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Chapter 0. Introduction

This paper is a detailed version of one announced in C. Iwasaki and N.
Iwasaki [8]. (And also refer to [9].) We study a fundamental solution for
an evolution equation

(0.0.1) ((0/0f) + p(x, D)E(H)=0, t>0,
E(0)=1I.

P is a classical pseudodifferential operator of order m, having an asymptotic
expansion of the symbol p(x, £) such that

(0'0'2) P(x, §)~pm(x7 6)+pm—1(x, €)+pm—2('x5 é)+ s

where p;(x, &) is positively homogeneous of order j.

Usually this equation is called parabolic if the principal symbol p,, of P
is positive (£ #0) and the order m is greater than 1. In this case P is strongly
elliptic and satisfies a Garding inequality (0.0.3) and an a-priori estimate (0.0.4).

(0.0.3)  Re(p(x, Dyu, u)zelulZ;,—Clullg,  for u of L(R").
(0.04) lulZes = CLIPul2+[ul?), for u of L(R7).

Therefore on a suitable function space the existence of fundamental solution
E(?) is shown by the theory of one parameter semigroups. On the other hand
it is also shown in a constructive way by means of symbol calculations of pseu-
dodifferential operators. Namely, a parametrix

0.0.5) a(E()~ f(t, x, {) exp (— pulx, D),
f=1+f;+f2:+, (fjexp (— pnt) belongs to S77%),

is constructed and a fundamental solution is represented in terms of pseu-
dodifferential operators with a parameter ¢t by using neither (0.0.3) nor (0.0.4).
(Refer to C. Iwasaki [7].) It also follows that E(f) belongs to S~® for any posi-
tive t. That is one of characters of parabolic types. Moreover a Garding
inequality and an a-priori estimate can be conversely proved by the constructed
one.

Here we consider a more general case. Since the evolution equation
should be well posed in some sense, we assume

(0.0.6) DX, ©)=0and m>1.

P (x,D) is not always elliptic because the principal symbol p,(x, £) may vanish
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somewhere (£#0). It seems natural in order to preserve properties of parabolic
types that we assume hypoellipticity to p(x, D) instead of ellipticity. We shall
here call them degenerate parabolic types.

There are two related results. A. Melin [10] proves that the following
(0.0.7) and (0.0.8) are equivalent if p(x, &) satisfies (0.0.6).

(0.0.7) The subprincipal symbol plus 27! positive trace of fundamental matrix
for p,(x, &) is positive on the characteristic set 2 of p,,.

(0'0-8) Re (P(X, D)Ll, u)gC”u”(zm— 1/27 C“u“%

for some positive ¢ and C, and for any u of C§*(K), (K is a compact
set).

According to parts of results by L. Hormander [5], if p(x, ¢) satisfies (0.0.6)
and (0.0.7), it holds (0.0.9) and so (0.0.10).

(0.0.9) lullz-1+s< CAPullZ+ul3),  for w of C3=(K).
(0.0.10) P is hypoelliptic.

Therefore if (0.0.6) and (0.0.7) are assumed for p(x, D), the existence of funda-
mental solution is shown by the theory of one parameter semigroup as well as in
case of parabolic types.

One of next steps will be to know further informations about E(f). For
example “Is it a pseudodifferential operator?”” According to R. Beals [1] a
parametrix of P is constructed if it satisfies (0.0.6) and (0.0.9). And B. Helffer
has noted in [4] that the fundamental solution E(t) belongs to S9,, ;,, if (0.0.8)
and a result* in R. Beals [1] hold. (*If P belongs to S° and if P is an isomor-
phism on L2, then the inverse P~! also belongs to S°) However the form of
symbol is not clear. Meanwhile A. Menikoff and J. Sjostrand [12] has con-
structed a parametrix of form fexp ¢ in terms of Fourier integral operators with
complex phase functions (refer to A. Melin and J. Sjostrand [11]) under
(0.0.6), (0.0.7) and the restriction that p,, vanishes exactly double on the character-
istic set 2 of p,, and that 2 is symplectic manifold, though L. Boutet de Monvel,
A. Grigis and B. Helffer [2] had constructed a parametrix for P if it had been
only got to be a pseudodifferential operator. Consequently they have calculated
the rate of TrE(¢) as ¢ tends to zero. They have proved it using (0.0.8) and have
not said positively that their parametrix was a pseudodifferential operator.

In this paper under (0.0.6) and (0.0.7) we shall prove that E(f) is a pseudodif-
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ferential operator of SY,, ;,, with a parameter ¢ belonging to S~ if t>0, and has
a parametrix of pseudodifferential operators with symbols of form fexp ¢ (¢
is real valued if the subprincipal symbol is real.) Here ¢ and f will be obtained
by means of symbol calculations of p. Especially the leading term will be given
explicitly. The inequalities (0.0.8) and (0.0.9) will follow as corollaries. The
same results about the trace of E(f) as A. Menikoff and J. Sjéstrand got will be
proved without the condition that X is symplectic. (They have also extended
their result to this case in [13] and to the general case in [14].) And the con-
ditions will be weakened further in some part.

Remarks. 1) The left hand side in (0.0.7) must be non negative if (0.0.1)
is well posed in some global sense.

2) When we studied these problems, the Weyl symbol for pseudodifferential
operators was very useful for us. From now on we shall use only it as symbol
representations of pseudodifferential operators instead of the usual one.
(Refer to Appendix.)

§0.1. Simple Notations and Assumptions

We employ the Weyl symbol for pseudodifferential operators, that is, a
symbol a(x, &) defines an operator a(x, D) by

0.1.1) a(x, D)u=(27r)'"gQ el N8a((x+ y)[2, Ou(y)dydé for u of CE»

where Q=R"xR". Hence p,,_ is the subprincipal symbol of P in usual sence.
In fact the relation between a Weyl symbol a(x, £) and an usual one b(x, &) of
Sns0<6<p=1)is given by

a(x, Q)=exp {— (271X 0,0, b(x, £) mod S™*.
V*a stands for a section of T**¥(T*R"), k-th symmetric tensor of T*(T*R”),
defined by (0.1.2) with respect to the canonical coordinate of T*R”.
(0.1.2) T juspi=k Cpal@)(de)*(dx), Cky=k'/a!f! and  a{g)=0%ka(x, &).

A linear map defined by F*a from T/(T*R") to T*~Ji(T*R") is denoted by
the same notation F*a. ¢! is the canonical two form déAdx=73 d&indx;
on T*R". For the principal symbol p,, the Hamilton vector field 4 is defined
by ol(u, h)=Fp,(u) and the Hamilton (fundamental) matrix & by o'(u, Fv)
=Q(u, v), Q(u, v)=<u, P?p,vy. If we define J, by o'(u, J,f)=f(u), then
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h=J.Fp,and #=J,V?p,. Weput A=iF and b=ih. Tr A4 stands for the
sum of real parts of eigenvalues of 4 which are positive. On the characteristic
set X of p,, V?p, =0 if p,=0. This implies that 4 has only real eigenvalues.
Tr~A is the positive trace of A, that is, the sum of positive eigenvalues.

Remark. Here we also call A and b Hamilton matrix and vector, respec-
tively, because they are corresponded to a complex Hamiltonian as % and h are
to a real Hamiltonian.

Remark. Definitions of F*a, the Hamilton vector f{icld and matrix will
be modified by a weight function for the simplicity of calculations in proofs.
But Tr~4 and any function of 4 and b appearing in conclusions are free of
such a weight function. (Refer to Chapter 1.)

Throughout this paper we assume the following (0.1.3).
Condition (A).
(0.1.3) w=0 on T*R" and 2Rep,_,+Tr"4 =c|E" !

on the characteristic set X ={p,, =0} for a positive constant c.

§0.2. Results

Theorem 0.1. Under Condition (A) a fundamental solution E(t) of (0.0.1)
is constructed as a pseudodifferential operator with a symbol belonging to
L3. E(t) belongs to S~ if t is positive. Moreover E(t) has the following
asymptotic expansion.

(0.2.1) EM=2-of;expd+gx,
(0.2.2) fo=1,f;exp¢ belongs to Lg* and
gn belongs to Lg*™"~1) (0<e<1/6).

Here the function ¢ is defined by (0.2.3-8). At a neighborhood of X x {t=0}

(023) d)l == Pml = Pm-1l— al(bt/2, F(At/z)bt/z)
—27!Tr(log [cosh (A1/2)]),
(0.2.4) F(A)=(@{A)"'(1—A"1tanh 1),

and otherwise

(025) ¢2= _p,n1"<¢’>nﬁlr‘
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namely,

(0.2.6) o=y ¢, +(1—y,)p,,

where

0.2.7) Y=yivi, (k=1,2)
Yk =v(k™'p, L1729,
=Yk~ & 179),

and

Y(s) is a function of C**[0, + o0) such that y=1(s=1), y=0(s=2),
Y'<0(l<s<2) and [yM|=Zc,(1-y) if 0<t<].

The relation between 6 and ¢ is
(0.2.8) 0<120<1—6e<].

Remark. We use a notation L™, for a class of pseudodifferential operators,

which is equal to 87, , /2, of Hormander’s class.

Remark. The condition (0.2.8) guarantees that F(At/2), cosh (At/2) and
so on are well defined and that exp ¢ belongs to L.

Remark. Refer to Section 1.5 for the way of construction of f;, which are
functions of p and its derivatives.

Since Sc E(t)dt (¢>0) is a parametrix of P, we obtain the followings.

0

Corollary [A. Melin and L. H6rmander]. There exist constants . and

C, such that for any u of #(R")
Re (P+Au, u)=0
and
lullz-1+s= ClPullZ+ ul?).

Remark. The expression may be a little different from A. Melin’s result

but it is essentially same.

Example. We consider on R27+!
P= Z_’;=1(DJ2CJ' + x‘%D%J) + Z§=1D3J‘ .

Then the symbol of E(t) is given by
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k=1 {cosh |n;l1} 7!
xexp { — Tk 1(E3+ x|~ tanh (In 10— T, 1)
=exp ¢,
where X ={¢;=0, x1,=0 (1<j<k), ;=0 (1 <i<]).
We consider more restrictive cases, that claim X to be exactly double.

Condition (B). The principal symbol p,, vanishes exactly to second order
on the characteristic set X, that is, p(X)Zc(X)d(X, 2)?, (|&|=1, X=(x, &)
and c(X)>0).

Remark. d(X, X) is the distance of X to X with respect to the metric of
R"x R, x S"!, that is,
d((x, &), (v, m)={lx=yI>+ (&l = In)? +1&/I] —n/Inl|?} /2.
Remark. Inthis case X is necessarily an infinitely differentiable submanifold
of T*R"\{0}. Therefore d(X, Z) is an infinitely differentiable function at a

conic neighborhood of X and there exists an infinitely differentiable mapping
a(X) valued in X such that d(X, a(X))=d(X, 2).

Theorem 0.2. Under Conditions (A) and (B) the phase function ¢, at a
neighborhood of X can be replaced with ¢ defined by (0.2.9) if we add a con-
dition that 8¢<1. In fact Theorem 0.1 is valid for the same & on any compact
set of R".

(0.2.9) ¢3=—pn_(a)t+ic'((a—X), tanh (A(a)t/2) (a — X))

—27'Tr (log [cosh (4(a)t/2)]),
where a=a(X) is an infinitely differentiable mapping from a neighborhood
of X to X such that |d(X, a(X))—d(X, X)|Scd(X, X)?.

§0.3. Applications

We can calculate TrE(f) as t tends to zero, using Theorems 0.1 and 0.2.
Applying Karamata’s Tauberian Theorem to it, the asymptotic behavior of
spectral function is obtained.

Let M be an infinitely differentiable compact manifold and dM be a positive
smooth density on it. We assume Condition (C) through out this section.

Condition (C). P is a formally selfadjoint pseudodifferential operator
on M, that is,
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S PuvdM = S uPvdM, for any u and v of C**(M).
M M

Theorem 0.3, Under Condition (4) and (C)
TrE()=(1+o(1)) (21:)—"3 , oxp baxdz,

T*
as t tends to zero, where dxd& is the Liouville density on T*M.
Remark. In this theorem, the function (&) used in the definitions of ¢,

(0.2.5) and of ¥, (0.2.7) should be replaced to a positive symbol of elliptic
operator of order 1 defined on M.

We consider two more restrictive cases to get exact rates. One is Con-
dition (B) and the other is the following Condition (D).

Condition (D). g dxdé< + 0.
{Pm=1)

Remark. Since the principal and subprincipal symbols are well defined on
T*M, Conditions (A), (B) and (D) are well defined to P.

Remark. Under Condition (B) the characteristic set ¥ is divided as X
=Vaisjoim®? (27 are connected components of 2, j=1,..., ). Codim X is defined by

d=codim X =min; {codim 2/} .
We denote the union of X/ having the codimension of just d by X°.

Theorem 0.4. Under Conditions (A) and (C)
(1) P with the domain=C**(M) is a semi-bounded essentially selfadjoint
operator on L*(M, dM).
(2) P has only discrete spectrum.
(3) Let N(X) be the number of eigenvalues which are less than A.
Under Conditions (A), (B) and (C), as A tends to infinity,
(a) N@A)={C,+o(1)}An/m if n—mdf2<0,
(b) NA)={C,+o(1)}A"/mlog A if n—md/2=0,
and
(€) NA)={Cs+o(1)}Ar—d/2/m=1) if pn—md/2>0.
Under Conditions (A), (D) and (C), as A tends to infinity,
(d) N@)={C{+o(1)}an/m,
Here C; are given by

C=Cmrr(nfm+ 1) | exp (= po)dxde,
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C,=m™1Q2r)~ 4D (nfm+ 1)1
X Szo (P11 +27 T A) exp (— Py 1 — 271 T1™A4)d 2O,
and
Cy=02n)y" 4D (n—d[2)[(m—1)+1)"!
x Lo [det {(A4/2)"! sinh (4/2)}1"1/2 exp (= p,,_,)d£°.

Remark. dX° is an induced density on X° by p, and dxdé. If
(u, v) is a local coordinate such that X°={u=0} (locally), we define it as
dZ°=[det (H,,)] '/?®dv, where ®dudv=dxd¢ and H

Pm With respect to the variable u.

is the Hesse matrix of

uu

Remark. In the case that n—md/2=0, p,,_,+2"'Tr“4 is changeable
to any other positive function of homogeneous order m—1. C, depends only
on dX° (Refer to (4.3.35).)

§0.4. On Proofs

If we assume that exp ¢ belongs to L3, we get (0.4.1) by applying the ex-
pansion formula of products of two pseudodifferential operators with Weyl
symbols. (Refer to Chapter 1.)

(0.4.1) ((d/dt)+ P)oexp ¢

=(d/dt) exXp ¢ + Z%=O (2i)—k(k!)_10'k(pma exp ¢) +pm— 1 €Xp ¢’
mod Lg~1-1/2,

We shall find ¢ such that it will belong to L§=1~2. In fact ¢ defined in Theorem
0.1 satisfies it. Especially ¢, satisfies approximately (0.4.2) at a neighborhood
of 2 x {t=0}.

(0.4.2) (d/d)p;+ Zi=0 Q)T (k)™ o pm> €XP P1) €Xp (— 1)+ Ppu-1=0
¢1 |:=o=0-

Differentiating twice this equation, we get an approximate equation (0.4.3)
for X=iJ,V%¢,.

0.4.3) (d/d)X +A—4"14X2=0
X ‘ t=0— 0.
The solution of this equation is given by X = —2tanh (4t/2). Going back to
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(0.4.2) ¢, is obtained. Next the transport equations (0.4.4) will be solved
approximately and f=1+f, +f, +---will be obtained.

(0.4.4) (dldD)f+Zk=1 QD KDH{ol P feXD }1) — 0(Dyy €XP D1) [}
x exp(—¢,)=h,
Sli=0=0.

However tanh (At/2), F(At/2) and so on will appear in the expression of ¢ and
f; obtained in this way. The detailed discussions are needed to show that they
are well defined and that f; exp ¢ belongs to Lg®/. We shall take the necessary
steps in Chapter 1.

Once a parametrix has obtained, a fundamental solution E(f) will be obtained
by solving the Volterra’s integral equation (0.4.5) of pseudodifferential operators,
where Ey(t)= >_ f; exp ¢ and Gy(t)=((d/dt)+ P)Ex(t).

(0.4.5) E()+ S; E(t—35)Gu(s)ds = Ex(f).

This part will be shown in Chapter 2. Theorem 0.2 will be proved in
Chapter 3. Chapter 4 will be put to prove Theorem 0.3 and 0.4. Some notes
about Hamilton matrices and pseudodifferential operators will be given at

Appendix.

Chapter 1. Construction of a Parametrix in Terms
of Pseudodifferential Operators

This chapter is the main part of this paper. We prove Theorem 0.1. In
Section 1.1 we give two equations. One is approximately satisfied by the
complex phase function given in (0.2.3) (Section 1.4), which is exactly con-
structed in Section 1.2 and the other is a transport equation with respect to the
complex phase function. The amplitude functions satisfy it inductively (Section
1.5). The proof is completed in Section 1.6.

§1.1. Approximate Equations

We start with a proposition for the expansion formula of the product of
two pseudodifferential operators.

Notation. Throughout this paper except for Introduction, F*a means a
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weighted one, that is, for an infinitely differentiable function a(x, &) it is defined
by

Pa= 3 juspi=k CipaBdOdxy, Chy=k!falp! and
af) =&y 125850a(x, ¢).

Therefore A and b are weighted according as the definition in Section 0.1.
Remark. If p belongs to L™, then F'* p belongs to L7k,

Proposition 1.1.  If a; belong to S™"8;., and p(i)>6(3—1), i=1, 2, then
the symbol aca, of the product operator a,(x, D)ay(x, D) has the asymptotic

expansion.
(1.1.1) aoa, =Y 5 QRiy kY toPkay, Fra,) mod S™%.
Proof. It is given at Appendix. q.e.d.

Remarks. 1) o, are bilinear forms on T*(T*R"). (T*(T*R")
< T*R*x C.) 6o(u, v)=uv, o,(u, v)=<J,u, vy and o, are natural extensions of
o, on T*(T*R"). (Refer to Appendix.)

2) It is a special feature of Weyl symbols that a well regulated symbol
appears in each term of the expansion.

3) oWF*a,, V*a,) may be denoted by o(F*a,, F*a,) or o,(a;, a,).

4) The n-th partial sum of (1.1.1), X ¥_o(Ri) " (kD) tow(ay, a,), is denoted
by a;o(,)a;.

Let us consider the product of p and exp ¢. We assume that exp ¢ belongs
to LY. p in (0.0.1) belongs to L7,,. Therefore, a,(p, exp ¢) belongs to Lp~*/2,
because F*p and P*(exp ¢) belong to L77¥/2 and LJ, respectively. So we get
(1.1.2), where g, exp ¢ belongs to L=3/2,

(1.1.2) ((d/dt)+ p)oexp ¢

=¢.exp ¢+ 202 (k) 'oi(p, exp p)+goexpp  mod S™*.
Outside of the characteristic set X of p,, 6o(Pm €XP @)=DpneXp ¢ is the term
with the heighest order m. It is natural that the equation satisfied by ¢ seems
to be (1.1.3).
(1.1.3) ¢.exp ¢+ pnexp ¢=0, thatis, ¢,+p,=0.

On the other hand p,, and F p,, vanish on X. (2i)"22716,(p,y, €Xp )+ P,n—1 €EXp ¢
will be the term with the heighest order m—1 there. In fact it will be clear
later that Condition (A) guarantees it. Therefore we think of (1.1.4) as the
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equation that the complex phase function ¢ should satisfy on a neighborhood
of Z.

(L.14)  ¢rexp ¢+ Xi=o 2D (k") 0Py €XP ¢) + Py 1 €Xp 9 =0.

Calculating o,(p,,, €xp ¢) we get the equation (1.1.5).

(1.1.5) ¢4 Pt Pr—1+()7'01(P Py 7 )+ (207227 0,(P 2Py, V $F )
+@2)7'2710,(P ?p,, F2¢)=0.

This is rewritten as follows. (Refer to Appendix.)

(1.1.6) ¢+ Ppt P 1+ QD) KI VP, V§> —(20) 227K ¢, TV 2ppd ¥ $)
—(Qi)y22" 1 Tr (JF?p,J P 2¢)=0.

We call (1.1.4), also (1.1.5) and (1.1.6), the first approximate equation.

Remark. It is enough for the complex phase function ¢ to satisfy ap-
proximately (1.1.4), that is, to find ¢ such that

(1.1.7) Get Pt P 1 +(20) 101V Dy 7 ¢)
+@20)72270,(F 2, VOV 9+ V2P) =9,

where g, exp ¢ belongs to Lg~174(g>0).

Next we look for a transport equation in order to make the remainder
term (go+¢,) exp ¢ of (1.1.2) and (1.1.7) vanish inductively. Let the remainder
term g exp ¢ belong to L™~ 1. We will find an amplitude function a such that

(1.1.8) the order of (6,+ p)ecaexpp—gexp¢ islower than [+m—1.

We assume that we could find a such that aexp ¢ belongs to L). Operating
(0,+ p) to aexp ¢, we get (1.1.9).

