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Chapter 0. Introduction

This paper is a detailed version of one announced in C. Iwasaki and N.
Iwasaki [8]. (And also refer to [9].) We study a fundamental solution for

an evolution equation

(0.0.1)

P is a classical pseudodifferential operator of order m, having an asymptotic

expansion of the symbol p(x9 %) such that

(0.0.2) p(x, Q~pJi

where pfa, 0 is positively homogeneous of order j.
Usually this equation is called parabolic if the principal symbol pm of P

is positive (£^0) and the order m is greater than 1. In this case P is strongly

elliptic and satisfies a Carding inequality (0.0.3) and an a-priori estimate (0.0.4).

(0.0.3) Re(p(x,DXii)^c||ii||i/2-C||ii||8, for n of ^(R«).

(0.0.4) \\u\\i+a^CJi\\Pu\\i+\\u\\^9 for 11 of ^(R»).

Therefore on a suitable function space the existence of fundamental solution
E(i) is shown by the theory of one parameter semigroups. On the other hand
it is also shown in a constructive way by means of symbol calculations of pseu-
dodifferential operators. Namely, a parametrix

(0.0.5) <7(£(0)~/0, x, OexpC-Afo £>0,

/= 1 +/i +/z ' ' ' » (// exP ( - PmO belongs to Sr/0) >

is constructed and a fundamental solution is represented in terms of pseu-

dodifferential operators with a parameter t by using neither (0.0.3) nor (0.0.4).

(Refer to C. Iwasaki [7].) It also follows that £(0 belongs to S~°° for any posi-

tive t. That is one of characters of parabolic types. Moreover a Carding
inequality and an a-priori estimate can be conversely proved by the constructed

one.

Here we consider a more general case. Since the evolution equation

should be well posed in some sense, we assume

(0.0.6) pm(x, 0^0andm>l .

P (x,D) is not always elliptic because the principal symbol p,n(x, g) may vanish
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somewhere (c ̂ 0). It seems natural in order to preserve properties of parabolic

types that we assume hypoellipticity to p(x, D) instead of ellipticity. We shall

here call them degenerate parabolic types.

There are two related results. A. Melin [10] proves that the following

(0.0.7) and (0.0.8) are equivalent if p(x, <J) satisfies (0.0.6).

(0.0.7) The subprincipal symbol plus 2~l positive trace of fundamental matrix

for pm(x, £) is positive on the characteristic set Z of pm.

(0.0.8) Re(p(x, D)u, u)^z\\u\\ln-l)l2-~C \\u\\t

for some positive e and C, and for any u of CQCC(K\ (K is a compact

set).

According to parts of results by L. Hormander [5], if p(x, <;) satisfies (0.0.6)

and (0.0.7), it holds (0.0.9) and so (0.0.10).

(0.0.9) ||M | |2_1+^CS(||PW | |S
2+||H|I2

S), for u of Ct«(K).

(0.0. 10) Pis hypoelliptic.

Therefore if (0.0.6) and (0.0.7) are assumed for p(x, D), the existence of funda-

mental solution is shown by the theory of one parameter semigroup as well as in

case of parabolic types.

One of next steps will be to know further informations about E(f). For

example "Is it a pseudodifferential operator?" According to R. Beals [1] a

parametrix of P is constructed if it satisfies (0.0.6) and (0.0.9). And B. Helffer

has noted in [4] that the fundamental solution E(i) belongs to S? /2>1/2 if (0.0.8)

and a result* in R. Beals [1] hold. (*If P belongs to S° and if P is an isomor-

phism on JL2, then the inverse P~l also belongs to S°.) However the form of

symbol is not clear. Meanwhile A. MenikofT and J. Sjostrand [12] has con-

structed a parametrix of form /exp 0 in terms of Fourier integral operators with

complex phase functions (refer to A. Melin and J. Sjostrand [11]) under

(0.0.6), (0.0.7) and the restriction that pm vanishes exactly double on the character-

istic set I of pm and that Z is symplectic manifold, though L. Boutet de Monvel,

A. Grigis and B. Helffer [2] had constructed a parametrix for P if it had been

only got to be a pseudodifferential operator. Consequently they have calculated

the rate of TrE(t) as t tends to zero. They have proved it using (0.0.8) and have

not said positively that their parametrix was a pseudodifferential operator.

In this paper under (0.0.6) and (0.0.7) we shall prove that E(f) is a pseudodif-
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ferential operator of £1/2,1/2 w^tn a parameter t belonging to S~°° if t>Q, and has

a parametrix of pseudodifferential operators with symbols of form /exp (j> (<$

is real valued if the subprincipal symbol is real.) Here 0 and/will be obtained

by means of symbol calculations of p. Especially the leading term will be given

explicitly. The inequalities (0.0.8) and (0.0.9) will follow as corollaries. The

same results about the trace of £(0 as A. Menikoff and J. Sjostrand got will be

proved without the condition that I is symplectic. (They have also extended

their result to this case in [13] and to the general case in [14].) And the con-

ditions will be weakened further in some part.

Remarks. 1) The left hand side in (0.0.7) must be non negative if (0.0.1)

is well posed in some global sense.

2) When we studied these problems, the Weyl symbol for pseudodifferential

operators was very useful for us. From now on we shall use only it as symbol

representations of pseudodifferential operators instead of the usual one.

(Refer to Appendix.)

§ 0.1. Simple Notations and Assumptions

We employ the Weyl symbol for pseudodifferential operators, that is, a

symbol a(x, £) defines an operator a(x9 D) by

f(0.1.1) a(x, D)u = (2n) "\ el(x y'*a((x + y)/29 £)u(y)dyd£ for u of CJ00

where Q = R" x R". Hence pm_ , is the subprincipal symbol of P in usual sence.

In fact the relation between a Weyl symbol a(x, £) and an usual one b(x9 £) of

^l) is given by

a(x, c) = exp {-(20-1! dxd^}b(x9 0 mod S~" .

Vka stands for a section of T*k(T*Ra), fc-th symmetric tensor of T*(T*R«),

defined by (0.1.2) with respect to the canonical coordinate of T*R".

(0.1.2) ^+^kC^a[l}(dmdxY, C*, = fc!/a!0! and a[^d^xa(x, «.

A linear map defined by Vka from TJ(T*Rn) to T*k'J(T*Rn) is denoted by

the same notation Vka. a1 is the canonical two form d^/\dx=^ d& A dxj

on T*R". For the principal symbol pm the Hamilton vector field h is defined

by ol(u, h) = 7pm(u) and the Hamilton (fundamental) matrix & by al(u, &v)

= Q(u,»),Q(u, ») = <", r2Pm»>- If we defi"e Ji by ^^w, JJ)=/(M), then
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h = Jlp
rptn and &r = Jil72pm' We put A = i^ and b = ih. Tr~/4 stands for the

sum of real parts of eigenvalues of A which are positive. On the characteristic

set I of pm, 72pn,^Q if pin^Q. This implies that A has only real eigenvalues.

Tr~/4 is the positive trace of A, that is, the sum of positive eigenvalues.

Remark. Here v/c also call A and b Hamilton matrix and vector, respec-

tively, because they are corresponded to a complex Hamiltonian as & and h are

to a real Hamiltonian.

Remark. Definitions of FKa, the Hamilton vector field and matrix will

be modified by a weight function for the simplicity of calculations in proofs.

But Tr~A and any function of A and b appearing in conclusions are free of

such a weight function. (Refer to Chapter 1.)

Throughout this paper we assume the following (0.1.3).

Condition (A).

(0.1.3) pm^Q on T*R» and 2Re pm_1 + Tr~A ^c\^~l

on the characteristic set Z={pm = Q} for a positive constant c.

§0.2. Results

Theorem 0.1. Under Condition (A) a fundamental solution E(t) of (Q.Q.I)

is constructed as a pseudodifferential operator with a symbol belonging to

LQ. E(f) belongs to S~°° // t is positive. Moreover E(f) has the following

asymptotic expansion.

(0.2.1)

(0.2.2) /0 = l,/,.exp0 belongs to LQ£J' and

gN belongs to Loe(JVTl), (0<e<I/6).

Here the function c/) is defined by (0.2.3-8). At a neighborhood o f Z x { t =

(0.2.3) ti=-pmt-pm_il-a\btl2, F(At/2)bt/2)

-2-1Tr(log[coshU//2)]),

(0.2.4) F(A) = (/A)-^! - A"1 tanh A) ,

and otherwise

(0.2.5) 4>2=-pm '



\l/(s) is a function of C+GO[0, +00) such that i/f = l (s^l), ^ = 0 (s^2),

\^cn,(i-\l/y z /0<T<l .
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namely,

(0.2.6) 0 = ̂ i

where

(0.2.7) ^ = ̂

and

relation between d and e, is

(0.2.8) 0<12<5<l-6e<l.

Remark. We use a notation L™, for a class of pseudodifferential operators,

which is equal to S i /2+ P , i / 2 -p °f Hormander's class.

Remark. The condition (0.2.8) guarantees that F(At/2), cosh (At/2) and

so on are well defined and that exp 0 belongs to Lg.

Remark. Refer to Section 1.5 for the way of construction of /,-, which are

functions of p and its derivatives.

Cc
Since \ £(r)c/f (c>0) is a parametrix of F, we obtain the followings.

Jo

Corollary [A. Melin and L. Hormander]. There exist constants A and

Cs such that for any u o/

and

Remark. The expression may be a little different from A. Melin 9s result

but it is essentially same.

Example. We consider on R2n+l

Then the symbol of E(t) is given by
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where Z = KJ = 0,x i /ij i / = 0

We consider more restrictive cases, thai claim T to be exactly double.

Condition (B). The principal symbol pm vanishes exactly to second order

on the characteristic set I, that is, pm(X)^c(X)d(X, Z)2, (|f| = 1, X = (x, £)

Remark. d(X, I) is the distance of X to Z with respect to the metric of

R n x R + xS""1, that is,

d((x,£U)^)) = {|*-j1^^^

Remark. In this case r is necessarily an infinitely differentiate submanifold

of T*Rn\{0}. Therefore d(X, I) is an infinitely differentiate function at a

conic neighborhood of I and there exists an infinitely differentiable mapping

a(X) valued in Z such that d(X, a(X)) = d(X, Z).

Theorem 0.2. Under Conditions (A) and (B) the phase function (pl at a

neighborhood ofZ can be replaced with c/)3 defined by (0.2.9) if we add a con-

dition that 8e:gl. In fact Theorem 0.1 is valid for the same e on any compact

set o/R".

(0.2.9) ^3=-pm_l(a)t+i^((a-X),tanh(A(a)t/2)(a-X))

- 2-1Tr (log [cosh U(fl)f/2)]) ,

where a = a(X) is an infinitely differentiable mapping from a neighborhood

of I to Z such that \d(X, a(X))-d(X, Z)\£cd(X, Z)2 .

§ 0.3. Applications

We can calculate TrE(0 as t tends to zero, using Theorems 0.1 and 0.2.

Applying Karamata's Tauberian Theorem to it, the asymptotic behavior of

spectral function is obtained.

Let M be an infinitely differentiable compact manifold and dM be a positive

smooth density on it. We assume Condition (C) through out this section.

Condition (C). P is a formally selfadjoint pseudodifferential operator

on M, that is,
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PuvdM= \ uPvdM, for any u and v of C+00(M).
M JM

Theorem 0.38 Under Condition (A) and (C)

TrE(r) = (1 + 0(1)) (2n)-" ( exp <j)dxdt,
JT*M

as t tends to zero., where dxd£ is the Liouville density on T*M.

Remark. In this theorem, the function <{> used in the definitions of $2

(0.2.5) and of \l/1 (0.2.7) should be replaced to a positive symbol of elliptic

operator of order 1 defined on M.

We consider two more restrictive cases to get exact rates. One is Con-

dition (B) and the other is the following Condition (D).

Condition (D), ( dxd£ < + oo .
J{pm^l}

Remark. Since the principal and subprincipal symbols are well defined on

T*M, Conditions (A), (B) and (D) are well defined to P.

Remark. Under Condition (B) the characteristic set I is divided as I

= v disjoint* (£J are connected components of I, j = 1,...,/). Codim I is defined by

d = codimZ = mmj {codim IJ} .

We denote the union of IJ' having the codimension of just d by 1°.

Theorem 0.4. Under Conditions (A) and (C)

(1) P with the domain = C+GC(M) is a semi-bounded essentially selfadjoint

operator on L2(M, dM).

(2) P has only discrete spectrum.

(3) Let N(X) be the number of eigenvalues which are less than A.

Under Conditions (A), (B) and (C), as /I tends to infinity,

(a) JV(A) = {C1+o(l)}Aw/'« if n-md/2<Q,

(b) JV(A) = {C2 + o(l)}A"/I"logA if n-md/2 = Q,

and

(c) N(/L) = {C3 + o(l)}A(»-^2>/^-1) if n-md/2>0.

Under Conditions (A), (D) and (C), as A tends to infinity,

(d) N(A) = {C1+o(l)}A-/m.
Here Cj are given by

C, = (27r)-'T(n/m + !)-'( exp (- pjdxdt,
JT*M
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C2 = m-l(2n)-<-"-d/^r(nlm + 1)"1

and

Remark. dZ° is an induced density on I"0 by pm and dxd£. If
(u, v) is a local coordinate such that I"° = {w = 0} (locally), we define it as
dS° = [det(Huu)']~1/2<f>dv, where <$dudv = dxd£, and Hllu is the Hesse matrix of

pm with respect to the variable u.

Remark. In the case that n — md/2 = Q, pm-± +2"1 Tr~A is changeable

to any other positive function of homogeneous order m — 1. C2 depends only
on dl°. (Refer to (4.3.35).)

§ 0 A On Proofs

If we assume that exp0 belongs to Lg, we get (0.4.1) by applying the ex-
pansion formula of products of two pseudodifferential operators with Weyl

symbols. (Refer to Chapter 1.)

(0.4.1)

= (d/dt) exp 0 + ELo (2irk(kir^k(Pm, exp <t>) + pm-v exp 0,

We shall find <j) such that it will belong to Lg1"1"8. In fact (/) defined in Theorem
0.1 satisfies it. Especially cj)1 satisfies approximately (0.4.2) at a neighborhood

(0.4.2)

0 l l r = 0 = 0-

Differentiating twice this equation, we get an approximate equation (0.4.3)

forZ = zJ1F201.

(0.4.3) (d/dt)X + A-4-1AX2 = Q

*Uo = 0.

The solution of this equation is given by X= — 2tanh(At/2). Going back to
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(0.4.2) (j)1 is obtained. Next the transport equations (0.4.4) will be solved

approximately and/= 1 +fl +/2 H — will be obtained.

(0.4.4) (dldt)f+ Zf =1 (2i)-*(fc!)-1{^P»,/exp fa-fifa*, exp

However tanh (At/2), F(At/2) and so on will appear in the expression of $ and

fj obtained in this way. The detailed discussions are needed to show that they

are well defined and that /7- exp <£ belongs to LQEJ. We shall take the necessary

steps in Chapter 1.

Once a parametrix has obtained, a fundamental solution E(t) will be obtained

by solving the Volterra's integral equation (0.4.5) of pseudodifferential operators,

where EN(t)= 2f=0// exP $ and

(0.4.5)

This part will be shown in Chapter 2. Theorem 0.2 will be proved in

Chapter 3. Chapter 4 will be put to prove Theorem 0.3 and 0.4. Some notes

about Hamilton matrices and pseudodifferential operators will be given at

Appendix.

Chapter I. Construction of a Parametrix in Terms

of Pseudodifferential Operators

This chapter is the main part of this paper. We prove Theorem 0.1. In

Section 1.1 we give two equations. One is approximately satisfied by the

complex phase function given in (0.2.3) (Section 1.4), which is exactly con-

structed in Section 1.2 and the other is a transport equation with respect to the

complex phase function. The amplitude functions satisfy it inductively (Section

1.5). The proof is completed in Section 1.6.

§ 1.1. Approximate Equations

We start with a proposition for the expansion formula of the product of

two pseudodifferential operators.

Notation. Throughout this paper except for Introduction, Vka means a
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weighted one, that is, for an infinitely differentiate function a(x, £) it is defined

by

yi. C* = k\l*lpl and

Therefore A and b are weighted according as the definition in Section 0.1.

Remark. If p belongs to L™, then 7k p belongs to L™~pk.

Proposition 1.1. If at belong to S™$6W and p(i)>d(3 — i)9 i=l, 2, then

the symbol al°a2 of the product operator a^(x9 D)a2(x, D) has the asymptotic

expansion.

(1.1.1) flioflasSit^O-^fcirWr^!, F*a2) modS-00.

Proof. It is given at Appendix. q.e.d.

Remarks. I) <rk are bilinear forms on T*fc(T*Rw). (T*°(T*R")

= T*R"xC.) a0(u, v) — uv, o"i(w, tO = <^iw
5 *>> and crfe are natural extensions of

al on T**(T*RB). (Refer to Appendix.)

2) It is a special feature of Weyl symbols that a well regulated symbol

appears in each term of the expansion.

3) <fk(Pkai> yk<*2) may ^e denoted by a(Pkal9 Pka2) or ak(al9 a2).

4) The w-th partial sum of (1.1.1), SZ=o(20"k(fe!)"1^(fli» a2\ is denoted
by «l°(n) f l2-

Let us consider the product of p and exp 0. We assume that exp 0 belongs

to L§. _p in (0.0.1) belongs to Lf/2. Therefore, ak(p, exp$) belongs to Lgz~fc/2,

because Ffcp and Ffc(exp ^>) belong to LJ1^*/2 and Lg, respectively. So we get

(1.1.2), where g0 exp 0 belongs to LgT3/2.

(1.1.2) ((d/dO + p>exp0

mod S"00 .

Outside of the characteristic set Z of pm, ffQ(pm9 exp^)=pmexp ^ is the term

with the heighest order m. It is natural that the equation satisfied by <j> seems

to be (1.1.3).

(1.1.3) 0 fexp0 + pmexp(£ = Q, that is, $ r+j?m=0.

On the other hand pm and frpm vanish on T. (2i)~"22~1a2(pm, exp 0) + pm-! exp 0

will be the term with the heighest order m— 1 there. In fact it will be clear

later that Condition (A) guarantees it. Therefore we think of (1.1.4) as the
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equation that the complex phase function 0 should satisfy on a neighborhood

of I.

(1.1.4) & exp 0 + E2
=0 (2tTk(k\rlffiti>m, exp <£) + A*- i exp 0 = 0 .

Calculating (Tfc(pm, exp 0) we get the equation (1.1.5).

(1.1.5) 0r + pm + pm

This is rewritten as follows. (Refer to Appendix.)

