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Clifford Operators and Riemann's
Monodromy Problem

By

Tetsuji MIWA*

§ 1. Introduction

The purpose of this paper is to exploit the method of holonomic quantum

fields developed in a series of papers [1], [2], [3] in solving Riemann's mono-

dromy problem.

In [4] Wu, McCoy, Tracy and Barouch have shown that the scaled cor-

relation functions T_(t)(TtTc) and T+(r)(T^Tc) are expressible in a closed form

using a solution rj(t) to the Painleve equation of the third kind:

(1.1) T ± ( f ) = const. f1/4(l + ^(0)^(0"1/2

x»P(r-*iiL=3^
VJr 4r](s)2 /'

(1.2) >7" = Y('7')2-f'7'-y + >?3 .

Inspired by this Sato, Miwa and Jimbo revealed the unexpected link between

the quantum field theory and the monodromy preserving deformation theory.

Their method is roughly summarized as follows.

Step 1. The correlation function is expressed as the expectation value

<(pr--<p,,> of a product (Pi'-(pn of Clifford operators <p l 5 . . . , <pn. The special

character of a Clifford operator is in the following form

(1.3) 9M=

where ij/(x) is a free fermion field.

Step 2. Consider the wave function
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(1-4)

As a function of x it enjoys a monodromy property independent of certain

parameters tl9 t2,... (which we call the deformation parameters) contained in

<Pi,~ .,<?„.

Step 3. The monodromy property of the wave function leads us to a sys-

tem of linear differential equation for the wave function with respect to x and

tl9 f 2 » " - - The coefficients of this system are rational functions in x whose

coefficients in the partial fractions are unknown functions of the deformation

parameters.

Step 4. As integrability conditions for this linear system we obtain a com-

pletely integrable system of non linear differential equations for the above

unknown functions. We call it the deformation equation.

Step 5. Finally we can find an expression for the logarithmic derivative

of the correlation function in terms of the unknown coefficients, which are now

a solution to the deformation equation.

Using these techniques they found closed expressions for correlation

functions in several physical models.

In [1] (Chapter II) they exploited this link in a converse way. They con-

structed a certain Clifford operator cp(a ; L) depending on a point a e C and an

m x m matrix L (|L| « I) so that the wave function

(\ ^ Y(^(1.5) Y(x)^

enjoys the following monodromy property.

(Rl) Y(x) is multi-valued and holomorphic except at the branch points

a!,..., a, and oo.

(R2) F(x0) = i.

(R3) At x = a^ we have

(1.6) Y(x) = $,(x)(x-a^

where $/*) is locally holomorphic at a^.

(R4) At x = oo we have

(1.7)

where ^^(x) is locally holomorphic at oo and Lx (\L^\ « 1) is determined by
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n g) e2TtiLi...e2niLng2niL00.-= J ^

Steps 3 and 4 for this problem was solved by Schlesinger [5] a long time

ago. If we take the normalization at oo, Step 3 gives us the following linear

system.

d.9)

(1.10)

Then Step 4 gives us the Schlesinger 's equation.

(Ml)

where df^^

Finally, Step 5 was completed as follows. For any solution A^ to (1.11)

(1.12) co = 4-trace £ AllAvdlos(a^-av)
£ V&H

is a closed one form. If A^ corresponds to the wave function Y(x) in (1.5) we

have

(1.13) co

Recently, Ueno [6], [7] and Flaschka and Newell [8] initiated the study

of monodromy preserving deformation of linear ordinary differential equation

with irregular singularities. The general theory was established by Jimbo,

Miwa and Ueno in [9]. Their work covers Steps 3 and 4. In particular, they

derived the deformation equation and proved its complete integrability. More-

over they gave the definition of a closed one form co and defined a special function

T by

(1.14)

In Sections 2 and 3 of this paper we shall fill up Steps 1 and 2. Since we

have already encountered irregular singularities in physical problems [2], [3],

our task is just to compound general prescriptions. In Section 2, we shall give

an infinite series expression for an m x m matrix Y(x) with a prescribed data a^

#;,., 4V} and C^ )(M=l, . . ,n ; j=0, . . . 5r / / ; 1=1,..., 2^; a, /?=!,..., wi). If

^>a's and Aj$l)5s are small, our series is convergent and gives us the solution to

the monodromy problem. In Section 3, we construct a Clifford operator (p^
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Oz=l,..., n\ a = l,..., m) so that the infinite series in Section 2 is written in the
following compact form

r i l M(1.15)

Section 4 covers the difference scheme (Schlesinger transformation) of the
monodromy preserving deformation theory, which was elaborated in [10], from
the standpoint of Clifford operators. In particular, the reason why T quotients
[10] is expressed as determinants becomes clear. In Section 5 we prove that

(1.16) a>

to fill up Step 5.