(1.1.9) (0, + p)eaexp ¢
=(a,+ad)exp ¢+ X% Q) (k) Yo p, aexp ¢p) mod S~*.

o(pms a €xp @) belongs to LE™3/2 if k>3, and 6,(p— p., ae€xp ¢) belongs to
Litm=3/2 if k>1. These imply (1.1.10).

(1.1.10) (0,+ p)eaexp ¢
=(a,+a¢,) exp ¢+ Xi=0 2i)(k!) 0P a€xp §)
+Ppm-1a€xp ¢, mod Lim3/2]
=[a,exp ¢+ X¢-; )7 (kD)™ {ou(Pm> a exp §)—ac(p,,, exp P)}]
+a{¢,exp ¢+ Xi=0 2)HKk!) " 0(Pp> €XP @)+ Ppm-1XP ¢} .
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We can expect for the second term ag, exp ¢ to belong to L{™ 172 (¢>0) by
(1.1.7). So we get (1.1.11).
(1.1.11) (0,+p)eaexp ¢

=a,exp ¢+ Xi=, Q) (kD) {ow(pms aexp ¢)—aoy(p,, exp ¢)},
mod Litm—1-¢,
This implies that (1.1.8) holds if we define a by a solution of (1.1.12).
(L.1.12) a,exp ¢+ XE=; ()7 (kD) {ou(Pms a €xp ) — aoy(py, €Xp §)}
=gexp¢.
We can rewrite (1.1.12) as (1.1.13).
(1.1.13) a,+Q2) e (Fp,, Va)+ Qi) 12716,(V?p,, VaV ¢+ V2a)
=g .
We call (1.1.12) and (1.1.13) the second approximate equation.

Remark. 1t is also enough to get an approximate solution.

§1.2. Definition of ¢,
(1.21) 1= — put— P 1 — ' (b1[2, F(At/2)b1[2)
—271Tr (log [cosh (A4t/2)]).

We explain how to have found ¢, (0.2.3) or (1.2.1) before we prove for ¢,
to be well defined. If ¢, is a solution of the first approximate equation (1.2.2)
the derivatives of the both side of its equation also have to hold. In them we
neglect the terms which include the derivatives of ¢, and p,, with more than
second order by the same reason as we induced the first approximate equation,
that is, by reason that we expect to find ¢, such that it is possible under con-
dition (A). We also neglect the derivatives of p,,_;. Then we get (1.2.3) and
(1.2.4), where H,=V2¢, and H,=V?p,,

(1.2.2) (d/d)$ 1+ P+ P 1+ 271KV Py J 1V §1> +871 Tr (J 1 HJ 1 Hy)
+8_1<V¢1, JII{FJIV¢1> =0 .

(1.2.3) (d[d)(J 7 $)+J 1P ppt 22 \Hpd |7 by —271id \H 4 J P
+4—1J1H¢J1HPJ17¢1=0.

(1.2.4) (d/dt)(JH,)+J H,+274(J H,) (J H )= 271i(J  H ) (J, H,)
+4_1J1H¢J1HPJ1H¢=O .
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We put X=iJ,H, and A=iJ,H,. We assume that X and 4 are commutative.
Then we get (1.2.5).
(1.2.5) dldX+A—-4"14X2=0.

Since we should get ¢, such that ¢, |,~,=0, the initial condition of (1.2.5) must
be (1.2.6).

(1.2.6) X,20=0.

We know that the solution of the initial value problem of the matrix valued
ordinary differential equation (1.2.5) and (1.2.6) is given by (1.2.7) if it is well
defined.

(1.2.7) X = —2tanh (41/2).

Using this solution we solve (1.2.2) and (1.2.3) as if ¢, F¢, and V2¢p, were
independent of each other. We put y=iJ,F¢, and b=iJ,Fp,. (1.2.3)
implies (1.2.8).

(1.2.8) @ldt)y+b+2"14y—2"1Xb—-4"1AXy=0
Vlt=0=0.
(1.2.9) is the sclution of (1.2.8).
(1.2.9) y=A"1Xb.
We get (1.2.10) by (1.2.2).
(1.2.10) (d/dt)py+py+ Pp—1+27ticl(b, y)—8 Liol(y, Ay)—8 1 Tr(XA4)=0.
Thus this implies (1.2.11) replacing y by (1.2.9).

(1.2.11)  (d/dDG, + Pp+ Py +2-Yic (b, A= Xb)—8~1ic'(A~1Xb, Xb)
—8~1Tr (XA)=0.

If we note (1.2.13) and (1.2.14), we get (1.2.12).

(1.212) ¢y =—(Pm+ Pm-t+27ticl(b, A~ YA X +1)b)+ 871 S; Tr (X A)ds .
(1.2.13) ol(b, A~1Xb)=0. (o' (u, A" Xv)=0Y(4A"1Xu, v).)

(1.2.19) 8] Xeds=2tamx 4271

By the way we know (1.2.15) and (1.2.16), where F(1) is defined by (0.2.4).

(1.2.15) 2-LAY(ATIX + )= — F(A1/2) (t/2)?.
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(1.2.16) g-1 S‘ Tr (AX)ds= —4-1 Tr S' tanh (At/2)Ads
4] (4]

= —2"1Tr (log [cosh (41/2)]).

Substituting them in (1.2.12) we get ¢, of (1.2.1).
Now we consider about F(At/2) and log (cosh At/2). They are defined in
the form of Dunford integral (1.2.17) using the resolvent (A—A)~! of A.

(1.2.17) fiy=@aizt| fG)G— A 1da,

where f(1) is a holomorphic function on a neighborhood @ of the eigenvalues
of A and I is a contour which is included in Q and rounds the eigenvalues of A.
It is necessary to point out the place, where the eigenvalues of A exist, in order
to use this definition. Since the Hesse matrix H,=F2p, is non-negative on the
characteristic set X~ of p,,, all eigenvalues of A4 lie on the real axis. However
H,=VF?2p, is not always non-negative out side of X. Therefore they swell out
onto the complex plane. We estimate the width.

Proposition 1.2. Let G be a real symmetric matrix on C?" and J be a real
unitary matrix such that J?=—I1. We assume that G+6,I=0 for a real
0o If 0o=|Im A|2{2B+2(B?+3|Im A|?)1/2}~'  and ImA#0, where B
=supso {Gf, OIS, ), then there exists the resolvent (A—iJG)™! of iJG such
that (1.2.18) holds for 0<k<1 if A satisfies (1.2.19) and Im A#0.

(1.2.18) [(A—iJG) Y
<(4B?+5k2|Im A|?)12{k(1 — k)|Im A]2}~!, when B>0,
or
<212{Im Al(L—=k)} L, when BZ0.
(1.2.19)  k2|Im A|]2{2B+2(B? +3k2|Im A|]?)1/2}-1= 4§, .
Remark. We shall prove Proposition 1.2 at Appendix.
We may identify T(T*R") and R2"xR2?". We denote its element by
(X, Y), where X=(x,£) belonging to T*R" and Y=(y, n) belongieng to
To(T*R™). We also use the notation that x;=X;, {/=XJ, y;=Y; and pi=Y/.
Let x and ¢ stand for a mapping on Tyx(T*R") and a mapping from Tyx(T*R")
to T*R", which are defined by (1.2.20) and (1.2.21), respectively.
(1.2.20) AN =xx(V) =72y, L&)
(1.2.21) t(V)=¢x(Y)=Y.
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Let p belong to LYT,. We get (1.2.22) by the Tayler expansion, where
Y' =¢x(Y).
(1.2.22) p(X+Y)=p(X)+<F p(X), Y>+2"KP*p(X)Y, Y>+¢(X, Y).

(1.2.23) g(X, Y)=2-1 S; P3p(X +0Y")(Y)(1—0)2d6.

Proposition 1.3. If p belongs to LY}, and p=0, then we get (1.2.24) for

a constant cg.
(1.2.24) infy = 1 <P2p(X)u, up 2 — cop(X)1/3¢EH2m371.

Proof. We assume that |u|=1 and <F2pu, u)=—45,, (§o00). Sub-
stituting Y=pu at (1.2.22) we get (1.2.25), where u is a constant.

(1.2.25) 0Zp+ulPp, uy+2"1u2(P2pu, ud+g(uu).

(1.2.26) gu)=2-143 S: P3p(X + Opcyu) (u) (1 —6)2d6.

If we assume (1.2.27), g(uu) is estimated as (1.2.28) because 2{{>=3 %, |(X
+0ucxu)|+1= (&>)2.

(1.2.27) |l 27152,

(1.2.28) lg(uu)] S cp3CEH™312.

Particularly we put u=gop(X)/3(&)~m3+1/2. If a positive number g, is
sufficiently small, (1.2.27) holds. So we get (1.2.29).

(1.2.29) 276ou* S p+udP p, up +cegp.

This implies (1.2.30) and so (1.2.31).

(1.2.30) 2152 < (1 +ced)p.
(1.2.31) 0o=2u%(1+ced)p
=2e52p 23 )3 1(1 + ced)p
=copl/3EYIM3TL) ¢ =265%(1 + ced) . g.e.d.

Combining Propositions 1.2 and 1.3 we get Proposition 1.4.

Proposition 1.4. Let p belong to LY, and p=0. There exists a constant
¢, such that (1.2.33) holds if (1.2.32) holds.

(1.2.32) ¢, pYSCEYSMIS=11 < [Tm A, (t>0).
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(1.2.33)  (A=35)"=8(IS|I*+Im A]*)*/2[Im 4|2,
where S=At=iJ V2pt.

Proof. 1t is enough to prove it when t=1. We apply Proposition 1.2
to the case that G=F2p(X), §o=cop(X)'/3¢L)?>m/3~1 and B=sup,..(Gf, )/
{f,f>, where ¢, is the one in Proposition 1.3. We get immediately (1.2.35)
under the condition (1.2.34).

(1.2.34)  k2|Tm A[2{2B+2(B? + 3k2|Im A|2)1/2}~1 2 ¢, p(X)1/3¢Ey2mi3-1
(1.2.35) (A= S)!|| S(4B2+5k2|Im 2|2 2{k(1 = K)Im A|2}~1,  (B>0),
or

S2Y2{Im Al(1-k)}~t,  (B=0).

Lemma 1.5. Let o, f and pu be non-negative. If they satisfy (1.2.36),
then the inequality (1.2.37) holds.

(1.2.36) 0> pA{2B+ 2B+ u2) Y
(1.2.37) u<2o+2(afp)l’?.

In Lemma 1.5 we put oa=3c,p(X)1/3(&Y2m3-1 f=|B|, u=312k|Im A|
and k=1/2. Then we get (1.2.38) for a constant ¢ since a+f=c'{&Xm 1,
(1.2.38) < cort/2{EYmI2=1/2 = (3[4)112¢, plI6EYSmI6=1
Thus we conclude that (1.2.34) holds if (1.2.39) holds.
(1.2.39) [Im 4| =c,p!/6{EYSmi6=1,

Therefore (1.2.35) holds as k=1/2. For any B (1.2.35) implies (1.2.33) putting
k=1/2 because 4(4B?+(5/4)|Im 2|>)1/2<8(B*+|Im A|?)!/2 and 8!/2<8(B?
+{ImZ [)1/2|]Im 2|~ 1. q.e.d.

Proof of Lemma 1.5. Since [+(f2+u®)12Z2f+p, a>p2(4p+2u)71.
So we get that p?2<2ou+4of. This implies that p<a+(a?+40f)!/2<2a
+2(af)l’2. q.e.d.

Let us use the definition (1.2.17) for a holomorphic function g on the closed
domain D={A=a+ib; |b|—|a|=1/2} of C. g(S) is well defined if the
eigenvalues of S lie in the zonal domain {4; [Im 1] <1/2}.

Proposition 1.6. Let Q, be a neighborhood of the characteristic set X
of p,, such that
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(1.2.40) Q,={X; tp(X)/e{EH ™I~ S} .
g is a holomorphic function on D such that
(1.2.41) [g(A)| £ c(1+|A))* on D for some constants ¢ and k=0.

1) There exists u>0 such that g(At/2) is well defined if X belongs to
Q,, where A=iJ,V2p,, and g(At[2) is given by (1.2.17).

2) On the domain Q, of 1), g(At/2) has the estimate (1.2.42) for integers
1=20.

(1.2.42) 17'g(At[2)[| S ¢ (1 +t{Eym1)2tkr1(Ey=tiz,

Proof. 1) Let ¢; be the one in (1.2.32) of Proposition 1.4. We fix a
parameter p such that O<c,u<1. Then the eigenvalues of At/2 lie on the zonal
domain {4; |[Im 1| <1/2} by Proposition 1.4. Thus 1) is valid.

2) Let the another domain D, be defined such that D, ={4; |Re 4| <2a+1}.
(A—S)~! is holomorphic in A out side {4; |[Im A|<c,u/2<1/2 and |[Re 1| Z|S][],
where S=At/2, and satisfies the estimate (1.2.33) and (1.2.43).

(1.2.43) IA=8)~ I =0A—=1sD~t i |A>]S].

We take a contour I' in (1.2.17) such that '=d(D A D’ 5). Weput I'y=IA0D
and I',=IA0D's. Since [Im A|<2| S| +3/2 on 7, (1.2.33) and (1.2.43) imply
(1.2.44) and (1.2.45).

(1.2.44) I(A=S)y Y <c(l+|SPIm A2 on T,.
(1.2.45) [A=S)"'|Sc(L+|S])"* on TI,.

We get (1.2.46) and (1.2.47) for integers [=0 noting that [[F!S| S cpg(E)m—1-1/2
because p,, belongs to LT,.

(1.2.46) [7Y(A—S)1]
So(L+ O™ DA +SDHIE Y2 Im A72H*D on Ty
(1.247) |7i(A—S)]
So(1+KEO™HIA+[S)™KEHY2 on T,.
Now we estimate F'lg(At/2)= (2m')-1§r gAY (A~ Sy tdA.
(1.2.48) [Pig(At[2)]| =(2m)~* Sr lgDI7HA—S)tdA

se{, A+ IS+ Ko Im A2
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+C’Sr2 (L [ISIF 114+ EHm= 1) EH 120,
2lIs|j+3/2

S e {(L+ IS+ 1< E ey -2+ g

1/2
2|isll+3/2

L e G R LR
S+ S +KE™YE
Sofl ORI,

where the constants ¢; are changed suitably. q.e.d.

Examples. tanh i, A 'tanhlA, iF(A)=A"'(1—A"!'tanhd), cosh/, log
(cosh 4), (A1 tanh A)1/2, F(A)(1+(A~! tanh A)V2)=1, JF(2) (1 +(4"! tanh A)1/2)~1
and (exp (—240)+1)(exp (—22)+ 1), where 0= < 1.

We use the function g(S) on supp ¥, (k=1, 2) which are defined by (0.2.7).
Lemma 1.7 guarantees it.

Lemma 1.7. Let 6 and ¢ be those appearing in the definition of ¢,. If
0 <(1—2g)/6, there exists T>0 such that suppy(k=1,2) is included in Q,
for t of [0, T]. Therefore the eigenvalues of S= At/2 lie on the zonal domain
{A; Im 4| <1/2} and also g(S) of Proposition 1.6 is well defined on supp ¥,
and has the estimate (1.2.42).

Proof. supp, is included in supp ¥, ={p,{EXI"m 2654} A {t(&Epm1-9
<4).  Z=tpl/6(EYSmI6-1 K QB EYM=1+2e=1/6 If m—1+(2e—1)/6<0, it is
sufficient to take T=p2"13. If m—1+Qe—1)/6=0, then m—1-6>0.

Zé 21/3t((1—2c)/6—'6)/(m—1"5)(t<é>m~1—6)(m—1+(25"l)/6)/("!-]—6) §21/3+2¢tﬁ’

a=(m—-14+Q2e—1)/6)[(n—1-56)=0 and f=((1-2¢)/6—0)/(m—1-5)>0.
Thus we also get T'>0 which satisfies that 21/3+2¢TF <y, q.e.d.

In conclusion we state the following proposition to finish this section.

Proposition 1.8. ¢, of (1.2.1) is well defined on supp ¥, k=1, 2, if
0<(1-2¢)/6 and if t is sufficiently small.

§1.3. A Class of Pseudodifferential Operators

We introduce a kind of classes for symbols which is convinient to construct
the parametrix at a neighborhood of the characteristic set 2 of p,,.
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Let Q, be a domain such that
(L3.1) Qo={(t, x, &); pnS8EHI™1*22 and ()17 <8},
We define N(j, k, I) a subspace of C**(Q,) through the four steps (1.3.2-5),

where j and k are integers, and [ is a real number.

(1.3.2) f belongs to N(0, 0, I) if and only if for any integers « and f=0 there
exist constants c(e, f) and d(e, B) such that

(027 f1S e, B) (1 +1KEHmHHILEHIPeratm=D  on Q.
(1.3.3) When j=0 and k=0, f belongs to N(j, k, 1) if and only if
S=(KE™ )Y *g(tF p,),

where g({) is a polynomial of homogeneous order k in { with coefficients in

N(, 0, I).
(L.3.4) N(j, k, )=N(j, 0, I+ke) when j=0 and k<O.
(1.3.9) N(j, k, D=N(0, k, ) when j<O0.

We get immediately Proposition 1.9.

Proposition 1.9.

(1.3.6) N(j, k, I) are N(0, 0, 0)-modules.
(1.3.7) N(j, k, I) is included in N(j, k—1, [+5¢).
(1.3.8) N(j, k, 1) is included in N(j—1, k, I).

If f belongs to N(j, k, 1), then we get (1.3.9-11).

(1.3.9) Pf belongs to N(j, k—1, )+ N(j, k, [—¢) which is included in
N(j, k—1,1).

(1.3.10) 0,f belongs to N(j—1, k, m—1+1).
(1.3.11) Stfdt belongs to NGi+1, k, [—m+1).
[s]

(1.3.12)  N(j, k, DN(J', k', I') is included in N(j+j', k+k, [+1).

Remark. It is not necessary for the domain of functions in the definition
of N(j, k, I) to be restricted to Q,. We may define all relation on R” uniformly,
though we can not expect that (1.3.7) and the inclusion at the last part of (1.3.9)
hold. We denote it by N,(j, k, ). When we construct the parametrix out side
of the characteristic set 2 or in the whole space, we will use this notation.
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Let H; (i=1, 2, 3) stand for subspaces of C~*[0, + co) which are defined
by (1.3.13).

(1.3.13) H,={h; supp (d/dt)h is included in [1, 2]},
H,={h; supp h is included in [1, +c0) and h belongs to H,}

and
Hy={h; supp h is included in [1, 2]} .

We put h; =y, where i is the onc in (0.2.7). Then h, belongs to H, and (1 —h,)*
belongs to H, for «a>0. h, satisfies (1.3.14) for all n=1, for all a such that
1>a20 and for some h,,) belonging to Hj.

(1.3.14) (d]dtyhy =gy (1= 1)

And also (1 —h,)* satisfies (1.3.15) for all f# such that «>f£>0 and for some
(g, belonging to H .

(1.3.15) (dldty(1=h)*=hgp(1=h)E.
Next we define subspaces H,(1) of H; i=1, 2, 3) for +00=u=0.
(1.3.16) Hl(0)=H1 .

(L.3.17) H{p) consists of elements h of H; such that h=h,(1 —h,)* for any «
such that u>« =0 and for some h,,, belonging to H;, if u>0.

They have the following properties.

(1.3.18) H{p) is included in H(u') if u>p'.

(1.3.19) (d/dt)*h belongs to H;(u) for n=1 if f belongs to H(u)(i=1, 2, 3).
(1.3.20) H,(1)=H,(p) includes H;(p) if u>0.

(1.3.21) H, (w)H{y') is included in Hy(p+u').

Moreover we consider ¥,(1) and ¥, function spaces on @, which are
defined by (1.3.22) and (1.3.23), respectively.

(1.3.22)  belongs to ¥,(u) if and only if W(x, &)=h(p(x, )XE>1-m2¢) for h
of Hy(n).

(1.3.23) 4 belongs to ¥, if and only if  vanishes on {t{£>™1-9<1}.

We define N(j, k, I, u), which are N(0, 0, 0)-modules generated by
Y, (N(j, k, [), by (1.3.24) and N~® by (1.3.25), respectively.
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(1.3.24) N, k, I, =Y (N, k, ).

(1.3.25) N=2=¥,A Y NG, k. D).
We arrange their properties in Proposition 1.10 and 1.11.
Proposition 1.10.

(1.3.26) YP,(W)¥,(u) is included in ¥ (u+ ).

(1.3.27) N(j, k, I, wN(j', k', ', u') is included in
N@G+j's k+K, 1+1, u+p).

(1.3.28) N(j, k, I, p) is included in N(j', k, I', &) if j=j', ISI' and pzy'.

(1.3.29) N(j, k, I, w) is included in N(j, k—1, 1+¢, u). (Refer to Propo-
sition 1.19.)

(1.3.30) ¥,(w) is included in N(0, 0, 0, ).

(1.3.31) If ¥ belongs to ¥(u), then FVy belongs to N(0,0, —1/2, p)
+N(0, 1, —2e, ).

If f belongs to N(j, k, 1, 1), then we get (1.3.32--35).
(1.3.32) fPp,, belongs to N(j, k+1,1+m—1, p).
(1.3.33) V7 f belongs to N(j, k—1, I, u). (P*f belongs to N(j, k—v, [, 1r).)
(1.3.34) 0,f belongs to N(j—1, k, I+m—1, p).