(1.1.6) ^t + pm + pm

We call (1.1.4), also (1.1.5) and (1.1.6), the first approximate equation.

Remark. It is enough for the complex phase function 0 to satisfy ap-

proximately (1.1.4), that is, to find <f> such that

(1.1.7) h + Pm + Pm

where gl exp 0 belongs to Lg'~1~£(s>0).

Next we look for a transport equation in order to make the remainder

term (g0 + gj exp $ of (1 .1.2) and (1 .1.7) vanish inductively. Let the remainder

term g exp </> belong to Ll
0
+m~ l . We will find an amplitude function a such that

(1.1.8) the order of (dt + p)°aexp $ — g exp <j> is lower than / + m — 1 .

We assume that we could find a such that a exp cj) belongs to L1
0. Operating

(dt + p) to a exp 0, we get (1.1.9).

(1.1.9)

crk(p, a exp 0) mod S'00 .

belongs to L£+w~3/2 if /c^3, and <rk(p — Pm> «exp0) belongs to

LH-m-3/2 jf fc^i. These imply (1.1.10).

(1.1.10)

= (af + a0t) exp

+ pm_1a exp 0, mod Ll
Q

+m~3/2 ,

= [a, exp ̂  + ZLi (20"1(^0~1{^(Pm3 « exp 0) - a(7fc(pm, exp

(20~1(^0~1o-fe(Pm5 exp <W + pm-i
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We can expect for the second term agl exp 0 to belong to Ll
Q

+m~l~E
9 (e>0) by

(1.1.7). So we get (1.1. 11).

(1.1.11) (3r + p>aexp0

{ff*(P»» « exP <t>)-™k(P

This implies that (1.1.8) holds if we define a by a solution of (1.1.12).

(1.1.12) at exp <£ + ZLi (2i)-1(^D"1{^(Pm5 a exp </>)-aak(pm9 exp 0)}

We can rewrite (1.1.12) as (1.1.13).

(1.1.13)

We call (1.1.12) and (1.1.13) the second approximate equation.

Remark. It is also enough to get an approximate solution.

§1.2. Definition of 0!

(1.2.1) 01=- jpmt-pm_1r-aH^/2, F(Atl2)btl2)

-2~1Tr(log[coshUr/2)]).

We explain how to have found 0X (0.2.3) or (1.2.1) before we prove for 0j

to be well defined. If (f)l is a solution of the first approximate equation (1.2.2)

the derivatives of the both side of its equation also have to hold. In them we

neglect the terms which include the derivatives of (j)l and pm with more than

second order by the same reason as we induced the first approximate equation,

that is, by reason that we expect to find (j>l such that it is possible under con-

dition (A). We also neglect the derivatives of pm-l. Then we get (1.2.3) and

(1.2.4), where H^ = F20t and Hp = F2pm.

(1.2.2)

(1.2.3)

(1 .2.4) (d/dt) (J^Hj + JlHp + 2-1 fC/i/f p) (JtHj - 2-ii(JtHt) (JJlp)
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We put X = iJlH(j) and A = iJ1Hp. We assume that X and A are commutative.
Then we get (1.2.5).

(1.2.5)

Since we should get cj)1 such that $t | f=0 = 0, the initial condition of (1.2.5) must
be (1.2.6).

(1.2.6) *U=o = 0.

We know that the solution of the initial value problem of the matrix valued
ordinary differential equation (1.2.5) and (1.2.6) is given by (1.2.7) if it is well

defined.

(1.2.7) X=-2tanh(At/2).

Using this solution we solve (1.2.2) and (1.2.3) as if (f>l9 V$± and F2(j)1 were
independent of each other. We put y = iJ1^(j)1 and b = iJ1Ppm. (1.2.3)

implies (1.2.8).

(1.2.8) (d/dt)y + b +

y | t = o = o .
(1.2.9) is the solution of (1.2.8).

(1.2.9)

We get (1.2. 10) by (1.2.2).

(1.2.10) (d/dt)cj)^pm + pm_1

Thus this implies (1.2.11) replacing y by (1.2.9).

(1.2.11) (d/dt)(t)i+pm + pm_1 + 2-1iffl(b, A-lXb)-%-Hol(A-lXb, Xb)

If we note (1.2.13) and (1.2.14), we get (1.2.12).

(1.2.12) 01=-(pm + pm o

(1.2.13) cl(b, A~iXb) = Q. (vl(u, A~lXv) = al(A-lXu, v).)

(1.2.14)
o

By the way we know (1.2.15) and (1.2.16), where F(X) is defined by (0.2.4).

(1.2.15) 2-HA-1(A'lX + f)= -F(Atl2)(t/2)2 .
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(1.2.16) 8'1 Tr (AX}ds= -4"1 Tr tmh(At/2)Ads
Jo Jo

- - 2-1 Tr (log [cosh (At/2)J) .

Substituting them in (1.2.12) we get <£A of (1.2.J).

Now we consider about F(At/2) and log (cosh At/2). They are defined in

the form of Dunford integral (1.2.17) using the resolvent (A — A)'1 of A.

(1.2.17)

where /(/I) is a holomorphic function on a neighborhood Q of the eigenvalues

of A and F is a contour which is included in Q and rounds the eigenvalues of A.

It is necessary to point out the place, where the eigenvalues of A exist, in order

to use this definition. Since the Hesse matrix Hp = F2pm is non-negative on the

characteristic set I of pm, all eigenvalues of A lie on the real axis. However

Hp = P2pm is not always non-negative out side of I. Therefore they swell out

onto the complex plane. We estimate the width.

Proposition 1.2. Lei G be a real symmetric matrix on C2n and J be a real

unitary matrix such that J2=—I. We assume that G + <50I^:0 for a real

50. // ^0^|ImA|2{2B + 2(52-f 311mA!2)1/2}-1 and ImA/0, where B

= sup/9fco <G/, />/</,/>, fhen £/zere exists the resolvent (A — z'JG)"1 of iJG such

that (1.2.18) holds for 0</c<i z/A safzs/zes (1.2.19) and ImA^O.

(1.2.18) IKA-f/G)-1!!

g(452 + 5/c2|ImA|2)1/2{/<l-/c)|ImA|2}-1, when B>Q,

or

(1.2.19)

Remark. We shall prove Proposition 1.2 at Appendix.

We may identify T(T*R") and R2 r lxR2». We denote its element by

(X, Y), where X = (x, c) belonging to T*R" and Y=(y, r\) belongieng to

r0(T
?I:R"). We also use the notation that Xj = Xj9 & = XJ, yj=Yj and ^* = Y*.

Let x and c stand for a mapping on Tx(T*Rn) and a mapping from TX(T*R")

to T*R", which are defined by (1.2.20) and (1.2.21), respectively.

(1.2.20)

(1.2.21)
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Let p belong to Lf/2. We get (1.2.22) by the Tayler expansion, where

(1.2.22) p(X+Y') = p(X) + <rp(X)9 Yy + 2-^?2p(X)Y, Yy + g(X, Y).

(1.2.23) g(X, Y) =
o

Proposition 1.3. If p belongs to L^/2 and p^O, then we get (1.2.24) for

a constant c0.

(1.2.24) inf ,,„,,, XP2XXK u>^ -c0p(X)1/3<O2w/3-1 -

Proof. We assume that ||u|| = l and <F2pu, w>= -50, (<50>0). Sub-
stituting Y=[iu at (1.2.22) we get (1.2.25), where # is a constant.

(1.2.25)

(1.2.26)
Jo

If we assume (1.2.27), #Guw) is estimated as (1.2.28) because

(1.2.27)

(1.2.28)

Particularly we put /z = e0X^)1/3<O~m/3+1/2- If a positive number e0 is
sufficiently small, (1.2.27) holds. So we get (1.2.29).

(1.2.29)

This implies (1.2.30) and so (1.2.31).

(1.2.30)

(1.2.31)

q.e.d.

Combining Propositions 1.2 and 1.3 we get Proposition 1.4.

Proposition 1.4. Let p belong to Lf/2 and p^O. There exists a constant

ci such that (1.2.33) holds if (1232) holds.

(1.2.32) Cip^O^'^IImAI, (f>0).
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(1.2.33)

where S = At = U1

Proof. It is enough to prove it when t = l. We apply Proposition 1.2

to the case that G = P2p(X), <50 = c0X^)1/3<O2m/3~1 and B = supf±Q(Gf, />/
</>/X where c0 is the one in Proposition 1.3. We get immediately (1.2.35)

under the condition (1.2.34).

(1.2.34)

(1.2.35)

or

Lemma 1.5. Let a, ft and \JL be non-negative. If they satisfy (1.2.36),
then the inequality (1.2.37) holds.

(1.2.36)

(1.2.37)

In Lemma 1.5 we put a = 3c0X*)1/3<C>2m/3~1, P=\B\, ju = 31/2/c|Im A|
and fe = l/2. Then we get (1.2.38) for a constant c since a + jS^c

(1.2.38)

Thus we conclude that (1.2.34) holds if (1.2.39) holds.

(1 .2.39)

Therefore (1.2.35) holds as fe=l/2. For any B (1.2.35) implies (1.2.33) putting

fc = l/2 because 4(4B2 + (5/4)|Im;.|2)1/2^8(B2 + |Im^|2)1/2 and 8x/2<8(52

A|-1. q.e.d.

Proof of Lemma 1.5. Since j5 + (jS2 + ju
2)1/2^2j8 + ju, oc>ju

2(4j8 + 2ju)-1.
So we get that ju2<2aju + 4ajS. This implies that ju<a + (a2 + 4a/f)1/2<;2a

+ 2(a«1/2. q.e.d.

Let us use the definition (1.2.17) for a holomorphic function g on the closed

domain D = {A = a + i&; |fe|-|a|^l/2} of C. ^(S) is well defined if the
eigenvalues of S lie in the zonal domain (A; |Im A| < 1/2}.

Proposition 1.6. Let Q^ be a neighborhood of the characteristic set I

°f Pm
 sucn
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(1.2.40) Q, = {X; t

g is a holomorphic function on D such that

(1.2.41) |0(A)|ge(l + |A|)* on D for some constants c and /c^

1) There exists u>Q such that g(At/2) is well defined if X belongs to

M, where A = iJ1P
2pm and g(At/2) is given by (1.2.17).

2) On the domain Q^ of 1), g(At/2) has the estimate (1.2.42) for integers

(1.2.42) l|

Proof. 1) Let ci be the one in (1.2.32) of Proposition 1.4. We fix a

parameter \JL such that 0<c1jU< 1. Then the eigenvalues of At/2 lie on the zonal

domain {A; |ImA|<l/2} by Proposition 1.4. Thus 1) is valid.

2) Let the another domain D; be defined such thatD^ = {A; |ReA|^2a + l}.

(A-S)-1 is holomorphic in A out side {A; |ImA|^c1^/2<l/2 and

where S = At/2, and satisfies the estimate (1.2.33) and (1.2.43).

(1.2.43) ip-sni^dAI-IISIQ-1 if |A|>||S||.

We take a contour r in (1.2.17) such that F = d(D A D' ,|5||). We put F1=

and r2=rA3Z>',,s,,. Since |ImA|^2||S|| +3/2 on 7, (1.2.33) and (1.2.43) imply

(1.2.44) and (1.2.45).

(1.2.44) ||(A-5)-i||^c(l + ||S||)|ImA|-2 on r, .

(1.2.45) IKA-SJ-Ml^ctl + IISII)-1 on F2.

We get (1.2.46) and (1.2.47) for integers f^O noting that \\P1S\\ g

because pm belongs to L™/2*

(1.2.46) ||F'(A-S)-MI

gci(l + KOm-1)i(l + l|S||)l+1<O-'/2|ImA|-2(!+1) on

(1.2.47) IIF'^-Sri

^ciCl + K^-O'd + IISID-'-KO-172 on JT2-

Now we estimate F '0C<4*/2) = (2ni)~ 1 ( g(X)P '(A - S)~ JdA .
Jr

(1.2.48) ||
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r2

l /2

f2||Sll + 3/2
da]

J-2||S||-3/2

where the constants cz are changed suitably. q.e. d,

Examples. tanh A, A"1 tanh A, ?F(A) = A~1() — A"1 tanh A), cosh A, log

(cosh A), (A'1 tanh A)1/2, F(A)(l4-(A~1 tanh A)1/2)-1, AF(A)(1 +(A-J tanh A)

and (exp(-2Aa)4-l)(exp(-2A)H-l)-1, where Oga^l.

We use the function g(S) on supp \//k(k=l, 2) which are defined by (0.2.7).

Lemma 1 .7 guarantees it.

Lemma 1.7. Let d and c be those appearing in the definition of \l/k. If

6<(l — 2s)/6, there exists T>0 such that supp \j/k(k = 1 , 2) is included in £2/t

for t of [0, T]. Therefore the eigenvalues of S = At/2 lie on the zonal domain

[A; |ImA|<l/2} and also g(S) of Proposition 1.6 is well defined on supp\l/k

and has the estimate (1.2.42).

Proof, supp i//1 is included in supp \j/2 = {^XO1""1"2*^} A {t^ym~l~d

g4|. z = fp,I
fI

/6<O5m/6~1^21/3KOw~1+(2s"1)/6- If m-1 +(2c-l)/6<0, it is
sufficient to take T= \Or l /3 . If m - 1 + (2e - 1)/6 ̂  0, then m - 1 - 5 > 0.

a = (m - 1 + (2e - l)/6)/(/n - I - d) ̂  0 and jB = ((1 - 2e)/6 - <S)/(m - 1 - 5) > 0.

Thus we also get T>0 which satisfies that 21/3+2ar^gju. q.e.d.

In conclusion we state the following proposition to finish this section.

Proposition 1.8. c/)} of (1.2.1) is well defined on supp ij/k, /c=l , 2, if

<5<(J — 2e)/6 and if t is sufficiently small.

§ 1.3. A Class of Pseudodlfferentlal Operators

We introduce a kind of classes for symbols which is convinient to construct

the parametrix at a neighborhood of the characteristic set I of pm.
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Let Q0 be a domain such that

(1.3.1) 00 = {(r, x, £); pm^8<O'w-1+2£ and

We define N(j, k, /) a subspace of C+00((20) through the four steps (1.3.2-5),

where j and k are integers, and / is a real number.

(1.3.2) / belongs to N(0, 0, /) if and only if for any integers a and /?g;0 there

exist constants c(a, ft) and d(a, f$) such that

|<3f
aF^/|gc(a, /?)(! + f<f>«-i)«i(«,/o<f>i-/»«+«<m-i) on 00.

(1.3.3) When j ^ 0 and k ̂  0, / belongs to N( j, k, /) if and only if

where #(Q is a polynomial of homogeneous order k in C with coefficients in

AT(0, 0, /).

(1.3.4) N(j, k, /) = N(j, 0, / + ke) when j^O and k<0.

(1.3.5) N ( j , k , l ) = N(Q,k,l) when j<0.

We get immediately Proposition 1.9.

Proposition 1.9.

(1.3.6) N(j9 k, /) are JV(0, 0, ^-modules.

(1.3.7) NO, k, /) is included in N(j, fc-1, / + e).

(1.3.8) JV(;, k, /) /s included in N ( j ~ ] , fc, /).

Iff belongs to N(j, k, /), f»*n w^ ^^ (1.3.9-11).

(1.3.9) F/ belongs to N(j, k-\, I) + N(j, k, l-e) which is included in

N(j, k- 1 , / ) .

(1.3.10) dj belongs to N(j-\, k, m-1+7) .

(1.3.11) (V^ 6e/owflfs ro N ( / + l , fc, /-
Jo

(1.3.12) N(j, fc, ON(/, fc', O w inc/iirfcd m N(j+/, fc + fc', /+ / ' ) -

Remark. It is not necessary for the domain of functions in the definition

of N(j, k, /) to be restricted to Q0. We may define all relation on R'1 uniformly,

though we can not expect that (1.3.7) and the inclusion at the last part of (1.3.9)

hold. We denote it by Ng(j, k, /). When we construct the parametrix out side

of the characteristic set I or in the whole space, we will use this notation.
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Let Ht ( /=!, 2, 3) stand for subspaces of C~°°[0, +00) which are defined

by (1.3.13).

(1.3.13) //! = {/*; supp(rf/rff)ft is included in [1, 2]},
//2 = {/7; supp /? is included in [1, -hoo) and /? belongs to HJ

and

H3 = {/i; supp /1 is included in [I, 2]} .

We put h} =ij/9 where i/f is the one in (0.2.7). Then h^ belongs to H l and (1 — //,)*

belongs to H2 for oc>0. h^ satisfies (1.3.14) for all n ^ l , for all a such that

l>a^0 and for some /i(w>a) belonging to H3.

(1.3.14) (£//A)nhi = /W)(l-fti)"-

And also (1 — /ij)* satisfies (1.3.15) for all /? such that a>/J^O and for some

/i(M) belonging to H3.

(1.3.15) WMOO-M^W1-^.

Next we define subspaces Hfj.i) of //^ (z = 1, 2, 3) for + oo ^/^^O.

(1.3.16) H;(0)=H;.

(1.3.17) JFff(ju) consists of elements /? of Ht such that /j = /t(K)(J — /ij)" for any a

such that /i>a^0 and for some /i(a) belonging to /fh if ju>0.

They have the following properties.

(1.3.18) #,(/*) is included in Ht(jjL
f) ifn>n' .

(1.3.19) (d/clt)nh belongs to H3(^) for n^l if / belongs to /ff(^)(/ = l, 2, 3).

(1.3.20) Hl(jjL) = H2(jjL) includes /f3(/^) if ^>0.

(1.3.21) HidtiH&i') is included in HjCjJL + n').

Moreover we consider ^Fj^O and ^2 function spaces on £20 which are

defined by (1.3.22) and (1.3.23), respectively.

(1.3.22) \j/ belongs to «P,(^) if and only if i/r(x, £) = h(pm(x,

(1.3.23) i/f belongs to ^F2 if and only if i/f vanishes on

We define N( j, k, /, /i), which are JV(0, 0, 0)-modules generated by

«P1(//)M
rO, fc, /), by (1.3.24) and N-°° by (1.3.25), respectively.
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(1.3.24) N(J9 fc, I AO-^GOATC/, fc, 0-

(1.3.25) N-*> = V2A2U9ktnN(j,k,l).

We arrange their properties in Proposition 1.10 and 1.11.

Proposition 1.10.

(1.3.26) VtOtiVidi') is included in 7^ + fji') .

(1.3.27) N(j9 k, /, i$N(j'9 fc', /', p1) is included in

(1.3.28) N(j, k, I, /i) is included in N(j', k, /', fir) if j^f, /^/ ' and /^'.

