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On Betti Numbers of Complement of Hyperplanes

By

Hiroaki TERAO*

§1. Introduction

Let X be a non-void finite family of hyperplanes in C"*! or P"*{(C). De-
note P"*1(C) simply by P*+*!. By |X| denote we the union of all hyperplanes
belonging to X. In this article we give some formulas (Theorem A, B) for
computing the Betti numbers of C"*1\|X| or P"*1\|X|.

Define a set

L(X)={HfE\AH; Ac X} U {the ambient space (C"*! or P"*1)}\{g}

and introduce a partial order > into L(X) by
s>t sct (s, te L(X)).

If L(X) has a unique maximal element, then X is said to be central. In other
words, X is central if and only if Ny H # 9.
Recall the following

(1.1) Definition. The Mdbius function p: L(X)—Z is inductively defined
by

wO0)=1,
ws)=—3 ),
i35

where 0 stands for the ambient space (the minimal element in L(X)).

By r(s) we denote the length of the longest chain in L(X) below s (s € L(X)).
In this article we call a nou-void finite family of hyperplanes in €**! (or

P"*1) an affine (resp. projective) n-arrangement. Then we have

(1.2) Theorem A. Let X be an affine (or projective) n-arrangement.
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Then the Poincaré polynomial of C**1\|X| (resp. P"*1\|X|) equals
2 W) (=1

seL(X)

(resp. 3 u(s) (=@ —(=y2}/(1+D).

Remark. When X is central affine, this result was proved by Orlik-Solomon
[1] (5.2). Moreover they explicitly determined the graded C-algebra structure
of H*¥(C"*1\|X|, C). There it was also announced, without proof, that their
method would go well in case that X is a non-central affine arrangement.

We will define the freeness of any affine (or projective) arrangement and the
generalized exponents of a free affine (resp. projective) arrangement in Section 4
(resp. Section 3). All of the definitions are given via the case of a free central
affine arrangement studied in [3] [4] [5].

The following theorem gives another formula for the Betti numbers of
Crt1\|X]| (or Pr*1\|X|) by using the generalized exponents:

(1.3) Theorem B. Let X be a free affine (or projective) n-arrangement and
(do,..., d,) be its generalized exponents. Then the Poincaré polynomial of
C"*1\|X| (resp. P"*1\|X|) equals

T1(+dg).
i=0

Remark. This result was obtained in [5] when X is central affine. Our
proof is nothing other than the reduction to the case.

The following Sections 2, 3 and 4 are devoted to the proofs of Theorems
A and B. Section 2 is for the central affine case, Section 3 for the projective
case, and Section 4 for the (non-central) affine case.

§2. The Central Affine Case

In this section we briefly review some known results on a central affine
n-arrangement X.

By an appropriate coordinate change we can assume that Ny.x H contains
the origin 0 of C**!. Let Q€ C[z,,..., z,] be a defining equation of X, that is,
V(Q)=|X|. By 0 denote we O¢n+1,o. Then

D(X):={0; a germ at the origin of holomorphic vector field such that
0-0eQ-0}
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is an ¢-module. We call X to be free if D(X) is a free ¢-module.

Assume that X is free. Let {0,,..., 8,} be a free basis for D(X) such that
each 0, is homogeneous of degree d; (see [3] 2.10). Then we call the integers
(dog,..., d,) the generalized exponents of X. They depend only on X (see [3]
2.12).

Throughout this article b,(S) stands for the i-th Betti number of a topological
space S for any integer i (b,(S)=0 if i<0).

The following “trinity’” was proved in [1] (5.2) and [5] (Main Theorem):

Theorem A, B (central affine version).
(=1 LZ(’X)H(S)——-b,-( C N\ XN =n(do...., d,)

r(s)=i
for any integer i, where m,€ Z[t,..., t,] is the elementary symmetric poly-
nomial of degree i (m;=0 if i<0 or i>n+1).

§3. The Projective Case

Let X(#¢g) be a projective n-arrangement. Let Qe C[z,,..., z,.,] be a
homogeneous polynomial defining |X|<=P"*!. Then there exists a central
affine (n+ 1)-arrangement X such that

V(Q)=IX|=C2.
(3.1) Proposition.
b(P 1\ X])+ by (P 1\ | X |) = by(C"2\| X])
for any integer i.
Proof. Consider the natural projection
m: €2\ X| — PrH\[X],
then this is a C*-bundle. So we have the Gysin exact sequence

s HU(P\|X|) = He(C2\|X]) — H WP X))
[N Hq-rl(Pn+1\|X|) ...

What we have to prove is the injectivity of each n* above.

Let ¢ be a rational g-form on P**! whose pole is only along | X|. Assume
that n'@=dn for some homogeneous rational (g — 1)-form # on €**? with pole
only along |X|, where 7@ means the pull-back of ¢ by .

Then there exists a rational (g — 1)-form y on P"*! with pole only along
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| X| such that
N 1 dQ
Y= —<0, deg0 0 AR
Here {0, ) stands for the contraction with the Euler vector field

n+1
0= Z—:o z(0/0z;) .