(1.3.35) S; fdt belongs to NGi+1, k, I—m+1, p).

(1.3.36) If f belongs to N~*, then V f, 0,f and Stfdt belong to N™*.
0

(1.3.37) N~*N(j, k, 1, ) is included in N-=.

Proposition 1.11. We get the relation (1.3.38-46) for Y1, ¥? and {; of
0.2.7).

(1.3.38) Y1 belongs to ¥ ,(0) which is included in N(0, 0, 0, 0).
(1.3.39) 1 —y? belongs to ¥, which is included in N=%.
(1.3.40) (1—-vHN(j, k, 1, w) is included in N-.

(1.3.41) (1—y?) belongs to N(0, 0, 0, 1).

(1.3.42) (1 —=yHN(, k, I, p) is included in N(j, k, I, p+1).
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(1.3.43) y,=ylYi=yi—yi(1—y?) belongs to Y}+N~* which is included
in N(0, 0, 0, 0)+N-=.

(1.3.44) 1—y;=1—-y1+y}(L—y?) belongs to | —yi}+ N~* which is included
in N(0, 0,0, 1)+ N—>.

(1.3.45) (1—y )N, k, I, p) is included in N(j, k, I, u+1)+N~%,

(1.3.46) Py, belongs to —V(L—y1)+V N~* which is included in
N(@©, —1,0, D+ N—>.

Remark. NJj, k, |, p) and N3® are also well defined as ¥,(u)N,(j, k, )
and ¥, A X in NyUs k, 1), respectively. They satisfy Proposition 1.10-11
without (1.3.29) and (1.3.33). (1.3.33) should be left as (1.3.47).

(1.3.47) V fbelongs to N(j, k, I—¢, )+ N,(j, k=1, L, j1).
The relation between N and N is given by (1.3.49-50).

(1.3.48) Y,N(J, k, 1, p) is included in N,(j, k, |, p)+N7;*
and N(j, k, 1, p) is included in N(j, k, I, pt) .

(1.3.49) Y,N~* is included in N;*, which is included in N~*.
We introduce some class by gathering N or N, as (1.3.50-53).
(1.3.50) N* (j, k, 1, =2 NGy v, 1 ).

It is clear that Proposition 1.10 and 1.11 are valid for N*(j, k, I, i) substituted
in the place of N(j, k, [, u).

(1.3.51) N**(j, k, I, =25 oN*(j+v, k+v, I, ).
(1352) N_:;(.]a ks I, ﬂ)=2v__<_k Ny(j! v, 15 ,l.l).
(1.3.53) NEG, ky 1, 1) =Y s0 N3G+, k+v, I, 1).

Finally we define N,(j, k, [, out), which consists of functions belonging to
N,(j, k, I, +00) and supported on supp (1—3). Wealso define N}(j, k, I, out)
and N}*(j, k, 1, out) in the same way as (1.3.52-53).

§1.4. First Approximate Equation

In this section we show that the complex phase function ¢ given in (0.2.6)
satisfies the first approximate equation (1.1.4) in the sense of Proposition 1.12.
We consider it only on supp ¥,.
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(14.1) o=y 101 +(1=¥)p,=¢; +(1 =Y ) (P, — ).
Proposition 1.12.

(142) (d/dt)¢+pm+pm—l+(21)_161(mea V¢)

+(20)722720,(V 2Py, VOV o+ V7 29)
=0, modN(3,3, m—1—¢ 0)+N(, 1, m—1—¢, 0)
+N(,0, m—1-2¢, 0)+ N2, 2, m—1, )+ N0, 0, m—1, )+ N~.

Proof. We reduce V¢, F2¢ and (d/dt)¢ to prove Proposition 1.12.

(1.43)  ¢,—¢,
=1P,u—1+01(bt/2, F(At/2)bt/2)+27'Tr (log [cosh (At/2)])— (&Y™,

which belongs to N(1,0, 0, 0)+ N(2, 2, 0, 0), because log [cosh (4)]=2Af(4),
where f(4) is bounded on the domain D in Proposition 1.6. This implies
(1.4.4-5) by (1.3.45) and (1.3.33).

(1.4.4) (1—y)(p,—,) belongs to N(1, 0,0, 1)+N(2, 2,0, 1)+ N~™.
(1.4.5) F{(1—y)(¢p,— )} belongs to N(1, —1,0, 1)+ N(2, 1,0, )+ N-*.
Therefore we get (1.4.6-7) also using (1.3.33).

(1.4.6) Po=r¢,, mod N(1, —1,0, )+N(2,1,0, 1)+ N~
(1.4.7) P2p=F2¢p,, mod N(1, —2,0, 1)+ N(2,0,0, )+ N~

We further reduce V¢, and /2¢, noting the form of ¢,.

(1.4.8) ¢y=—1tp,—tp,-,—0ol(bt/2, F(At/2)bt[2)—21Tr (log [cosh (At/2)]).

Since tp,,_ 1, F(At/2) and Tr (log [cosh (4¢t/2)]) belong to N(1, 0, 0, 0), we get
(1.4.9-12), where f(2)=A""'tanh A(=1+21%f~(A)) and f;(4)=tanh /.

(1.4.9) iJF ¢, = —fo(At[2)bt, mod N(3, 2, —1/2, 0)+N(1, 0, —1/2, 0).
(1.4.10) iJ,F ¢, belongs to N(1, 1,0, 0)+ N(1, 0, —1/2, 0),

because N(3, 2, —1/2, 0) is included in N(1, 1, 0, 0).

(1.4.11) iJ,F2¢p,=—-2f,(A41/2), mod N(2, 1, —1/2, 0)+N(1, —1, —1/2, 0),
because N(3, 1, ~1/2, 0) is included in N(2, 1, —1/2, 0).

(1.4.12) F2¢, belongs to N(1, 0, 0, 0)+ N(1, —1, —1/2, 0).

In conclusion we get (1.4.13-17).
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(1.4.13) iJ,Fp=—fo(At[2)bt,
mod N(3, 2, —e, 0)+ N(1,0, —¢, 0)+N(2, 1,0, 1)+ N~%,
because N(1,0, —1/2,0) and N(1, —1, 0, 1) are included in N(1, 0, —¢, 0),
where e£1/2.
(1.4.14) iJ,P2¢p=—2f,(A1]2),
mod N(2, 1, —e, 0)+ N(1, 0, —2¢, 0)+N(2,0,0, N+ N">,

because N(1, —1, —1/2, 0)+N(1, —2, 0, 1) are included in N(1, 0, —2¢, 0).

(1.4.15) o6,(F?p,, V2¢)=Tr (iJ F?p,,-iJ F2¢)= —2 Tr [Af(A4t/2)],
mod N(2, 1, m—1—¢, )+ N(1,0, m—1—¢, 0)
+N@2,0, m—1, )+ N~

(1'4'16) 0'2(7217,", Vd)' V¢)= _<V(/)a JlepmJlVd)>

=f0'1(l'J1V¢. iJ]Vzpm' i.IlV¢)

=io'(fo(At/2)bt, Afo(At[2)bt),

mod N(4,3, m—1—¢, 0)+N(2, 1, m—1—¢g, 0)

+N@2,0,m—1-2¢ 0)+N(@3,2, m—1, )+ N-*,
because AiJ V¢ belongs to N(1, 1, m—1,0)+N(1,0, m—1—¢, 0)+ N~ and
N4, 2, m—1-2¢ 0)+N(@3, |, m—1—g, 1) is included in N(2, 1, m—1—g, 0).
(1.4.17) 01V pps V)= — X (iJ |V P 1J ¥ @)
=c'(b, fo(41/2)b)=0,
mod N(3,3, m—1—¢ 0)+N(l, 1, m—1—¢ O)+ N2, 2, m—1, )+ N~=,

because fo(A) is an even function. (Refer to Appendix.) Thus we get (1.4.18)
from the above properties, where f,(1)=A"1(tanh 2)2.
(1.4.18) (2710 ((F p» V) +(20)227105(P 2pyy, VOV ¢+ 7 2)

=(2i)72ia'(b, fo(At/2)b)t —(2i)"2 Tr [A - f1(At[2)],

mod N(3, 3, m—1—¢, 0)+N(1, I, m—1—¢g, 0)+ N(1, 0, m—1—2¢, 0)
+NQ2,2, m—1, )+N2,0,m—1, )+ N—=,
because Afy(4)?=f,(4), N(4, 3, m—1—¢, 0) is included in N(3, 3, m—1—g, 0),
N(@2,1, m—1—¢g, 0) is included in N(1,1, m—1—¢, 0), N(2,0, m—1—2¢, 0)
is included in N(1,0, m—1—2¢0) and N(3,2,m—1,1) is included in
N@2,2, m—1,1).
On the other hand we get (1.4.19-21) for d,¢.

(1.4.19) 0,¢=0¢,+(1—-¥,)(0p,—0$;)  mod N7*.
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(1.420) 0,4,
= =P~ Pm-1—(20)2ic'(b, f5(A1[2)b)t +(2i)72 Tr [A - f1(A41/2)],

because (d/dt) (12F(A1))=i"'f5(A0)t and (d/dt)(log (cosh it))=Af,(A1).

(1.4.21) 0, —0,9,
=Pm-1+(20)72ia*(b, f2(At/2)b)t — (20)2 Tr [A - f1(A41/2)] - (™

which belongs to N(2,2, m—1,0)+N(, 0, m—1,0). Therefore we get
(1.4.22).

(1.4.22) 0,p= —pp—Pm-1—(20)2ic (b, f2(A4t/2)b)t +(2i)2 Tr [4 - f1(A41/2)],
mod N(2,2, m—1, )+ N(0,0, m—1, )+ N~*.

Combining (1.4.18) and (1.4.22) we complete the proof of Proposition 1.12.
g.e.d.

§1.5. Solution of Second Approximate Equation

The coefficients of the second approximate equation (1.1.12) are not real in
general though it is a linear and first order partial differential equation. We
can not expect to find exact solutions. But it is interested and sufficiently
effective to find approximate ones for defining the type of the parametrix.

Proposition 1.13. Let g({) be an homogeneous polynormial of order k in
{ with coefficients in N(0, 0, 0, 0) such that g({) belongs to N(j, k, l+m—1, p)
if  is replaced by b=iJ,V p,.. We define another polynomial h({) by (1.5.1).
(1.5.1) mO= (| g6, x, & 00, H0ds, and
0

0(t, s)={1+exp (—As)} {1 +exp(—Ar}~1L.

Then, h=h(iJ,V p,,) belongs to N(j+ 1, k, I, ) and satisfies (1.5.2).
(1.5.2) (djdt)h—2"KF h, {1—f,(At/2)}b>—g=0,
mod N(j+1, k+1, I+m—1—s, n), where f;()=tanh 4.

We can take out a leading part of the proof as Lemma 1.14. Let K(t) be a
continuous function valued in L(C"), linear mapping on C", and 6(1, s) be the
solution of the equation (1.5.3).
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(1.5.3) {(d]dt)+:K(®)}*0(t, s)=0.
(s, s)=1I.

We consider homogeneous polynomial g(1) and h(2) of order k in {. They
satisfy (1.5.4).

(1.5.4) kg(D)=<C, G()> and Kkh({)=<L, H(0)>, where G({)=0,9(0)
and (H{)=0d,9(D).

Lemma 1.14. Let h({) be defined by (1.5.5).

(1.5.5) h(e)= S; g(s, 6(1, s)C)ds.

h(0) is a solution of (1.5.6).

(1.5.6) (d/dyh+ <K, H)>=4g(0)
hl,—0=0.

Proof. (d[dD)h =g(C)+S; (d[dn)o(t, ), GO, s)0)>ds
=9(0)— S; €0(t, )KL, G(O(t, s)0)>ds

=90~ <KL, || 10, 960, 904ds)
=g(0)— <K, H()> .
because H({)= S;re(r, $)G(6(t, s)0)ds. qe.d.
Proof of Proposition 1.13. Let us put K(¢) as (1.5.7) in Lemma 1.14.
(1.5.7) K(1)=2"14f,(At/2)—2"14.
Then we get 6(t, s) in (1.5.1) for the solution of (1.5.3). 1In fact the solution of

(1.5.3) is given by exp (—gt K(r)dr) since K(t) and K(s) are commutative.

(1.5.8) - g: K(r)dr=A(1—s)/2—1og (cosh (At/2)/cosh (A45/2)).
So we get (1.5.9).

(159) exp(— g‘ K(r)dr)
=exp (A(t—s)/2) {exp (4s/2) +exp (— As/2)} {exp (A4t/2)
+exp (—At/2)} !
={l4+exp(—As)} {1+exp(—An}'.
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It is clear by definition that A(b) belongs to N(j+1, k, I, p) if g(b) belongs to
N(j, k, I+m—1, u). For Vh(b) we get (1.5.10).

(1.5.10) P {h(b)} = h~(b)+ A'H(b),

where h~()=Fh(), H{)=0h() and h~(b) belongs to N(j+1, k, I—e¢, ).
This means (1.5.11) because {1—f,(A¢t/2)}b belongs to N0, 1, m—1, 0).

(1.5.11) <P h(b), 2-1{1 —f,(At/2)}b>
=CH(b), 27 A{1 —f,(At/2)}b>, mod N(j+1, k+1, I+m~—1—¢, p)
= — (H(b), K(t)b> =(d/dt)h(b)—g(b). q.e.d.

Lemma 1.15. h of N(j+1,k, l, u) gotten in Proposition 1.13 satisfies
(1.5.12) for a given g of N(j, k, [ +m—1, p).

(1.5.12) (d/dDh+ 3=, Qi) (v)) " {o,(pm hexp ¢)
- hav(pma 28y ¢)} €Xp (_' ¢)Eg ’
mod N(j+ 1, k=2, l+m—1, W)+ N(G+1, k+1, [+m—1—¢, p)
+NG+3, k, I+m—1, uy+ 1)+ N>,

Proof.
(1.5.13) {01(Dm> hexp ¢)— hoy(p, €xp ¢)} exp (— )
=0,(pm N)=—i{Vh, b).
(1.5.14) {02(Pu> hexp ¢)—hoy(py, exp @)} exp (—¢)

=62(pln, ’1)—2<Vh, JalJIV¢> .
We get (1.5.15) from (1.4.13).

(1.5.15) JH,J,V ¢ =2f(At/2)b,
mod N(3,2, m—1—¢, 0)+N(1,0, m—1—¢, Q)+ N2, 1, m—1, )+ N,

Since F h belongs to N(j+1, k—1, I, ), (1.5.16) follows.

(1.5.16) (Ph, J H,J,V$p>=2(Fh, f,(At/2)b},
mod N(j+4, k+1, l+m—1—¢ )+ N(+2, k=1, l+m—1—¢, p)
+N(+3, k, I+m—1, uy+ D)+ N,

It also implies (1.5.17) that F2h belongs to N(j+1, k—2, I, p).
(1.5.17) 05(Pms ) belongs to N(j+1, k-2, l+m—1, p).

Therefore we get (1.5.18) combining (1.5.13—17).
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(1.5.18) 3= @)D H{o(Pms hexp §)— ho\(pm, exp $)} exp (— )
=—2"Vh, by +2"KFV h, f1(At/2)b),
mod N(j+1, k=2, I+m—1, )+ N(j+4, k+1, l+m—1—¢, p)
+N@G+3, k, I+m—1, u+ 1)+ N~

We arrive at the conclusion (1.5.12) using Proposition 1.13 and (1.5.18).
g.e.d.

We can rewrite Lemma 1.15 to a handy type using the class N* to apply
the induction.

Proposition 1.16. Let g belong to N*(j, k, l+m—1, p). Then there
exists h of N*(j+1, k, I, u) that satisfies (1.5.19).

(1.5.19)  (d/dh+ Z3-,2)> () {o,(p,, hexp @)
—ho (pm, exp ¢)} exp (—P)=g,
mod N*(j+1, k+1, I+m—1—¢ )+ N*(j+3, k, l+m—1, p+1)+ N~>.

§1.6. Induction and Estimates of the Parametrix

It is left to show two important facts until the proof is complete. One is
that exp ¢ define a pseudodifferential operator belonging to L3. The other is
that exp ¢ permits amplitude functions belonging to N(j, k, I, 1) at a neighbor-
hood of the characteristic set X. We prepare some propositions to answer these
questions.

We consider the Taylor expansion of second order for p,,. The remainder
term is denoted by g(X, Y). (Refer to (1.2.22) and (1.2.23).) We define @,, @,
and h by (1.6.1-4).

(1.6.1) ®, =1p,,+0'(bt/2, F(At/2)bt]2).

(1.6.2) @, =p. (X +exh)t.

(1.6.3) h=ho(At/2)bt .

(1.6.4) ho(2)=(2i)~1F(2) (1 + (A~ tanh 2)~1/2)~1,

F(A)=(@iA)"'(1—A"1'tanh 1).
Proposition 1.17. If y=1/2—3e—66>0 and if t is small, we get (1.6.5-7)
on supp V.
(1.6.5) D, =P,+g(X, h)t.
(1.6.6) lg(X, M= CLEH™ 1.
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(1.6.7) g(X, h) belongs to N(0, 0, m—3/2+ 3¢, 0).

Remark. h is real valued.

Proof. At first we have to note that h is real valued. Since ibt is real, we
have only to show that iy (At/2) consists only of real coefficients. [t follows
from the fact that ho(1)= — hy(—A) and {ihy(A)}c°"i= —ihy(A°°")) on the domain

D applying Lemma [.18. (z°°®J means complex conjugate of z. Refer to
Section 1.2 about the domain D.) (7o be continued.)

Lemma 1.18. Let g be a holomorphic function in Proposition 1.6. We
assume further that ig is a real and odd function, that is, g(A)°°mi= —g(Ac°n))
and g(A)=—g(—2). Then g(At|2) is real, that is, the image of real vectors by
g(At/2) are also real.

Proof of Lemma 1.18. From the definition (1.2.17) of g(At/2) we can show
that g(At/2)=g(At/2)°°"i as follows because 4= —Ac°" and I'= —I°° taken
as in the proof of Proposition 1.6.

(1.6.8)  g(At/2)cori={(2ni)~} S” g(A) (A.— At[2)~1dA}eeni
= — (Zni)-lg-r g(Aconi) (Aconi+ At[2)~tdjcon
= Criyt | g0 (- A2 dp

=g(At[2). q.e.d.

Proof of Proposition 1.17, continued. Applying Proposition 1.6 to h,,
we get the estimates (1.6.9-11) because |V p,,t| < Ct{&)™~1*¢ by Proposition 1.19.

(1.6.9) [Ptho(At[2)] S C (L + K EYm1PHILEH 12,
(1.6.10) n belongs to N(1, 1, 0, 0), which is included in N(O, 0, ¢, 0).
(L.6.11) [R] S C(1L+ K EYm )LD CLEH*e.

If 26+¢e<1/2, then X+0¢yh~X,0Z0<1, as || tends to infinity because h
satisfies (1.6.11). This implies (1.6.12-13).

(1.6.12) [(73p,) (X +0exh)| S CEYm312,

(1.6.13) [PHP3p,) (X +0exh)| < C(1+ 1 E)m 1) gym=3/2-12
By (1.2.23) g(X, h) is estimated as (1.6.14-15).

(1.6.14) g(X, h) belongs to N(0, 0, m—3/2+ 3¢, 0).
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(L6.15) |g(X, W) S C{EM312+3Co+0 = C(Eym1-.,

Since 26 +¢e<1/2 if >0, we get (1.6.6-7) of Proposition 1.17.
The Taylor expanison (1.2.22) means that we should show (1.6.16) to
prove (1.6.5).

(1.6.16) al(bt/2, F(At/2)bt]|2) =V p,, hDt+<V?p,h, h)t[2.
In fact the right hand side of (1.6.16) is rewritten as (1.6.17) by the definition of h.

(1.6.17) <P put, i) +LP>p,thi2, b
=i{ol(bt, h)+a'((A1/2)h, h)}
=i{al(bt, ho(At/2)b1)+ o ((At/2)ho(At[2)bt, ho(A1]2)bt))
=iol(bt, {ho(At/2)+(At/2)ho(At[2)?}bt),

because a'(u, J, f)=<u, > and hy(2) is an odd function in 2. The last term of
(1.6.17) is equal to o'(bt/2, F(At/2)bt/2) the left hand side of (1.6.16) because
ho(A)+ Ahg(2)? = — iF(L)/4. g.e.d.

The other propositions are also based on the following simple and important

proposition which gets our proof into shape under Condition (A).

Proposition 1.19. The principal symbol p,, which is non-negative,
satisfies (1.6.18) for some constant C,

(1.6.18) |V pul? = CppuCE™1.

Proof. The proof is a direct application of Lemma 1.20 which is a well
known result for a non-negative C2-function with a compact support. q.e.d.

Lemma 1.20. Let f be a real valued and non-negative C?-function with a
compact support on R". Then f satisfies (1.6.19), where H/(x) is the Hesse
matrix of f.

(1.6.19) lgrad f(x)|* = 2f () sup,eg~ | H (D) -
We omit the proof.
Proposition 1.21. There exist constanis ¢ and d such that
(1.6.20) [P @,|* <@t 1A +1{E™ ).
Proof. By definition, V'@, is written as
(1.6.21) V@, =RV p,(X+cxh),

wherc
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R=(R;pi,j=1,2, Ry =LKE7 )10y,
Ry =712y~ 20, Ry =<KEVAn)y 0.y,
Ropy =Y n)~120n, and (y, m)=X+c¢xh.