(1.3.29) N(j,k9l,n) is included in N(j, fc-J, / + e, /x). (Re/er to P?-opo-

sitfon 1.19.)

(1.3.30) ^iOi) is included in JV(0, 0, 0, /() .

(1.3.31) // ^ fee/on^s to W^fi), then F^ be/onflfs to JV(0, 0, -1/2, ^)

If /belongs to N(j, k, I, //), rt^n we ^e? (1.3.32-35).

(1.3.32) fPpm belongs to N(j9 fc + 1, J + m-1, ^).

(1.3.33) ?f belongs to N(j9k-I9l9 n). (P^f belongs to N(j9 fc-v, /,

(1.3.34) dj belongs to N(j-l9 fc, / + m-l, ^).

(1.3.35) ('/a* bdon^s ro JV(; + 1, fe, /-

(1.3.36) Iff belongs to N-™, then F/5 a£/an^ (' /#* be/of?6r fo JV'00.
Jo

(1.3.37) N~*N(j, fc, /, /i) is included in JV"00.

Proposition 1.11. H^ ^er ^/?e relation (1.3.38-46) for ^}, i/^f anJ i/^ of

(0.2.7).

(1.3.38) ^} belongs to ^(0) w/iic/7 is included in N(Q, 0, 0, 0).

(1.3.39) L-^rf belongs to ¥2 which is included in AT00.

(1.3.40) (l-iAfMj, fc, /, /O is included in N-™.

(1.3.41) (1 -iH) fcelon^s to JV(05 0, 05 1) .

(1 .3.42) (1 -\l/\)N(j9 fc, /, ^t) is included in N(j9 k, /, p+ 1) .
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(1.3.43) ^j^i^i^i-^Kl-^i) belongs to ij/l + N^ which is included
, 0,0, GHAT*.

(1.3.44) 1-^! = ! — ̂ 1 + ̂ Kl — ̂ i) belongs to J -^l + N"00 which is included

in #(0,0,0,

(1.3.45) (l-i/rJNt/, fc, /, fi) is included in N(j, k, /,

(1.3.46) Pi//! belongs to -F(l-^}) + FJV-°° which is included in

AT(0, -1,0, l) + N-°°.

Remark. Ng(j, k, /, ji) and W^00 are also well defined as V i(jJi)N J(j , k, /)

and <F2
 A Sa,M)^0' ^» 0» respectively. They satisfy Proposition 1.10-11

without (1.3.29) and (1.3.33). (1.3.33) should be left as (1.3.47).

(1.3.47) V /belongs to Ng(j, k, /-c, n) + Ng(j, k-1, / , / < ) •

Tfte relation between N and Ng is given by (1.3.49-50).

(1.3.48) ^2AT(j, k, /, n) is included in Ng(j9 k, I, v) + N-">

and Ng(j9 k, /, n) is included in N(j, k, /, //) .

(1.3.49) ij/2N~m is included in JV~°°, which is included in N~K.

We introduce some class by gathering N or Ng as (1.3.50-53).

(1 .3.50) N* (j, fc, /, M) = Zv<;fc N(7, v, /, ji) .

It is clear that Proposition 1.10 and 1.11 are valid for N*(j, k, I, fi) substituted

in the place of N ( j , k, /, ju) .

(1.3.51) N**Q, k, 7, M)=Sv>o#*0' + v, fc + v, /, AC).

(1.3.52) N*0, fc, /, ^) = £v^ JV/j, v, /, AI) .

(1.3.53) N*g*(j, k, /, M)=Zv£o^O' + v, fc + v, /, ;0-

Finally we define Ng(j, k, /, out), which consists of functions belonging to

Ng(j9 k, /, + oo) and supported on supp (1 — \l/%). We also define N*( j, k, I, out)

and N**(j, k, /, out) in the same way as (1.3.52-53).

§ 1.4. First Approximate Equation

In this section we show that the complex phase function 0 given in (0.2.6)

satisfies the first approximate equation (1.1.4) in the sense of Proposition 1.12.

We consider it only on supp \l/2.
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(1.4.1) ^ = lAl^l+(l

Proposition 1.12.

(1.4.2)

= 0, modN(3, 3, m-l-8, 0)4- AT(1, 1, m- 1-8,0)

+ AT(1,0, m-1-28, 0) + N(2, 2, m-1, l)-f N(Q, 0, m-1,

Proof. We reduce F0, F20 and (d/dt)^ to prove Proposition 1.12.

(1.4.3) 02-0x

= tpm. ! + tf1^, F(At/2)bt/2) + 2-Tr (log [cosh (Xf/2)]) -

which belongs to N(\, 0, 0, 0) + yV(2, 2, 0, 0), because log [cosh(x)] = ;/(A),

where f(l) is bounded on the domain D in Proposition 1.6. This implies

(1.4.4-5) by (1.3.45) and (1.3.33).

(1.4.4) (l-^i)(02-0i) belongs to N(l, 0, 0, 1) + N(2, 2, 0, l) + Ar

(1.4.5) rftl-l/Mfa-fa)} belongs to N(l, -1,0, 1) + N(2, 1,0,

Therefore we get (1.4.6-7) also using (1.3.33).

(1.4.6) F^EEF^, mod N(i, -1,0, 1)4-^(2, 1,0,

(1.4.7) F20 = F2015 mod JV(1, -2,0, 1) + N(2, 0, 0,

We further reduce F0j and F2^ noting the form of 0t.

(1.4.8) ^ = - rpm - tpm, A - u K6t/2, F(At/2)bt/2) - 2^Tr (log [cosh (Af/2)]) .

Since rj?m_ l 5 F(At/2) and Tr (log [cosh (Xf/2)]) belong to N(l, 0, 0, 0), we get

(1.4.9-12), where^A)^^-1 tanh A(=1+A2

(1.4.9) USfa^-MAtMbt, mod JV(3, 2, -1/2, 0) + N(1, 0, -1/2, 0).

(1.4.10) /AF0! belongs to N(\, 1, 0, 0) + #(1, 0, -1/2, 0),

because JV(3, 2, -1/2, 0) is included in JV(1, 1, 0, 0).

(1.4.11) i/iF2^ -2MAt/2), mod N(2, 1, -1/2, 0) + N(1, -1, -1/2, 0),

because JV(3, 1, -1/2, 0) is included in N(2, 1, -1/2, 0).

(1.4.12) F20i belongs to N(l, 0, 0, 0) + N(1, -1, -1/2, 0).

In conclusion we get (1.4.13-17).
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(1.4.13) zJ1F(£=-
mod]V(3, 2, -e, 0) + iV(l, 0, -e, 0) + AT(2, 1, 0,

because N(19 0, -1/2, 0) and N(l, -1, 0? 1) are included in JV(1, 0, -e, 0),

where e^l/2.

(1.4.14) /J1r20s-2
modJV(2, 1, -8, 0) + JV(1, 0, -2e, 0) + 7V(2, 0, 0,

because JV(1, -1, -1/2, 0) + N(1, -2, 0, 1) are included in ]V(1, 0, -28, 0).

(1.4.15) <72(F
2p

modJV(2, 1, m-l-e, 1) + N(1, 0, m-l-e , 0)

+ AT(2, 0, m-1, 0 + JV-00.

0.4.16)

t, AfQ(Atl2)bt),
modJV(4, 3, m-1 -s, 0) + N(2, 1, m-l-e, 0)

+ N(2, 0, m-l-2c, 0) + N(3, 2, m-1, O + A^"00,

because AiJ}F(l) belongs to N(l, 1, m-1, 0) + iV(l, 0, m-l -e , 0) + JV-°° and

AT(4, 2, m-l-2e, 0) + N(3, 1, m-l-e, 1) is included in /Y(2, 1, m-l-e, 0).

(1.4.17)

modAT(3, 3, m- 1 -e, 0) + ^V(1, 1, m- 1 -e, 0) + N(2, 2, m-1,

because /0(A) is an even function. (Refer to Appendix.) Thus we get (1.4.18)

from the above properties, where/2(A) = A~1(tanh A)2.

(1.4.18) (2/)-%1(Fpm, F0) + (20-22-%2(F
2

jPm, F(£F0 + F20)

E*(2ir2i<rl(b,f2(Atl2)b)t-(2i)-2 Tr [X -/tWt/2)] ,

modJV(3, 3, m-l-e, 0) + W(1, 1, m-l-e , 0) + JV(1, 0, m-l-2e, 0)

+ JV(2, 2, m-1, 1) + N(2, 0, m-1, 1) + ^-°°,

because A/0(/l)
2 =/2(A), N(4, 3, m-l-e, 0) is included in Af(3, 3, w-l-e, 0),

N(2, 1, m-l-e, 0) is included in N(l, 1, m-l-e, 0), N(2, 0, m - 1 - 2e, 0)

is included in N(l, 0, m — 1 — 2e, 0) and N(3, 2, m — 1, 1) is included in

N(2, 2, m-1, 1).

On the other hand we get (1.4.19-21) for fl^.

(1.4.19) dt^ = dt^l+(l-\jjl)(dt(t)2-dt^l) mod JV'00 .
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(1.4.20) ^

ir2 Tr \A -f

because (d/df) (f2F(Af)) = r ^(AOr and (d/dr) (log (cosh Ar)) = AA(^).

(1.4.21) ^-c^

-A,- 1 + (20-2/ff10>, /2(Atl2)b)t- (20~2 Tr [X ̂ (^t/2)]

which belongs to N(2, 2, m-1, 0) + JV(0, 0, /n-l, 0). Therefore we get
(1.4.22).

1 .4.22) dt^^pm-pm^- (2i)-Ho\b, f2(At/2)b)t + (2i)'2 Tr \_A ^

modiV(252, m-1, 1) + N(0, 0, m-L ,

Combining (1.4.18) and (1.4.22) we complete the proof of Proposition 1.12.

q. e. d.

§ 1.5. Solution of Second Approximate Equation

The coefficients of the second approximate equation (1.1.12) are not real in
general though it is a linear and first order partial differential equation. We

can not expect to find exact solutions. But it is interested and sufficiently
effective to find approximate ones for defining the type of the parametrix,

Proposition 1.13. Let g(Q be an homogeneous polynormial of order k in

C with coefficients in JV(0, 0, 0, 0) such that #(Q belongs to N(j, ky l + m — 1, /x)
i/C is replaced by b = iJ1Ppm. We define another polynomial /i(Q by (1.5.1).

(1.5.1) KQ= T g(s, x, & 0(f, sffids, and
Jo

9(t9 s) = {l+exp(-^s)}{l+exp(-^)}"1.

Then, h = h(iJ1Ppm) belongs to N(j + \., k, /, u) and satisfies (1.5.2).

(1.5.2)

We can take out a leading part of the proof as Lemma 1.14. Let K(t) be a

continuous function valued in L(C"), linear mapping on C", and 6(t, s) be the

solution of the equation (1.5.3).
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(1.5.3) {(dldt) + 'K(f)}<9(t, s) = 0 .

<0(s, s) = I.

We consider homogeneous polynomial g(A) and h(l) of order k in £• They

satisfy (1.5.4).

(1.5.4) /o0(0 = <C, G(Q> and fcfc(0=<f, Jf(0>, where

and (ff 0 =

Lemma 1.14. Let fc(0 be rfe/med by (1.5.5).

(1.5.5)
Jo

/?(£) 75 a solution of (1.5.6).

(1 -5.6) (d/dOA + <K(OC, H(0> =0(0

. (dldf)h =

= flf(0-(' W,Jo

, '6(1, s)G(9(t, s)0</s>
o

because fl(0= '0(f, s)G(6(t, s)C)ds. q.e.d.
Jo

Proof of Proposition 1.13. Let us put K(f) as (1.5.7) in Lemma 1.14.

Then we get 6(t, s) in (1.5.1) for the solution of (1.5.3). In fact the solution of
rt

(1.5.3) is given by exp (— \ K(r)dr) since K(f) and K(s) are commutative.

(1.5.8) - K(r)dr = A(l - s)/2 - log (cosh (^4f/2)/cosh (As/2)).
Js

So we get (1.5.9).

(1.5.9) exp(-{'K(r>/r)
Js

= exp (A(t - s)/2) {exp (As/2) + exp (- As/2)} {exp (At/2)
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It is clear by definition that h(b) belongs to N(j+l, k, 1, $ if g(b) belongs to

N(j, k9l + m-l, fji). For 7h(b) we get (1.5.10).

(1.5.10) F{h(b)} = h~(b) + A'H(b),

where /?~(0 = Ffe(0» #(0 = <VKO and h~(b) belongs to N(j+ 1, fc, 7-e, AI).
This means (1.5.11) because (l-/^^)}** belongs to N(0, 1, m-1, 0).

(1.5.11)

{l-/1(^/2)}fo>, mod JVC/ + 1, fc + 1, I + m-l-e, /i)

), K(t)by=(d/dt)h(b)-g(b). q.e.d.

Lemma 1.15. /? 0/ N(j + 1, k, I, n) gotten in Proposition 1.13 satisfies

(1.5.12) for a given g of N(j, k, l + m — 1, ju).

(1.5.12) (d/*)* + Z?=i (2i)- v(v!)-H^v(Pm, fc exp 0)
- /i(Tv(pm, exp 0)} exp ( - 0) = flf ,

7+l, fe-2, / + m-l, Ju) + JVO' + l, fc+1,
j + 3, fc, / + m-

(1.5.13) {^iCpm, hexpfy-ha^pw exp^)} exp(-0)

= ffi(p»,h)=-Krfc,6>.

(1.5.14) {^2(PB,» /7 exp <t>)-h<T2(pm, exp </>)} exp (-0)

We get (1.5.15) from (1.4.13).

(1.5.15) /1
modN(3, 2, m-l-e , 0) + JV(1, 0, m-l-e, 0) + JV(2, 1, m-1,

Since 7h belongs to N(j+\,k-\, /, ^), (1.5.16) follows.

(1.5.16)

modAr(j + 4,

It also implies (1.5.17) that F2/z belongs to N(j + l, k-2, 19 ^).

(1.5.17) (T2(pw, A) fee/on^s to JV(j + l, fc-2, i + m-1, /x).

Therefore we get (1.5.18) combining (1.5.13 — 17).
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(1.5.18) Z;=1(2irv(v!)-H*v(Pm, fcexp^)-fe<rv(pM, exp 0)} exp ( - «

mod NO' +1, fc-2, f + m-1, ju) + NO + 4, fe + 1, J + m-l-g,

+ 3, fc,

We arrive at the conclusion (1.5.12) using Proposition 1.13 and (1.5.18).

q.e.d.

We can rewrite Lemma 1.15 to a handy type using the class N* to apply

the induction.

Proposition 1.16. Let g belong to N*(j9 fc, l + m — 1, jx). Then there

exists h ofN*(j+\, k, /, fi) that satisfies (1.5.19).

(1.5.19) (d/dOfc + Z;=i(20-v(v!ri{^v(P»J *exP0)
- Ji<rv(jpm, exp 0)} exp ( - 0) = g ,

modN*0 + l, fc + 1, / + m-l-e, /*) + N*0° + 3, fe,

§ 1.6. Induction and Estimates of the Parametrlx

It is left to show two important facts until the proof is complete. One is

that exp 0 define a pseudodiiferential operator belonging to L§. The other is

that exp 0 permits amplitude functions belonging to N(j, fe, /, ^) at a neighbor-

hood of the characteristic set I. We prepare some propositions to answer these

questions.

We consider the Taylor expansion of second order for pm. The remainder

term is denoted by g(X, Y). (Refer to (1.2.22) and (1.2.23).) We define <f> l 5 <f>2

and h by (1.6.1-4).

(1.6.1) $, = tpm + a\btl2, F(At/2)bt/2).

(1.6.2) ®2 = Pm(X + cxh)t.

(1.6.3) h = h0(At/2)bt.

(1.6.4) /io(A) = (20"1^IW(l + (A-1tanhA)-1/2rl,

JP(A) = (/A)-1(1 -A"1 tanh A) .

Proposition 1.17. I/y = l/2-3e-6<5>0 and if t is small, we get (1.6.5-7)

on supp \l/2>

(1.6.5)

(1.6.6)
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(1.6.7) g(X, h) belongs to N(Q, 0, m- 3/2 + 3s, 0) .

Remark, h is real valued.

Proof. At first we have to note that h is real valued. Since ibt is real, we

have only to show that ih0(At/2) consists only of real coefficients. It follows

from the fact that h0(X)= -/i0(-A)and {//i0(A)}conj= ~//i0(/lconj) on the domain

D applying Lemma 1.18. (zconj' means complex conjugate of z. Refer to

Section 1.2 about the domain D.) (To be continued.)

Lemma 1.18. Let g be a holomorphic function in Proposition 1.6. We

assume further that ig is a real and odd function, that is, #(A)conj= — 0(Aconj)

and #(A)= — g( — A). Then g(At/2) is real, that is, the image of real vectors by

g(At/2) are also real.

Proof of Lemma 1.18. From the definition (1.2. 17) of g (At/ 2) we can show

that g(At/2) = g(At/2)coni as follows because A = -Aconi and r= ~rconJ taken

as in the proof of Proposition 1.6.

(1.6.8) g(At/2)co^ = {(2m)-1 (
J+r

J-r

= g(At/2). q.e.d.

Proof of Proposition 1.17, continued. Applying Proposition 1.6 to ft0,

we get the estimates (1.6.9-11) because \Ppmt\ ^ Ct<Om"1+e by Proposition 1.19.

(1.6.9) IF'/io^r^lgcxi + KO111-1)2^^?)-172.
(1.6.10) h belongs to N(l, 1, 0, 0), which is included in N(Q, 0, e, 0).

(1.6.11) \h\ ^ C(l + KOM"1)2<Oe^ C<O"+B •

If 2<5 + e<l/2, then X + 9c%h~X, O^fl^l , as |£| tends to infinity because ft

satisfies (1.6.11). This implies (1.6.12-13).

(1.6.12) |(F3pw) (X + 9cxh)\ ^ C<O'"-3/2 •

(1.6.13) |F'(F3pm) (JC + 9cXh)\ £ Ct(l + ̂ <{>»-i)-(i)<g>»-3/2-i/2.

By (1.2.23) flf(X, ft) is estimated as (1.6.14-15).

(1.6.14) g(X, ft) belongs to N(0, 0, m-3/2 + 3e, 0).
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(1.6.15) \g(X, h)\ g

Since 2d + e< 1/2 if y >0, we get (1.6.6-7) of Proposition 1.17.

The Taylor expanison (1.2.22) means that we should show (1.6.16) to

prove (1.6.5).

(1.6.16) a\bt!2, F(Af/2)&*/2) = <Fpm, fc>* + <P2pm/i, ft>t/2.