As an application of the method developed in this paper we shall prove the
Painleve property of the deformation equation and the analyticity of the T
functions in a separate paper [11].

The results of this paper was announced in a short note [12].
The author would like to express his heartiest gratitude to M. Sato, K.

Aomoto, K. Okamoto, M. Jimbo and K. Ueno for many helpful discussions.

§ 2. Riemann's Monodromy Problem

In this section we shall give an analytic expression for the solution Y(x)
= (7(x)a/?)aj/?=1) >m to the Riemann's monodromy problem. Y(x) is given in
the form

(2.1) r(*)a, = $a, + 27ri(*-*o) t £

where

(2.2)

Z
j-0 vi,...,v i/-i=l ai,...,aj-i=l

We shall take the following steps.
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i) We state the monodromy properties (M1)-(M6) which characterize

7(x).
ii) We prove the convergence of the infinite series for R^v^(y, x).

iii) We show that Y(x) enjoys the prescribed monodromy property.

Let al9...,an be points in C. We assume that Ima1>-~>Iman. We

denote by Fv the half line {x 6 C \ Im (x - a v) = 0, Re (x - av) ̂  0} .

(Ml) Y(x) is an m x m matrix holomorphic in C— W? = i Fv.

We fix a normalization point x0 e C— \J" = L Fv for 7(x).

(M2) 7(x0) = l.

Let M*1*,..., M(f l ) be m x m invertible matrices. We assume that

(2.3) MW

(M3) 7(x) can be continued analytically across Fv — {av} from both sides
and the boundary values Y(x + /0) (x e Fv — {av}) satisfy

(2.4)

M(v) is called the monodromy matrix at av.

For each v we choose a set of m x m matrices which we call the monodromy

data at av: T™v,...9 TL^, T^\ A{v\..., A(£\, C(v). The non negative integer
rv is called the rank of irregularity of Y(x) at av. We choose T^) =

(t-]t£*p\,fi=\,...<m
 to be diagonal and set

(2.5) 4v)M

If rv = 0 we choose T^v) and C<v) so that C^v> is invertible and

(2.6) C(v)-le2niT(
0
v)

C(v)=M(v) <

(M4) If rv = 0, (Y(x)C^-l)xpe
(f\x)-1 is holomorphic at av.

If rv ̂  1 we define sectors at av :

(2.7) ^l

We assume that d'^a^t-V,^ for a^jS, and choose sufficiently small 8 so that

(2.8) Re $ (*) = Re fe..-**"^"'1'- - dVVf, (
x-av)~r" ^ ,4 0

" *def

for xeSfty n ̂ /ii^. The monodromy data ^l[v) = (/l^0)a,/3=i,...)m is a nilpotent
matrix such that
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(2.9) 4V/} = 0 if Re <>>(*) £0 for xe&Mnsrfc\id.

We set

(2.10) 5jv) = (l + ̂ iv))"1,

and require that

(2.11) C^^e^^S^-'-S^C^^M^ .

(M5) If r^Un^C^-^.-.S^ has an
asymptotic expansion in the sector «^f*J, which is independent of /.

(M6) Y(x) is holomorphic at x= oo.