(V p) (X +¢xh) is estimated as (1.6.22) by applying Proposition 1.19, because
(&>~ {n)> as we noted in the proof of Proposition 1.17.

(1.6.22) (7 Po) (X + exh)t|2 S CD,1(EY™ 1.

On the other hand we get (1.6.23) noting that R, ={>Y?Fy and
R, ={n>"12Py, (i=1, 2), because of (1.6.10), (1.3.33) and (1.3.4).

(1.6.23) [Ri| S C(1+t&EHm=1)d,
(1.6.22-23) imply (1.6.20). g.e.d.
Lemma 1.22.
(1.6.24) bt(=iJ P p )= —i{fo(At/2)} VI, F D, + 8,
where f§ belongs to N(1, 0, 2e—1/2, 0) and fo(1)=2"! tanh 4.
Proof. By (1.4.10),
(1.6.25) iJ, /&= —fy(At/2)bt, mod N(3,2, —1/2,0)+N(, 0, —1/2,0).
So we get (1.6.26) since fy(At/2) is invertible.
(1.6.26) bt=—{f,(At/2)}"1iJ,Fd,, mod N(3, 2, —1/2, 0)+N(1, 0, —1/2,0).
(1.6.27) holds by Proposition 1.17.
(1.6.27) Fo,=F®,, mod N(1,0,2—1/2,0).

Combining (1.6.26-27) we get (1.6.24) because N(3,2, —1/2,0) and
N(1, 0, —1/2, 0) are included in N(1, 0, 2e—1/2, 0). q.e.d.

Proposition 1.23. If 6e<1, then there exist constants ¢ and d such that
(1.6.28) 1612 < ct (Y™ H P+ 1™ A+ O™

Proof. We use (1.6.24) of Lemma 1.22. Since f belongs to N(1, 0, 2¢
—1/2, 0), B is bounded by &>~ 1-1/6({ +¢{EYm~1)4,  For F @, there is (1.6.20)
of Proposition 1.21. g-e.d.

Now we estimate exp ¢, which is a product of three parts (1.6.29-31).
(Refer to (0.2.6) for ¢.)

(1.6.29) exp {(1-yY )2} .
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(1.6.30) exp{—y,9,}. (Refer to (1.6.1).)
(1.6.31) exp { — p— 11} [det {cosh (A41/2)}]¥:/2.

Lemma 1.24. If ¢t is small and if y=1/2—3¢—60, we get (1.6.32-33).
(1.6.32) lexp { =@} =exp {—¥; P, } exp {cyy ™71}
(1.6.33) |det {cosh (At/2)}| =2"2"exp {Tr~At}, on suppy,.

Proof. (1.6.32) is immediately proved by (1.6.5). If the eigenvalues of
At/2 are denoted by A,(j=1,..., 2n), {4;} lie on the zonal domain Z={4; |Im /|

<1/2}. (Refer to Lemma 1.7.) And also the eigenvalues of cosh (At/2) are
cosh 4;, which satisfy (1.6.34).

(1.6.34) |cosh 4;]=2"1exp (—Re 4;)|1 +exp (24))]
=2"1exp (Re )1 +exp (—27;)|.
Reexp(—24;)=0 and Reexp (24;) =20 because |Im 24;| <m/2. These imply that
Icosh A;] =27 'exp (|Re 2;]). Therefore we get (1.6.35) because / is an eigenvalue
of At/2 if — 4 is so.
(1.6.35) |det {cosh (4t/2)}| =TT3%, |cosh 4|
2272 exp (232, |Re 2j[)=2"2mexp (Tr~A41). g.e.d.

Proposition 1.25. There exist positive constants ¢ and ¢, such that exp ¢
is estimated as (1.6.36) if t is small, where ¢ is defined in (1.6.37). (Refer
to (0.2.7) for y1.)
(1.6.36) lexp ¢ < co exp (—¢o) -
(1.6.37) $o=Po¥ 1 + put(1 =YD +ct{EH1.

Proof. Since exp ¢ is a product of (1.6.29-31), it is estimated as (1.6.38)
using Lemma 1.24.

(1.6.38) |exp 9|

Scpexp {(1=y)g, =Y (P, —c )™ 177t 4+ Re p, - 1+ 271T174 1)} .
By Condition (A), Rep,,_1+27 1 Trrdt=c €)™ 1 for a positive constant
c3. Since >0 and ¢ is bounded, we get (1.6.39) with positive constants c,
and cs.
(1.6.39) — (= tiKE>m 177+ Re p,,— 1t +271 Tr 4 1)

S —Yieat(Om s

On the other hand (1 —y,)¢, satisfies (1.6.40).
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(1.6.40)  (1=¥y)po=—(1—YDput —Yi(l =Y Hput — (1 —¢ )K"

S (=Y Dput — (L —p Y.
Thus, we get the estimates (1.6.36) for |exp ¢| putting co=c, expcs and
¢=2"'min {¢c,, 1}. q.e.d.

Products of exp ¢ and elements of N,(j, k, /, ) appear in the parametrix
and its derivatives. The following Proposition 1.26 acts effectively on their

estimations with Proposition 1.25.

Proposition 1.26. Let f be an element of N(j, k, I, ), (n<+0). We
assume that j2k=0 and we put v=uf (0=0<1). Then, we get the estimate
(1.6.41) with constants ¢, d and k(v)=x(v,j, k, [), where x(v)=I1—2¢v if
J—k>v, l—e(j—k+v)ifj—kZvand if v<j, or —e(2j—k) if v=]j.

(1.6.41) [F1S c(1+ Po)iEH ™.
(Refer to (1.6.37) for ¢,.)

Proof. By definition f is written as (1.6.42), where (1—yi)*=1 if v=0,

which is estimated as (1.6.43). (Refer to Section 1.3.)
(1.6.42) f=EO™ )i g(tb)(1—y1)".
(1.6.43) [f1= (1 + 2™ Em 1) |tb < EH (A — 1)
We know that &)™ 1<Zctp,(&>~2 and [th|=Zctp,{E>~¢ on supp(l—y).
These imply (1.6.44-46).
(1.6.44) Ifj—k>v,

If1Se(L+1<E™ 1S D) T+ tb| L EH 2= {tp (1 -y D} .
(1.6.45) Ifj—k=vandj>v,

If1S e(1+ 1™ )bl iD=~k {tp, (1 -y D} .
(1.6.46) Ifj<v,

If1Se(1+1EXm 1) EH =B {1p, (1 -y D} .

When j>v, we further estimate them by using (1.6.47) for some o >0.

(1.6.47) If1=ed =y DI f1+e@ )1 f1+9, geNg=.
Since (t{&>™ " 1)B|tb|? < c|tp,,|P*? on supp (1 —y¥}), we get (1.6.48) if a=j—v.
(1.6.48) L=y D1 S eI+ K™D {tp(1 -y} EH*.

On the other hand, we know Proposition 1.23. So we get (1.6.49) with another
constant d if «=j—v.
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(L.6.49)  (¥,)*If]
S eI+ 1< N (@, + (K™ T, (L=< .

Since the remainder term g of N,;* is estimated as (1.4.50), we get (1.6.41)
rewriting d +j+v to d and noting (1.6.37).

(1.6.50) lgl=c(1+1{EHm1)¥EH7,

for any f§ and for some constants ¢ and d depending on f8 because 2{{&)"!
=<&%on suppg. (Refer to (1.3.25) and the remark at the end of Scction 1.3
for N;=.) g.e.d.

Proposition 1.27. Let f be an element of N¥*(j, k, [, u). We put
Pe(fexp ¢p)=g,exp ¢, (x=0). Then g, also belongs to N¥*(j, k, I, p)+N7;>.
(Refer to (1.3.54) for N¥*.)

Proof. By (1.4.6), (1,4,10) and (1.3.48) F¢ belongs to N¥(1, 1,0, 0)
+N;*. Therefore Ff+fF¢ also belongs to N¥(j, k, I, )+ N;* by
(1.3.47) and the definition of N}*. This fact implies inductively the conclusion.

g.e.d.

Proposition 1.28. Let [ be an element of N}¥*(j, k, [, n), (j=kz0).
Then fexp ¢ belongs to L§™ if 0Z<t<T, where v and x(v) are those defined in
Proposition 1.26 and T is a small positive constant which is independent of f.
Especially exp ¢ belongs to L3. More strictly Vifexp¢ are bounded by
;K& M exp (—¢o/2). (Refer to (1.3.53) for N¥* and to the remark after
Theorem 0.1 for L™.)

Proof. By Proposition 1.27 we have only to show that fexp ¢ is bounded
by <& " exp (—¢o/2). fis a finite sum of elements of N, (j’, k', I, ) such
that j'=j and j'—k'=j—k. Combining Proposition 1.25 and 1.26, fexp ¢
with respect to such f belonging to N,(j’, k', I, p) is bounded by ¢y J":k".D
exp (—¢o/2) if we take T as Proposition 1.25 holds. It is also bounded by
c(EYrsdkD exp (— of2) because «(v, j, k, D=x(v, j', k', I') if j'=j,j =k
2j—kand I'ZI. g.e.d.

We have been ready for a construction and estimates of a parametrix except
for how to define amplitudes outside of the characteristic set. However it is
easy as we noted at the introduction and it is written as follows.

Proposition 1.29. Let g, be an element of N(j, k, [+m—1, out). Then
f= g; dodt belongs to N(j+1, k, I, out) and satisfies (1.6.51) for «=0, where
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g, belongs to N (j+1,k I+m—1,out)+Ny(j+1, k+1, [+m—1—g, out)
+N3%.
(1.6.51) (d/dD)(fexp @)+ X5=02) (V) 'a,(p, fexp )
=(go+g)exp¢.
(Refer to the remark at the end of Section 1.3 for N(j, k, 1, out).)

Proof. By definition it is clear that f belongs to N,(j+1, k, [, out) and
satisfies (1.6.52) because ¢ = — p,t—t{E>" ! on suppf.

(1.6.52) (d/dt)(fexp ¢)+ p, [fexp ¢+(20) " o1(py fexp P)

={go— <" f+ Q) o 1(Pms /) — 01 (P <™ Dif )} exp .
The terms at the right hand side except for g, clearly belong to N,(j+1, k, !
+m~—1,out)+N,(j+1, k+1,[+m—1—¢g, out). On the other hand, if we put
o(p, fexp ¢)=g(v) exp ¢ and if v=2, g(v) belongs to N,(j+1, k, I+m~1, out)
+N,® by Proposition 1.27. So we get the conclusion. g.e.d.

We extend Propositions 1.12 and 1.16 to global ones combining Pro-

position 1.29 and them.
Proposition 1.30.

(1.6.53) (d/d)p+ ppm+ Pm— 1+ 23=1(2)7 (V)10 (P> XD ) €xp (— )
=0, mod NF*(1,1, m—1—g, 0)+N¥*0,0, m~1, 1)+ N;*.

Proof. We denote the left hand side of (1.6.53) by go. ¢, is written as a
sum of two parts /,g, and (1 —/,)g,. Since g, satisfies (1.4.2) on supp ¥, by
Proposition 1.12, ¥,g, belongs to NX¥*(1, 1, m—1—eg, 0)+N}*0, 0, m—1, 1)
+N;®. Since ¢p=—p,t—1t{&>™ ' on supp (1 —y,), go belongs to N,(0, 0, m
—1,0+N,(1, 1, m—1,0)+N,2,2, m—1,0)+N;® there. So (1—¥;)g, be-
longs to N}*(0, 0, m—1, out)+ N, ~. g.e.d.

Proposition 1.31. Let g belong to Ni(j, k, [+m—1, u), (j=k). Then
there exists h belonging to N¥(j+1, k, I, u) and satisfying (1.6.54).

(1.6.54)
(d/dt)h + Z%:x (Zi)_v(V!)_l{av(pm’ h CcXp d)) - ]lav(pIm eXp ¢)} cxXp (— ¢)Egs
mod N¥(j+1, k+1, I+m—1—¢&, W)+ N¥(j+1, k, [+m—1, pu+1)+N;=.

Proof. By Proposition 1.16 there exists 1, belonging to N*(j+1, k, [, p)
and satisfying (1.5.19). We consider ,h;, which belongs to N3(j+1, k, [, p)
and satisfies (1.6.54) replaced g by ,g. In fact o(Pp,, F¥)h, a(P?p,,
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Py,P )h and a(P2p,, 2P,V h+hV2y,) belong to N*(j+1, k+1,1+m—1
—&, 1) because ¥, and F¢ belong to N0, 0,0, 0) and N¥(1, 1,0, 0)+N;*,
respectively. For (1 —,)g, which belongs to N¥(j, k, [+m—1, out)+ N7,
there exists h, which belongs to N¥(j+1, k, I, u) and satisfies (1.6.51) mod N7 (j
+1, k+1, [+m—1—¢, out)+ N¥(j+1, k, [+m—1, out). Therefore, putting
h=h,+h,, we get h which belongs to N¥(j+1, k, I, 1) and satisfies (1.6.54).
q.e.d.

To state bricfly the conclusion of this chapter wc introduce two more
classes M(I) and M*(l) defined by (1.6.55-58).
(1.6.55) M()=3% ;5= N¥*(j+1,j, —ke, )+ N¥*%(1,0,0, 1).
(1.6.56) M(D=3 ;. =, N¥*(j+1,j, —ke, j), if [>1.
(1.6.57) M*(1)=3 k=1 N3*(j, j, m—1—ke, )+ N¥*0, 0, m—1, )+ N;*.
(1.6.58) M*()=3% k= N5*(j, j, m—1—ke, j))+N,<, if [>1.

Theorem 1.1. Let ¢ be defined by (0.2.3—8). Then there exist f; belonging
to M(j) (j=1, 2,...) such that, if we put

(1.6.59) E,=%"_ofiexp ¢
and
(1.6.60) G,=g,exp ¢=(at+p)°(n+2)En’

then g, belongs to M*(n+1), where fo=1. Thus f;exp ¢ belongs to Lg*/ and
G, belongs to Lg~17t(vt1) (n=1).

Remark. o, ,, means (n+2)-th sum of the asymptotic expansion of the

product of two pseudodifferential operators (¢, + p) and E,, that is,

(at +p)°(n + Z)En = atEn + 22:(2) (Zi)_k(k!)_lo.k(po En)

Proof. By Proposition 1.30 g, belongs to M*(1). We denote the part of
go belonging to N?*(0, 0, m—1, 1) by go. By Proposition 1.31 there exists
f1 of N¥*(1,0,0, 1) satisfying (1.6.54) with respect to —gg. We consider
(1.6.60) for (1+f)exp¢ and for n=0, and denote the remainder term by
giexp¢. g7 belongs to 3 ;. .-y N3*(j, j, m—1—ke, j)+N,;°. We apply
again Proposition 1.31 to —g7 we get f] belonging to X ;i.=q N¥*
(j+1,j, —ke, j). Weput fi=f1+f7. Then f; belongs to M(1)andg; in the
remainder term gi exp ¢ of (1.6.60) for (f,+f;)exp ¢ and for n=0 belongs to
M*(2). By Proposition 1.27 a3(p, (fo+f1)exp ¢)exp(—¢) also belongs to
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M*(2). Thus there exists f; such that (1.6.60) holds when n=1. In general we
assume that (1.6.60) holds in the case n. At first we note that ¢,.5(p, E,+1)
xexp(—¢) and oy(p, f,+1eXp §)exp (—¢) (k=3) belong to M*(n+2) if f,,,
exists. We apply again Proposition 1.31 to —g,, and we denote its solution by
Ju+1, which clearly belongs to M(n+1). If we consider (1.6.60) for n+ 1, the term
g+, belongs to M*(n+2). The estimate for E, and G, are obtained by applying
Proposition 1.28 in the case that v=j/2 and by noting that fexp ¢ with respect
to f of N;* belongs to S™~. g.e.d.

Chapter 2. Representation of the Fundamental Solution
by Pseudodifferential Operators

Since the parametrix obtained by Theorem 1.1 at the previous chapter was a
pseudodifferential operator in the class L3, it will be natural to consider about
representation of the fundamental solution by pseudodifferential operators.
The discussion at this chapter is simple if we assumed a proposition for powers
of pseudodifferential operators mentioned at the first section of this chapter.

§2.1. Fundamental Solution

We will solve a Volterra’s integral equation including pseudodifferential
operators. It is well known for the usual Volterra's integral equation to be
solved by a successive approximation. We also do it, while we have to use
estimates of symbols for powers of pseudodifferential operators when we estimate
powers of integral operators and prove convergences of asymptotic series. The

following proposition guarantees them.

Proposition 2.1. Let p; (j=1,...,v) be in Lg). Then p=po---op, is
in L§® (m(0)= X%, m(j)) and satisfies (2.1.1) for all integer 1=20 and for
some integer l, and constant ¢, which are dependent on | and 3% |m(j)|

but independent of v.
(2.1.1) IPI" @ <) TTjml PR,
where |p|i™ =max y<; {SUP(s,ger2n |7 *p(x, IKE ™.
(We shall prove it at Appendix. And also refer to C. Iwasaki [7].)

Let E(¢) be the fundamental solution of (0.0.1), that is, the solution of
(2.1.2). At first we should assume its unique existence in a suitable sense.



PARAMETRIX FOR A DEGENERATE PARABOLIC EQUATION 615

Then, E(t) would satisfy an integral equation (2.1.3). Conversely if E(f) were
a unique solution of (2.1.3) would be also one of (2.1.2). So we have only
to solve (2.1.3) to show the existence of a fundamental solution, where E, (1) is
an n-th partial sum of the parametrix for (2.1.2) defined at Theorem 1.1 and G,
is its error term.

(2.1.2) ((d]di)+ P)E(1) =0,
E(0)=1.

(2.1.3) E()+ g; E(t—s5)G,(s)ds=E,(1),
EO)=1I,

where E, (f)=e[t, x, D), e,= X" f;exp ¢ and G,(t)=((d/dt)+ P)E(t).

Lemma 2.2. E,(t) and G,(t) are pseudodifferential operators belonging
to LY and L§, k=m—1—gn+1), and their derivatives in t (d[dt)/E(t) and
(d/dt)iG,(t) belong to LEJ and L5*t™J, respectively. Moreover they belong to
S~ if t>0.

Proof. It is the result of Theorem 1.1 that (d/df)/E,(f) belongs to L,
and S~ if t>0. By the expaasion formula (Proposition 1.1) there exists / such
that (d/dt)/G,—((d/dt)+ P)e, (d/dt)/E, belongs to L**™Jj. Theorem 1.1 means
that ((d/dt)+ P)og, 4y (d/dt)/E, belongs to L**mj. Since it is clear that
o(p, (d/dt)ie,) belongs to L<7™J if k>n+1 and that G,(t) belongs to S™* if >0,
we get the conclusion. q.e.d.

Theorem 2.1. There exists a pseudodifferential operator H,(t) belonging
to L§, k=m—1—¢e(n+1) if k<0, and to S™ if t>0, such that

2.1.4) E()=E,(H)— S; E(s)H. (1 —s)ds

is the unique solution of (2.1.3) and belongs to L3, that is, E(t) is the unique
solution of (2.1.2), where the uniqueness holds as operators from & to &’ which
satisfy (2.1.2) in weak sense.

Remark. The adjoint equation ((d/dt)— P*)u=0 has a fundamental solu-
tion given by E(—1t)* in the negative direction of t. And also we note that
(d/dt)/ E(t) and (d/dt)/ H,(t) belong to L#J and L™/, respectively.

Proof. H,(t) will be given by the following asymptotic series (2.1.5), where
K (t) are defined inductively by (2.1.6).
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(2.1.5) H,(t)=X1% K,(1).
(2.1.6) Ko(=G,1),

K ()= —go G,(5)K,_1(t—s)ds.

If we denote the symbols of K (t) and G,(1) by ki(?) and g,(1), k(1) is estimated
as (2.1.7) by Proposition 2.1.
2.1.7) [k DI < (D™ (et) (A,
where A, =supg<,<r |g,()I{*’. This implies that > 1% k,(f) converges in
Ly if k<0. We put it h,(f) so that H,(f) belongs to L§. We can show that
K () belongs to S~ if >0 because G,(t) is so. Since orders of K () become
lower as j tends to infinity, we conclude that H,(f) belongs to S~* if ¢ is positive.
H,(t) satisfies a resolvent equation (2.1.8) so that it is the unique solution of
(2.1.8).
(2.1.8) H,,(t)+gt H,,(s)G"(t—s)ds=H,,(t)+St G,(s)H (t—s)ds=G,(1).

0 0
By the property of the Weyl symbol it is clear that the adjoint operator (d/dt) — P*
has also a parametrix E,(—t)* in the negative direction of ¢ and its fundamental
solution is given by E(—#)*. Since pseudodifferential operators in L§ map &
to &, we may claim the uniqueness of the fundamental solution. g.e.d.

§2.2. An Application. Melin’s Result (Garding Type Inequality)

In the previous section we proved the existence of the fundamental solution
in short t. If we define a global one E(f) by products of E(t)), t=3%_,¢t;;
0<t;<T, E(t) is the fundamental solution of (2.1.2) and has properties of one
parameter semigroups as bounded operators on L?*(R"). We conclude it as
the following theorem.

