  $(Q_3)$ , and the form of U, we can extend h to the homeomorphism from a neighborhood of  $0 \in \mathbb{R}^n$  to a neighborhood of  $0 \in \mathbb{R}^n$ . Thus we have shown  $w^{-1}(0) \cong \phi^{-1}(0)$ , as germs at  $0 \in \mathbb{R}^n$ .



**Lemma 3'.** Let a jet  $w \in J^r(n, p)$  be v-sufficient in  $\mathscr{E}_{[r+1]}(n, p)$ , and  $\lambda_{\alpha}^{(i)}(x)$   $(1 \leq i \leq p)$  be a family of C<sup>1</sup>-functions for  $|\alpha| = r$  with  $\lambda_{\alpha}^{(i)}(0) = 0$ . Put

$$\phi_i(x) = w_i(x) + \sum_{|\alpha|=r} \lambda_{\alpha}^{(i)}(x) x^{\alpha}, \quad 1 \leq i \leq p,$$

and

$$\phi(x) = (\phi_1(x), \dots, \phi_p(x))$$

Then, we have  $\phi^{-1}(0) \cong w^{-1}(0)$ , as germs at  $0 \in \mathbb{R}^n$ .

*Proof.* Recall the proof that (b) implies (a) in Theorem 1. In a similar way as Lemma 3, we see that  $(Q_1)$  and  $(Q_2)$  hold. Here, connected components of  $w^{-1}(0) - \{0\}$  and  $\phi^{-1}(0) - \{0\}$  are  $C^1$ -submanifolds of codimension p in  $\mathbb{R}^n$ . As  $p \ge 2$ , we do not need consider  $(Q_3)$ . The remainder of the proof follows similarly.

By using Lemma 3, we shall show that (a) implies (b) (it is easy to see that (a) implies  $(\bar{h}^{r+s})$ ).

Let  $M_s^n$ ,  $s=1, 2, ..., \infty, \omega$ , be a  $C^s$ -submanifold transversal to  $\Lambda$  at 0. Then, there exists a family of  $C^s$ -functions  $\lambda_{\alpha}(x)$ ,  $|\alpha|=r$ ,  $\lambda_{\alpha}(0)=0$ , such that near  $0 \in \mathbb{R}^n \times \Lambda$ ,

$$M_s^n = \{ (x, \lambda) \in \mathbb{R}^n \times \Lambda \mid \lambda_\alpha = \lambda_\alpha(x) \ (|\alpha| = r) \} .$$

Putting  $\phi(x) = F(x; \lambda(x))$ , we see that near  $0 \in \mathbb{R}^n \times \Lambda$ ,

(8) 
$$M_{s}^{n} \cap V_{F} = \{(x, \lambda) \in \mathbb{R}^{n} \times A \mid F(x; \lambda(x)) = 0\} \quad \text{rel. to} \quad M_{s}^{n} \\ \stackrel{\mathcal{H}}{\longrightarrow} \phi^{-1}(0) = \{(x, 0) \in \mathbb{R}^{n} \times A \mid F(x; \lambda(x)) = 0\} \quad \text{rel. to} \quad \mathbb{R}^{n} \times \{0\}.$$

Moreover, we have

$$\phi(x) = w(x) + \sum_{|\alpha|=r} \lambda_{\alpha}(x) x^{\alpha}.$$

In the case where  $s = \infty$  (resp.  $\omega$ ),  $\lambda_{\alpha}$  is  $C^{\infty}$  (resp.  $C^{\omega}$ ), and so is  $\phi$ . Therefore, it is clear that (a) implies (b) for  $s = \infty$ ,  $\omega$ .