In fact the right hand side of (1 .6.16) is rewritten as (1.6.17) by the definition of h.

(1.6.17) <rPmt9hy+<r*pmthi2,hy
9 h)}

t, h0(Al/2)bt)}

because al(u, J1/) = <t/3 /> and /70(/l) is an odd function in L The last term of

(1.6.17) is equal to al(bt!2, F(At/2)bt/2) the left hand side of (1.6.16) because

h0(X) + XhQ( A)2 = - /F(A)/4. q. e. d.

The other propositions are also based on the following simple and important

proposition which gets our proof into shape under Condition (A).

Proposition 1.19. The principal symbol pm, which is non-negative,

satisfies (1.6. 18) for some constant C,

(1.6.18) IFpJ^O^O"'-1.

Proof. The proof is a direct application of Lemma 1.20 which is a well

known result for a non-negative C2-function with a compact support. q. e. d.

Lemma L20, Let f be a real valued and non-negative C2-f unction with a

compact support on R". Then f satisfies (1.6.19), where Hf(x) is the Hesse

matrix off.

(1.6.19) |grad/(x)|^2/(x) supveR, ||#Xj;)|| .

We omit the proof.

Proposition 1.21. There exist constants c and d such that

(1.6.20) IF^P^c

Proof. By definition, FcP2 i
§ written as

(1.6.21) r$2

where
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, and (y,r,) =

is estimated as (1.6.22) by applying Proposition 1.19, because
as we noted in the proof of Proposition 1.17.

(1.6.22) \(rpJ(X + cxK)t\*£C#2W-* -

On the other hand we get (1.6.23) noting that £a = 0;>1/2 7y and

Ri2==(rjy-i/2prj9 (j = l5 2), because of (1.6.10), (1.3.33) and (1.3.4).

(1.6.23) lUyl^Cd + KO"1"1)'.

(1.6.22-23) imply (1.6.20). q. e. d.

Lemma 1.22.

(1.6.24) fcr( = /J1Fi?mO=-/{/o(^/2)}-1J1F^2+^,

where 0 belongs to N(l, 0, 2e-l/2, 0) awd/0(A) = A-1 tanh/l.

Proof. By (1.4.10),

(1.6.25) i JiF^! = -/0G4r/2)H mod AT(3, 2, - 1/2, Q) + N(l, 0, - 1/2, 0) .

So we get (1.6.26) since f0(At/2) is invertible.

(1.6.26) bt= -{f0(At!2)}-HJ^^l9 mod N(3, 2, -1/2, 0) + N(1, 0, -1/2, 0).

(1.6.27) holds by Proposition 1.17.

(1.6.27) P^EEfcf^, mod N(l, 0, 2e-l/2, 0).

Combining (1.6.26-27) we get (1.6.24) because JV(3, 2, - 1/2, 0) and

N(l, 0, - 1/2, 0) are included in N(19 0, 2e- 1/2, 0). q. e. d.

Proposition 1.23. J/6e^l, then there exist constants c and d such that

(1.6.28)

Proo/. We use (1.6.24) of Lemma 1.22. Since P belongs to AT(1, 0, 2e

- 1/2, 0), 0 is bounded by f<Om~1~1/6(l + KOm~1)d- For F^2 there is (1.6.20)
of Proposition 1.21. q. e. d.

Now we estimate exp<£, which is a product of three parts (1.6.29-31).

(Refer to (0.2.6) for 0.)

(1.6.29) exp {(1-
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(1.6.30) exp {->!#,}. (Refer to (1.6.1).)

(1.6.31) exp {-pm-jO [det {coshUr/2)}]"^/2 .

Lemma 1.24. // 1 is small and //> = l/2-3e-6<5, we get (1.6.32-33).

(1.6.32) lexpf-iA^JI^expl-iA^^exp^XO1"-1"^}-

(1.6.33) | det {cosh (Atl2)}\ ^2~2" exp {Tr~J t}, on supp ^ .

Proof. (1.6.32) is immediately proved by (1.6.5). If the eigenvalues of

Aij2 are denoted by hj(j = I,..., 2/i), {Ay} lie on the zonal domain Z = {A; |lm A|

<l/2}. (Refer to Lemma 1.7.) And also the eigenvalues of cosh(Xf/2) are

cosh Ay, which satisfy (1.6.34).

(1.6.34) |cosh Ay | =2~J exp (-Re Ay)|l +exp (2A,)|

= 2-J exp (Re Ay)|l+exp (-2Ay)| .

Re exp ( — 2 Ay) ̂  0 and Re exp (2 Ay) ̂  0 because |Im 2Ay| < n/2. These imply that

|cosh Ay| ^2"1exp (|Re Ay|). Therefore we get (1.6.35) because A is an eigenvalue

of At/2 if —A is so.

(1.6.35) Idet {cosh04f/2)}| = n5"i Icosh Ay|

^2-2»exp(E^i |ReAy|) = 2-2''exp(Tr>fO. q.e.d.

Proposition 1.25, There exist positive constants c and CQ such that exp <j)

is estimated as (1.6.36) // t is small, where </>0 is defined in (1.6.37). (Refer

to (0.2.7) for \l/\.)

(1.6.36) |exp 0| ̂  cQ exp ( - 00) .

(1.6.37) ^o = ̂ 2^i+Pmt^-^l) + ct^y^.

Proof. Since exp^ is a product of (1.6.29-31), it is estimated as (1.6.38)

using Lemma 1.24.

(1.6.38)

By Condition (A), Rep m _ 1 * + 2-1Tr~4f^c3KOm~1 for a positive constant
c3. Since y>0 and f is bounded, we get (1.6.39) with positive constants c4

and cs.

(1.6.39) -^1(-

On the other hand (1 —i//i)02 satisfies (1.6.40).
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(1.6.40) (l~^2=-(l_^)p^^

Thus, we get the estimates (1.6.36) for |exp0| putting C0 = c1expc5 and

c = 2~lmin {c4, 1}. q.e.d.

Products of exp $ and elements of Ng(j9 k, /, ^) appear in the parametrix

and its derivatives. The following Proposition 1.26 acts effectively on their

estimations with Proposition 1.25.

Proposition 1.26. Let f be an element of Ng(j, k, /, //), (n< +00). We

assume that j^/c^O and we put v = /^(0?g0<l). Then, we get the estimate

(1.6.41) with constants c, d and K(V) = K(V, j9 k, I), where K(v) = I — 2sv if

j — k>v, l — e(j — k + v) ifj — k^v and ifv<j, or l — s(2j — k) ifv^j.

(1.6.41) |/|gc(l + 00)^<OK(v).

(Refer to (1.6.37) for fa.)

Proof. By definition / is written as (1.6.42), where (1-^})V = 1 if v = 0,

which is estimated as (1.6.43). (Refer to Section 1.3.)

(1.6.42)

(1.6.43) |/|

We know that KOlfl~1^cfpliI<{>~2e and

These imply (1.6.44-46).

(1.6.44) Ifj-k>v,

\f\*c(i+t<ty»-y(t<$y"-y^^
(1.6.45) Ifj-k^v andj>v,

(1.6.46)

When j>v, we further estimate them by using (1.6.47) for some a^O.

(1.6.47) I/I ̂ (l-^i)1/| +0(^)1/1 +0, geN;«.

Since ((<Om~1)"|t6|v^c|fpJ'I+i' on supp(l-^i), we get (1.6.48) if a£/-v.

(1.6.48) (1 -<H)«|/| ̂ c(l + K«>-1)'{^1 -«Ai)};<0K(v) •

On the other hand, we know Proposition 1.23. So we get (1.6.49) with another

constant d if a^j — v.
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(1.6.49) O/OI/I

Since the remainder term g of N"00 is estimated as (1.4.50), we get (1.6.41)

rewriting d+j + v to d and noting (1.6.37).

(1.6.50) l^cO+KO™-1)^)^,

for any /? and for some constants c and d depending on /? because 2/<O"'~J

*z <Oa on supp#. (Refer to (1.3.25) and the remark at the end of Section 1.3
for /V~°°.) q.e.d.

Proposition 1.27. Let f be an element of N**(j, k, /, ju). We put

Fa(/exp0) = 0aexp</>, (a^O). Then g* also belongs to N**(j, k, /, juRA^00.

(Refer to (1.3.54) for JV**.)

Proo/. By (1.4.6), (1,4,10) and (1.3.48) F0 belongs to N*(\, 1, 0, 0)

+ AT;00. Therefore F/+/F0 also belongs to Af**0, fc, /, jO + JV;00 by

(1.3.47) and the definition of A^**. This fact implies inductively the conclusion.

q.e.d.

Proposition 1.28. Let f be an element of N**(j, /c, /,//), O'^fc^O).

Thenftxp4> belongs to Lg(v) i /O^t^T, where v and K(V) are those defined in

Proposition 1.26 and T is a small positive constant which is independent of f.

Especially exp0 belongs to L§. More strictly FJ/exp0 a?*e bounded by

c/OK(v)exp(-00/2)- (-Rc/cr fo (1.3.53) /or JV** awd fo f/ ie remark after
Theorem QA for L™.)

Proof. By Proposition 1.27 we have only to show that/exp 0 is bounded

by c<OK(v) exp( — 00/2). / is a finite sum of elements of Ng(j
r, k' \ J, /i) such

that j 'grj and j' — k'^j — k. Combining Proposition 1.25 and 1.26, /exp 0

with respect to such / belonging to iVff(j', /c', /, jii) is bounded by c<OK ( v > 7" i k / i I )

exp ( — 00/2) if we take T as Proposition 1.25 holds. It is also bounded by

c<OK(v 'J ' 'fc '° exp (-00/2) because K(vJ9 /c, /)^/<v, /, /c', T) if j'^j,j'-k'

^7-fcand / 'g/. q.e.d.

We have been ready for a construction and estimates of a parametrix except

for how to define amplitudes outside of the characteristic set. However it is

easy as we noted at the introduction and it is written as follows.

Proposition 1.29. Let g0 be an element of Ng(j, k, l + m — 1, out). Then

/=\ g0dt belongs to Ng(j + \, /c, I, out) and satisfies (1.6. 51) for a^O, where
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gl belongs to Ng(j+\, k, /+m-l , out) + Ng(j + l, fc+1, l + m-l-e, out)

(1.6.51)

(Refer to the remark at the end of Section 1.3 for Ng(j, k, /, out).)

Proof. By definition it is clear that / belongs to Nff(j + 1 , fc, /, out) and

satisfies (1.6.52) because (/)= — £,„? — ?< O'""1 on supp/.

(1.6.52) (d/dO(/exp 0) + pBI/exp 0 + (20-1<71(pfn,/exp 0)

= ̂ o-<Oin-1/+(20-1^i(P»,/)-^(Pm, <O"'- W)} exp ^ .

The terms at the right hand side except for g0 clearly belong to Ng(j+\, fc, /

+ m — 1 , out) + Ng(j + 1, fc+1, / + m — 1 — e, out). On the other hand, if we put

<7v(p,/exp0)==0(v)exp0 and if v^2, g(v) belongs to Ng(j + l, fc, 1 + m — l, out)

+ N~CO by Proposition 1.27. So we get the conclusion. q.e.d.

We extend Propositions 1.12 and 1.16 to global ones combining Pro-

position 1.29 and them.

Proposition 1.30.

(1.6.53) (d/d00 + P» + P»-i + Z?=i(20-v(v!)-1crv(pIII, exp0)exp(-0)

= 0, mod JV**(1, 1, m- l - f i , 0) + N**(0, 0, m-1, 1) + A^°°.

Proof. We denote the left hand side of (1.6.53) by g0. g0 is written as a

sum of two parts \l/29o an(l (^~^2)do- Since ^f0 satisfies (1.4.2) on supp \j/2 by
Proposition 1.12, \//2g0 belongs to JV**(1, 1, m-l-e, 0) + ^V**(0, 0, w-J , 1)

+ N-™. Since 0= -p^-KO1""1 on supp(l-^2), ^r0 belongs to N/0, 0, m

-1, 0) + N,(1, 1, m-1, 0) + N/2, 2, wi-1, 0) + JV-°° there. So (1-^2)00 be-
longs to JV**(0, 0, m-1, ouQ + JV-00. q.e.d.

Proposition 1.31. Let g belong to N*(j, fc, l + m- 1, /*), (j^fc).

f/iere exists h belonging to N*(j+ 1, fc, /, ^) anc/ satisfying (1.6.54).

(1.6.54)

(dldt)h+Z2v=i (20-v(v!)-1{^v(pm, h cxp 0)- /ic7v(pm, exp 0)} exp (-0)ss0,
modN*(j + l, fc+1, / + m-l-8, M) + N*(jf + l, fc, / + m-l, ̂  + l) + N-°°.

Proof. By Proposition 1.16 there exists /?x belonging to N*(j+l, fc, 1,

and satisfying (1.5.19). We consider ^2^i5 which belongs to N*(j + l, fc, ?,

and satisfies (1.6.54) replaced g by »/r20. In fact cr(Fpm, P\l/2)h, ff(P2p
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and cr(F2pm, 2FiA2F/i + //F2^2) belong to N*(j+ 1, k+ 1, l + m- 1

-£, u) because ij/2 and F<£ belong to Ng(0, 0, 0, 0) and N*(l, 1, 0, 0) + A^°°,
respectively. For (1 — i/f2)g, which belongs to N*(j, /c, / + m — 1, out)-i- JV~°°,

there exists h2 which belongs to N*(y + 1, k, /, ju) and satisfies (1.6.51) mod N*(j

+ 1, fc+1, / + m-l-e, out) + ]V*0' + l, fc, / + m- l 5 out). Therefore, putting

/7 = /?1 + /?2, we get /? which belongs to N*(j + 1, /c, /, ju) and satisfies (1.6.54).

q.e.d.

To state briefly the conclusion of this chapter we introduce two more

classes M(/) and M*(/) defined by (1.6.55-58).

(1.6.55) M(l)=Z / + f e = 1 N**(j4- l , . ; , -fce,./) + tfJ*(l, 0, 0, 1).

(1.6.56) M(0=Zy + f c =iNrO+»,7 , -^7), if / > ! -

(1.6.57)

(1.6.58)

Theorem 1.1. Let 4> be defined by (0.2.3 — 8). Then there exist fj belonging

to M(j) (7 = 1, 2,...) such that, if we put

(1.6.59)

and

(1.6.60)

thengn belongs to M*(n + l), where f0 = \. Thus ff exp </> belongs to LQEJ and

Gn belongs to L^-l~^n+

Remark. o
(n+2) means (?t + 2)-th sum of the asymptotic expansion of the

product of two pseudodifferential operators (3f + p) and £a,that is,

Proof. By Proposition 1.30 #0 belongs to M*(l). We denote the part of

#o belonging to N**(Q, 0, m — 1, 1) by #Q- By Proposition 1.31 there exists

/'j of N**(l, 0, 0, 1) satisfying (1.6.54) with respect to —g'Q. We consider

(1.6.60) for ( l+ / i )expf /> and for ?i=0, and denote the remainder term by

0!exp0. 01 belongs to £y + f c = 1 N**(j,j, m- 1 -fee, j) + ]V--. We apply

again Proposition 1.31 to -^ we get f'[ belonging to Zj+/c=i^**

(j + 1, j, - fce, j)- We put A =/; +/;. Then /x belongs to M(l) and ̂  J in the

remainder term g\ exp</> of (1.6.60) for (/0+/i)exp0 and for n = Q belongs to

M*(2). By Proposition 1.27 or3(jp, (/0-f/i)cxp 0) exp ( — </>) also belongs to
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M*(2). Thus there exists/! such that (1.6.60) holds when /? = 1. In general we

assume that (1.6.60) holds in the case n. At first we note that ffn+3(p, En + 1)

x exp ( — 0) and crk(p, fn + 1 exp <p) exp ( — 0) (fc ̂  3) belong to M*(n + 2) if /„ + 1

exists. We apply again Proposition 1.31 to — gn, and we denote its solution by

/„ + i , which clearly belongs to M(n + 1). If we consider (1 .6.60) for n 4- 1 , the term

gn+ j belongs to M*(n + 2). The estimate for En and Gn are obtained by applying

Proposition 1.28 in the case that v=j/2 and by noting that /exp 0 with respect

to /of JV;00 belongs to 5-°°. q.e.d.

Chapter 2. Representation of the Fundamental Solution

by Pseudodifferential Operators

Since the parametrix obtained by Theorem 1 . 1 at the previous chapter was a

pseudodifferential operator in the class L§, it will be natural to consider about

representation of the fundamental solution by pseudodifferential operators.

The discussion at this chapter is simple if we assumed a proposition for powers

of pseudodifferential operators mentioned at the first section of this chapter.

§ 2.1. Fundamental Solution

We will solve a Volterra's integral equation including pseudodifferential

operators. It is well known for the usual Volterra's integral equation to be

solved by a successive approximation. We also do it, while we have to use

estimates of symbols for powers of pseudodifferential operators when we estimate

powers of integral operators and prove convergences of asymptotic series. The

following proposition guarantees them.

Proposition 2.1. Let PJ (j = l,..., v) be in Lgf^. Then p = pl°--opv is

in Lg'<0)0n(0) =£}:=! m(j)) and satisfies (2.1.1) for all integer /;>0 and for

some integer 10 and constant cl which are dependent on I and £}=i \m(j)\

but independent of v.

where \p\\m) = max k^ {sup(^)eH2B ]Ffcp(

(We shall prove it at Appendix. And also refer to C. Iwasaki [7].)

Let E(f) be the fundamental solution of (0.0.1), that is, the solution of

(2.1.2). At first we should assume its unique existence in a suitable sense.
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Then, E(i) would satisfy an integral equation (2.1.3). Conversely if E(t) were

a unique solution of (2.1.3) would be also one of (2.1.2). So we have only

to solve (2.1.3) to show the existence of a fundamental solution, where En(f) is

an ft-th partial sum of the parametrix for (2.1.2) defined at Theorem 1.1 and Gn

is its error term.

(2.1.2)

E(0) =

(2.1.3)

where EH(t) = eH(t, x, D\ en= Z^o/.-exp 0 and GJ(t)

Lemma 2.2. En(f) and Gn(t) are pseudodifferential operators belonging

to LQ and Lg, /c = m — 1 — e(/7-f-l), a/id ffce / r derivatives in t (d/di)JEn(i) and

(d/dt)J'Gn(f) belong to L™j and Lg+mj', respectively. Moreover they belong to

Proof. It is the result of Theorem 1.1 that (d/dt)jEn(t) belongs to D$J\

and S~°° if r>0. By the expansion formula (Proposition 1.1) there exists / such

that (dldtyGn-((dldt) + P}o(n(dldt}JEn belongs to LK+mJ. Theorem 1.1 means

that ((dldt) + P)o(n+i}(dldt)J'En belongs to LK+l"J. Since it is clear that

(7k(p, (dldt)Jen) belongs to I/™; if k>n + 1 and that Gtt(t) belongs to S~rJi if f >0,

we get the conclusion. q. e. d.