From (2.3), (2.6) and (2.11) we have exp27n(E'v'=i Z?=i #i) = *• We

choose 4li so that

(2.12) t Z4:i=o.
v = l a = l

Then we have

Proposition 2.1. If an mxm matrix Y(x) satisfying (M1)-(M6) ever

exists, it is unique. Moreover we have

(2. 13) det Y(x) =flfl e<»\x)leP(Xo) .
v=l a=l

Proof. (Ml), (M3), (M4) and (M5) imply that det Y(x) n? = i ]TI«=i -
e(

x
v\x)~l is holomorphic everywhere in C. (M6) and (2.12) imply that it is

holomorphic at oo, hence it is constant. The constant is determined by (M2)

and we obtain (2.13). Let Y^x) and Y2(x) be two matrices satisfying (Ml)-

(M6). Since 7L(x) and Y2(x) satisfy (M3), 71(x)Y2(x)-1 is single-valued. (M4)-

(M5) and (2.13) imply that it is holomorphic everywhere in F1, hence it is con-

stant. Then (M2) implies Yi(x)Y2(x)~1 = 1 .

In (2.2) we set

(2.14)

(2.15)

The precise meaning of the second line of (2.15) will be explained below (see

(2.17)).
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Now we shall specify the contour for the xk- integration (/c = !,..., j) in

(2.2). We set

(2.16)! / < * > = = / < * > u /iX* U/# ,

If v^^v^ the contour for xfc-integration is /JVfc) in anticlockwise direction.

We set

(2.16)n //J*'* =//<!'> U/ / i5 I }
9

I/^n connects a v - e + i - :
T e with av so that //<v-° is a C2-curve

\ ^ *-*r v i /

and tangential to the line <xeC|arg(x — av) = -5-/ — — > . We choose I/^°

(/= 1,..., 2rv) so that they are inside of /Jv) and have no intersection. If vk^1

= vfc the contour for ^^-integration is the union \J*L\ II(
E

Vkl\ where the direction

of contour is from — oo to av. For xk e / /^V k f ) we set

Note that A^^O only if II(
e
vl) goes into av through a decreasing sector for

4v)(x)/4v)(;x). We say that the xfc-integration is type I (resp. II) if vk^1^vk

(resp. v k _ 1 = vfc). If the contours for .xfc_! and xfc are both 11^, we choose xfe

on the right bank of the contour for x f c _i .

Under the above prescription for the contours we have

Proposition 2.2. The infinite series (2.2) is convergent for sufficiently small

values of parameters tLv]>oc and A^° (v = l,..., n;j = Q9 I,..., rv; a, j8 = l,..., m;

/=!,..., 2rv).

Proof. We follow essentially the argument in Section 2.3 in [1]. We set

Since ^*)5s are small and A ) ? s are zero

in increasing sectors, R(^\y9 x\)^f\^\Tl (resp. e^'j^x^R^frj, x)) is square-

integrable in xt (resp. x^) on its contour of the integration. Moreover the

kernel ^^^(^fc)^^^^ xk+^a!^Kxk+i)'~i defines a bounded linear integral

operator from the space of square-in tegrable functions on the contour of

to that of xk (see Propositions 2.3.2 and 2.3.8 in [1]). Hence the integral
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(2.18) fat-fajR^y, xJK^-R^Xj, x)

is convergent. The frequency of the case where the xfe-integration is of type I

and the xk+1 -integration is of type II does not exceed one half among fc = l,...,

7 — 1. If xfe-integration is of type II, we can take ^*fc_~i*k) = ^llk-i)«k as sma^ as

we like. Thus in order to prove the convergence of (2.2) it is sufficient to show
that the operator norm of the operator with the kernel e^lkjl

l\xk)R
(^\xk, xk+1)-

e(
0i

v
k
k\xk+1)~

1
9 where both the xk and xfc4 1 -integrations are of type I, can be

diminished arbitrarily by choosing f^,..., ^vk!«k to be small. We modify the

contour 7 (Vfc) for xk to the following.

(2.19) /l^> = 7^>U/^ ) ,

I^={xeC\Im(x-aVk)=Q, Re(x-aVk)^-s} ,

On 7(
±

v
E

fc) we have

(2.20) R

-j,«h - —j - ?7TZYV -V - T '\y=i —7 / zni{xk — xk+l)

Thus we have a small factor sin nttf*>k. As for the contour /^k) we can diminish

the operator norm by choosing e and ^k)
afc (7 = 0, I,..., rVfc) to be small.