Next, we shall show in the case where s=1, 2, ... Expand  $\lambda_{\alpha}$  into Taylor's series up to degree s-1, for  $|\alpha|=r$ ,

$$\lambda_{\alpha}(x) = v_{\alpha}(x) + \sum_{|\beta| = s-1} \theta_{\beta}^{\alpha}(x) x^{\beta},$$

where  $v_{\alpha}(x)$  is a polynomial of degree s-1,  $\theta^{\alpha}_{\beta}(x)$  are C<sup>1</sup>-functions, and  $\theta^{\alpha}_{\beta}(0)=0$ . Therefore, we have

$$\begin{split} \phi(x) &= w(x) + \sum_{|\alpha|=r} v_{\alpha}(x) x^{\alpha} + \sum_{\substack{|\alpha|=r\\ \beta|=s-1}} \theta_{\beta}^{\alpha}(x) x^{\alpha} x^{\beta} \\ &= v(x) + \sum_{|\gamma|=r+s-1} \psi_{\gamma}(x) x^{\gamma} \,, \end{split}$$

where  $v(x) = w(x) + \sum_{|\alpha|=r} v_{\alpha}(x)x^{\alpha}$  is a polynomial of degree r+s-1,  $\psi_{\gamma}(x)$  are  $C^{1}$ -functions, and  $\psi_{\gamma}(0) = 0$ .

*Remark* 5. In the case where s=1, (a) implies (b). For, from Lemma 3, we see that

$$\phi^{-1}(0) \cong w^{-1}(0) = \{(x, 0) \in \mathbf{R}^n \times \Lambda \mid F(x; 0) = 0\}$$

Hence,  $V_F$  is  $(\bar{h}^1)$ -regular over  $\Lambda$  at 0 from (8).

On the other hand, as w is v-sufficient in  $\mathscr{E}_{[r+s]}(n, 1)$ , any  $z \in \pi_{s-1}^{-1}(w)$  is v-sufficient in  $\mathscr{E}_{[r+s]}(n, 1)$ , and

(9) 
$$z^{-1}(0) \cong w^{-1}(0)$$
 as germs at  $0 \in \mathbf{R}^n$ .

Put

$$G(x; \psi) = v(x) + \sum_{|\gamma|=r+s-1} \psi_{\gamma} x^{\gamma},$$

where the coefficients  $(\psi_{\gamma})$  form a Euclidean space  $\Gamma$ . For any  $z \in J^{r+s-1}(n, 1)$ , we define the variety  $V_{F_z}$  in a similar way as  $V_F$  (cf. §1). Then,  $V_{F_z}$  is  $(\bar{h}^1)$ regular over  $\Gamma$  at  $0 \in \mathbb{R}^n \times \Gamma$  from Remark 5. Put

$$M_1^n = \{(x, \psi) \in \mathbf{R}^n \times \Gamma \mid \psi_{\gamma} = \psi_{\gamma}(x) \ (|\gamma| = r + s - 1)\}.$$

Then, near  $0 \in \mathbb{R}^n \times \Gamma$ ,  $M_1^n$  is a  $C^1$ -submanifold, and  $M_1^n$  is transversal to  $\Gamma$  at 0. Therefore, we have

$$v^{-1}(0) = \{(x, 0) \in \mathbf{R}^n \times \Gamma \mid G(x; 0) = 0\} \text{ rel. to } \mathbf{R}^n \times \{0\}$$
  
(10) 
$$\stackrel{\forall M_1^n \cap V_{F_z}}{=} \{(x, \psi_{\gamma}) \in \mathbf{R}^n \times \Gamma \mid G(x; \psi_{\gamma}(x)) = 0\} \text{ rel. to } \stackrel{\forall M_1^n}{=} \psi^{-1}(0) = \{(x, 0) \in \mathbf{R}^n \times \Gamma \mid G(x; \psi_{\gamma}(x)) = 0\} \text{ rel. to } \mathbf{R}^n \times \{0\}.$$

From (8), (9) and (10), we see that

$$\phi^{-1}(0) \cong M_s^n \cap V_F \quad \text{rel. to} \quad M_s^n \\ \underset{W^{-1}(0) = \{(x, 0) \in \mathbb{R}^n \times \Gamma \mid F(x; 0) = 0\} \quad \text{rel. to} \quad \mathbb{R}^n \times \{0\}.$$

Thus  $V_F$  is  $(\bar{h}^s)$ -regular over  $\Lambda$  at 0.