Theorem 2.1. There exists a pseudodifferential operator Hn(f) belonging

to Lg, K = m-l-e(7i+l) z/K;<0, and to S"00 ift>Q, such that

(2.1 .4) E(t) = En(t)~ f En(s)Hn(t-s)ds

/s f/?£ unique solution o/(2.1.3) a^iJ belongs to Lg, £/!#£ /s, £(f) fs f/te unique

solution o/(2.1.2), w/iere f/ie uniqueness holds as operators from ^ to &" w/n'c/i

satisfy (2.1.2) /« w^a/< sense.

Remark. The adjoint equation ((dldi) — P*)u=Q has a fundamental solu-

tion given by £(—?)* in the negative direction of t. And also we note that

(dldty'E(f) and (d/di)JHn(t) belong to Lgf-/ and Lfi+mJ, respectively.

Proof. Hn(t) will be given by the following asymptotic series (2.1.5), where

Kj(f) are defined inductively by (2.1.6).
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(2.1.5)

(2.1.6)

If we denote the symbols of Kfi) and Gn(r) by kj(t) and #„(/), k}(i) is estimated

as (2.1.7) by Proposition 2.1.

(2.1.7) l/c/OI^^OO-1^)^^1,

where Al = sup0<t<T \gn(t)\
(iK^. This implies that Z j^o ̂ /O converges in

Lg if K<0. We put it /*„(?) so that Hn(t) belongs to Lg. We can show that

Kj(f) belongs to S~°° if t >0 because Gn(t) is so. Since orders of Kj(f) become

lower as j tends to infinity, we conclude that Hn(i) belongs to S~°° if t is positive.

Hn(f) satisfies a resolvent equation (2.1.8) so that it is the unique solution of

(2.1.8).

(2J.8)

By the property of the Weyl symbol it is clear that the adjoint operator (dldi) — P*

has also a parametrix £„(— 0* in the negative direction of t and its fundamental

solution is given by E(—i)*. Since pseudodifferential operators in Lg map &

to &>, we may claim the uniqueness of the fundamental solution. q.e.d.

§ 2.2. An Application. Melin's Result (Carding Type Inequality)

In the previous section we proved the existence of the fundamental solution

in short t. If we define a global one E(t) by products of E(tj), ?=£J=1 1-\

Q^tj^T, E(t) is the fundamental solution of (2.1.2) and has properties of one

parameter semigroups as bounded operators on JL2(R"). We conclude it as

the following theorem.

Theorem 2.2. 1) There exists a fundamental solution E(t) of (2.1.2)

globally in t which has properties of one parameter semigroups on J9"a(Rw)

and the estimate (2.2.1), where c is independent of a.

(2.2.1)

2) E(f) and (d/dt)J'E(f) are strongly continuous functions in t valued in

pseudodifferential operators L§ and Lgf-7' (S"0

3) // we also denote the generator of the semigroup E(t) on Jffa(Rw) by
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— P and its definition domain by D(P), there exist constants e>0 and A, which

are independent o/a, such that (2.1.10) holds on D(P), which includes &.

(2.2.2) Re((P + A)w, tOa^e||<D>(w-1)/2i/||^ for any u ofD(P).

Remark. ( , )a and || ||a mean an inner product and the norm defined by

it of Sobolev spaces Ha(R"). They are not free, namely, depend on P.

Proof. It follows from the uniqueness of solutions for E(f) to be well

defined. The statement 2) is a direct result of Theorem 1.1. The estimate

(2.2.1) is essentially due to jL2-boundness of pseudodifferential operators of

L§. (Refer to A. P. Calderon and R. Vaillancourt [3].) By them we get the

estimate (2.2.3) if the norms are defined by uniformly elliptic pseudodifferential

operators.

(2.2.3) ||£(OIUM.exp(caO.

By it we get (2.2.4) integrating exp (-lf)E(t) in t.

(2.2.4) IKP + Ani^M^A-c.)-1 if A>c a .

We show the statement 3) before proving (2.2.1) because it is trivial from the

statement 3). Moreover we may restrict it in the case that a = 0 and that p is

Pm + Pm-i and real, because <O~^0jP0<O^ has the same principal symbol and the

same real part of the subprincipal symbol, and also because real parts of (Qu, w)a

for remainder terms Q may seem to be lower than ((P + A)t/, w)a. In this case P

with the domain £f is formally selfadjoint on Z»2(R"). (2.2.4) implies that such

P has a selfadjoint extension which is equal to P with the domain D(P), because
CT

(P + A) is hypoelliptic by existence of a parametrix \ exp( — fa)E(i)dt. There-
Jo

fore P is a selfadjoint operator bounded below on JL2(R") so that we get (2.2.5)

for a constant A.

(2.2.5) Re((P + A)w, w)0^0.

Condition (A) is satisfied even if p w _ t is replaced by pm-i — c<Om-1 f°r a small

s. So we conclude (2.2.2) in the restricted case. In general we get it adding

a sufficiently large L2(R")-norm if a > 0 and considering the adjoint operator P*

ifa<0. q.e.d.

Chapter 3. Ambiguities of Complex Phase Functions

The complex phase function has somewhat its freedom of construction
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as seen in Chapter 1. It may be changed by another one. We shall here give

a sufficient condition for the degree of freedom and use it to rewrite the complex
phase function in a restricted case.

§ 3.1. Replacement of Complex Phase Functions

It was important for the complex phase function $ used in Chapter I to

have satisfied Proposition 1.17. We should consider another one, the function

0! replaced by which also satisfied it. The following one satisfies it and also

the other important properties for replacement.

Let us consider four symbols qj G" = 0, 1, 2) of Ly/V/2 and q3 of

satisfying (3.1.1-4), where 1/2^ 0>0.

(3.1.1) IF^^-^l^^^^ + l)^)^-^^2"1"0, 0 = 0, 1,2).

(3.1.2) IP'^-^l^cC^ 0 = 0, 1).

(3.1.3) IF^-

(3.1.4) l^-i-

If we formally replace pm, 7pm, F2pm and pm,l by q0, qt, q2 and q3 in (0.2.3),

we get (3.1.5).

(3.1.5) (!>', = -qQt-q3t-a\b'tl2,F(A'tI2)b'tI2)-2-^i (log [cosh (4'f/2)]),

where bf = iJ1ql and A' = iJ1q2.

We estimate the difference of (^ and cj)[.

Proposition 3.1. Let g be a holomorphic function used in Proposition 1.6.

If X is on suppij/2 and if (l—2s)9 — 3S>Q, then there exists a positive T such
that g(Aft/2) given in (1.2.17) is well defined on O ^ r ^ T and has the estimate

(3.1.6-7) for integers /^O, where A' = iJ1q2.

(3.1.6) \\r'(g(Atl2)-g(A'tl2))\\

^ cKO"1"^! + /<{>m"1)2+*<O"Bl+(2e"1)e -

(3.1.7) ||

Lemma 3.2. If X is on supp^2 and if (l — 2s)6 — 3d>Q, then there exists

a positive T for any positive & such that (3.1.8) and therefore (3.1.9) hold on
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^r^T, where S = At/2 and S' = A'tl2.

(3.1.8) IKA-SrKS-S')!!^*, if

(3.1.9) IKA-STMI^cdlmAI + KO-'-^IImAI-2, if

Proof. By Lemma 1.7 the resolvent of S satisfies (1.2.33), that is, (3.1.9)

replaced S' by S if t is small because <5<(l-2e)/6. By (3.1.3) S-S' satisfies

(3.1.10) because |pJ^c<Om~1+2E and KO1""1^^)* on supp^2.

(3.1.10) HS-S'llgcK

So we get (3.1.11) because 3(5 + (2e-l)0<0.

(3.1.11) iKA-sr^-

Therefore (3.1.8) is satisfied if <c> is sufficiently large. For fixed <£> we also

get it if t is sufficiently small. (3.1.8) implies that the resolvent equation is

solvable there and that (3.1.9) holds. q.e.d.

Proof of Proposition 3.1. It is clear by Lemma 3.2 that g(A't/2) is well

defined by (1.2.17) and that (3.1.7) holds. (Refer to the proof of Proposition

L.6.) For (3.1.6) we estimate (3.1.12) in the same way as in the proof of Propo-

sition 1.6.

(3.1.12)

Using (1.2.33), (3.1.9) and ||F'(S-S')|| ̂ cKO^XO"^28"1^ we get (3.1.6).

q.e.d.

Proposition 3.3. The difference of (j)l and $[ is estimated as (3.1.13-14)

on {supp^2]x[0, T] zyy = (l-2e)0-4S-

(3.1.13) 101-

(3.1.14) iF^i
0 = 0,1,2,...).

Proof. We estimate the difference of each term using (3.1.6-7) and that

(3.1.15) ir^t-ioOl^cK^-KO^"^^1-1^, 0=o, i, 2,...).
(3.1.16) IF-^^f-^OIgcKO^XO"^^-110, (J=0, 1, 2,...).

(3.1.17) |F^-^Ol^cKOm"1<O(1"J)E+(2£"1)"3 O' = 0, 1, 2,...).
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We get (3.1.18-19) because the functions F(Atj2\ F(A't/2), log [cosh (,4f/2)] and

log [cosh (A'r/2)] satisfy (3.1.6-7) with k = 0.

(3.1.18) \r*{(rl(btl29 F(At/2)bt/2)-ff1(bft/2, F(A't/2)b't/2)}\

g^KO^^a + KO'"-1)3^)^-^^-1^, 0=0, i, 2,...).
(3.1.19) |P'{Tr (log [cosh (Af/2)])-Tr (log [cosh(X'f/2])}|

gcwo^^a+KO1"-1)^^^^-1^, 0=0, i, 2,...).
Summing up these and noting y = (\ — 2e)0 — 4<5 — 2e> 0 we get (3.1.13-14).

q.e.d.

Let us define $ by (3.1.20). (Refer to (0.2.6).)

(3.1.20) 0' = <MI + (l-lM02.

Using the parametrix with respect to (/> (Theorem 1.1) we construct a parametrix

with respect to $', that is, we approximate exp 0 by products of exp <£' and some

amplitude functions. Proposition 3.3 guarantees for <£' to be able to be another

complex phase function and for the quotient exp(0 — $') of exp </> by exp <£' to

be replaced by the Taylor's series as powers of (0 — 0'). Let us write it as the

next proposition.

Let us put the Taylor's series of exp A and its remainder terms as (3.1.21).

(3.1.21) ra(X)=Xj

Proposition 3.4. Let us assume that y = (l — 2s)6 — 4d — 2s>Q and that

1) exp(/>' has the same estimate (3.1.22) as exp0, where ^0 = ^2^1 +

tpm(l-\l/\) + ct(£ym-1, (c>0). (Refer to Proposition 1.25.)

(3.1.22) |exp0'|^cexp(-00).

2) <£-<£' belongs to Ng(l9Q, -e, 0) + JV^°°. Therefore V$ belongs to

]V|(1, 1, 0, OHJV-00. (Refer to Section 1.3 and Proposition 1.27.)

3) There exist Qj and g'j of JV~°° such that (3.1.23-24) hold, where c0 is

independent of n and j.

(3.1.23) |P'exp±(0-0')l

rg(cn/l + W-i)««-JW* + gj) exp (co

(3.1.24) IF^r^-^OI
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4) exp 0' belongs to Lg.
5) Let fj be the amplitude functions of the parametrix En(t) with respect

to 0 Theorem 1.1. Then fjr '„(</) - 0') exp 0' belongs to LQ("+I";)£.
6) Lef j/s pul ((rf/df)-f p)o (2 )exp0' = g0exp0'. T/ien g0 belongs to

#**(!, 1, m-l-g, 0) + ]V**(0, 0, m-1, 1) + N;°°. (Re/er to Proposition 1.30.)

Proo/. At first we note that 0-0' = ̂ ^ -0;). So we get (3.1.25) by

(3.1.13), and (3.1.26) by combining (3.1.14) with (1.3.43).

(3.1.25) l^-^'l^cKO"1'1'7-

(3.1.26) 0-0' feetongrs to Ng(l, 0, 2e + (2e-l)0, 0) + ^-°°.

1) By Proposition 1 .25, (3.1.22) holds for 0 so that |exp0'|<;|exp 0|

x |exp(0 — 0')|^cexp( — 00)exp c^)™"1"7- Since 00 is bounded below by

cKOm-1 w^h a positive constant, (3.1.22) holds for 0'.
2) Since we have assumed that 2e + (2e— 1)0< — e, (3.1.26) implies the

statement 2). For V $' it follows from the result for 0.

3) Since F^'exp ±(4> — (f>') and P J' ?'„(</> — (/)') are bounded by the products

of exp |0 — <j6'| and derivatives of ($ — $'), we get (3.1.23-24) by combining with

2). (Refer to (1.3.36).)

4) and 5) We consider that exp<// = exp ^exp (0; — 0) and //r^(0 — 0')

x exp 0' =/j exp (f)r'n((l) — (/)') exp (0' — 0). Fz exp 0 and F'/,- exp 0 are bounded

by exp ( — 00/2) and <O~ej ? exp( — 00/2), respectively, according to Proposition
1.28. Combining them with (3.1.23-24) we conclude the statements 4) and 5).

6) At (1.6.53) we replace 0 by 0' using 2) and (3.1.1-4) if it is necessary.

Then we get the statement 6). q.e.d.

Theorem 3.1. Let us consider four pseudodifferential operators satisfying

(3.1.1-4) and define 0' by (3.1.20). We add it to the conditions at Theorem 1.1

that (l-2s)0-4d-2s>Q and (1 -2e)0-3e^0. There exist fj belonging to

M(j) (7 = 1,2,...), therefore fj exp 0' belongs to LQEJ, such that ((d/dt) + p)°(n+2)

' = G,l belongs to Lgf-1-^1)8

Proof. Let us define /} by f j = E j = k + ifk(Ur*(<l>-<l>y. Then it is clear
that fj belongs to M(j). (Refer to Theorem 1.1 and 2) of Proposition 3.4.)

We consider (Zj=o/;)^($~^')exP$'? which is equal to (Z"^o//)exP 0
-(Zj = o/jK(0-00exp0'.(Referto(3.1.21).)

belongs to Lr1"£(/I+1) by Theorem 1.1 and

xexp0' belongs to Lgr (w+l l~- / ' )e by 5) of Proposition 3.4. So we get that
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' belongs to

xexp</>' also belongs to LOE; if j = k + l so that ((d/di)+p)°(n+1)fk(<j)-(i>')lexp4>'

belongs to Lgr(""t'1)* if (k + l')^n + l. Therefore we conclude that ((d/dt) + p)

°(n+i)(S5=o/;-)exp^' belongs to L'<T("+1)£.

Now we replace n by n + k (ks"^. 1).

(3.1.27)

Noting (3.1.27) we get the conclusion. In fact it is clear that ffi(p,f'j exp0')

belongs to L^-1'^1^ if 1^3 and j^n + 1 or if /^n + 2 and j^O. Therefore

we have only to show that ((d/dt) + p)°(2)f'j exp^' belongs to Lg1"1"^4"1^ if
7^71+1. It is equal to f'j((d/dt) + p)°(2)exp </)' + (2i)-l(r(Pp, F/;)exp 0' +

(20"~22-%(F2p5 72f'j + Pf/(l)f)exp(l)f, which belongs to Lg'-1-<M+1>£ by 2) and

6) of Proposition 3.4. q. e. d.

§ 3.2, Special Case (Exact Double Characteristic)

We apply Theorem 3.1 to the case that the principal symbol pm has only

exact double characteristics, namely, pm(X)^c(X)d(X, I)2, (X = (x, £), £^0)

for a positive continuous function c(X) where d(X, I) is the distance of X to

the characteristic set I in R" x R x S""1. So we assume it through this section.

In this case we get a similar form of complex phase functions to the case that an

operator P is given by a quadratic form in (x, £). (Refer to examples in the

introduction.)

We consider an infinitely differentiate mapping a, satisfying (3.2.1-2) of a

conic neighborhood of the characteristic set I to I.

(3.2.1) \d(X, a(X))-d(X, Z)\£cd(X, I)2.

(3.2.2) (W1/2y, M~1/2if) has the homogeneous order of 1/2 in £ .

In fact d(X, I) is an infinitely differentiate function on a conic neighborhood of

I because I is an infinitely differentiate submanifold of R" x RM\{0}. A map-

ping a(X) attaining d(X, a(X)) = d(X, I) is infinitely differentiate on a conic

neighborhood of I and satisfies (3.2.1-2) there.
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Let us define qQ, ql9 q2 and q3 by (3.2.3), where Hp(X) is the Hesse matrix

of pm(X) in X, where a = a(X).

(3.2.3) <,0 = 2-X*-fl, Hp

and

Proposition 3.5. qj (j = 0, 1, 2, 3) de/Zn<?d fry (3.2.3) satisfy (3.1.1-4) with

9= 1/2, where constants c are uniformly bounded on compact sets of x-space.

Proof. Let us consider the Taylor's expansion of a symbol f(X) of Lf/2

at 7, where Y=(y, iy), Z = (z, C) = X- Yand Z~ = (<*>1/2*, <iy>-1/20-

(3.2.4)
, y).

(3.2.5)

Let us put /=/?„, and y=a(X). Then we get pm(Z)-^0(^) = jR(Z, a(X))

because pmM = Fpm(a) = Q. Since pm and qQ belong to L'f/2, R(X, a(X)) also

belongs to Ly/2 so that (3.2.6) is valid according to (3.2.5).

(3.2.6) \r$R(X, a(X))|^c(|Z-|3-* + l)<Ow"3/2, (fc=0? 1, 2, 3).

Since iZ~|2gcpw<O l~w + l by the assumption, we obtain (3.1.1) with 0=1/2.
(3.1.2-4) are proved by considering cases that /is F]?m3 P2pm or pm-± as well as

the above. q.e.d.

Theorem 3.2. Let us assume that the principal symbol pm has only exact

double characteristics. Theorem 3.1 is valid with 9=1/2 if $1 is replaced by

$3 (3.2.7), where the asymptotic expansion is uniform on each compact set of

x-space.

(3.2.7)

where a is a mapping satisfying (3.2.1), A(X) = iJlF
2pm(X) and (X — a)~ =

Proof. Since a constructed parametrix would be a pseudodifferential

operator of L0, it would have pseudolocal property. Therefore we may assume

that the conditions (3.1.1-4) are uniformly satisfied by qj of (3.2.3) on the whole
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space. Then we get a parametrix according to Theorem 3.1 if 8s:gl. Noting

(3.2.8) we get the conclusion.