Then we can show

dy=¢
by a direct but lengthy computation (or by applying (2.6), (2.7) and (2.9) in [2]).
These facts imply that each ©* is injective and thus (3.1). Q.E.D.
For any integer i, we have
(3.2) bi(P"“\IXI)=J§0(— Di=ib(C+2\|X])

in the light of (3.1).
Define an injective mapping

p: L(X) — LX)

by p(s)=(the closure of n71(s) in €"*2) (s € L(X)), where = is the natural pro-
jection: C**2\{0}>P"*1. Then it is easy to see that

o) =r(), and  p(p(s)=p(s), (€ L(X)).
Notice that im p> {te L(X); r(f)<n+2}. Thus we have
(33) b(P"+1\ X))
= 3, (~D7bC RN by 3:2)

=(-1D"Y > wu@)
j=0 teL(X)
r(t)=j

(=D ¥ us)
o ekt

for i<n+2. Itis obvious that
b(P*1\|X])=0 if i=n+2.
Thus a brief computation leads us to Theorem A (projective version).

(3.4) Definition. We call X to be free if X is free.
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Assume that X is free. Let (dy, dy,..., d,) be the generalized exponents of
X, then we can assume that dy=1 (due to the existence of the Euler vector
field) because X #@. The generalized exponents of X are defined by (d4,..., d,).
For any integer i, we have

by (P 1| X])
=3 (= 1)=1b (€ 2\|]) (by (3.2))

10

=3 (=1 ingl, dyyeny dy)
Jj=0

=71',-(d1,..., d,,),

where n;’s (j<1i) are the elementary symmetric polynomials of degree j (with n
or (n+1)-variables). This proves Theorem B (projective version).

§4. The (Non-Central) Affine Case

Let H, be a hyperplane in P"*1, then we can identify C"*! with a Zariski
open P"*\H_ of P**!. Let X be a (perhaps non-central) affine n-arrange-
ment. Define a projective n-arrangement

X,=XU{H,}.
We can regard L(X) as a subset of L(X,) by a correspondence
s —> the closure of s in Pn*!
(se L(X)). Put L=L(X)and L, =L(X,). By L(i) (or L (i)) we denote a set
{te L; r(H)=1} (resp. {teL; r(t)=i})
for any integer i.
Define
M(s):={teL; r(t)=i—1, t<s}
for any se L (i)\L. By p we denote the Mdobius function on L. Then we

have

(4.1) Lemma. Let i<n+2, then

1) Li—-D= SEL\J(”\L M(s) (disjoint),

2) ws)= ——te%s) w(t)  forany seL,(i)\L.

Proof. 1): Forany te L(i— 1), we have
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rtnH, )=i, te M(tnH,), and tnH,e L (i)\L.

This implies that
Lii—-D= U M(s).

seLo(i)\L

Next assume that te M(s) (se L,(i)\L), then tn Hy<s and r(s)=i
=r(tnH,). Thus s=tn H,, which implies that

M@G)NnM(s)=6 (s#s', s,5'e L ()\L).

2): We prove by an induction on i. When i<0, L (i)\L=¢. So 2)
holds true trivially. Let se L (i)\L and k<i. Then we have

4.2) o opO=— ¥ X wu)
teLe(k)\L teLo(k)\L ueM(t)
t<s t<s

because of the assumption of our induction. Notice that

(4.3) {ueL(k—1); u<s}= U M(t) (disjoint)
tELtoo<(§)\L

due to 1). Thus we have

. oun=— 3> wu
teLe(k)\L ueL(k—1)
t<s u<s

by (4.2) and (4.3). Therefore we obtain

i-1

z k=2 2 4

teLo' k=0 teLo(k)\L
t<s

t<s
t#s
i—1
=—2 u(u)
k=0 ueL(k—1)
u<s
== X Hu.
r) Si-1
u<s
Finally we have
u(s)=— % pu@
t€Los
t<s
t#s
=— 2 put)— X ww- X u@
teM(s) uel teLo\L
r(u)<i-1 t<s
u<s t¥s
=- 2 u@
teM(s)

Q.E.D.

(4.4) Proposition.
2 uWe— 3 )= X us)
seL(i) s )

eL(i-1) Se€Lo(i
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for any integer i<n+2.

Proof.
z M= T u= 3 )

se€Lo(i) seLew(i)\L

—— ¥ > ut) (by (4.1),2)

seLe(i)\L teM(s)
=— 2 u (by (4.1), 1)).
teL(i—1)
Q.E.D.
We shall prove Theorem A as follows:
b(C™ N\ XD=by(P"1\[|X )
i

=(-D"¥ X )#(S) (by (3.3))

Jj=0 seLo(Jj

=(=1)" > u(s) (by (4.4))

seL(i)

fori<n+2. IfiZn+2, then

b(C N\ X)=0=(-1)! seLZ(“;u(s)
because L(i)=g.

(4.5) Definition. An affine n-arrangement X is said to be free if X, is a
free projective n-arrangement. Let X be free. Then the generalized exponents
of X are defined to be the generalized exponents of X .

Then this definition is consistent with the definition in Section 2.

Theorem B is immediately derived from Theorem B (projective version)
and the very definition (4.5) of the generalized exponents of an affine n-arrange-
ment.
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