Proof of (II). As (b) implies (c), we shall show that (c) implies (a).

Let  $V_F$  be  $(h^s)$ -regular over  $\Lambda$  at 0. Any  $z \in \pi_s^{-1}(w)$  is v-sufficient in  $\mathscr{E}_{[r+s]}(n, p)$  from Remark 3 and Theorem 3. Therefore, it is enough to show that

 $w^{-1}(0) \cong z^{-1}(0)$ , as germs at  $0 \in \mathbb{R}^n$  for any  $z \in \pi_s^{-1}(w)$ . As  $z \in \pi_s^{-1}(w)$ , we have

$$z_i(x) = w_i(x) + \sum_{|\alpha|=r} \lambda_{\alpha}^{(i)}(x) x^{\alpha}, \quad 1 \leq i \leq p ,$$

where  $\lambda_{\alpha}^{(i)}(x)$  are polynomials of degree s, and  $\lambda_{\alpha}^{(i)}(0) = 0$ . Put

$$M_1 = \{(x, 0) \in \mathbb{R}^n \times \Lambda\}$$
 and  $M_2 = \{(x, \lambda(x)) \in \mathbb{R}^n \times \Lambda\}$ .

 $M_1$  and  $M_2$  are C<sup>s</sup>-submanifolds, and they are transversal to  $\Lambda$  at 0. From (c), we have  $M_1 \cap V_F \cong M_2 \cap V_F$ , as germs at  $0 \in \mathbb{R}^n \times \Lambda$ . Therefore, we have

(11) 
$$M_1 \cap V_F \cong M_2 \cap V_F$$
, as topological spaces.

On the other hand, we see that

(12) 
$$\begin{cases} M_1 \cap V_F = w^{-1}(0) \\ M_2 \cap V_F \text{ rel. to } M_2 \cong z^{-1}(0) \text{ rel. to } \mathbb{R}^n \times \{0\}. \end{cases}$$

From (11) and (12), we have  $w^{-1}(0) \cong z^{-1}(0)$ , as topological spaces. And from Theorem 1,  $w^{-1}(0) - \{0\}$  and  $z^{-1}(0) - \{0\}$  are  $C^{\infty}$ -submanifolds of codimension  $p \ge 2$  (or  $w^{-1}(0) - \{0\}$  and  $z^{-1}(0) - \{0\}$  are empty, then (II) is trivial). Further,  $w^{-1}(0)$  and  $z^{-1}(0)$  are algebraic sets. Thus, we see that  $w^{-1}(0) \cong z^{-1}(0)$ , as germs at  $0 \in \mathbb{R}^n$ .

#### References

- Bochnak, J. and Łojasiewicz, S., A converse of the Kuiper-Kuo theorem, Proc. of the Liverpool Singularities Symposium I, *Lecture Notes in Math.*, 192, Springer, Berlin, 1971, 254–261.
- [2] Kuo, T. C., On C<sup>0</sup>-sufficiency of jets of potential functions, *Topology*, 8 (1969), 167– 171.
- [3] \_\_\_\_\_, Characterizations of v-sufficiency of jets, Topology, 11 (1972), 115-131.
- [4] Kuo, T, C. and Lu, Y. C., Sufficiency of jets via stratification theory, *Invent. Math.*, 57 (1980), 219–226.
- [5] Thom, R., Local topological properties of differentiable mappings, *Differential Analysis, Bombay Colloquim* 1964, Oxford Univ. Press, 1964, 191–202.
- [6] Trotman, D. J. A., Interprétations topologiques des conditions de Whitney, Soc. Math. France, Astérisque, 59–60 (1978), 223–248.