(3.2.8) iAt/2 + (At/2)F(At/2) (At/2) = i tanh (At/2). q. e. d.

Chapter 4 Asymptotic Behavior of Trace

We consider a Cauchy problem of parabolic type on a compact infinitely

differentiable manifold. A parametrix for it makes it possible to calculate the

rate of the trace of the fundamental solution as t tends to zero. Karamata's

Tauberian Theorem gives an information about distribution of eigenvalues for

a stationary problem.

§4.1. Assumptions and Conclusions

Let M be an n-dimensional infinitely differentiable manifold with a fixed

positive smooth density dM. P is a classical pseudodifferential operator of

order m (m>l) and formally selfadjoint with respect to the density dM.

(4.1.1) ( PuvdM=( uPvdM for u and v of C+CC(M) .
JM JM

Let p be a symbol of P, that is, p gives a local representation of P. (Refer

to Appendix.) The principal symbol pm and the subprincipal symbol pm-i of

p, therefore, of P are well defined on T*M. And the condition (4.1.1) implies

that pm and pm-i are real valued. So the statement of Condition (A) is well

defined on M. We assume it to P.

Let us consider a Cauchy problem (4.1.2).

(4.1.2)

u\t=0 =g.

Since parametrices constructed in the previous chapters were pseudodifferential

operators of L§9 they have pseudolocal properties so that the discussions in

Chapter 2 is valid on a compact manifold M. We execute it to obtain that the

fundamental solution E(t) of (4.1.2) is also a pseudodifferential operator of Lg

and a smooth kernel if t is positive and that the parametrix En(f) of Theorem 1.1

with respect to a fixed local coordinate is a local parametrix of E(i). If t is posi-
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tive, E(t) is an integral operator with a smooth kernel E(t, x9 y) as noting above,

that is,

(4.1.3) (E(t)w) (x) = ( E(t, x, y)u(y)dM .
)M

Therefore Tr E(f) is given by (4.1.4).

(4. 1 .4) Tr £(f) = ( E(t, x, x)dM .
JM

Let us fix a local chart (x, 17). It is written as (4.1.5) with a symbol e(t, x, £) of

E(t\ where G(f, x) is a smooth function in (x, f).

(4.1.5) E(t, x, x)dM = (2n)-" e(t, x, t)dxd% + G(t, x)dM .
Ju JT*U Ju

Moreover if we consider a parametrix En(t) with a symbol en(t, x, £) for E(f) on

(7, we obtain (4.1.6) with some sufficiently smooth function Gn(t, x).

(4.1.6)
T'U

, x, f )d;cd{ + GB(r, x) JM .

Since \ G(r, x)dM and \ Gn(f , x)dM are bounded even if t tends to zero, it suffices
J J r

to calculate the rate of \ en(t, x, %)dxd£. Thus we obtain the following
JT*U

theorem.

Theorem 41. Let (x, 17) be a local chart of M and $ be a complex

phase function defined by (0.2.3-8) with respect to a local coordinate x on U.

Then we get (4.1.7) as t tends to zero.

(4.1.7) ( E(t, x, x)dM =(i + o(l))(27u)-» ( exp <j)dxd£ .
)u Jr*i/

Remark, exp 0 is real positive by construction.

Proof, At first we note that £,,(0 is written as (4.1.8) with / satisfying

(4.1.9) according to Theorem 1.1 and Proposition 1.26.

(4.1.8) £n(

(4.1.9) |/|

We prove that l /exp^ig^exp^ + Ci exp( — c2<O'0 f°r anY positive 0, where

c1! and c2 may depend on 9. We assume that c(l + 00)d<O~c^^- Then 1
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where jn = £/d. Since exp0gcexp( — 00) by Proposition 1.25,

\fQXp (l)\^c3QXp(-(l)Q/2)^cl exp(-c2<OAt)- Therefore we get (4.1.10).

r*i/
(4.1.10) (

)T*U

By the way exp$g:cexp(— cXOm) if KO"1"1^ f°r a sufficiently small

positive 6. This implies that \ exp (f)dxd^crn/m. Therefore for any 0>0,
JT*U

we get (4.1.11) as t tends to zero, which means (4.1.7).

(4.1.11) \( fQxp^dxd^ ^201 expcf)dxd£. q.e.d.
\JT*U JT*U

Remark. Let 3(x, £,} be an elliptic symbol such that c<c> ^

Let &' stand for 6 in which <£> is replaced to S(x9 ^). Then \ exp fydxdt. in
r JT*U

(4.1.7) is able to be replaced to \ Qxp6'dxd£. (Refer to Section 4.4.) This
JT*V

implies Theorem 0.3.

Remark. We consider the above proof dividing the domain T*U in

three parts such that

(4.1.12) Ql = T*UA{pm(X)^(£ym-i+2s and

and

Q3 = T*U\{QlAQ2}9

where 5 and s satisfy (0.2.8). Then we can exclude the cut off function ij/j from

the integrand, namely, we get (4.1.13).

Corollary of Theorem 4.1. The right hand side of (4.1.7) may be changed

as fallowings.

(4.1.13) ( E(t, x, x)dM
JU

JQ2

Proof. In (4.1.10) replace the domain T*U by Ql or O2 and consider 0

with respect to 5' and s' which are larger than 5 and e or smaller than (3 and e.

Then exp0!=exp0 on Ql and exp( — ̂ m + <0m~1))==6xp^ on Q2. q.e.d.

A restriction of the principal symbol pm is necessary for more precise calcu-

lations of rate at the right hand side of (4.1.7) or (4.1.13).

We assume Condition (B), that is, the principal symbol pm has the exactly



PARAMETRIX FOR A DEGENERATE PARABOLIC EQUATION 627

double characteristics. Then we get the folio wings.

In this case the characteristic set I = {jpw = 0} is an infinitely differentiate
conic submanifold of T*M as noting at Introduction or Chapter 3. Let £'"

be submanifolds of I such that codimZi = di. Defining codim£ = rf by

d = min {dt}, we put Z°= y d=sd.I
i.

Theorem 4.2. We assume Condition (A) and (B). Trace of the funda-

mental solution Tr£(f) has the asymptotic behaviors (4.1.14) as t tends to zero,

where Ct are given by (4.1.15).

(4.1.14) Tr£(0 = (C1 + c?(l))r»/'" if n-mdl2<Q,

= (C2logrJ+0(l))r»/"' if n-ro<//2 = 0,

or
1) // n-mdl2>0.

)D

(4.1.15) C1=(27r)-»(
Jr-xM

and

Remark. dZ° is an induced density on 1° by pm and dxdc,. dIQ
s is its

induced density on £° the image of £° into the spherical bundle S*M. (Refer
to Introduction or Section 4.3.)

We consider another restriction that \ Q\p( — pm)dxd£ is finite, that is,
JT*M

dxd£ is finite. In this case we get the same result as the first case of

Theorem 4.2.

Theorem 4.3. We assume Condition (A) and that\ exp (—p m )dxd^ is
JT*M

finite. Then Tr£(t) has the asymptotic behavior (4.1.16) as t tends to zero.

(4.1.16)

where Cl = (2n)~n \ exp ( — j
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§ 4.2. Preparations

We start from the following proposition to calculate the rate. Using

Theorem 3.2 of Chapter 3, it is obtained as well as Theorem 4.1 though s should

be restricted as 8s < 1 .

Proposition 4.1. Let (x, C7) be a local chart of M.

(4.2.1) ( E(t, jc, x)dM

exp <M*<«+ exp (- tpm)
Ql JQ2

as t tends to zero, where Qi and Q2 are ones used in the previous section.

Therefore we shall calculate only \ exp 03dxJ£ and \ exp (—tpm)dxd^.
JQl JQ2

To do so we further subdivide the domain T*U, that is, we consider the inte-

grals on a conic neighborhood of a point X in T*U and gather them after ob-

taining the rate. For simplicity of calculation, we identify U to an open set of

R". Let us consider a conic neighborhood Q of X and denote Qi A Q and Q2 A Q

by the same notations Ol and Q2. In case that the closure of Q does not inter-

sect the characteristic set I, it is easy. In fact \ exp c/)3dxd£, is uniformly
Jm

bounded in t and \ exp (- tpm) dxd£ = (l+o(l))r"'m\ Qxp(-pm)dxd£. Thus
JQ2 JQ

it suffices to calculate them in case that Q includes a point X of the characteristic

set I. So we assume that Q satisfies the following properties, where we denote

the intersection of Q and I also by I and assume that codim I = d. (It may be

different from codim I in the total domain.)

(4.2.2) There exist an open set U of R2n~1~d and an infinitely differentiate

mapping T(CO, r, y) from U xR+ xRd to T*R" such that T is a local

diffeomorphism from UxR+ x{|j;|<L} onto Q and satisfies (4.2.3-6).

(4.2.3) T(G>, r, y) = t0(cQ, rHi^o, r)y = (x, c).

(4.2.4) T0(o>5 r) is a diffeomorphism from U xR+ onto I, especially TO(OJ, r)

is a diffeomorphism from U onto the intersection Zj of Z and S*R".

(4.2.5) If we define a mapping a(X) from £2 to Z by a(^) = T0(co, r) =

a(T(a?, r, y)) for X = T(CO, r, j)5
 a is an infinitely differentiate mapping

satisfying (3.2.1-2).
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(4.2.6) ^l\co, sr, y) = ̂ \co, r, y) and T^2>(co, sr, 3') = ST(2)(eo, r, j),

where X = T ( I )(CU, r, v) and C = T(2)(o), r, y) when (x, c) = t(w, r, v). In
this case we immediately get (4.2.10) through (4.2.7-9).

(4.2.7) (?T/5(cw, r, )•)) = (dvfifa r, 3;)) | r = , r-1 .

(4.2.8) (3T/3(Q>, r , jO) | y = 0

= [det {<(dr0ld(a)9 r))(dr0ld(co, r))} del {%T,}] l / 2 | r = l r"'1 .

Remark. TX(Z), X = TO(CO, r), is orthogonal to range T^CW, r).

(4.2.9) det {'(fa0/<Xa>, r)) (flT0/fl(o), r))} | r= t

= det

Remark. Tl5 the intersection of I" and S*R", is orthogonal to the radial

direction.

(4.2.10) (d*ld(a>9r9y))\y=0da>dr
= [det {f(5T0/^co)(aT0/aa;)}det {'T

Remark. If we take T^CO, 1) as it is isometric, namely, IT^CD, 1)3^ = ^1,

(4.2.10) is equal to dl^11'1 dr because det {tT1T1} = l.

We fix the above local coordinate (co, r, 3;), that is, Q seems l / xR + x y,

^={|y|<^}- Now we check the properties (4.2.11-37) before calculating the

rate.

(4.2.11) (j)o=-pmt. (Definition.)

(4.2.12) 0i= -2-XTi(c%, F^MT^^r"* ,

w/?er^ T1(o)) = T1(o), 1) fl?iJ P2pm(co) = r2pm(a), r, 3;) l,= i 5 y = o = F2pm(^o(^ 0)-
(Definition.)

(4.2.13) 02= -|v|V"£. (Definition.}

(4.2.14) 03= -pm-!(a)f + iff1((a-X^ tanh M(fl)
- 2~J Tr (log [cos

- 2-1 Tr (log [cosh (A(^)rni~l f/2)]) ,

X = T(Q>, r, 3;), a = a(X) = T0(cy5 r), ^(TO(OJ, r)) = r'«-U(T0(co, l)) = r'»-M(

pm-1(co, r) = pm_l(i;0(a), r)). (Definition.)

(4.2.15) 04= -<t1(co)[y, /Jj tanh(/l(co)rm"jr/2)T1(a;)3;>r. (Definition.)
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(4.2.16) l0o-0il£-CM02 on Q.

(4.2.17) |exp <£0-exp ̂ | ^C|j| exp 02 .

(4.2.18) -0,S -CV07, (i, j = 0, 1, 2).

(4.2.19) - c/)4^c\y\2r tanh (C/""-^) .

(4.2.20) exp (£3 = exp 04 exp ( -pm. ̂  [det {cosh (A^r*

(4.2.21) det {cosh (A^r^t/I)}

A,r»-if/2))22-2'

= exp (Tr^ (CQ)^-^) nj=i [(1 + exp ( -

(4.2.22) fif =

(4.2.23)

(4.2.24) 1 1 - ^ I ̂  Crw- ̂  exp ( - cr'n~ 1 1) .

(4.2.25) Let x\ and %2 t>
e characteristic functions of Ql and Q2. (Definition.)

(4.2.26) \Xi exp 03|^C exp (-c|j;|2r tanh (iM'it)-ciM'-lt).

(4.2.27) ~(l>4^c\y\2rmt=-c<f)29 if r^l anrf r"'

according to (4.2.19).

(4.2.28) l^-^ilgaV^-i^l^C^r^-ir, i / r^l and

(Taylor's expansion in t.)

(4.2.29) IXiCexp^-exp^JI^C^-^expCc^X */ ̂ ^1 and r"1"1^!.

(4.2.30) |x1(exp03-exp^1)I^Crw-1rexp(c02), ( /"r^l and r'"-1^!,

by (4.2.24) «nd (4.2.29).

(4.2.31) |x2 exp 00| ̂  Q2 exp (C02) ^ C exp (c02 - ^--i+2.t) .

(4.2.32) \%2(QXP(t)Q~QXP(l)i)\ = C\y\ exp(c02), according to (4.2.17).

(4.2.33) We denote a function h by h~ when we change the variable rmt to rm .

limt^0/J' = 0, lim,_»0#2 = l find limf_^0^r'" = l almost everywhere in Q,

(4.2.34) We denote a function h by h* when we change the variables rm^1t to

rm^ and yrl^^m"^ to y.

^O almost everywhere in U x R + xRd, because
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Pnr-m+l~2*^C\y\2r1-2* by (4.2.18), where tf = y£ = 0 out side yr1/2^-1).

(4.2.35) // <2> is defined by dxdt = $rtt-1drdydo>, lim^0** = 4> | y a = 0 . (Refer
to (4.2.7).)

(4.2.36) rfc-1|yp'exp(-c|y|2rw) belongs to £,1(R+ x 7) if2k-m(d+j)<09

(4.2.37) r&-1|yp'exp(-c|};|2rw') belongs to ̂ ([O, 1] xRd) //" 2/c - m(d + j) > 0 .

§ 43. Estimations

Let Xi and %2 b
e characteristic functions of Ql and O2, respectively. We

define I(W) and J(Pf ) by (4.3.1-2), where we use the notation of Section 4.2.

(4.3.1)
w

(4.3.2) J(W)=(
J w

We divide Q into three parts Qa, Qb and Qc, depending on r, such that OQ

= {rm"1f>l and r>1}, Qb = {t<rm~lt^\} and Oc = {r^l}, and we denote the

union of Qa and Qb by Qab. It is clear that J(Oc) = 0(1) and J(Qc) = 0(l) as f

tends to zero.

(*) In the case that 2n-md>0, I(Qab)~crtn-dt2>Km-u and J(Qab)

By (4.2.31), J(Oafo)gc Qxp(c((t)2-r
m"L+2Et))rn-1d^drdy. Changing

variables rt
l^m"1+2^ to r and 3tf(2e-D/2<«-i-<-2e) to J?

J(Qab)

where D = C / x [r1/^-1^), +oo)x yt(2=-D/2(i»i-i+2e) anc| 02(l) = 02 | f a s l . By

(4.2.37), r^-iexp^^l)-^-14-^)) belongs to JL1(l/xR+ xR*) since 2w-md

> 0. Therefore we get (4.3.3) because (n - (1 - 2e)d/2)/(m - 1 + 2e) < (n - d/2)/

(m-1).

(4.3.3)

On the other hand we get (4.3.4) about I(Qab) changing variables rt1/<m~1} to
r and yrWfr-U to ;;.
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(4.3.4) I(Qab) = ( ^f^*^"1 exp
JD

where D=Ux [fi/on-D, +oo)x Yrl^m~^ and 03(1) = 03 Ui- By (4.2.26),

the integrand of (4.3.4) is bounded by Cr""1 exp( — c|y|2rtanh rm~l — crm~l),

which belongs to Ll(U xR+ xRd) by (4.2.37). Using Lebesgue's theorem we

get (4.3.5) by (4.2.35).

(4.3.5) /(Qfli) = {J exp^l)^!^

where D=UxR+xRd.

(*) In the case that 2n-md = Q, I(Q) + J(Q) = ( exp fadxdt + 0(r "/*).
jab

In the same way as in the case that 2n-md>Q, /(Oa) = 0(r("~d/2>/(m-1>)

= O(t~n/m) because 2n — md = Q. Let us put Z1=/i(exp03— exp^). Then

|Z1|^Crm-1fexp(c^)2) on Qb by (4.2.30). So we get (4.3.6) by changing
variable rfi/(«-i) to r and yf-i/20«-i) to j.

(4.3.6) f |Zj|
JQb

where D= 17 x^1/^-1), IjxYr1/2^"-1) and 02(l) = 0 2 l r - i - Since m-l
— md/2 = m — l>Q, we can use (4.2.37).

(4.3.7) \Z1\dxd^c rm+"~2

J«6 JD

where D = 17 x [0, 1] x Rd. Therefore we get (4.3.8) because 2n - md = 0.

(4.3.8)

Therefore we get (4.3.9).

(4.3.9) I(Q) = ( ^i exp
JJOb

According to (4.2.17) Z2 =^2(
exP 0o ~exP 0i) ^s bounded by C\y\ exp c02

 on ®-
Changing variable rt1/™ to r we get (4.3.10) by (4.2.36).

(4.3.10) \Z2\dxd£^c Mr"'1 exp (
D

where D = l/x [r1/^ r1/"1^"1)] x Y. On the other hand we get (4.3.11) by
(4.2.31) and by changing variables rr

1/(«-i+2e) to r and ^(2e-i)/2(m-i+2«) to ^
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(4.3.1 1) \J(Qa)\ £c r"-1 exp (c(<t>2 -
JD

where D=Ux [r1/^-1), +oo)x Y and D'= U x [ r
2e/c«- |H'«-i+2e) j +oo)x

y t(2e-D/2(«-n-2e)B Since exp(c(02(l)-r'»-1+2£)) belongs to /,'(*/ x [1, +00)

xR J) and (n-d/2)l(m- 1) - (n-(l -2e)d/2)/(m - 1 + 2e) = 2e(w - wirf/2)/

(m-l)(m-l+2e) = 0, we get (4.3.12).

(4.3.12) </(Qfl)

Therefore (4.3.13) holds.