Theorem 2.2. 1) There exists a fundamental solution E(f) of (2.1.2)

globally in t which has properties of one parameter semigroups on H*(R")
and the estimate (2.2.1), where c is independent of a.

2:2.1) IE@®l.<exp (ct).

2) E(t) and (d/dt)/E(t) are strongly continuous functions in t valued in
pseudodifferential operators L§ and LgJ (S~ if t>0).
3) If we also denote the generator of the semigroup E(t) on H*(R") by
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— P and its definition domain by D(P), there exist constants ¢>0 and A, which
are independent of o, such that (2.1.10) holds on D(P), which includes &.

(2.2.2) Re (P+ A)u, u),Ze||{DYtm=1/12y|2, for any u of D(P).

Remark. ( , ), and || ||, mean an inner product and the norm defined by
it of Sobolev spaces H*(R"). They are not free, namely, depend on P.

Proof. It follows from the uniqueness of solutions for E(f) to be well
defined. The statement 2) is a direct result of Theorem 1.1. The estimate
(2.2.1) is essentially due to L2-boundness of pseudodifferential operators of
LS. (Refer to A.P. Calderon and R. Vaillancourt [3].) By them we get the
estimate (2.2.3) if the norms are defined by uniformly elliptic pseudodifferential
operators.

(2.2.3) IE®l. =M, exp (c,t).
By it we get (2.2.4) integrating exp (— Af)E(t) in t.
(2.2.49) NP+ W, EM(A—c)™t if 1>c,.

We show the statement 3) before proving (2.2.1) because it is trivial from the
statement 3). Moreover we may restrict it in the case that «=0 and that p is
P+ Dm— 1 and real, because (&> #opo ¢)# has the same principal symbol and the
same real part of the subprincipal symbol, and also because real parts of (Qu, u),
for remainder terms Q may seem to be lower than ((P+ A)u, u),. In this case P
with the domain & is formally selfadjoint on L2(R"). (2.2.4) implies that such
P has a selfadjoint extension which is equal to P with the domain D(P), because
(P+42) is hypoelliptic by existence of a parametrix ST exp (—AE(t)dt. There-
fore P is a selfadjoint operator bounded below on L22R") so that we get (2.2.5)
for a constant A.

(2.2.5) Re (P+A)u, u)y=0.

Condition (A) is satisfied even if p,,_, is replaced by p,,_, —¢{&)™! for a small
e. So we conclude (2.2.2) in the restricted case. In general we get it adding
a sufficiently large L2(R")-norm if «>0 and considering the adjoint operator P*
if a<0. q.e.d.

Chapter 3. Ambiguities of Complex Phase Functions

The complex phase function has somewhat its freedom of construction
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as seen in Chapter 1. It may be changed by another one. We shall here give
a sufficient condition for the degree of freedom and use it to rewrite the complex
phase function in a restricted case.

§3.1. Replacement of Complex Phase Functions

It was important for the complex phase function ¢ used in Chapter | to
have satisfied Proposition 1.17. We should consider another one, the function
¢, replaced by which also satisfied it. The following one satisfies it and also
the other important properties for replacement.

Let us consider four symbols g; (j=0, 1,2) of L7%//2 and g5 of Ly
satisfying (3.1.1-4), where 1/2=0>0.

B1.D) Vi (pn—ao)l Se(p= )20+ 1) (G m=Dimme - (j=0, 1, 2).
(3-1.2) |7 pp— gl S c(py= 1240+ 1) () m-bUrhmme - (=0, 1).
(3.1.3) |P2pp—qal Sclpp+ 110,
G-1.4) Pw-1—gsl Sclpp+ 1)L,

If we formally replace p,, ¥V p,., V?p,, and p,,_; by qo, ¢, g, and g5 in (0.2.3),
we get (3.1.5).

(3.1.5) ¢i=—qot—qst—0ol(b't]2, F(A't/2)b't/2)—27* Tr (log [cosh (4't/2)]),
where b'=iJ,q, and A'=iJ,q,.
We estimate the difference of ¢, and ¢;.

Proposition 3.1. Let g be a holomorphic function used in Proposition 1.6.
If X is on supp ¥, and if (1—2e)0—35>0, then there exists a positive T such
that g(A't/2) given in (1.2.17) is well defined on 0Xt<T and has the estimate
(3.1.6-7) for integers 120, where A’'=iJq,.

(3.1.6) 17H(g(At[2)—g(A't|2))]
S H(EYM(1 + 1 EYymm1)2HE( EY el @2e=1)0
BL7)  [Fg(A'2)] Se(1+KEHm TR L2
Scj(1+1EYmRFI(EY @m0 i[>,

Lemma 3.2. If X is on supp ¥, and if (1—26)0—30>0, then there exists
a positive T for any positive ¢ such that (3.1.8) and therefore (3.1.9) hold on
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0<t<T, where S=At[2 and S'=A"t]2.
(3.1.8) [(A=8)"(S—-S)|<e, if [Imi|=1.
(3.1.9) [(A=S) " Sc(Im A+ <™ ) [ Im 4|72, if [Imif=1.

Proof. By Lemma 1.7 the resolvent of S satisfies (1.2.33), that is, (3.1.9)
replaced S’ by S if ¢ is small because 6 <(1—2¢)/6. By (3.1.3) S—S’ satisfies
(3.1.10) because |p,,| < c{E>™ 1422 and 1{(EDm 1 < c{E)? on supp ¥,.

(3.1.10) IS — 8[| S ct{ EYym=1+(2e=1)0 < (EY+(2e-1)6
So we get (3.1.11) because 30+ (2e—1)0 <0.
(3.1.11) [(A—=S)"YS—S")|| S c(EY2o+ Qe < c(EY5 .

Therefore (3.1.8) is satisfied if (&) is sufficiently large. For fixed (&) we also
get it if ¢ is sufficiently small. (3.1.8) implies that the resolvent equation is
solvable there and that (3.1.9) holds. g.e.d.

Proof of Proposition 3.1. It is clear by Lemma 3.2 that g(A4't/2) is well
defined by (1.2.17) and that (3.1.7) holds. (Refer to the proof of Proposition
1.6.) For (3.1.6) we estimate (3.1.12) in the same way as in the proof of Propo-
sition 1.6.

(3.1.12) g(S)—g(S’)=(2ni)‘ISr gAA-8S)"Y(S—-8)(A—-S)"1di.
Using (1.2.33), (3.1.9) and ||[FI(S—S")|| S ctEYm~1EYai+2e= D0 we get (3.1.6).
q.e.d.
Proposition 3.3. The difference of ¢, and ¢} is estimated as (3.1.13-14)
on {supp ¥,} x [0, T] if y=(1 —2¢)0 —40—2¢>0.
(3.1.13) [P —dilSer ™.

B.L1d) 7= $DISerE™ 11+ K Em (e Do,
(j=0,1,2,..).

Proof. We estimate the difference of each term using (3.1.6-7) and that
|Pml S c{EOm1+2e,

(3.1.15)  [PI(put—qot)| Sct{EHmIEH G N+ a8, (Jj=0,1,2,..).
(.1.16)  [Fi(py- 1t — qaB)| S ct{EYM I EY—IeH(2e= 10, (j=0,1,2,...).
(B3.1.17)  Fi(bt=b"D)| Scr{{HmIEHU et (2em 1, =0, 1,2,.).
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We get (3.1.18-19) because the functions F(At/2), F(A't/2), log [cosh (At/2)] and
log [cosh (A4°t/2)] satisfy (3.1.6-7) with k=0.
(3.1.18) |V i{c'(bt|2, F(At/2)bt[2)—o'(b't/2, F(A't[2)b’t[2)}]|

S (iK™ AL+ EHYm1)(EH @D+ Zemnl (=0, 1, 2,...).
(3.1.19) |7 i{Tr (log [cosh (At/2)]) — Tr (log [cosh (A4't/2])}|

SO L+ X EH @m0, (j=0, 1, 2,...).
Summing up these and noting y=(1 —2¢)0 —46 —2¢>0 we get (3.1.13-14).

g.e.d.

Let us define ¢’ by (3.1.20). (Refer to (0.2.6).)
(3.1.20) ' =v,1¢1+(L=¥1)9,.

Using the parametrix with respect to ¢ (Theorem 1.1) we construct a parametrix
with respect to ¢’, that is, we approximate exp ¢ by products of exp ¢’ and some
amplitude functions. Proposition 3.3 guarantees for ¢’ to be able to be another
complex phase function and for the quotient exp (¢ —¢’) of exp ¢ by exp ¢’ to
be replaced by the Taylor’s series as powers of (¢ —¢’). Let us write it as the

next proposition.

Let us put the Taylor’s series of exp A and its remainder terms as (3.1.21).
(3.1.21) r(A)=Ll=0 (G714,
ri(A)=exp A—r,(2).
Proposition 3.4. Let us assume that y=(1-2¢)0—45—2¢>0 and that
(1—2e)0—3e=0.
1) exp ¢’ has the same estimate (3.1.22) as exp ¢, where ¢o=D0,+
tp (L= +ct{E>™ Y, (¢>0). (Refer to Proposition 1.25.)

(3.1.22) lexp ¢’ = cexp (— o).
2) ¢—¢' belongs to N,(1,0, —¢, 0)+N;®. Therefore V¢’ belongs to
N%(1,1,0,0)+N;*. (Refer to Section 1.3 and Proposition 1.27.)
3) There exist g; and g; of N;* such that (3.1.23-24) hold, where ¢, is
independent of n and j.
(3.1.23) |Fiexp (¢ —¢)
S (e (1 +1EmIDLEYTIE+ g ) exp (cot{EX™177).
(3.1.24) |Firy(¢—9I
S (e (™)L + 1 EYmm )AL DL~ Ik D)z
+9;) exp (cot{EH™177).
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4) exp @’ belongs to LJ.

5) Let f; be the amplitude functions of the parametrix E,(t) with respect
to ¢ Theorem 1.1. Then fir (¢ —¢') exp ¢’ belongs to Ly"*1+ e,

6) Let us put ((d[dD)+plo, exp ¢’ =goexp¢’. Then g, belongs to
N#*(1, 1, m—1—eg, 0)+N3*(0, 0, m—1, 1)+ N;=. (Refer to Proposition 1.30.)

Proof. At first we note that ¢ —¢'=y,(d;—¢7). So we get (3.1.25) by
(3.1.13), and (3.1.26) by combining (3.1.14) with (1.3.43).

(3.1.25) |¢p—@'| Sct<EHm 177,
(3.1.26) ¢—¢' belongs to N,(1,0, 2e+(2e—1)0, 0)+N;.

1) By Proposition 1.25, (3.1.22) holds for ¢ so that |exp ¢'|<|exp ¢]
% |lexp (¢ — ) Scexp (—do)exp ct{EH)m™177.  Since ¢, is bounded below by
ct{&Y™~1 with a positive constant, (3.1.22) holds for ¢'.

2) Since we have assumed that 2e+(2e—1)0< —¢, (3.1.26) implies the
statement 2). For V¢’ it follows from the result for ¢.

3) Since Fiexp +(¢—¢') and Vir,(¢—¢’) are bounded by the products
of exp |¢p — ¢’| and derivatives of (¢ — ¢"), we get (3.1.23-24) by combining with
2). (Refer to (1.3.36).)

4) and 5) We consider that exp ¢'=exp ¢pexp (¢'—¢) and f;r,(¢—¢')
xexp ¢'=f;exp ¢pr(¢p—¢')exp(p'—¢). Flexp¢ and V'!f;exp ¢ are bounded
by exp (—¢o/2) and (&Y% exp (— ¢o/2), respectively, according to Proposition
1.28. Combining them with (3.1.23-24) we conclude the statements 4) and 5).

6) At (1.6.53) we replace ¢ by ¢’ using 2) and (3.1.1-4) if it is necessary.
Then we get the statement 6). g.e.d.

Theorem 3.1. Let us consider four pseudodifferential operators satisfying
(3.1.1-4) and define ¢’ by (3.1.20). We add it to the conditions at Theorem 1.1
that (1—-2¢)0—46—2e>0 and (1—2¢)0—3e=0. There exist f'; belonging to
M(j) (j=1,2,...), therefore f; exp ¢’ belongs to L/, such that ((d[dt)+ p)oe+ 2y
(Z1-of7) exp ¢’ =G, belongs to L=t~ De if p>1.

Proof. Let us define f; by fi=3 ;- il (¢ —¢")". Then it is clear
that f'; belongs to M(j). (Refer to Theorem 1.1 and 2) of Proposition 3.4.)
We consider (-0 f)rd—¢)exp¢’, which is equal to (X%_of;)exp ¢
~ (S0 f)ri(¢— ) exp ¢'. (Refer to (3.1.21).) (/dD)+p)ogus 2 (X0 exp &
belongs to L§~!~*(**1 by Theorem 1.1 and ((d/dt)+ p)ogn+ 2y (X =0 [ — ')
xexp ¢’ belongs to Lg~(n*1rhe by 5) of Proposition 3.4. So we get that
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(@/dD)+ P)ogs 2y (-0 f)ru(@— ¢ exp ¢’ belongs to  Ly-+ve. f(p—¢')
x exp ¢’ also belongs to Lg®/ if j=k+1 so that ((d/d8)+ p)egy+ 1) fil(d — ') exp ¢’
belongs to Ly~(*tLe if (k+1'y=n+1. Therefore we conclude that ((d/dt)+ p)
om+1) (X]=0f7) exp ¢’ belongs to Lg~(++De,

Now we replace n by n+k (ke=1).

(3.1.27) (d/dt)+ p)ou+1) (Xj=0 ) exp ¢’
=((d/dD)+ Plow+r+1) (XJE6S7) exp ¢’
— X251 olp, (2561 7) exp ¢)
—((d/dD)+P)ogs 1y (Z2n+ 1S exp b’

Noting (3.1.27) we get the conclusion. In fact it is clear that o(p, f; exp ¢)
belongs to Lg~1=(+De¢ if [ >3 and j=n+1 or if IZn+2 and j=0. Therefore
we have only to show that ((d/dt)+ p)oc)f’;exp ¢’ belongs to Lg~1~(»*De if
jzn+1l. It is equal to f((d/dt)+p)oyexp ¢’ +Q2D)o(Pp, V f;)exp '+
i)y 227%e(P2p, P2f ;+FV f;V ¢") exp ¢’, which belongs to Lg~!~("*De by 2) and
6) of Proposition 3.4. g.e.d.

§3.2. Special Case (Exact Double Characteristic)

We apply Theorem 3.1 to the case that the principal symbol p, has only
exact double characteristics, namely, p(X)=cd(X)d(X, 2)?, (X=(x, &), £#£0)
for a positive continuous function ¢(X) where d(X, X) is the distance of X to
the characteristic set 2 in R* xR xS8""1, So we assume it through this section.
In this case we get a similar form of complex phase functions to the case that an
operator P is given by a quadratic form in (x, £). (Refer to examples in the
introduction.)

We consider an infinilely differentiable mapping a, satisfying (3.2.1-2) of a
conic neighborhood of the characteristic set X to X.

(3.2.1) [d(X, a(X))—d(X, 2)|Lcd(X, X2)?.
We put (y, n)=a(X), X=(x, ).
3.2.2) (In1*2y, |n|~'/?1) has the homogeneous order of 1/2 in &.

In fact d(X, X) is an infinitely differentiable function on a conic neighborhood of
X because X is an infinitely differentiable submanifold of R*x R*\{0}. A map-
ping a(X) attaining d(X, a(X))=d(X, X) is infinitely differentiable on a conic
neighborhood of Z and satisfies (3.2.1-2) there.
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Let us define g, q;, 4, and g5 by (3.2.3), where H,(X) is the Hesse matrix
of p,(X) in X, where a=a(X).

(3.2.3) qo=2"KX—a, H(a)(X—a)),
q;=Hya)(X—a),
q2=Hp(a)

and
43=Pm-1(a).

Proposition 3.5. ¢q; (j=0, 1, 2, 3) defined by (3.2.3) satisfy (3.1.1-4) with
0=1/2, where constants c are uniformly bounded on compact sets of x-space.

Proof. Let us consider the Taylor’s expansion of a symbol f(X) of L7,
at Y, where Y=(y, n), Z=(z, {)=X—Y and Z~=({ny!?z, {ny~*/2)).

(B.24) fX)=f(V)+Lf, X-Y)+2 KX -Y, (d* ) (X-Y)>+R(X,Y)
=f(N+Ff,Z7y+27KZ~, P2 fZ~)+R(X, Y).

(3.2.5) IFER(X, VI+IF§R(X, VIZSIZP* (X, V), (k=0,1,2,3).
Let us put f=p,, and Y=a(X). Then we get p,(X)—qo(X)=R(X, a(X))

because p,(a)=Fp,(a)=0. Since p, and g, belong to L7,, R(X, a(X)) also
belongs to L7}, so that (3.2.6) is valid according to (3.2.5).

(3.2.6) IPER(X, a(X)ISc(IZ~P*+1D)(EO™32, (k=0, 1,2, 3).
Since |Z~12=Zcp{E>™"+1 by the assumption, we obtain (3.1.1) with 6=1/2.

(3.1.2-4) are proved by considering cases that fis V p,, 7?p,, or p,,—, as well as
the above. q.e.d.

Theorem 3.2. Let us assume that the principal symbol p,, has only exact
double characteristics. Theorem 3.1 is valid with 0=1/2 if ¢ is replaced by
¢35 (3.2.7), where the asymptotic expansion is uniform on each compact set of
x-space.

(3.2.7) ¢3=—pp-1(@)t+ic'((X —a)~, tanh (4(a)t/2) (X —a)7)
—271Tr (log [cosh (A(a)t/2)]),
where a is a mapping satisfying (3.2.1), A(X)=iJV?p,(X) and (X —a)~=
(22, <ny=1120) for Y=(y, n)=a(X) and Z=(z, )=X-Y.
Proof. Since a constructed parametrix would be a pseudodifferential

operator of L, it would have pseudolocal property. Therefore we may assume
that the conditions (3.1.1-4) are uniformly satisfied by g; of (3.2.3) on the whole
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space. Then we get a parametrix according to Theorem 3.1 if 8¢ <1. Noting
(3.2.8) we get the conclusion.

(3.2.8) iAt)2+(At/2)F(At/2) (At/2) =i tanh (A1)2). q.e.d.

Chapter 4. Asymptotic Behavior of Trace

We consider a Cauchy problem of parabolic type on a compact infinitely
differentiable manifold. A parametrix for it makes it possible to calculate the
rate of the trace of the fundamental solution as t tends to zero. Karamata’s
Tauberian Theorem gives an information about distribution of eigenvalues for

a stationary problem.

§4.1. Assumptions and Conclusions

Let M be an n-dimensional infinitely differentiable manifold with a fixed
positive smooth density dM. P is a classical pseudodifferential operator of
order m (m>1) and formally selfadjoint with respect to the density dM.

“.1.1) S PuvdM=g uPvdM for u and v of C**(M).
M M

Let p be a symbol of P, that is, p gives a local representation of P. (Refer
to Appendix.) The principal symbol p,, and the subprincipal symbol p,,_, of
p, therefore, of P are well defined on T*M. And the condition (4.1.1) implies
that p,, and p,_, are real valued. So the statement of Condition (A) is well
defined on M. We assume it to P.

Let us consider a Cauchy problem (4.1.2).

4.1.2) ((d/dt)+Pu=f

Uli=0 =9¢.

Since parametrices constructed in the previous chapters were pseudodifferential
operators of L§, they have pseudolocal properties so that the discussions in
Chapter 2 is valid on a compact manifold M. We execute it to obtain that the
fundamental solution E(f) of (4.1.2) is also a pseudodifferential operator of L
and a smooth kernel if ¢ is positive and that the parametrix E,(t) of Theorem 1.1
with respect to a fixed local coordinate is a local parametrix of E(t). If t is posi-
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tive, E(1) is an integral operator with a smooth kernel E(t, x, y) as noting above,
that is,

4.1.3) (E(t)u) (x)=gM E(t, x, yyu(y)dM .
Therefore Tr E(t) is given by (4.1.4).
(4.1.4) Tr E(f) = gM E(t, x, x)AM .

Let us fix a local chart (x, U). It is written as (4.1.5) with a symbol e(¢, x, &) of
E(t), where G(t, x) is a smooth function in (x, ?).

(4.1.5) SU E, x, x)dM:(zn)-"STw e(t, x, E)dxde+ SU G(t, x)dM .

Moreover if we consider a parametrix E (t) with a symbol e,(t, x, &) for E(f) on
U, we obtain (4.1.6) with some sufficiently smooth function G,(t, x).

(4.1.6) (2m)n ST‘Ue(t, x, E)dxdé

—(2m)" gm e(t, x, E)dxdé + SU G, (i, x)AM .

Since S G(t, x)dM and S G,(t, x)dM are bounded even if ¢ tends to zero, it suffices
to calculate the rate of S e (t, x, &)dxdé. Thus we obtain the following
T*U

theorem.

Theorem 4.1. Let (x, U) be a local chart of M and ¢ be a complex
phase function defined by (0.2.3-8) with respect to a local coordinate x on U.
Then we get (4.1.7) as t tends to zero.

4.1.7) SU E(t, x, x)dM =(1+o(1)) )" Sm exp bdxdé .

Remark. exp ¢ is real positive by construction.

