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On Betti Numbers of Complement of Hyperplanes

By

Hiroaki TERAO*

§1. Introduction

Let X be a non-void finite family of hyperplanes in €"+1 or F"+1(€). De-

note F'1+1(C) simply by Pn+1. By \X\ denote we the union of all hyperplanes

belonging to X. In this article we give some formulas (Theorem A, B) for

computing the Betti numbers of Cn+1\\X\ or Pn+1\\X\.

Define a set

L(X) = { n Hi AaX} U {the ambient space (C»+l or P"+1)}\{0}
7/6/1

and introduce a partial order > into L(X) by

s>~ 1 <==> s c t (s,te L(X)) .

If L(X) has a unique maximal element, then X is said to be central. In other

words, X is central if and only if C\HeXH^0.

Recall the following

(1.1) Definition. The Mobius function JK: L(X)-+Z is inductively defined

by

where 0 stands for the ambient space (the minimal element in L(XJ).

By r(s) we denote the length of the longest chain in L(X) below s (s e

In this article we call a non-void finite family of hyperplanes in C"+1 (or

Pn+1) an affine (resp. projective) n-arrangement. Then we have

(1.2) Theorem A. Le£ X be an affine (or projective) n-arrangement.
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Then the Poincare polynomial ofCn+l\\X\ (resp. Pn+l\\X\) equals

Z rt*)(-0-«
seL(X)

(resp. E Xs){(-Or(sM-0'l+2}/(l + 0).
seL(X)

Remark. When X is central affine, this result was proved by Orlik-Solomon

[1] (5.2). Moreover they explicitly determined the graded C-algebra structure

of H*(Cn+1\\X\, C). There it was also announced, without proof, that their

method would go well in case that X is a non-central affine arrangement.

We will define the freeness of any affine (or projective) arrangement and the

generalized exponents of a free affine (resp. projective) arrangement in Section 4

(resp. Section 3). All of the definitions are given via the case of a free central

affine arrangement studied in [3] [4] [5].

The following theorem gives another formula for the Betti numbers of

Cn+l\\X\ (or Pn+i\\X\) by using the generalized exponents:

(1.3) Theorem B« Let X be a free affine (or projective) n-arrangement and

(d0,...,dn) be its generalized exponents. Then the Poincare polynomial of

C»+1\\X\ (resp. P"+1\|*|) equals

i=0

Remark. This result was obtained in [5] when X is central affine. Our

proof is nothing other than the reduction to the case.

The following Sections 2, 3 and 4 are devoted to the proofs of Theorems

A and B. Section 2 is for the central affine case, Section 3 for the projective

case, and Section 4 for the (non-central) affine case.

§2. The Central Affine Case

In this section we briefly review some known results on a central affine

n-arrangement X.

By an appropriate coordinate change we can assume that r\HeXH contains

the origin 0 of Cn+i. Let Q eC[z0,..., zn] be a defining equation of X, that is,

F(Q) = \X\. By 0 denote we 0Cn+i j0. Then

): = {$; a germ at the origin of holomorphic vector field such that
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is an 0-module. We call X to be free if D(X) is a free 0-module.

Assume that X is free. Let { 0 0 > - - - » $J be a free basis for D(X) such that
each 0j is homogeneous of degree di (see [3] 2.10). Then we call the integers

(d0,..., dn) the generalized exponents of X. They depend only on X (see [3]

2.12).

Throughout this article bt(S) stands for the i-th Betti number of a topological

space S for any integer i (bj(S) = Q if /<0).

The following "trinity"' was proved in [1] (5.2) and [5] (Main Theorem):

TSieorem A9 B (central affine version).

(-1)' Z n(s) = b£C«+i\\X\) = nj(d0<...9dJ
seL(X)
r(s) = i

/or any integer i, where nieZ[tQ,...9tn'] is the elementary symmetric poly-

nomial of degree i (7^ = 0 if i<Q or />n + l).

§3. The Projectfve Case

Let X(^0) be a projective w-arrangement. Let Qe€[z0,..., z,^] be a

homogeneous polynomial defining |X|czPn+1. Then there exists a central

afBne (?z + l)-arrangement % such that

(3.1) Proposition.

/or any integer i.

Proof. Consider the natural projection

n:Cn+2\\X\ - >Pn

then this is a C* -bundle. So we have the Gysin exact sequence

... - , H«(Pn+1\\X\) -£U H«(Cn+2\\X\) - > H^(Pn

What we have to prove is the injectivity of each TC* above.

Let (p be a rational g-form on P"+1 whose pole is only along \X\. Assume

that n'cp = drf for some homogeneous rational (g — Inform ?; on Cn+2 with pole
only along \X\, where n'cp means the pull-back of cp by n.