(4.3. 13)

Since \ (1— Xi~ Zi)exP $idxd£ = O(\\ the sum with I(O) comes to (4.3.14).
JQb

(4.3.14) 1(0)4- J(Q)= ( exp
Jr26

(») In the case that 2n-md<0, /(&) + J(O) - \ exp (t)0(l)dxd^rn/m.
JQ

For I(Oa), we get that I(Qa) = O(r^-^2)^m'1^ in the same way as in the

case that 2n — md>Q. Changing variable rt1/m to r, we get (4.3.15) for I(Qb)

and J(Qab) because $ is independent of r.

(4.3.15) I(Qb)= ( <
JD

and

J(Qab) = \ yj^r""1 exp (60JD'

where D= 17 x [f1/'", r1/'"^'-1)] x Y and D' = Ux [r1/™, + oo) x 7. By (4.2.27)

and (4.2.31) the integrands are bounded by Crn~l exp (c(02(l))5 which belongs to

Ll(Ux[Q, +00) x 7) by (4.2.36). Using (4.2.33) and Lebesgue's theorem we

get (4.3.16).

(4.3.16)

and

J(Qab) = exp

= o exp

We conclude the following proposition by the above discussion.
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Proposition 4.2.

(4.3.17) I(Q) + J(Q) = T exp00(l)dxd£ + 0(l)Y-»/m, if 2n-md<Q9

/"), if 2n-md=Q
JQb

or

=(( r"-1 exp ^

1>, i/ 2n-md>Q,

where D = C / x R + x R d .

Proposition 4.3. // 2n-md = 0,

(4.3.18) f
J

= {(27t)d/2( [det H+]-1/2^1[m(m - i)]-i log r ! + 0(l)}r-/« ,

where U = IL is the intersection of I and S*Rn, H = F2pm, H+ is the restriction

ofH on the range of H and Qb=Ux [1, r1/^1)] x Y.

Proof.

(4.3.19) ( exp t^irfxd^ = ( (exp c^^r
Jfib Jab

Changing variable r^l/m to r, this is equal to

(4.3.20)

where D=l/x [t1/m, r1/"1^'"^] x Y. Dividing the domain D into two parts
Dl and Dl' such that Dl = U x [1, r1/1"^"1)] x 7 and Dl' = l/x [r1/"', l)x Y,
(4.3.20) is equal to

(4.3.21) ( (exp c/>1L(iy$rn-1dwdrdyrnfm

JDl

4- \ (exp $i
JDl'

Since the second term is 0(r"/m), we consider the first term, which is also di-

vided into a sum of two terms.
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(4.3.22) t nlm\ihe first term of (4.3.21)]

= \
J JDI

where #0 = # l y = o -
Since |<P — <2>0|gC|,y|, the second term of (4.3.22) is bounded according to

(4.2.36). So we consider also the first term. Since exp (^(l)^ exp ( — c(\y\2

+ rm)) on U x [1, + oo) x (Rd\7), it suffices to calculate M= \ (exp ^(
JD

dwdrdy, where D= U x [1, r~1/w(m~1}] x Rd
? because it becomes to

(4.3.23) [the first term o/ (4.3.22)] = M + 0(1).

(4.3.24) M=

= (7c)d/2[det {H4./JD'
where D' = 17 x [1, r 1/m<1»-1>] ,

= (27c)d/2 f [det H+Tl'2dIl\m(m- 1)]'1 log r1 ,
Jtf

because n — rnd/2 = 0. q. e. d.

Proposition 4.4. // 2n — md> 0,

(4.3.25) ( (exp^3(l))[det{rT1T1}]1/2dr);, where D = Rd

JD
= (27r)d/2 exp (-p^) [det {H+

x [det {(/4(o>)r^-1/2)-1 si

and

(4.3.26)
D

= (27t)'/a exp (- pm_ ,} [det {(^/2)-i sinh (A/2)}T1/2

x [detH+]-1/2^1r»-"/2-1rfr.

Proo/.

(4.3.27) K=( (exp^3(l))[det{'T1T1}]1''2dy, where D=Rd

JD

where

(4.3.28) K0 = ( exp ( - <TI(JD
x^et^tj

By the properties of Hamilton matrix, there exists a base (e, e_9 c) on range of
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H = range of T^CO) such that by the coordinate x, x and z with respect to (e, e, c),

satisfying TI(Q>) y =

(4.3.29) - ^(o)));, Ul tanh (^(c

where G(A;) = (tanh A^r with eigenvalues Ay of A(co)r"'~ll2. (Refer to Appendix.)

Denoting the mapping from y to (x, *, z) by f we get

(4.3.30) K0 = exp(Z G(AJ.)(2|xJ.|
2)+ Zlz,!2) [det

= 7r"/2[|det

Therefore we get

(4.3.31) K =
x [det <F]

On the other hand we know that

det {%(#+/2)T!} =det {H+/2} det {'T^} =U tf[

so that we get the conclusion (4.3.25). Integrating (4.3.25) by rn~1dlldr we

get

r
(4.3.32) \ (exp<p3(l))r" 1rfr1dr[det{fT1T1}]1/2Jj, where D =

x [det {4(o>)rm-1/2)-1 si

(exp(-pw.1))[de

where D' = UxR + . q.e.d.

(*) About a density on I.

(4.3.33) [det H+]-1/2dI1r"-d/2-1dr = [det {H+(

This is an induced density dZ on Z by pm and the canonical density dQ =

\dx1 ^dt;1--dxn/\dt;n\. In fact it is defined as followings. Let (x, y) a local

coordinate of Q such that r = {j; = 0}5 (x = (xl5..., x2n_d) and y = (>'i,..-5 J^))-
The canonical density is written as dQ = Gdxdy and ^Z" is defined by dZ =



PARAMETRIX FOR A DEGENERATE PARABOLIC EQUATION 637

[det{32pm}]~1/2Gdx. If we take (x, y) as x = (r, co) and y is orthogonal to Z,

dl is given by (4.3.33). Therefore we get (4.3.34) when 2n-md>Q.

(4.3.34)

x [det {(A/2)-1

where ^Z' =

When 2n — md = 0, dZ may seem a density dZs on rs the projection of I

into the spherical bundle S*U as (4.3.35) because functions on Zs may be identi-
fied with homogeneous functions on Z of order zero.

(4.3.35) f
Jr

where /? may be any positive function on Z with homogeneous order m — 1.
Since o> of (co, r, j) may seem a local coordinate of IS9

(4.3.36)

Therefore when 2n-md = Q, we get (4.3.37), and also (4.3.38) if we want to leave
it an integral on I using a function given a-priori there, pm-i +2"1 Tr~/4 .

(4.3.37)

(4.3.38) =

x exp (-(p,,,_ ! +2-1 Tr~^))dl log r1 + O(l)jr«"".

Thus we conclude Proposition 4.5.

Proposition 4.5. Let Q be a conic neighborhood of X belonging to I.

(4.3.39) ( e(x,Qdxdt
ja

= exp ( - j?m)dxrf£ + o(l) r "/", i/ 2n - mrf < 0 ,

»/'", if 2n-md=0

or
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= { (2nY/2 Jyexp(-pm_ 0 [del {(A/I)-* sinh (A/2)}T1/2dZ

Remark. See the discussion before the proposition for dZ and d£s.

(*) By this conclusion it is easy to obtain Theorem 4.2 noting the dimen-
sion of each connected component of the characteristic set Z.

§ 4.4. Reconsideration about General Cases

In the results of Theorem 4.2 it is difficult to rewrite the second and third

cases, namely, the case that In — mdg:0, into a simple statement of general

cases, because d the codimension of the characteristic set Z and 2 (of n — d/2 or
2n — md) the vanishing order of pm at Z reflect complicatedly on the rate. How-
ever the first case, namely, the case that 2n — md< 0, may be caught as exp ( — pm)

is integrable on T*M, that is, as the measure of {pm^l} is finite. Then to ob-

tain the same result we do not need the condition that pm vanishes exactly double

on the characteristic set Z.

Proposition 4.6, Let X be a point of the characteristic set Z and Q be a

small conic neighborhood of X. Then we get (4.4.1) as t tends to zero under

Condition (A) if\ exp( — pm)dxd^ is finite.
JQ

(4.4.1) { e(x,&dxdt=\{ exp ( -pjdxd£ + 0(1)1 r»/".
JQ [JQ )

Proof. By Corollary of Theorem 1 we calculate \ expcbidxdt; and
r Jm r
\ exp ( — tpm)dxd£9 where Ol and Q2 are restricted on Q. For \ exp ( — tpm)
JQ2 J02
x dxdt, we get immediately (4.4.2) changing variable %t1/m to £.

(4.4.2)
JQ2

On the other hand the main part of (^ is — $1? which may be changed by — <t>2

according to Proposition 1.17. (Refer to Section 1.6 for notations.) Therefore

we get

(4.4.3) |exp01|^Cexp(-02-c<Om"1O^Cexp(~^2).

We consider a new variable Y=X + cxh. Then $2PO=PmW anci tne Jacobian
of the transformation is bounded for a sufficiently large <O because we know
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(1.6.9) and d<l/6. More precisely it goes to identity, and Y tends to X as

tends to infinity. Therefore domain Ql is not essentially changed, that is, Ql

is contained in Q\' = {Y=(y, f /); pm(Y)^C<??>m-1+2£}. Thus we get

(4.4.4) exp^dxdf ^C exp(-pm(y))^diy.
I Jnr

Changing variable ??£1/w to r\ the right hand side has the rate o(l)rn/m as t tends
to zero. Therefore we conclude the result of Proposition 4.6. q. e. d.

(*) It is clear for Proposition 4.6 to imply Theorem 4.3.

(*) We give notes about Remark after Theorem 4.1.

It is clear by the process of proofs that 4>' satisfies Proposition 1.25 as well

as </>, where </>0 should be replaced to (j)'Q in which \j/1 and \l/{ of 00

replaced to the following ij/[ and ifrY .

(4.4.5) <K

Meanwhile by definition (refer to (0.2.3-7)), the difference of </> and <£' is

(4.4.6) 0_0'=(^1_^l)(^

By (1.4.3), i^i-^il is bounded as

l^i - <t>2\ ̂  ciKO1"'1 + (KO"-1+e)2}
Since ^!-^i=0 and 1-^=0 if ̂ m<O1"m~2E^min(l5 c'-1), we get

(4.4.7) |(/)-~^|

noting (1.6.28). Now we prove that exp c/> and exp 0' are equal to each other

asymptotically. We divide the domain to two parts. Let w(f, x, 0 be such a
characteristic function that w = 1 if 0 ̂  0' and w = 0 if 0 < 0'. Then we get

w(exp 0 — exp (/>') = {1 — exp (0' — 0)} w exp 0 ,
and

1 - exp (0' ~ 0) = (<£'- ̂  exp {(<£'-
Jo

By (4.4.7), |l-exp(0'-0)|gC<O"2e(l + 0o)d- Therefore by the same pro-
cedure as the proof of Theorem 4.1,

f
\J T*U

w exP <>x = w exp
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In the same way we get

( (1 - w) exp (frdxdt, = (1 + 0(1)) ( (1 - w) exp fi
J T*U J T*U

These imply that

( exp (f>dxd£ = (1 + o(l)) ( exp cf>fdxd^.
JT*V JT*U

Appendix

§ A.l. Hamilton (Fundamental) Matrix

Here we state some properties about Hamilton matrices and prove Propo-
sition 1.2.

Let H be a real symmetric matrix on X = C2", J be a real unitary matrix

such that J2= — / through this section. We also put A = iJH. ( , ) stands for

the canonical inner product of X and < , > is a bilinear form such that (x, y)

= <x, j;>, where ;; =jconJ is the complex conjugate of y.

(*) At first we assume that H is non-negative. We denote the range of H

by 7and the kernel of H by N. Then X = 7© AT is an orthogonal decomposition
of X because H is symmetric. We subdivide Y as 7=70©7! by 70 and its

orthogonal complement Yl in 7, where 70 is the intersection of 7 and the kernel
of A2. We put d = dim 7 and k = dim 70. (Remark. The ascent of A at zero
is at most two because H is non-negative.) Further we use the notations H+

= H\Y9 H+0=H\Yo and H+1=H\Yl for the restriction of H on 7, 70 and 7X.
(Remark. In general 70 and Y1 are not invariant subspaces of H. So the

restriction H+J of H on Yj is defined by the matrix on 1} satisfying (H+jf9 g)

= (#/, g) for any/and g of YJ9 that is, H+j = P(Yj)H by using the orthogonal

projection ^(7^) onto 77-.)
Let kj be positive eigenvalues of A. They are simple and the number of

them is (d — k)/2. —lj are also eigenvalues of A and total eigenvalues consist

of zero and them according to non-negativity of H. The adjoint matrix A* is

given by iHJ and has same eigenvalues 0 and Aj. Let a^ be an eigenvector of

A* corresponding to A,-, {a,-} are linearly independent of each other by taking

as a7- and ak are orthogonal if Ay=A fc. And also aj = afnj is an eigenvector cor-

responding to — A,-. If a and b are two eigenvectors of A* corresponding to
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eigenvalues A and n, (A + ju)<./fl, b>=0. And £A<J0, a) = (HJa, Ja)>Q if

A 7^0 because Ja does not belong to AT if A^O. This implies that <J0, a>

Therefore we can take ay as f<Jo7-, o/> = l and <Ja /5 tf/c> = 0 because A,--f A

(Remark. i(Jdj, a^ is real positive from the first.) Since A<a, x) = — <a,

A2<a, x> = <a, /I2x> so that A2<a, x>=0 if x belongs to AT or 70. This means

that a is orthogonal to N® 70 if A^O. Therefore a; belongs to Yv. Considering

the dimension, {a,-, ay] is a base of Y{. From the above we get the following

proposition.

Proposition A .1.1, 1) Let Ay, / — !,... , (d — k)!2, 6e positive eigenvalues

of A. There exist a{ belonging to Y1 such that i(Jaj9 ^fc> = ^fcj <«/£/, aky=®>

{ajy g.j} is a base of Y± and aj is an eigenvector of A* corresponding to Ay.

2) There exists a real base of 70 such that (H+QCj, cky = (Hcjy cky = 6jk.

3) If we put bj = Hcj9 which belong to Y and satisfy <&,-, cky = djk, then we

get

Remark. bjy aj and as are linearly independent of each other and they

make a base of Y. <Jfe/, bky = (HJHCj, c fc>=0 for all j and k because cy be-

longs to YO- hj(aj> cky= ~Kaj> JHcky and <ay, Jfr f c>=0 if cij belongs to Yl

and ck belongs to 70. Therefore (Ja^, ^J->

Proof. AJaj = kjJaj, AJaj= —kjJajy ACj = iJbj and ^4u = 0 if v belongs

to N. This means that the left hand side is equal to the right hand side because

X = N®Y. q.e.d.

Let us put A4 = N@Y0. This is the generalized eigenspace of A* at zero

and simplectic, namely, J is non-singular on M. In fact, if <J/, w > = 0 for all u

of M, then J/ belongs to Y1 . This implies that /= iJHJg with some g of Yj

so that Q = A2f=A*Jg. Since the ascent of A at zero is at most two, A2Jg must

vanish. Therefore Jg belongs to 70. Putting u=Jg, we get that <J/, J#>

= </» ̂ > = 0. On the other hand, since </, #>= -i(HJg, J#>, Jfif belongs to

N. Thus J# belongs to both 70 and N, namely, Jg must be zero. So we con-

clude that/=0. Since M is simplectic, there exists dj9 j = l,..., (2n — d + fc)/2,

such that i(Jdp dky = 6jk, <JJ j3^fe> = 0. Therefore ^j(dj®Udj — dj(S)iJdj) is

the identity on M. Using these vectors {a^, b/5 dj}, we can represent functions

of A in the following way.

Proposition A. 1,2. Le/ G(A) 6cj a continuously differentiable function in
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A o/R. Then G(A) has the following canonical form.

(A. 1.1) GG4) = Ej {G(lj)iJaj®aj-G(-lj)iJqj®aj}

+ G'(0) E; iJbj®bj + G(0) Ej(dj®iJdj-

Especially if G(A) is an odd function in A, we #er

iJG(>4) = E; G(A,.) {0,0^ + aj® a/} + G'(0) Ej 6,-® fry .

Since a,-, fly and bj are linearly independent on 7, there exist e^ such that

<aj-, eky = 6jk, <aj, e fe>=0 and <&,-, efc> = 0. Then, since {e,., e,-, c,-} is also a

base of 7, we may induce a coordinate on Y such tha.tf=xe + ye + zc for /of 7.

Therefore we conclude the following.

Proposition A.1.3. // G is an odd function, we get

(A.1.2) <iJGG4)/,/> = I,. G(A;) (\xj\2 + \yj\2) + G'(0) |z|2 .

Especially ifG(A) = A,

Moreover if G is a real function, then (iJG(A)f,fy is real.

Let {fj} be another base of Y. We denote the coordinate uj of/ by it, that

is> /=Zj wJ./J- = xe + ̂  + zc. And we denote the mapping on Cd from (uj) to
(x, j, z) by ^ and the matrix representation of H+ with respect to (u^ variable

by also H+. Then we get the folio wings using the above propositions.

Proposition A.1.4.

(A. 1.4) H+ = <P*A$,

where A is a diagonal matrix, diagonal elements of which consist of some 1

and two &j,j = l,...,(d-k)/2.

(A.1.5) det H+ =nj-i"ife)/2 ^|det <f>|2 .

In general putting iJG(^L)|y = G+ (G is odd), we get

(A.1.6) det G+ = ni-l~ifc)/2 G(A7)
2|det ^|2 .

(*) Proof of Proposition 1.2. Let us consider the case that Jcf^

(X y)H = (Hx, y) defines another inner product on X and satisfies that <5|1*||2

^NH^MNI2, where M=||H||=sup^o(^^ ^)/ll^ll2 and || ||H is the norm
with respect to ( , )H. A = iJH is a selfadjoint operator with respect to ( , )H

and ||^l||H^M. This implies the following.
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Lemma A.1.1. Let us put RA = (A-A)-1 for ImA^O. Then

AI'1.

Let us consider the resolvent equation.

{/ - e(A - iJH)~ l U] {A - iJ(H + e/)] - l

This implies that there exists {A — z'J(f/ + e/)}~~1 if there exist (A — iJH)"1,

HJ}-1 and {/-e/V^-iJH)-1}-1. Let us put Kt ^s^-i

Lemma A.1.2. ||^.||^ge2(M/^)|Im A|~2, (7=1, 2).