Proof. At first we note that E,(f) is written as (4.1.8) with f satisfying
(4.1.9) according to Theorem 1.1 and Proposition 1.26.

(4.1.8) E()=(1+f)exp¢.
(4.1.9) f1=e(l+ o)<~

We prove that |fexp ¢|<0exp ¢+ c, exp (—c,{&)¥) for any positive 6, where
¢; and ¢, may depend on 6. We assumec that ¢(1 +¢g)9<EY=0. Then 1+ ¢,
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=2c,{&>* where u=¢/d. Since exp¢p=cexp(—¢,) by Proposition 1.25,
|fexp ¢| Scsexp (—do/2)Seq exp (—c,KE)*). Therefore we get (4.1.10).

(4.1.10) |g fexp pdxdé| <6 S exp ddxdE+M,.
T*U T*U
By the way exp ¢=cexp(—c't(&)m) if (&)™ 1< for a sufficiently small
positive 6. This implies thatS exp ¢pdxdé=ct"/™. Therefore for any 6>0,
T*U

we get (4.1.11) as ¢t tends to zero, which means (4.1.7).
(4.1.11) | S fexp gdxd| gzog exp pdxdé . g.e.d.
T*U T*U

Remark. Let E(x, &) be an elliptic symbol such that ¢{¢) < E(x, &) Sc'(&).
Let ¢’ stand for ¢ in which (&) is replaced to Z(x, &). Theng exp ¢dxd¢& in
T*U
(4.1.7) is able to be replaced tog exp ¢’'dxdf. (Refer to Section 4.4.) This
T*U
implies Theorem 0.3.
Remark. We consider the above proof dividing the domain T*U in
three parts such that
(4.1.12) QL=T*U A {pn(X)={EH™1*2¢ and KEH™ =%,
Q2=T*U A {pu(X) 2K E)m 142}
and
Q3=T*U\{Q1 A Q2},
where 6 and ¢ satisfy (0.2.8). Then we can exclude the cut off function y/; from

the integrand, namely, we get (4.1.13).

Corollary of Theorem 4.1. The right hand side of (4.1.7) may be changed
as followings.

(4.1.13) SUE(t, x, X)dM

—(1 +o(1)) 2m)" {gm exp ¢1dxd§+gm exp (——tp,,,)dxdé}.

Proof. In (4.1.10) replace the domain T*U by Q1 or Q2 and consider ¢
with respect to 6’ and & which are larger than § and & or smaller than é and e.
Then exp ¢; =exp ¢ on Q1 and exp (—t(p,,+ (&)™ 1)) =exp ¢ on Q2. g.e.d.

A restriction of the principal symbol p,, is necessary for more precise calcu-
lations of rate at the right hand side of (4.1.7) or (4.1.13).
We assume Condition (B), that is, the principal symbol p,, has the exactly
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double characteristics. Then we get the followings.

In this case the characteristic set = {p,, =0} is an infinitely differentiable
conic submanifold of T*M as noting at Introduction or Chapter 3. Let X'
be submanifolds of X such that codim Xi=d;. Defining codimX=d by
d=min {d;}, we put 2= v ,_, 2.

Theorem 4.2. We assume Condition (A) and (B). Trace of the funda-
mental solution Tr E(t) has the asymptotic behaviors (4.1.14) as t tends to zero,
where C; are given by (4.1.15).

(4.1.14) Tr E(®)=(C,+o(1))t—n/m if n—md/2<0,
=(C,logt~!'+0(1))t—n/m if n—md[2=0,
or

=(C;+o(1))t~(n=d/2)/tm=1) if n—md/2>0.
4.1.15) C,=(2n)" STW exp (— p,)dxde ,
C,= m‘1(27t)“("‘“/2)SD 20, D=50
= 111‘1(21r)‘(”""/2)gz0 (Pm-1+27 7 TrA)exp(—pp—-1—2"1 Tr~4)d2°
and
Cy=(2m)~(r=d/2) g;o [det {(A4/2)"1sinh (4/2)}]" /2 exp (— Pm— 1)dZ° .

Remark. dZ° is an induced density on 2° by p,, and dxd¢. dZX9 is its
induced density on X? the image of Z° into the spherical bundle S*M. (Refer
to Introduction or Section 4.3.)

We consider another restriction that S exp (— p,dxd¢ is finite, that is,
T*M

S dxd¢ is finite. In this case we get the same result as the first case of
{pm=1}
Theorem 4.2.

Theorem 4.3. We assume Condition (A) and 1harS exp (— p,dxd¢ is
T*M
finite. Then Tr E(t) has the asymptotic behavior (4.1.16) as t tends to zero.

(4116) Tr E(t):_-{cl +0(1)}t~n/m’

where C, = (2m)™" S exp (— pdxdé.
T*M
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§4.2. Preparations

We start from the following proposition to calculate the rate. Using
Theorem 3.2 of Chapter 3, it is obtained as well as Theorem 4.1 though & should
be restricted as 8e< 1.

Proposition 4.1. Let (x, U) be a local chart of M.
42.1) gu E(t, x, x)dM
—(1+0(1)) (27:)-"(&“ exp ¢dxdé + gm exp (—p,) dxdé)
as t tends to zero, where Q1 and Q2 are ones used in the previous section.

Therefore we shall calculate only& exp ¢psdxdé andg _exp (—tpp)dxdé.
To do so we further subdivide the don‘falin T*U, that is, wgyconsider the inte-
grals on a conic neighborhood of a point X in T*U and gather them after ob-
taining the rate. For simplicity of calculation, we identify U to an open set of
R". Let us consider a conic neighborhood Q of X and denote Q1 A Qand Q2A Q
by the same notations 21 and Q2. In case that the closure of 2 does not inter-

sect the characteristic set X, it is easy. In factg exp ¢zdxd¢ is uniformly
Q21

bounded in 1 andg exp (~ tp,,) dxdzf=(1+o(1))t‘"/'"g exp (= p,)dxdé. Thus
it suffices to calcula!%cz-: them in case that Q includes a poi!;lt X of the characteristic
set 2. So we assume that Q satisfies the following properties, where we denote
the intersection of 2 and X also by Z and assume that codim X=d. (It may be
different from codim 2 in the total domain.)

(4.2.2) There exist an open set U of R27~1-4 gnd an infinitely differentiable
mapping t(w, r, y) from U xR, xR4 to T*R" such that 7 is a local
diffeomorphism from U xR, x {|y|<L} onto Q and satisfies (4.2.3-6).

(4.2.3) Ww, 1, y)=1o(@, 1) +14(@, r)y=(x, {).

(4.2.4) 19(w, #) is a diffeomorphism from U xR, onto X, especially t4(w, 7)
is a diffeomorphism from U onto the intersection Z, of X and S*R".

(4.2.5) If we define a mapping a(X) from Q to 2 by a(X)=14(w, r)=
a(t(w, r, y)) for X=1(w, r, y), a is an infinitely differentiable mapping
satisfying (3.2.1-2).
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(42.6) 1M, s, )=t@, 1, ) and @(w, s, =510, 1, y),
where x=1tV(w, r, y) and {=12(w, r, y) when (x, {)=1(w, r, ). In
this case we immediately get (4.2.10) through (4.2.7-9).

(42.7) (2ef(w, 7, ) =(0e)e(@, 1. Y],y 7

(4.2.8) (dt/d(w, , Y))|,=0
=[det {*(0to/(®, 1) (O10/w, )} det {'t T} ]3], =y 7T,

Remark. TJ(Z), x=14(w, r), is orthogonal to range t,(w, r).
(4.2.9) det {"(dto/(w, 1)) (Ito/0(@, M)} ,=,
=det {"(07/00)(1/0w)} | =1 I76?| 2] = -

Remark. X,, the intersection of X and S*R", is orthogonal to the radial

direction.
(4.2.10)  (Ot/d(w, r, ¥))| =0 dodr
=[det {#(014/0w)(07y/0w)} det {*7,1,}]/?| =, r* 'dwdr
=dX r*dr[det {*7,7,}1V?],-,.
Remark. 1f we take 7,(w, 1) as it is isometric, namely, |t,(w, Dy|=|yl,
(4.2.10) is equal to dZ,r"~! dr because det {*7;7,}=1.

We fix the above local coordinate (w, r, y), that is, Q seems UXR, X Y,
Y={|y|<L}. Now we check the properties (4.2.11-37) before calculating the

rate.
(4.2.11) $o=—Dput.- (Definition.)
(4.2.12) by =—2"Kry(w)y, P2pu(w)ty(w)y>rme,

where ty(w)=t1,(w, 1) and V?p,(0)=F?p, (@, 7, ¥)|,=1,y=0="F?Pu(to(w, 1)).
(Definition.)
(4.2.13) ¢, = —|y|?rmt. (Definition.)
(4.2.14) ¢3=—p,-(a)t+iocl((a—X)~, tanh (A(a)t/2) (a — X))

—271 Tr (log [cosh (A(a)t/2)])

== P~ 1@, Nt—<7(w)y, iJ tanh (A(@)r"'1/2)t(w)y)r

— 271 Tr (log [cosh (A(w)r™=1t/2)]),
X=1w, r, ), a=a(X)=14(0, 1), A(te(w, r))=r""14(1o(w, 1))=r""1A(w) and
Pm- 1(w> I') = pm— 1(7-'0(0), 7')). (Deﬁnition.)
(4.2.15)  ¢y= <t (@)y, iJ, tanh (A(w)r™'t/2)t,(w)y>r. (Definition.)
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(4.2.16) [po—¢1l= —Clyld, on Q.

(4.2.17) lexp ¢o—exp ¢4/ < Cly|exp ¢, .

(4.2.18) -¢=—-Cy¢;,  (1,j=0,1,2).

(4.2.19) — ¢4 =c|yl?rtanh (Crm1f).

(4.2.20)  exp ¢3=exp ¢, exp (— pn_ 1) [det {cosh (A(w)r™1t/2)}]1/2.
“4.2.21) det {cosh (A(w)r™1t/2)}

=TT4=; (exp (—A;7m1/2) +exp (A;7m11/2))2272
=exp (Tr A (w)rm~1t) [Ti=; [(1 +exp (=A™ 11))/2]2.

(4.2.22) g=exp(— P, t) [det {cosh (A(w)r™11/2)}]~1/2
=€XP (— P11 =271 Trrd(w)r™ 1) [Ti=, [(1 +exp (=A™ 11))/2]7 L.

(4.2.23) g =exp (= (pp— (@) +27 Trod (w))r~ 1)
<exp(—cr ).
(4.2.24) [1—g|SCrmtexp (—cr11).
(4.2.25) Let y, and y, be characteristic functions of Q1 and Q2. (Definition.)
(4.2.26) 11 €xp 831 S C exp (— cly[?r tanh (7=1)— cr=11).
(4.2.27) —pa=cly|Prit= —co,, if =1 and M1t

according to (4.2.19).

(4.2.28) |ps— (| SCt2r2m Y y2<Chrm U, if r=1 and rm <1,
(Taylor’s expansion in t.)

(4.2.29) |x(exp ¢p,—exp ¢ )| S Cr*1texp(cg,), if r=1 and rm 1t<1.

(4.2.30) |y, (exp p3—exp @) S Cr*texp(c¢,), if r=1 and r1t<1,

by (4.2.24) and (4.2.29).

(4.2.31)  [x2 exp do| = Cyz exp (ch2) S C exp (cp — "~ 1*2%).

(4.2.32) |x,(exp ¢po—exp ¢ )| ZC|y| exp (c¢p;), according to (4.2.17).

(4.2.33) We denote a function h by h~ when we change the variable ¥t to r™ .
lim,.q 7 =0, lim,_ o x5=1 and lim,_, g~ =1 almost everywhere in Q.

(4.2.34) We denote a function h by h* when we change thevariables r™ 1t to
=1 and yt=1/2m=1 tg y,

lim, o xf=1, lim,q x3=0 almost everywhere in U xR, xR9, because
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Pl 1722 < Cly|2r172% by (4.2.18), where yxFf=yx%=0 out side Yt~1/2(m=1),

(4.2.35) If @ is defined by dxdé=dr"drdydw, lim,,, ®*=®|,_,. (Refer

to (4.2.7).)

(4.2.36) rk-1y| exp (—c|y|?r™) belongs to L*(R, x Y) if 2k—m(d+j) <0,
(k>0).

(4.2.37)  rk=Yy| exp (—c|y|?r™) belongs to L ([0, 1] x R4) if 2k—m(d+j)>0.

§4.3. Estimations

Let x, and x, be characteristic functions of Q1 and Q2, respectively. We
define I(W) and J(W) by (4.3.1-2), where we use the notation of Section 4.2.

(4.3.1) I(W)=SW 2 €Xp adxde .

(4.3.2) J( W)=SW 22 Xp bodxdé

We divide Q into three parts Qa, Qb and Qc, depending on t, such that Qa
={r1t>1and r>1}, Qb={t<r" 1t<1} and Qc={r=<1}, and we denote the
union of Qa and Qb by Qab. It is clear that I(Qc)=0(1) and J(Qc)=0(1) as ¢
tends to zero.

(¥) In the case that 2n—md>0, I(Qab)~ct~(»=4/2)/m=1) and J(Qab)
=o(t~("=d/2)/(m=1)),
By (4.2.31), J(Qab)<CS exp (c(h, — r"=1*25))r=1dwdrdy. Changing
variables rt!/(m=1+22) to r and yt(“‘”/z("““z‘) to y,
J(Qab)

é C SD exp (C((/)Z(]) — rm—1-l—Za))rn-—1dwdrdyt—(n—(1—2£)d/2)/(m—1+2£),

where D=U x [t1/tm=1+28) 4 o) x Y$(22=D/2tm=1+28) and ¢,(1)=¢,|,=,. By
(4.2.37), r*~1exp (c(¢,(1)— rm=1*2¢)) belongs to LY(U xR, x RY) since 2n—md
>0. Therefore we get (4.3.3) because (n—(l—2¢)d[2)/(m—1+2e)<(n—d[2)/
(m-1).
(4.3.3) J(Qab)=0Q(t~(»~(1=28)d[2)] (m=1+22))

=o(t~(n=aI2)/m=1))

On the other hand we get (4.3.4) about I(Qab) changing variables rt!/(m=D to
r and yt~1/20m=1) {0 y,
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(4.3.4) I(Qab):S 2EB* L exp ¢y(1)dwdrdyt~(=4/2)/m=1),
D

where D=U x [tV/=D 4 o0)x Y7120~ and ¢3(1)=¢3],=,- By (4.2.26),
the integrand of (4.3.4) is bounded by Cr"!exp(—c|y|?rtanh ™! —crm=1),
which belongs to L'(U xR, x R9) by (4.2.37). Using Lebesgue’s theorem we
get (4.3.5) by (4.2.35).

(4.3.5) I(Qab)={§ exp ¢5(1)dZ r"dr[det {'rlrl}]l/zdy+o(1)}t’<"‘4/2’/(""1),
D
where D=U xR, x R?.

(*) In the case that 2n—md=0, I(Q) +J(Q)= S exp ¢,dxd&+O0(t="/™).

In the same way as in the case that 2n—md >(g)2,bl(£2a)=O(t“("“‘/z)/('"’l))
=0(t""/™) because 2n—md=0. Let us put Z,=y(exp ¢;—exp ¢;). Then
|Z,|SCrmtexp(cp,) on Qb by (4.2.30). So we get (4.3.6) by changing
variable rt1/(=1 to r and yt~1/2(m=1 to .

(4.3.6) g Iledxdé§CS pritn=1exp (ch,(1))dwdrdyt=(n=d4/2)/m=1) |
Qb D

where D=U x [t/ 1] x Yt~1/20m=1D and ¢,(1)=¢,]|,~,. Since m—1+n
—md[2=m—1>0, we can use (4.2.37).

(4.3.7) Sm |Z,|dxdE<C SD Pm1=2 exp (e (1)) dwdrdyt= (=2 (=1
where D=U x [0, 1] xR?. Therefore we get (4.3.8) because 2n—md=0.
(4.3.8) gmzldxd«f —0(@mimy.

Therefore we get (4.3.9).

4.3.9) Q)= Sm 11 Xp by dxdE +O(t—my.

According to (4.2.17) Z, =y,(exp ¢o—exp ¢;) is bounded by C|y| exp c¢, on Q.
Changing variable rt!/™ to r we get (4.3.10) by (4.2.36).

(4.3.10) SQ lZzldxdégcg ylr=1 exp (co(1))dwdrdyt=rim= O(1=im),
b D

where D=U x [t!/m ¢~1/mm-1)]x Y, On the other hand we get (4.3.11) by
(4.2.31) and by changing variables rt!/t"=1%22) to r and yt(2s~D/2(m=1+22) tg p,
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(43110  [J(Qa)<C S =1 exp (e, — =1 +25f))dwdrd y
D
—_ S rn—l exp (c(¢2(1)_rm—-1+2s))dwdrdyt—(n—(l—Zz)d/Z)/(m-—l+2:),
D’

where D=Ux[t"1/m=D foo)x Y and D'=U x[t72e/m=Dm=1426) " 4 o0) x
Yi2emL/2m=1+28)  Since exp (c(P,(1)—rm~1%2)) belongs to LY (U X[I, +o0)
xRY) and (m—d/2)/(m—1)—(n—(1-2)d/2)/(m — 1+ 2¢) = 2¢(n — md|2)/
(m—=1)(m—1+2¢)=0, we get (4.3.12).

(4312) J(Qa) = O(r—(n—(1—2a)d/2)/(m-—1+28)) — O(t-n/m) .
Therefore (4.3.13) holds.

(4313) J(Q):S X2 €Xp ¢1dxdf+0(t—n/m)_
Qb
SinceS (1 —x1—x2) exp ¢;dxd&=0(1), the sum with I(Q) comes to (4.3.14).
2b
(4.3.14) I(Q)+J(Q)= g exp ¢,dxd& + O(t~n/my
2b

(¥) In the case that 2n—md <0, I(Q)+ J(Q)~ S exp do(1)dxdEr=nim.
Q
For I(Qa), we get that I(Qa)=0(t~(n=4/2/(n=1)) in the same way as in the
case that 2n—md>0. Changing variable rt!/™ to r, we get (4.3.15) for I(Qb)
and J(Qab) because @ is independent of r.
(4.3.15) 1(Qb)= S GrTOr exp (4(1 M) m)dwdrd =i
D
and
J(Qab) = S GO exp (bo(1))dwdrdyr—rim |
.
where D=U x [tt/m ¢~Umm=D]x Y and D'=Ux[t!/", +o0)x Y. By (4.2.27)
and (4.2.31) the integrands are bounded by Cr"~! exp (c¢(¢,(1)), which belongs to

LY(Ux[0, +0)x Y) by (4.2.36). Using (4.2.33) and Lebesgue’s theorem we
get (4.3.16).

(4.3.16) 1(Qb)=o(1~"/™)

and
J(Qab) =(S exp ¢o(1)Br=1dwdrdy+ of 1)>t—n/m
N

= ([, exp do(Ddxde-+o(0))rrim.

We conclude the following proposition by the above discussion.
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Proposition 4.2.
43.17)  I[(Q)+JQ) =($n exp do(1)dxdé +o(1))t"’/"‘, if 2n—md<0,
- Sm exp ¢, dxdé + O(1"/m), if 2n—md=0
or
=(SD ri=1 exp dy(1)dE, dr[det {'7,7,}]V/2dy
+ o(l)) FO-dDIm=D if dp—md>0,

where D=U xR, x R4,
Proposition 4.3. If 2n—md=0,

4.3.18) Sm exp ¢, dxde
= {(Zn)d/zgv [det H.]"Y/2d2,[m(m—1)]"1log t~ 1+ O(1)}r~"/

where U=2ZX, is the intersection of X and S*R", H=VF2p,,, H is the restriction
of H on the range of H and Qb=U x [1, -1/~ D] x Y.

Proof.
(4.3.19) Sm, exp ¢ dxdE= Sgb (exp ¢ )Br"1dwdrdy .
Changing variable rt!/™ to r, this is equal to
(4.3.20) SD (exp &,(1))®r*‘dwdrdyt—rim

where D=U x [t¥/m, ~1/mm=1]x Y, Dividing the domain D into two parts
D1 and D1’ such that D1=Ux[1, t~V/mm=1D]x Y and D1I'=Ux[t1/m 1)x Y,
(4.3.20) is equal to

(4.3.21) S (exp ¢, (1))Pr*dwdrdyt—r/m
D1
+Sn (exp ¢, (1)Pr"dwdrdyt=rim,
v

Since the second term is O(t~"/™), we consider the first term, which is also di-

vided into a sum of two terms.
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(4.3.22) t*/m[the first term of (4.3.21)]
- gm (exp ¢, (1))Byr"'dwdrdy + Sm (exp & (1)) (@ — Bo)r"=tdwdrdy,

where ®,=®|,_,.