Then there exists a rational (q — l)-form \l/ on PM+1 with pole only along
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|X| such that

Here <0, > stands for the contraction with the Euler vector field

Then we can show

dil/ = (p

by a direct but lengthy computation (or by applying (2.6), (2.7) and (2.9) in [2]).

These facts imply that each TT* is injective and thus (3.1). Q. E. D.

For any integer ?, we have

(3.2) bt(P"
j=o

in the light of (3.1).

Define an injective mapping

p:L(X)

by p(s) = (the closure of n~l(s) in C"+2) (seL(Z)), where n is the natural pro-

jection : C"+2\{Q}->P"+l. Then it is easy to see that

r(p(s)) = r(s), and

Notice that im p => {t e L(X) ; r(t) < n + 2} . Thus we have

(3.3)

= o(-V
i-jbj(C»+2\\X\) (by (3.2))

=(-D' i s xo
j=0 reL(JT)

QT)
r(s)=j

= ( - i V Z Z
j=0 seLQT

for i<n + 2. It is obvious that

fc;(P«+1\|Z|) = 0 if i

Thus a brief computation leads us to Theorem A (projective version).

(3.4) Definition. We call X to be/ree if X is free.
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Assume that X is free. Let 0/0, < / j , . . . , dn) be the generalized exponents of

X, then we can assume that dQ = I (due to the existence of the Euler vector

field) because X ^0. The generalized exponents of X are defined by (t/ l 5 . . . , dn).

For any integer i, we have

(by (3,2))

where TI/S (y'^0 are the elementary symmetric polynomials of degree j (with n

or (n + l)-variables). This proves Theorem B (projective version).

§ 4. The (Non-Central) Affine Case

Let H^ be a hyperplane in P'J+1, then we can identify C"+1 with a Zariski
open Pn+l\Hn of P»+1. Let X be a (perhaps non-central) affine H-arrange-
ment. Define a projective n-arrangement

We can regard L(X) as a subset of L^X^) by a correspondence

s i—»the closure of s in P'l+1

(seL(XJ). Put L = L(X) and Lao=L^Xao). By L(i) (or L00(/)) we denote a set

{reL; r(0 = /} (resp. {^eL^; r(0 = i})

for any integer i.

Define

for any s e Lm(i)\L. By /( we denote the Mobius function on L^. Then we

have

(4.1) Lemma. Let i<n + 29 then

1) I(i-l)= \J M(s) (disjoint),
seL00(i)\L

2) MS)-- E MO /orawy seL^(i)\L.
feM(s)

Proof. 1); For any tEL(i— 1), we have
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r(t n #00) = i, re M(r n H j, and r n #«, e L

This implies that
L(i-l) = \j M(s).

Next assume that ^eM(s) (seL00(0\L), then tnH^-^s and r(s) = /

= r(J n #00). Thus s = f n HOC, which implies that

M(s)flM(s') = 0 (s¥>s'9 s,s'ELn(i)\L).

2): We prove by an induction on f. When igO, Lac(i)\L=0. So 2)

holds true trivially. Let s e L00(f)\L and fc< i. Then we have

(4.2) Z M0=- Z Z M«)

because of the assumption of our induction. Notice that

(4.3) {weL(/c-l); w<s]= u M(f) (disjoint)
feLoo(fc) \L

f<s

due to 1). Thus we have

I M0=- I K«)
teLco(k)\L iieL(fc-l)

r-<s ii^s

by (4.2) and (4.3). Therefore we obtain

Z MO=Z Z MO
reLeo'L fc=0 f6L«, (k) \JL

Z
k=0

= - z.
Finally we have

_ . .. - Z M«)- Z MO
teM(s) «e£ teL00\L

u-<s t&s
= ~Jr(s/w'

Q.E.D.

(4.4) Proposition.

Z X*)- Z K«)= Z Xs)
seL(0 seL(i-l) seLooCO
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for any integer i<n + 2.

Proof.

seL(i) seL00(i)\L

= - Z Z KO (by (4.1), 2))
seLoo(i)\L reM(s)

= - Z XO (by (4.1), I)).
feL(i- l)

Q.E.D.

We shall prove Theorem A as follows :

Z tfs) (by (3.3))
j=0 seZ^U)

=(-!)' Z KS) (by (4.4))
S6t(»)

f o r / < n + 2. I f / ^ n + 2, then

bj(C»^\l^l) = 0 = (-l)i Z MS)
ssL(i)

because L(z) = 0.

(4.5) Definition. An affine n -arrangement X is said to be free if X^ is a

free projective n-arrangement. Let X be free. Then the generalized exponents

of X are defined to be the generalized exponents of X^.

Then this definition is consistent with the definition in Section 2.
Theorem B is immediately derived from Theorem B (projective version)

and the very definition (4.5) of the generalized exponents of an affine n-arrange-

ment.
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