Proof. Let us put Klf=u1 and K2f=u2, that is, siJf=(h—iJH)u1 and

8/=(A-iJH)iJw2. By Lemma A.1.1, llMjI^^e2^^-2!!///!^ and ||i'

g82|ImA|-2||/||i. Here we know that ||/J/| 2,^M||/||2g(M/5)|!/||2f and

||w2||^gM||z7w2||2^(M/^)||fJw2||^. This implies that ||iJw1||irg62M6-1|Im A|~2

x ||/||& and ||w2||
2^^e2M(5-1|Im A|-2||/||&. We get the conclusions. q.e.d.

Now let us assume that G is a real symmetric matrix, and let us put H

<50)I, (<5>0), where 60= -Mf^0(Gf,f)/\\f\\2. And also we put

and M =

Lemma A.1.3.

Proposition A. 1.5. (Proposition 1.2.)

1) // 2-1{^ + (^2 + 3|ImA|2)1/2}-1|ImA|2^^0 and ImA^O, then there

exists (A- iJG)~l.
2) J/2-1{L + (L2 + 3/c2|ImA|2)1/2}-1/c2|ImA|2^^0 for some k such that

0 </c<l , we get

+ 5fc2|Im/l|2)1/2{/c(l-/c)]-1|ImA|-2, when L^O,

or

Proof. Since H = G + (5 + 50)/^5, there exists {A-iJf/f + eJf)}"1 by
Lemma A.1.2 and Lemma A.1.3 if e2M5-1|Im A|~2</c2 and 0<fe2gl. Here

we put s=-(5-50. Then H + sI = G. Therefore if (5 + (50)2(L+^4-50)^~1

x |Im A|~ 2<fe 2gl , there exists (A — /JG)"1. The domain of A such that there
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exists S(>0) which satisfies (S + S^L + S + S^S-^Im A|~2</c2 is obtained by

putting /? = L, a = |Im X\2k2 and k=l at the following Lemma A. 1.4. If

2-1{L + (L2 + 3\lm^2)^2}-1\lmA\2^d0 and |ImA|^0, there exists <5>0, that

is, there exists (A — fJG)"1. Noting Lemma A. 1.2 and Lemma A. 1.4, we can put

(5= =_<50 + a{L + (L2 + 3a)1/2}-1 and a = fc2|ImA|2. Then \\Kj\\H<k. And

also | |(A-/JG)-1 | ln^ll(A-z7H)-1 | |ffll(/-^)"1llw. On the other hand
\\(l-iJH)-l\\ri£\Imi\-1 by Lemma A.I. 1. Therefore we get IKA-iJG)-1!!

^(l-fcr'lImAI-1 , because \\(I-Kj)~]\\n^(\ -fc)"1- Denoting (A-iJG)"1

by C, ||C/||2^a-WII&^S-Kl-fc)-2l^
x||/||2. Thus ||C|| ^M^^/^l-fc^lImAI-^^ + S + So)1/2^-1/2^-^)-1

x |Im Al"1. Putting y = 5 + d0 = a{L + (L2 + 3>(z)lt2}-1, we get d^2~ly because 80

a and a = k2|ImA|2. If L>0, then

+ SaX1. Therefore ||C|| g (4L2 + 5a)1/2a-1/2(l -/c^llm Al"1 ^ (4L2 + 5/c2

x|ImA|2)1/2{/c(l-/c)}-1|ImA|-2. If L^O, then (L + d + (50>5-1^2(L + 7)7-^2.

Therefore |]C|| g21/2(l-lc)-1|Im Al"1. q.e.d.

Lemma A.1.4. Let us consider a function f(x) = (x + (50)
3 + /?(x + ^0)

2 — ax,

wfcere ^o^O flwd a>0. // 2-1(/H(£2 + 3a)1/2)-1a^(50, tften r/iere ex/sfs (5
such that 6>Q and f(d)<Q. In fact it is enough to put d = — 60 + a{/? + (/?2

+ 3a)1/2}-1. Then d satisfies <5^2-1{£ + (/P + 2a)1/2}-1a.

Proof. If there exists t>>0 such that/'(^) = 0, it is what we need. We put

F(y) = y* + Py2-*y + *S0, that is, F(y + 60)=f(y). F(0) = a(50^0 and F'(y)
= 3y2 + 2/3y-a. A solution y>0 of F'(y) = 0 is given by y = a{

+ 3a)1/2}~1. Since y>(50 by the assumption, d = y — 6Q is positive and

=/(*)•
F(y) = a{50- a (/? + (^H-Sa)1/2)'1 C(4a + ̂ 2) (6a+ j?2 + ̂ tf2 + 3a)1/2)-1]} .

Here (4a + ̂ 2)(6a + ̂ 2 + ̂ 2 + 3a)1/2)~1^ (8a + 2Jg
2)(15a + 4jg

2)-1>2-1 (a>0).

Therefore we get F(7)<a(50-2-1(^ + (j52 + 3a)1/2)-1a)^0. q.e.d.

§A.2. PseudodifFerential Operators

We mention properties of pseudodifferential operators, which are used in

the previous sections, and we give proofs for some of them.

At first we give the formula of transformation between ordinary symbols

(A. 2.1) and Weyl symbols (A. 2. 2) because we have used Weyl symbols through



PARAMETRIX FOR A DEGENERATE PARABOLIC EQUATION 645

this paper.

(A.2.1) p°(x,

(A.2.2) p»'(x,

Remark. We do not distinguish between oscillatory integrals and ordinary

integrals in notations,

Theorem A.2.1 [Transformation formula between ordinary symbols and

Weyl symbols^. If a Weyl symbol p(x, C) and an ordinary symbol q(x, £)

give a same pseudodifferential operator, that is, pw(x, D) = q°(x, D), then

they are transformed to each other by the following relations (A.2.3-4).

(A.2.3) q(x, {) = (

(A.2.4) p(x, £) = (

Remark. In the rest we use only Weyl symbol so that we omit w of pw(x, D)

except for Lemma A.2.1 and the proof of Theorem A.2.1.

Theorem A.2,,2 [Change of coordinate']. Let us put f(x) — p(x, D)u(x)

and x = c/)(y} a diffeomorphism on R". We assume that p(x, £) vanishes out

side of a bounded set in x. Then by (A.2.5) we get g(y, n,) such that ($*f)

(A.2.5) q(y, rj) =

where W(z) = W(y, z) is a matrix valued infinitely different iable function such

that (t)(y + zl2)-(j)(y-z/2)=W(y, z)z and that det *F(z) does not vanish on the

whole space.

Remark. If (d(f)/By)9 W, V"1 and their derivatives are uniformly bounded,

we can remove the condition with respect to the support of p.

Remark. It is natural for pseudodifferential operators on manifolds to be

defined as operators from e-densities to (1— e)-densities, (O^s^l). One of

reasons is that principal symbols pm and subprincipal symbols pm-.± are well
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defined on cotangent manifolds as homogeneous parts with top order and with

next order of symbols p of local expressions when pseudodifFerential operators

are classical types. This result is easily deduced from Theorem A. 2. 2. In this

paper we consider them as operators from functions to densities. In order to

guarantee iterations we fix a positive density dM on a manifold M to identify

spaces of functions and densities. With respect to a local chart (x, U) a local

expression of a pseudodifferential operator P is given by (A.2.6) with a Weyl

symbol p if the density dM is flat with respect to x, that is, dM = dx on U.

(A.2.6) (Pu)(x) = (p(x, D)u)(x) on U for u of CJ°°([/)3

where the right hand side is defined as pseudodifferential operators with Weyl

symbols on R".

Remark. We denote the symbol of multi-product of pseudodifferential

operators p^x, D)p2(x, D)—pv(x, D) by (p1°p2
0'-0Pv) (x, £)•

Theorem A.2.3 [Formula of multi-product Weyl product^. The symbol

of multi-product is given by

(A.2.7) (piO-ojOfrO

where drjj = (2n)-ndrip rin+1=-ri1 and yn+1=-yi .

Remark. For p of S™id we introduce a seminorm |p|[m) by

Ipli^supu + ̂ jCmaxi,^^

Theorem A.2.4 [Estimate of multi-product]. Let PJ be pseudodifferential

operators belonging to S™(/}(j = l,...5 v) and p = piop2
0'-0Pv If d<l and

A^2[w/2] + 2, then p belongs to Sm^+AvCa-p)-^ ^ere w(0)=£j = 1mO). /n

detail for any I there exist 10 and C, w/iicft is independent of v, such that the

estimate (A.2.8) is satisfied, where 10 and C may depend on I, h and

(A.2.8) Ipl

Remark. 1) (<5 — p)~ = max {6 — p, 0}. 2) If (3gp, this theorem is one

used in Chapter 2.
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Theorem A.2.5 {Expansion formula']. Let PJ belong to S™(j],du)

(j=l,..., v), where d(j}<] and p(j)>5(k) if j^k. For any integer N^Q,

there exists qN belonging to S™^~£N such that

(A.2.9) (p,o...opv)(Xj £)

H ere m(0) = E} = i m(j), p = min,. p(j), 6 = max, 6(j), e = min,.^ p(j) - <5(fc), F

= (p1,..., pv), a = («y) are systems of multi-indices aj-(y, /c = l,..., v), a* are

multi-indices with the same width n (number of indices) such that a^- consist

of only zero,

Theorem A.286 [Expansion formula in case of two pseudodifferential

operators']. Let us put cr^/?!, p2)=£,a+^,=aft(-l)^lC^p1
(
(J|Jp2^, w/im?

a a«cf /? are multi-indices, and C^ = k l / ^ l ^ l . Then we #ef t/ie expansion

(A.2.10) with qN belonging to Sj$°~cjv, w/iere PJ belongs to S"^JldU), m(0)
m(2), p = min (p(l), p(2)}, ^ = max (5(1), 5(2)} and e = min

(A.2.10) JPi°P2 = Zn(20-/f(/c!rWPi,

Moreover there exist constants 10 and C for any 1 such that

where the seminorms are ones of Sp>d.

Remarks on <rk. Let X be C2". We define a nondegenerate bilinear form

crj on X* by ^((x, 0, (y, ri)) = (£, y> — <x, f/>. It is extended on the covariant

tensor product Tk(X) of X by putting it as ak(u, y) = 115 = 1 ffi(uj> vj) f°r mon-
omials M = M 1 ® - - - ® M k and 1; = !;!®-"®^. The restriction of ak on the

symmetric tensor Sk(X) gives the natural extension of o>1. Then they satisfy

for u = £<xxft and v = &x*

or

orfc(w , u) = 0, otherwise ,
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where C^ = /c!/a!/?L If we identify {plfyw + ip^k to an element dkp

xf of S^X), then

Therefore we can deduce the following properties.

Theorem A.2.7. We assume that p, q, r/>, / and g are scalar functions. We

identify X and X* by the canonical bilinear form <z, z') = £?"i ZjZ'j for

z=(zj)

i)

3) e2(p,q)=-Tr(JHpJHq).

4) (jjQ?, exp 0) = o-iO, 0) exp <£ .

6) cr2(p, /flf) = a2(p, f)g + ff2(p,

7) (72(p, exp 0) = <r2(p, 0) exp 0 + < J50, HpJd^y exp 0 .

^ = d2ij/ and ff^u, u) = <Jw, u> .

Proof. 1) and 2) are clear from the definition, where J is a linear mapping

such that Jx=—£ and J£ = x. 3) For two monomials u = uj®uk and t; =

Vj®vk, it means that

<72(w, i?) = (71(Mi/, v^^(uk9 vk)

4-7) are proved by noting that %xp 0) = 50 exp 0, d(fg) = gdf+fdg, d2(fg)

= gd2f+ 2Bfdg +fd2g and 52(exp 0) = d2(j> exp 0 + 5<^5(^ exp 0. q. e. d.

Lemma A.2.1. Let us define an operator K for a kernel k(x, y) of y(x>y

by

If we put k(x, y) = k(((x + y)l2, x-y)=*k'£x, x-y) and define k~j(x, 0 (; = 1, 2)

by

Then Ku = k^w(x, D)M = fcj°(x, D)u.

Proof.
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and

Substitute them into the definition of K. q.e.d.

Proof of Theorem A.2A. It suffices to prove it in the case that one of p

and q belongs to &* as a function in (x, £) because it implies that the other also

belongs to y if they are connected by the relations of the theorem and because

<? is dense in Sflid in a suitable weak sense. If we put k^=p (k^ = q) in Lemma

A.2.1, then q = k~2 (p = k^). This implies the first (second) equality. q.e.d.

Proof of Theorem A.2.2. Let us put/=p(x, D)w. Changing variables as

x = 0(z) and 3; = 0(w), we get

where v = tj>*u. By Lemma A.2.1 we find a Weyl symbol q(y, t\) which attains

the same operator as

It is given by

q(y, fj) = J exp { - tyz + i(^ + z/2) - ^(y - z/2))C}

x X^y + z/2)/2 + 0(y - z/2)/2, C) Wl

By the assumption on 0, there exist W(y, z) satisfying that

0(y + z/2)-^(y-Z/2)=y(j;, z)z

and that det *F(j;? z) does not vanish. In fact the existence of W satisfying the

equality is shown by Taylor's expansion formula. At a neighborhood of z = 0,

W is nonsingular by the assumption. Otherwise adding a certain matrix vanish-

ing at vector z, we can make W be nonsingular because </)(y + z/2) — 0(y — z/2)

also does not vanish there. Therefore changing variables —^-^^(y, z)C to

C', then C = t¥/-1(C; + ^) and JC = I^~1I^C /. We get the equality of the theorem.
q. e. d.



650 CHISATO IWASAKI AND NOBUHISA IWASAK.I

Proof of Theorem A.2.3. If PJ belongs to y, we get easily the first equality
by linear transformations of variables from the expression obtained by definition
and by using Lemma A. 2.1. On the second equality the following property
of Weyl symbols works effectively. q. e. d.

Lemma A.2.2. We denote the Fourier transformation of f by f".

(p(x, D)ur(ri) = (2n

Proof of Theorem A.2A. At first we prepare two lemmas.

Lemma A.2.3. Let us consider a function

where

1) GO,, <^
2) G(£, Q:g2G(£, ,,) if |$-C|g2|£-i
3) G(£,

4) //2|{-i/|^<O, then

5)

6)

7) Let us put

/?v+i = —// ] andtj = (r]l,..., >yv). T/iew ?/zere ex/s/s a constant C depending
only on M=£j=i |m(/)| SMC/?

m if (l-6)N-M>n,

where w = £ = m O - ) .

Proof. 1) Since <£>^0;> + l£-'j|, we get
Therefore G(^, ?/)^2-*G(//, f), (0^<5<1).

2) When ^=0, it is clear. We assume that 0<^<1. By the assumption,

<OI5-»?r i / '^21/'<OIC-CI"1/ ' and |{-f/|1-l/«g21"-1|«-C|1-1". Therefore
If - fl {<«> + If-f ir* ^ 2-M{- Cl KO + 2-Mse-f|}-' ^ 2-»|{ - Cl KO + |{
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3) G«, fflGfa, 0^2-2G(£, QG(C, 17) if |{-C|£2|£-i7| .

if |£-

4) and 5) are easy.

6) Change <fy>m to <Om and integrate G(£, ??)~N by r\ using 4) and 5).

7) y!«,i7) = G« + * C-*?)-*<£ + *7>m-M*. This implies that ¥&, 17)
m-"5. Therefore ( ^(£5 ^gC<Om by 6). By the

way J^v(<L??)^C(|mv|^ according to 3)

and 6), where m(l) in the right hand side is equal to m(l) + m(v) of the left hand

side or m(v — 1) is equal to m(v — l) + m(v). We can get the conclusion by

induction with respect to v. q.e.d.

Next we consider an oscillatory integral

1= ^ exp O'Ej-i rtj(yj-yj+i)} nj = i qfrj + yj+i, t + nj)dy4ri9

where y = (yl9..., yv), yv+i = - yt and ri = (rjl9..., rjv).

Lemma A.2.4. Let us assume that qj belongs to S^(/}. Then there exists

a constant C(19 r, M), which depends only on I, r and M9 such that

where (£-p)~ = max{5-p, 0}, m= Z} = i m(j), M= E} = i |mO")
/ and r are integers such that l>n/2 and (l — d)2r — M>n.

Remark. We may take any real number such that l^[n/2] + l in
m+2iv(5~p)~? though the constant C necessarily depends on it.

Proof. Let us define AJ9 LJ9 Bj and Rj (j=l,...,v) as follows.

where S^ = <^ + ^-> and Sv+ x = S^. They satisfy

^'Lj exP ( l S]
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This implies for any integers / and r

x n j = i
Noting that qj belongs to SjJ^', we have

Therefore we get

Ul^cttrynj-i
x ( 11} -i 4}BJ<^ + 1y>

On the other hand we know that, if / > n/2,

and that, if (1 - 5)2r -M>n,

where C depends only on /, r and M, according to 7) of the previous lemma.

Combining these results we get the conclusion. q. e. d.

By Theorem A.2.4,

= 2" exp {i S} = i

Therefore we get

x exp
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Applying Lemma A.2.4 to

which belongs to sffl+WW-'^M, we get

(where m'(j) = m(j) + 5|jS(./)| -p|«U)| + 21(5 -pY)

:SC(a, /?, M)»IIJ-i IPjlf^ft|+0,«)+4r<0

Therefore there exists /0 for any / such that

Proo/ of Theorems A.2.5-6. Changing variables as y3— yJ+1 = Zj and

j = £j (j = l,..., v) at the first part of (A.2.7), we get

where z} = S*=;+ 1 zk~ St=i z/t- Taking Taylor's expansion with respect to £,

Noting Ca exp {izC} = /~ | a |3j exp { izQ, we take oscillatory integrals of them.

x «

Execute differentiations in z noting the form of z}

(Pi°-°P»)(*, Z)=Ii+

where

x exp
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and

Noting that it is an oscillatory integral, we get

Change variables (z, £) to (0z, 0-1C) in I2-

Return variables (z, £) to (y, jj).

x2»

Applying Lemma A.2.4 as 0/j^, ??,•)= JpJ-[fej)
)K^ + ̂  lj)> ^(^ 0 belongs

to S™7N+A(*"P)~, A = 2[n/2] + 2. In order to get the result we consider a suf-

ficiently large JV' for a given JV. Then /2(x, c) with respect to AT' belongs to

S™7£N because we may take N' such that eN^eN'+A,(d — p)~. On the other
hand,

also belongs to S™~/N. Therefore the remainder term qN(x, c) should belong to

Sy~d
eN. When v = 2, the estimate (A.2.11) is easily obtained by estimating qN,

by Lemma A.2.4 and directly P|«) for a such that JV^ |a| <>N'. q. e. d.

Remark. Refer to L. Hormander [6] for other informations about Weyl

symbols.
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