Since |@—®y| < Cly|, the second term of (4.3.22) is bounded according to
(4.2.36). So we consider also the first term. Since exp ¢;(1)Sexp (—c(|y}?
+r™)on U x [1, + o) x (R4\Y), it suffices to calculate M = S (exp ¢,(1)) Por—?!
dwdrdy, where D=U x [1, t~1/m(m=1)] x R4, because it becom?:s to

(4.3.23) [the first term of (4.3.22)]=M+0(1).
(4.324) M= SD exp (= <71(@)y, (P2pul2)vi(@)y>rm)dZ r*~ dr[det {'z 7, }]/2dy

N S , (¥ [det {H  [2}]74/2pnmil2=1dE dr
where D’'=U x[1, t~V/mm—1],

=(2n)42 S [det H,1"12d%,[m(m—1)]"'log !,
U

because n—md/[2=0. g.e.d.
Proposition 4.4. If 2n—md >0,
(4.3.25) S (exp ¢3(1)) [det {*t,7,}12dy, where D=R?
D

=(2m)4/2 exp (— ppu—1) [det {H ,(w)rm—1}]~1/2
x [det {(A(w)r™=1/2)~1 sinh (A(w)rm=1/2)}]"1/2p4/2,
and

(4.3.26) S (exp ¢3(1))r*1dX dr[det {*t,7,}]1Y/?dy, where D=UxR, xR¢4
D

- (2n)"’2S£ exp (= p,,_ ;) [det {(4/2)" sinh (4/2)}]~1/2
« [det H ,]-V2dE, r=412-1p.
Proof.
(4.3.27) K=SD(exp é(1)) [det {z,7,}]"/2dy, where D=R¢

= (exp (— Pm—1)) [det {cosh (A(w)r™=1/2)}]" 12K,
where

(4.3.28) K,= SD exp(—<{t,(w)y, iJ; tanh (A(w)r™1/2)t,(w)y)r)
x [det {*t,7,}]/2dy.

By the properties of Hamilton matrix, there exists a base (e, e, ¢) on range of
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H =range of 7,(w) such that by the coordinate x, x and z with respect to (e, ¢, c),
satisfying ©,(w)y =xe+ xe + zc,

4.3.29) —<{t(w)y, iJ, tanh (A(w)r™=1/2)t,(w))>
=2.G(4) Q2x;1)+ Z |z/?,

where G(4;)=(tanh 4;)r with eigenvalues 1; of A(w)r™~!/2. (Refer to Appendix.)
Denoting the mapping from y to (x, x, z) by ¥ we get
(4.3.30) K0=S exp (X G(4) 2lx;12)+ X1z;1?) [det Y]~ ![det {*ty7,}]1"/?dxdxdz

=742[T G(4;)"[det Y]~ ![det {*1,7,}]/2r"4/2
=74/2[|det {tanh (A(w)r™=1/2)}|1~1/2[det Y]~ [det {1 7, }]/2r /2.

Therefore we get

(4.3.31) K =n42(exp (— pn-1)) [Idet {sinh (A(w)r"~1/2)}]71/?
x [det Y]~ ![det {ft,7,}]V/2r 4/2.

On the other hand we know that

det {'t,(H ,/2)t,} =det {H /2} det {*t;7,} =[] A3[det ¥]?
so that we get the conclusion (4.3.25). Integrating (4.3.25) by r*~1dX dr we
get

(4.3.32) S(exp¢3(l))r"‘1d21dr[det{'rlrl}]”zdy, where D=UxR, xR¢,
D

=92 {  (exp (= pus(@)r ) [det {H o (@)rm1[2)]72
x [det { A(w)r™=1/2)~1 sinh (A(w)r™=1/2)}]V/2dZ  rn—4/271dr
=@z | (exp (= py- ) [det {(4/2) sinh (4/2)}12
x [det H, ]~1/2dZ pn=d/2=1dy,
where D'=U xR .. q.e.d.
(*) About a density on X.
(4.3.33) [detH, ]"Y2dZ,r" 412" 1dr=[det {H ,(w)r™}]~1/2dXr"~'dr.

This is an induced density d¥ on 2 by p, and the canonical density dQ=
ldx, AndE ---dx,nd&,|. In fact it is defined as followings. Let (x, y) a local
coordinate of Q such that X={y=0}, (x=(X1,..., X35~0) a0d y=1:-.» Ya))-
The canonical density is written as dQ=Gdxdy and dX is defined by dX=
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[det {92p,}]1~1/2Gdx. If we take (x, y) as x=(r, ) and y is orthogonal to Z,
dZ is given by (4.3.33). Therefore we get (4.3.34) when 2n—md>0.

(4.3.34) SQ e(x, E)dxdé= { @n)*2 g €XP (= Pp-1)
x [det {(4/2)" sinh (4/2)}]-2/2dZ + 0(1)} a1,

where dX=[det H, ] /2dZ r"~4/2-14r,

When 2n—md=0, d¥ may seem a density dZ, on X the projection of X
into the spherical bundle S*U as (4.3.35) because functions on X may be identi-
fied with homogeneous functions on Z of order zero.

(4.3.35) S; fdz,=(m—1) SE Fhexp (—h)dE,

where h may be any positive function on X with homogeneous order m—1.
Since w of (w, r, y) may seem a local coordinate of Z,,

(4.3.36) dz,
- {(m - 1)5:” h(ew)r=1 exp (— h(w)rm=1) [det H+]‘1/2r"“‘/2’1dr}d21
— [det H,]-V/2dE, .

Therefore when 2n—md =0, we get (4.3.37), and also (4.3.38) if we want to leave
it an integral on X using a function given a-priori there, p,,_,;+2"1 Tr~4.

(4.3.37) gW e(x, Edxdé= {(27’5)“/2171‘1(m ~1 -IS dz, log -1 + 0(1)}»1‘"/"'

(4.3.38) - {(2n)"/2m‘1g (P s +2-1 Tr )
x exp (—(py_ 1 +2-1 TrA))dE log -1 +0(1)}x-n/m.

Thus we conclude Proposition 4.5.

Proposition 4.5. Let Q be a conic neighborhood of X belonging to X.

(4.3.39) Sﬂ e(x, E)dxde
= {Sn exp(—pm)dxdé+o(1)}t'"/"', if 2n—md<0,
- {(2n)d/2m-1(m— 1)-1 S: dz,log =1 + 0(1)} t=nim if 2n—md=0

or



638 CHISATO IWASAKI AND NOBUHISA IWASAK1

= { (2m)4/2 Svexp(—-Pm- 1) [det {(4/2)7 sinh (4/2)}]~1/2dZ
+ 0(1)} (=42 m=1), if 2n—md>0.

Remark. See the discussion before the proposition for dZ and dZX..

(*) By this conclusion it is easy to obtain Theorem 4.2 noting the dimen-
sion of each connected component of the characteristic set 2.

§4.4. Reconsideration about General Cases

In the results of Theorem 4.2 it is difficult to rewrite the second and third
cases, namely, the case that 2n—md=0, into a simple statement of general
cases, because d the codimension of the characteristic set 2 and 2 (of n—d/2 or
2n—md) the vanishing order of p,, at 2 reflect complicatedly on the rate. How-
ever the first case, namely, the case that 2n —md <0, may be caught as exp (—p,,)
is integrable on T*M, that is, as the measure of {p, <1} is finite. Then to ob-
tain the same result we do not need the condition that p,, vanishes exactly double
on the characteristic set X.

Propesition 4.6. Let X be a point of the characteristic set 2 and Q be a
small conic neighborhood of X. Then we get (4.4.1) as t tends to zero under
Condition (A) ifg exp (— p)dxdE is finite.

Q

(4.4.1) SQ ox, E)dxdé= {Sg exp (— p,)dxdé + a(1)} gnim

Proof. By Corollary of Theorem 1 we calculate Sm exp ¢,dxdé and
S exp (—tp,,)dxd&, where Q1 and Q2 are restricted on Q. For SQ exp (—tp,)
Q2 2
x dxd¢ we get immediately (4.4.2) changing variable &t1/™ to &.

(4.4.2) gm exp (— tp,)dxdé = {Sn exp (— p,)dxdé+ 0(1)} —

On the other hand the main part of ¢, is —@®,, which may be changed by — &,
according to Proposition 1.17. (Refer to Section 1.6 for notations.) Therefore
we get

(4.4.3) lexp ¢S Cexp (=P, —c{H" )= Cexp(—Dy).

We consider a new variable Y=X+¢yh. Then @,(X)=p,(Y) and the Jacobian
of the transformation is bounded for a sufficiently large {£) because we know
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(1.6.9) and 6<1/6. More precisely it goes to identity, and Y tends to X as (&)
tends to infinity. Therefore domain Q1 is not essentially changed, that is, Q1
is contained in Q1'={Y=(y, n); p.(Y)SC{nO"1*2:} Thus we get

(44.4) |f, expodxde [=c | exp(=pu(r)dyan.

Changing variable n¢1/™ to # the right hand side has the rate o(1)t~"/™ as ¢t tends

to zero. Therefore we conclude the result of Proposition 4.6. g.e.d.
(%) 1t is clear for Proposition 4.6 to imply Theorem 4.3.

(¥) We give notes about Remark after Theorem 4.1.

It is clear by the process of proofs that ¢’ satisfies Proposition 1.25 as well
as ¢, where ¢, should be replaced to ¢ in which ; and ¥/} of ¢, had been
replaced to the following /1 and /}'.

(4.4.5) Vi = (B2 (ER).
YA =Y, E1 ).

Meanwhile by definition (refer to (0.2.3-7)), the difference of ¢ and ¢’ is
(4.4.6) ¢—¢' = =YD (1 —P2)+(I =Y ) (E"T =L 1.
By (1.4.3), |¢p, — 3] is bounded as
1 — 2l < C{LEO™ ™+ (1K™ 12 L+ K EH™ DY
Since Y; —y¥;=0and 1 -y, =0 if p,KE>1 ™2 <min(1, ¢'~1), we get

(4.4.7) |p—¢'| = CLE>T2(1+¢o)?
SO+ o)
noting (1.6.28). Now we prove that exp ¢ and exp ¢’ are equal to each other

asymptotically. We divide the domain to two parts. Let w(t, x, &) be such a
characteristic function that w=1if ¢ =¢' and w=0if ¢ <¢’. Then we get

w(exp ¢ —exp ¢')={l—exp (¢'—P)}wexp ¢,
and

1 —oxp ('~ $)=(6'~ ) || exp (¢~ $)0)do.

By (4.4.7), |1—exp(¢'— )| < CLE2(1+¢po)¢. Therefore by the same pro-
cedure as the proof of Theorem 4.1,

(1+ o(1))SW wexp pdxdé= Sm wexp ¢'dxdé .
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In the same way we get
S (1—w) exp pdxdé=(1 +o(1))g (1—w) exp ¢'dxde .
T*U T™U
These imply that

S exp ¢pdxdé=(1+o0(1)) S exp ¢’dxd& .
T*U T*U

Appendix

§A.1. Hamilton (Fundamental) Matrix

Here we state some properties about Hamilton matrices and prove Propo-
sition 1.2.

Let H be a real symmetric matrix on X=C2" J be a real unitary matrix
such that J2= —1I through this section. We also put A=iJH. ( , ) stands for
the canonical inner product of X and { , ) is a bilinear form such that (x, y)
={x, y, where y = y°°" is the complex conjugate of y.

(*) At first we assume that H is non-negative. We denote the range of H
by Yand the kernel of H by N. Then X=Y@®N is an orthogonal decomposition
of X because H is symmetric. We subdivide Y as Y=Y,®Y,; by Y, and its
orthogonal complement Y; in Y, where Y, is the intersection of Y and the kernel
of A2. We put d=dim Y and k=dim Y,. (Remark. The ascent of 4 at zero
is at most two because H is non-negative.) Further we use the notations H ,
=H|y, Hio=H|y, and H,;=H|,, for the restriction of H on Y, Y, and Y;.
(Remark. In general Y, and Y, are not invariant subspaces of H. So the
restriction H.,; of H on Y; is defined by the matrix on Y; satisfying (H. ;f, )
=(Hf, g) for any f and g of Y}, that is, H, ;=P(Y;)H by using the orthogonal
projection P(Y;) onto Y;.)

Let A; be positive eigenvalues of 4. They are simple and the number of
them is (d—k)/2. —A; are also eigenvalues of 4 and total eigenvalues consist
of zero and them according to non-negativity of H. The adjoint matrix A* is
given by iHJ and has same eigenvalues 0 and ;. Let a; be an eigenvector of
A* corresponding to A;. {a;} are linearly independent of each other by taking
as a; and a, are orthogonal if A;=1;,. And also g;=a%"} is an eigenvector cor-
responding to —4;. If @ and b are two eigenvectors of A* corresponding to
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eigenvalues 2 and pu, (A+p)<Ja, b>=0. And iA{Ja, a)=<HJa, Ja)>0 if
A+#0 because Ja does not belong to N if A#0. This implies that {Ja, a) #0.
Therefore we can take a; as i{Ja;, a;>=1and {Ja;, a,» =0 because 4;+4,#0.
(Remark. i{Ja;, a;) is real positive from the first.) Since A{a, x) = —<a, Ax),
22{a, xy={a, A*x) so that 12<{a, x)=0 if x belongs to N or Y;,. This means
that a is orthogonal to N@® Y, if A#0. Therefore ¢; belongs to Y,. Considering
the dimension, {a;, a;} is a base of Y,. From the above we get the following
proposition.

Proposition A.1.1. 1) Let 4, j=1,...,(d=k)/2, be positive eigenvalues
of A. There exist a, belonging to Y, such that i{Ja;, ay> =0, {Ja;, a;) =0,
{a;, a;} is a base of Y, and a; is an eigenvector of A* corresponding to A;.

2) There exists a real base of Y, such that (H ,oc;, ¢,y ={Hc;, ¢,y =0,

3) If we put b;=Hc;, which belong to Y and satisfy {b;, ¢,) =08, then we
get

Remark. b, a; and a; are linearly independent of each other and they
make a base of Y. <{Jbj, b,)=<{HJHc;, ¢,»)=0 for all j and k because c; be-
longs to Y,. AiKaj, ¢ =—ila;, JHe,y and <a;, Jb,>=0 if a; belongs to Y,
and c; belongs to Y,. Therefore {Ja;, b;>={Ja;, b,y =0.

Proof. AJa;=J;Ja;, Ala;=—1;Ja;, Ac;=iJb; and Av=0 if v belongs
to N. This means that the left hand side is equal to the right hand side because
X=N@Y. g.e.d.

Let us put M=N@Y,. This is the generalized eigenspace of A* at zero
and simplectic, namely, J is non-singular on M. In fact, if {Jf, u)>=0 for all u
of M, then Jf belongs to Y,. This implies that f=iJHJg with some g of Y,
so that 0=A2f=A3Jg. Since the ascent of A4 at zero is at most two, A2Jg must
vanish. Therefore Jg belongs to Y,. Putting u=Jg, we get that {Jf, Jg)>
={f, g>=0. On the other hand, since <{f, g)= —i{HJg, Jg), Jg belongs to
N. Thus Jg belongs to both Y, and N, namely, Jg must be zero. So we con-
clude that f=0. Since M is simplectic, there exists d;, j=1,..., 2n—d+k)/2,
such that i<Jd;, di> =0y, <{Jdj;, dy=0. Therefore 3 ;(d;®iJd;—d;®iJd;) is
the identity on M. Using these vectors {a;, b;, d;}, we can represent functions
of A in the following way.

Proposition A.1.2. Let G(A) be a continuously differentiable function in
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A of R. Then G(A) has the following canonical form.
(A.l.1) G(A)=X;{G(A)iJa;®@a;—G(—4))iJa;®@a;}
+G'(0) X;iJb;®b;4+G(0) X;(d;®iJd;—d;®iJd)).
Especially if G(A) is an odd function in A, we get
iJG(A)=3;G(A)) {a;®a;+a;®a;} +G'(0) X;b;®D;.

Since a;, @; and b; are linearly independent on Y, there exist e; such that
{a;j, ey =0, aj, =0 and {b;, ¢>=0. Then, since {ej;, e;, ¢;} is also a
base of Y, we may induce a coordinate on Y such that f=xe+ ye+ zc for f of Y.
Therefore we conclude the following.

Proposition A.1.3. If G is an odd function, we get

(A.1.2) GIGA, f=2;GA) (x> +y;1H)+G'(0) |z[>.
Especially if G(A)=A,
(A.1.3) CHf, =3, A%, 12+1y,1) + 1212

Moreover if G is a real function, then {iJG(A)f, f> is real.

Let {f;} be another base of Y. We denote the coordinate u; of f by it, that
is, f=2;u;fi=xe+ye+zc. And we denote the mapping on C*¢ from (u;) to
(x, y, z) by @ and the matrix representation of H, with respect to (u;) variable
by also H,. Then we get the followings using the above propositions.

Proposition A.1.4.
(A.14) H, =90*Ad,
where A is a diagonal matrix, diagonal elements of which consist of some 1
and two A;, j=1,..., (d—k)/2.
(A.1.5) det H, =TT$49/2 A3|det 9|2.
In general putting iJG(A) |y =G, (G is odd), we get
(A.1.6) det G, =TT¢5972 G(4,)*|det @|2.

(%) Proof of Proposition 1.2. Let us consider the case that H=d6>0.
(x, Y)u=(Hx, y) defines another inner product on X and satisfies that | x||?
Slxllz=M|x|?, where M=|H| =sup,.o (Hx, x)/|x|> and | ||z is the norm
with respect to ( , )g. A=iJH is a selfadjoint operator with respect to ( , )y
and ||[A|[g=M. This implies the following.
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Lemma A.1.1. Let us put R;=(A—A)"! for ImA#0. Then |R,|z=
[Tm A|~1.

Let us consider the resolvent equation.

(I —e(i—iJH) "iJ} {A—iJ(H +&l)) !
= {A—iJ(H +eD)}1{I —eiJ(A— iJH)1}
=(A—iJH)".

This implies that there exists {L—iJ(H+el)}~! if there exist (A—iJH)™!,
{I-e(A—iJH) YiJ} " Yand {I—eiJ(A—iJH) 1}"!. Letus put K, =e(A—iJH) 1iJ
and K,=¢iJ(L—iJH) .

Lemma A.1.2. | K;|4=<eX(M/0)[Im A|~2, (j=1, 2).

Proof. Let us put K,f=u; and K,f=u,, that is, giJf=(A—iJH)u, and
gf=(A—iJH)iJu,. By Lemma A.L.1, [u|4=Z&|ImA|2|liJf|}, and |iJu,|%
Sem A2 f|%. Here we know that [iJf|3SM|fI>?<(M/0)|f]% and
lu |k S M| iJu,||2 < (M/[d)||iJu,l|%. This implies that ||[iJu, |} <e2Mé~1Im A|~2
x| fll% and |lu, |4 <e2Mé~YIm 2|72 f||}4. We get the conclusions. g.e.d.

Now let us assume that G is a real symmetric matrix, and let us put H
=G+ (6+06p), (6>0), where 6,=—inf .o (Gf, )/IIfII*>. And also we put
L=sup;.o (Gf, N)/| f]|> and M=L+3+ .

Lemma A.1.3. M| f|>2(Hf, /)2l f]*.

Proposition A.1.5. (Proposition 1.2.)
1) If 27YL+(L?+3|Im 2]?)1/2}-1Im A|2=2d, and Im A#0, then there
exists (A—1JG)™ L.
2) If 27YL+(L?+3k?|Im A]2)V2}~1k2|Im A|2=0, for some k such that
0 <k<l, we get
I(A=iJG)~|
S(4L2+45k2|Im A|2)Y2{k(1 —k)}~Y|/Im A|~2, when L=0,
or
<2412(1 — k)" YIm A7t when LZ0.
Proof. Since H=G+(0+0d,)[=0, there exists {A—iJ(H+el)}™! by
Lemma A.1.2 and Lemma A.1.3 if e2MJ~1Im A|"2<k? and O<k?<1. Here

we put e=—0—09,. Then H+el=G. Therefore if (6+09q)*(L+3+3,)07 !
x |Im A|72<k?2 <1, there exists (A—iJG)™!. The domain of A such that there
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exists 6(>0) which satisfies (6 +g)2(L+0+8,)0 {Im 4|72 <k? is obtained by
putting f=L, a=|ImA|?k? and k=1 at the following Lemma A.1.4. If
27YL+(L?+3|Im A[?)1/2}"YIm 4|22 0, and [Im A|#0, there exists d>0, that
is, there exists (A—iJG)~!. Noting Lemma A.1.2 and Lemma A.1.4, we can put
0= —0p+a{L+(L?+3x)/2}71 and a=k?ImA[2. Then |K;|y<k. And
also (A= iJG) Yy S |(A—iJH) Y gl —K;)"'ly. On thc other hand
l(A—iJH) Y <|Im A|~!' by Lemma A.1.1. Therefore we get |(A—iJG)™!|
S =k 'ImA|7!, because [(J—K;)™'|;=(1—=k)!. Denoting (A—iJG)™!
by C, [CfI?S67MCf I <07 (1 = k)2 Im 2|72 flif < Mo~' (1 — k)~2[Im 4|72
x| fII2. Thus ||C]] £ MY26=1/2(1 —k)~1Im A|"'=(L+0 + 6o)/26~1/2(1 — k)~!
x [Im A|=!. Putting y=0+ 06, =a{L+(L?+3a)'/2}~1, we get 6 =21y because J,
S27YL+(L?+30)/2} e and a=k2[ImA]2. If L>0, then (L+J+3dy)0 1
S2AL+y)y '=2(1+ L{L+(L2+3a)2}o 1) <2+ 2{L2 + 27 1(2L2 + 30) }o~ ' =(4L?
+ Se)a=l.  Therefore |[|C| £ (4L? + 5a)'/2¢~12(1 — k)" {Im A|~! < (4L? + 5k?
X Im A2)V2{k(1 —k)}~YIm A|"2. Tf L<0, then (L+8+350)0 ' <2(L+y)y 1<2.
Therefore ||C]| £21/2(1 —k)™|Im A|~1. g.e.d.

Lemma A.1.4. Let us consider a function f(x)=(x+0q)%+ B(x+3¢)? —ax,
where 3,20 and 2>0. If 27Y(f+(f?+30)!/?) 'a=0y, then there exists 0
such that >0 and f(6)<0. In fact it is enough to put d=—30y+a{f+(p?
+30)/2}"1.  Then 6 satisfies 6 =27 {f+(f?+20)1/2} o

Proof. If there exists 6 >0 such that f'(§)=0, it is what we need. We put
F(y)=y3+By*—ay+ad,, that is, F(y+d,)=f(y). F(0)=ady=20 and F'(y)
=3y242By—a. A solution y>0 of F'(y)=0 is given by y=a{f+(S?
+30)!/2}71, Since y>J, by the assumption, d=y—3J, is positive and F(y)
=f(5).

F@) =a{do— a(B + (B>+30)'/?)7" [(4a+ B?) (6+ 2+ B (B> +30)"/?)7 1]} .
Here (da+ B2)(60+ B2+ B(B? + 3)1/2)~ 1 = (Ba+2p2) (150 +442)" 1 >2"1 (2>0).
Therefore we get F(y)<a(dy—271(B+ (B2 +30)'/2)"1a) 0. g.e.d.

§A.2. Pseudodifferential Operators

We mention properties of pseudodifferential operators, which are used in
the previous sections, and we give proofs for some of them.

At first we give the formula of transformation between ordinary symbols
(A.2.1) and Weyl symbols (A.2.2) because we have used Weyl symbols through
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this paper.
(A.2.1) p(x, D =(21)"" Se"(""’)fp(x, Eu(y)dyde.
(A22) px, D= () et p(x2-4 412, Du(r)dyde .

Remark. We do not distinguish between oscillatory integrals and ordinary
integrals in notations.

Theorem A.2.1 [Transformation formula between ordinary symbols and
Weyl symbols]. If a Weyl symbol p(x, &) and an ordinary symbol q(x, &)
give a same pseudodifferential operator, that is, p¥(x, D)=gq°(x, D), then
they are transformed to each other by the following relations (A.2.3-4).

(A.2.3) a(x, £)=(2n)"“ge"“5p(x+z/2, £+ O)dzde .

(A.2.4) (x, €)=(2n)“"ge":5q(x+z/2, ¢+ 0)dzde .

Remark. 1In the rest we use only Weyl symbol so that we omit w of p*(x, D)
except for Lemma A.2.1 and the proof of Theorem A.2.1.

Theorem A.2.2 [Change of coordinate]. Let us put f(x)=p(x, D)u(x)
and x=¢(y) a diffeomorphism on R". We assume that p(x, ) vanishes out
side of a bounded set in x. Then by (A.2.5) we get g(y, n) such that (¢*f)
(M =4y, D)) (¢*u)(y).

(A2.5) q(y, m=Qn)™" ge“;p(tb(y +2/D)[2+¢(y - z/2)[2, "W (2)" ({+n))
x|¥(2)|7'1(0/0y)¢(y —z[2)|dzd]

where ¥Y(z)=Y(y, z) is a matrix valued infinitely differentiable function such
that ¢(y+z/2)—p(y—z/2)=Y(y, z)z and that det ¥(z) does not vanish on the
whole space.

Remark. If (0¢/dy), ¥, ¥~! and their derivatives are uniformly bounded,
we can remove the condition with respect to the support of p.

Remark. 1t is natural for pseudodifferential operators on manifolds to be
defined as operators from e-densities to (1 —¢)-densities, (0=<e=<1). One of
reasons is that principal symbols p, and subprincipal symbols p,_, are well
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defined on cotangent manifolds as homogeneous parts with top order and with
next order of symbols p of local expressions when pseudodifferential operators
are classical types. This result is easily deduced from Theorem A.2.2. In this
paper we consider them as operators from functions to densities. In order to
guarantee iterations we fix a positive density dM on a manifold M to identify
spaces of functions and densities. With respect to a local chart (x, U) a local
expression of a pseudodifferential operator P is given by (A.2.6) with a Weyl
symbol p if the density dM is flat with respect to x, that is, dM =dx on U.
(A.2.6) (Pu) (x)=(p(x, D)u)(x) on U for u of CZ*(U),
where the right hand side is defined as pseudodifferential operators with Weyl
symbols on R”.

Remark. We denote the symbol of multi-product of pseudodifferential
operators p;(x, D)p,(X, D)---p,(x, D) by (p;opz°---op,) (x, &).

Theorem A.2.3 [Formula of multi-product Weyl product]. The symbol
of multi-product is given by

(A27)  (pyor-op)(x, &)
=2"S exp i = (yi—Vj+ 0}
XITj=1Pfx+y;/2+p;44/2, E+np)dy,---dy,én,---dn,.
=2exp (12501 901701 —1))
XITj=1pix+y; E4n/2+4n;44/2)dy,---dy,én,---dn,,
where dn;=(2n)""dn;, o 1= —Ny and Ypi1=—Yy; .

Remark. For p of Sm ; we introduce a seminorm | plim by

[PI{™ =Supjq 1 5 =1 [Max, {p{B(x, E)Ey—mrelal=dIFIYT,

Theorem A.2.4 [Estimate of multi-product]. Let p; be pseudodifferential
operators belonging to SmP(j=1,...,v) and p=pepse--op,. If 6<1 and
A22[n/2]+2, then p belongs to S7QY+*@=" where m(0)=3%_,m(j). In
detail for any | there exist |, and C, which is independent of v, such that the
estimate (A.2.8) is satisfied, where I, and C may depend on [, . and
i)+ A6 - p)l.

(A2.8) [Pl @460 < C Ty )

Remark. 1) (5—p)~=max {6—p, 0}. 2) If 6<p, this theorem is one
used in Chapter 2.
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Theorem A.2.5 [Expansion formula]. Let p; belong to S%"
(j=1,...,v), where 6(j)<1 and p(j)>d(k) if j#k. For any integer NZ=O0,
there exists qy belonging to S™9=*N such that

(A2.9) (pyer-op) (%, &)
=X o <v (@D7(E/2)1 /(= DI=ITPER(x, O) +qulx, &)

Here m(0)=X3-, m(j), p=min, p(j), $=max;6()), e=min, u p(j)~5(k), P
=(pgs-.-» D), a=(a%) are systems of multi-indices o(j, k=1,...,v), ok are
multi-indices with the same width n (number of indices) such that o’; consist
of only zero,

h(o, )=2k=1 o, ole, )=23= 1ok, a'=TT}k=1 (),
o= Ty 081, 10" =%kl and  PE=TTj=1 psGet5: 1)
(p(#}=020%p) .

Theorem A.2.6 [Expansion formula in case of two pseudodifferential
operators]. Let us put o6(py, P2)=2 ppj=(— DVPICkp (8D, 8, where
« and B are multi-indices, and Ck,=k![a!f!. Then we get the expansion
(A.2.10) with qy belonging to S™Q=N where p; belongs to S7) ;i) m(0)
=m(1)+m(2), p=min {p(1), p(2)}, §=max {6(1), 6(2)} and e=min {p(1)—5(2),
p(2)—6(1)}>0.

(A.2.10) P1opa =2 N2 Q)M (kD) oi(p1, P2)+dn -
Moreover there exist constants I, and C for any | such that

(A.2.11) lCIN|§m(0)~eN)§CZ|a+m=N |P1%§;|§1’§;)+5(1)””_pm|““

x |p2{g;lg:ﬂg)w(z)]a]—p(z)m[) ,
where the seminorms are ones of S, 5.

Remarks on a,. Let X be C?*. We define a nondegenerate bilinear form
g, on X* by o,((x, &, (y, M=<E, y>—<x, ny. Itisextended on the covariant
tensor product T(X) of X by putting it as o(u, v)=[1%-, 0,(u;, v;) for mon-
omials u=u;® --®u, and v=v,®---®v,. The restriction of ¢, on the
symmetric tensor S,(X) gives the natural extension of ¢,. Then they satisfy
for u=¢&*xf and v=_~Evx90

oy(u, v)=(=1DIFIC%,, if =5 and f=y,
or

o (u, v)=0, otherwise,
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where Cky=k!/a!f!. If we identify {p{#},-p=x to an element o*p
= (a1 +181 =k P{REXXP of S,(X), then

0i(P1, P2)=0(0*Ps, 3*P3).
Therefore we can deduce the following properties.

Theorem A.2.7. We assume that p,q, ¢, f and g are scalar functions. We
identify X and X* by the canonical bilinear form (z, z')=332,z;z'; for
z=(z;) and z'=(z’;).

1) op, 9)=(—1Dfox(g, p).

2) oy(p, 9)=<J0p, 0g>.

3) oxp, 9)=—-Tr(JH,JH,).

4) oy(p, expp)=04(p, p)exp $.

5) o1(p, f9)=0:(p, )9 +o:(p, 9)f

6) o:(p, f9)=02(p, f)g+02p, 9)f+2<J0f, H,JOg) .

7) o(p, exp ¢)=02(p, ) exp ¢ +<J0p, H,JO¢p) exp .

Here H, =%y and o,(u, v)=<Ju, v).

Proof. 1) and 2) are clear from the definition, where J is a linear mapping
such that Jx=—¢ and J¢{=x. 3) For two monomials u=u;®u, and v=
v;®uy, it means that

oo, V)=0(u;, )01 (Uy, ;)
={Juy, v {Juyg, v
=~—Tr(J'u-Jv).
4-7) are proved by noting that d(exp ¢)=0¢ exp ¢, 0(fg)=gdf+fdg, 0*(f9)
=g0%f+20f0g +f0d%g and 0%(exp ¢)=0%¢p exp ¢+ 0pOP exp ¢. g.e.d.

Lemma A.2.1. Let us define an operator K for a kernel k(x, y) of %y,

by

(Ku) ()= ktx, ypu(r)dy
If we put k(x, y)=Ki((x+)/2, x—y)=ky(x, x—) and define k3(x, &) (j=1, 2)
by
ki, = { e22kix, y)dy .
Then Ku=ki*(x, Dyu=k5°(x, D)u.
Proof.
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Ki(Gx+ 9)/2, 5= )= @) UG+ )2, £
and
ki, x—~_v)=(27r)‘"g i1l (x, EE.
Substitute them into the definition of K. g.e.d.

Proof of Theorem A.2.1. 1t suffices to prove it in the case that one of p
and g belongs to & as a function in (x, &) because it implies that the other also
belongs to & if they are connected by the relations of the theorem and because
& is dense in S, ; in a suitable weak sense. If we put k7 =p (k3=¢q) in Lemma
A.2.1, then g=k3 (p=k7). This implies the first (second) equality. g.e.d.

Proof of Theorem A.2.2. Let us put f=p(x, D)u. Changing variables as
x=¢(z) and y=¢p(w), we get
(@*)(2)= g exp {i($(2) — p(W)EIp((#(2) + p(W))/2, Hv(w) | (9/dw)pldweS,

where v=¢*u. By Lemma A.2.1 we find a Weyl symbol g(y, n) which attains
the same operator as

#*f@) = Kz, wyaw,
Kz, w)={ exp (i(6(2) — DODE} P(B(2)-+ S92, D (@Jw)$] (0)de

It is given by

a(y, )= exp (= inz +i(8(y+ 2/~ 4y — 2120}
x p(@p(y +2/2)12+ ¢(y—2/2)[2, O |(8/0v)p(y — z/2)|dzé{ .
By the assumption on ¢, there exist ¥(y, z) satisfying that

d(y+2/2)—p(y—z[2)=¥(y, 2)z

and that det ¥(y, z) does not vanish. In fact the existence of ¥ satisfying the
equality is shown by Taylor’s expansion formula. At a neighborhood of z=0,
¥ is nonsingular by the assumption. Otherwise adding a certain matrix vanish-
ing at vector z, we can make ¥ be nonsingular because ¢(y+z/2)— ¢(y—z/2)
also does not vanish there. Therefore changing variables —n+*¥(y, z){ to
(', then {=*¥~1({'+#n) and d{ =]V~ 1|d{’. We get the equality of the theorem.

g.e.d.
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Proof of Theorem A.2.3. If p; belongs to &, we get easily the first equality
by linear transformations of variables from the expression obtained by definition
and by using Lemma A.2.1. On the second equality the following property
of Weyl symbols works effectively. g.e.d.

Lemma A.2.2. We denote the Fourier transformation of f by .
(p(x, D)u)‘(n)=(27t)’"g e #==0p(z, (n+)[2)u™()dldz .

Proof of Theorem A.2.4. At first we prepare two lemmas.
Lemma A.2.3. Let us consider a function
G m=1+[E—n{{+IE—nl}?,
where 0<6< 1.

1 G, O =2G(E, n).

2) G O=26(n if [E-{=2(8—nl.

3) G m™NG(n, O™V =8VG(E, OTMG(EC, N+ G(E, N}

4) If 21¢—n =&, then {ny=(3/2)<>, My 'S2&H! and
G M SCU+IE—nI<E>~0)".

5) If 2|1E—n1=<K&), then (1) =3|¢—nl, <y 1=LET(A+IE—nl) and
G M =C+]E—n'70)71.

6 {6 mr<mymdnsClim &y if (1=ON=[m|>n.

7) Let us put
P& mM=IT}=1 [G&+n; E+n;4 1) ¥ +npmD 7]

where n,,,=—n, and n=>,..., n,). Then there exists a constant C depending
only on M=3%_, |m(j)| such that

[owe manscxem i 1-9N-M>n,

where m=3%_, m(j).

Proof. 1) Since (&> =<{n> +[E—nl, we get (&> +[E—n)=2(<n> +]E—n)).
Therefore G(&, 1)=2"2G(n, &), (0<d<1).

2) When 6=0, it is clear. We assume that 0<d<1. By the assumption,
CEY 16—/ S2UCEY |¢~L|=1/% and [ —q|t=\/5 S2Y/9-1|E (1=, Therefore
(&=l {KE + [E—nl}72 Z 27E= (| {KE> + 272 =2 271 E — {I{KE + €
=L
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3) G mGn, 227G, DG, n) if £ =2I—n].

G(&, MG, H)=271G(E, MG, mM=272G(E, mG(, &)
2273G(&, mG(E, O if [E—L=2]0—n].

4) and 5) are easy.

6) Change {(n)™ to {£>™ and integrate G(, n)~~ by n using 4) and 5).

7 P& mM=GC&+n, {—n)¥(+npm"%. This implies that ¥,(, n)
<CG(, E+n)N(E+n>" 8. Therefore g ¥, (¢, N)dn< C{ES™ by 6). By the
way | @& man=C(m,D {{ ¥,-.(& nydn+ | ¥,-,(& ndn| aceording to 3)
and 6), where m(1) in the right hand side is equal to m(1)+ m(v) of the left hand
side or m(v—1) is equal to m(v—1)+m(v). We can get the conclusion by
induction with respect to v. q.e.d.

Next we consider an oscillatory integral
I= S exp{iX V=1 m;(yi=Yi+ )} [ =1 4;(yi+Yje1, E+npdydn,

where y=(y,..., ), Yy+1=—y; and =(1y,..., 1,)-

Lemma A.2.4. Let us assume that q; belongs to Sm’. Then there exists
a constant C(I, r, M), which depends only on I, r and M, such that

HISCU, r, MO 2 =P~ Ty, |16,
where (6—p)~=max {3—p, 0}, m=Ej-; m(j), M = Tj=, Im(j) + 216~ p)"l,

and | and r are integers such that I>n/2 and (1—90)2r—M>n.

Remark. We may take any real number such that I=[n/2]+1 in
(EYm+21v(6=p)~  though the constant C necessarily depends on it.

Proof. Let us define 4;, L;, B; and R; (j=1,...,v) as follows.
A;={1+E2y;—y;+.}71.
Ly={1+E3(~4,,)}.
B;={1+(E3+E&%, 1) 2nj—n;+.12371.
Rij={14+(E}+ &%+ )7%(—4,,. )},

where Z;=({+n;) and E,,,;=F,. They satisfy
AjLjexp {i 2%=1n;(y;— Y+ 1)}

=B;R;exp {i X}=; 1(yi=Yj+1)}
=exp {i Zy=1m;(y;—Yyi+1)}-
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This implies for any integers [ and r

I=gexp {iXy=1m(y;—yie}

xIT3=1 (LAY TT}=1 CR;ByY
XITi=1a;yj+ Y1, E+n)dydn.

Noting that g; belongs to S7’, we have
MT4=1 CLAD TT =1 CRB)Y T1%=1 4;(y;+ Vje1, E+1))I

s, ry J=1 IQj|(2T§-£)r)A}B§<f+'7j>m(j)+21(6_p)~-
Therefore we get

HISCU, ) I T}=1 |51j|§'5'4(-2-)
x| Ty AjBICE+nym 2100 dye.

On the other hand we know that, if I>n/2,
[ 1120 agays o e cE 4y,
and that, if (1—8)2r—M>n,
(T3 Bicenymrsaie-p=—rsgy
< ([T3os GE+ny, €4y )2+ ymrato=~=rody

g Cv<€>m+2lv(ﬂ—p)“ ,

where C depends only on I, r and M, according to 7) of the previous lemma.
Combining these results we get the conclusion. q.e.d.

By Theorem A.2.4,
(Bro-eop) (5, O
=20 exp {1 232 10— 71 O} TTjms B+ 0+ 715 0/2, E4n)dyéhn.
Therefore we get

(plo- * '°pv)§%;(xa 6)
= 2 4= Sa(j) and =580 10 BT T} =1 2(N)!B(D1}2"

X S exp{i 2}=11;(y;—Yj+1)}
X TT}=1 G+ 5 0I2, E4n)dyén.
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Applying Lemma A.2.4 to
a,y, M=p;EE3+ /2, n),
which belongs to Sm(P+318D1=rla(DI we get
(pyo-+-op )R (x, &)
2" aiinpy Clo, By a(f), BUNCY T =, |P;§§8;;l 8."4(2"))34r)<§>'"+"“"“”'“' ,
(where m'(j)=m(j)+d|B()l — pla( ) +2U5—p)~)
SC(e By M) TT =1 AR b1+ (e 2y 44, CED™HOI 1Pl (13 2y (3=
Therefore there exists [, for any I such that
[pior-op|fmt (m2VG=DM < C(I, M)Y TT}=1 1135 .

; and

Proof of Theorems A.2.5-6. Changing variables as y;—y;;;=z2
n;=C; (j=1,..., v) at the first part of (A.2.7), we get

(pae---op) (%, O={ exp 11 £y, G2 Ty, pi+ 202, E+Ldzdl,
where z;=3¥_ ;12— izl z. Taking Taylor’s expansion with respect to ¢,
ITj=1 pi(x+25/2, E+L))

= ja<n @) TTh= g p @D (x 42512, E)C5D

+N g =n (@)1 S: A-0N 11Ty, pg-"(“’f”(x+z;-/2, &+6(;)do .
Noting {* exp {iz{} =i"12102 exp {iz{}, we take oscillatory integrals of them.

(p1o---opy) (x, &)
= S @)~ 1141 § exp (i20}05(TTjm, PP+ 2512, 1dzd

+ 2 a1 =N N(a!)‘lilﬂig exp {iz{}
x 02 S; (1= 01 T3, pY@ D (x+2)/2, E+6C,)d0dzdl .

Execute differentiations in z noting the form of z.

(p1°"'°pv)(xa é)=I1+12,

where
1= Sy on GG~ Die1~
x | exp (120} TTyo e e+ 2512, ©)dzd
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and
I = Sjag=n N@) /2= 111~ || 16y
x | exp (120} TTj =1 pA{3E Bx-+ 2312, £+60)dzd(d0 .

Noting that it is an oscillatory integral, we get

I =3 1o <n @)T1GDI (= D™ T3 e )%, ©)
=3l <n @)1= D17 P (x, £).
Change variables (z, {) to (6z, 671() in I,.

1= Sy NG R(= 1 | (1= 091

x S exp {iz0} TT3o 1 0,4 e +020/2, E+,)dzdldo.
Return variables (z, {) to (y, n).
1= Sjajon N@) @)1l 111~ (1=

x2n SCXP {2y im(y;—yi+ 0}

X TTj=1 P& +0(y;+ y;41)/2, E+ny)dydndo.
Applying Lemma A.2.4 as q(y;, n,)=p;&&R(x+0y;, np), I,(x, &) belongs
to SmENtA0-~ ) =2[n/2]+2. In order to get the result we consider a suf-
ficiently large N’ for a given N. Then I,(x, &) with respect to N’ belongs to

SN because we may take N’ such that eN<eN'+A(6—p)~. On the other
hand,

S nsiap<n @72 DITPEG(x, &)

also belongs to S7*N. Therefore the remainder term gy(x, &) should belong to
Sm#N. When v=2, the estimate (A.2.11) is easily obtained by estimating qy-
by Lemma A.2.4 and directly P{3) for « such that N<|«|<N". g.e.d.

Remark. Refer to L. Hormander [6] for other informations about Weyl
symbols.
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