Now we consider (2.1). The contour for y is one of I^,..., I(
E"\ They

divide C into n + 1 regions. We take XQ to be outside of all these contours.
The contour for Xj may be any of 7j;v), //^vl) (v=l,..., n\ / = !,..., 2rv) which
divide C into 2 £; = 1 rv+l regions. We denote them by ̂ 0 and &^ (v=l,...,

n; / = !,..., 2rv). ^^ v /> is the region which contains the segment {xeC\Q

<|jc-flv |«l, arg(x-flv) = 7t(/-l/2)/rv}. In (2.1) we take x to be in @0. Then

we have

Theorem 2.3. For sufficiently small values of parameters rL"/a and
(^=1,..., w; 7 = 0, 1,..., rM; a, j5 = l,..., 7w; /=!,..., 2rM) r/7e mxm matrix Y(x)

given by (2.1) satisfies (M1)-(M6). At x = av (Y(x)C^-1S(v}'-'S\vJ1)

has an asymptotic expansion of the form

(2.21) E Z , ( V o ) » , v >, , ,
V o=l ao=l Jlr. ° \ /aan 27T Xn — ]
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oo n m

Z Z i E W*i"V*/j=0 v i , . . . ,V j - i= l oci , . . . ,a j- i=l ,

Xj-av

Proof. Let us consider the local behavior of Y(x) at x = av. We divide

y(x)C<v)-> into two parts: Y(x)C^-1=F\v\x) + F(
2

v\x) where

(2.22) F(,T)W«/, = (C'")-1)

(2.23)

When we consider F<v)(x) (s=l , 2,...) with x in j^vl\ we denote it by F(
s
vl\x).

It is obvious that F[v\x) = F[vl\x).

Lemma 2A. 7(x)Cfv)"1 can be continued analytically into ^(vl> across

J^v) and satisfies

(2.24) Y(x)C^"1 = F(
2

vl\x).

Proof. We divide F(
2

v\x) into two parts: F^v)(x) = F^v)(x) + Flv)(x) where

, v n m

(2.25) Fi»'(.r)a/, = 2jti(A— x0) Z

00 ;j m f

E Z S
7=1 vi, . . . , V j - i = l ai, . . . ,aj- i = l J

Since the x^-integration in F^v)(x) is of type II, the analytic continuation of

F^v)(x) into ^< v l > across /^v) coincides with F^vl)(x). The contour for Xj in

Flv)(x) is /^v). The analytic continuation of F^v)(x) into ^< v l> picks up -Fiv)(x)

besides Fivl)(x). Thus we have Y(x)C(v)~1 = F(
1
v)(x) + F^vl)(x)-f Fl^^-F^^x)
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Lemma 2.5. F^vl)(x) can be continued analytically into ^(vl) across

J/^vl) and satisfies

(2.26) ^1}W./r = ̂ 2)W./r+ f ^v2)(*M<>'>.
y=l

Prc?0/. We divide F^v) into two parts: F^v) = F^v) + F£v) where F^v) (resp.

F^v)) contains the Xj-integrations on //^vl) (resp. 7/*v2)). The analytic con-

tinuation of F(
5

v\x) = F^vl)(x) into ^(v2> picks up a linear combination of F^v2)(x)

besides F^v2) :

(2.27) nvl)(*)a/* = ̂ v2)W«* + f *fy2}(x)avtfjp .
y=l

The analytic continuation of F£v)(x) = F£vl)(x) (resp. Flvl)(x)) coincides with

F^v2)(x) (resp. Flv2)(x)). Thus we have (2.26).

Similarly we can proceed to the case ^(v3), ,^<v4) and so on. Thus we have

proved (M1)-(M5). In particular we have shown that

(2.28) Y(x)CW-lSp-Sfc\=F&»(x) .

If we expand (x — x0)/(xj- — x) in the integrand of F^vl)(x), we obtain (2.21).

(M6) follows from the single-valuedness of 7(x) near x = oo and the estimate

0(|xl1-^) (0<p<l) for |x|->oo. In fact, we can rewrite (2.1) as

(2.29) yWM-«M + 2«f(*-*a) dy dy>

Then we have

(2.30) noo).,=*.,+ t f ( dy\ dy'
p,K=la',f' = lJl<rt JIM

§3. Clifford Operators

In this section we shall give a field theoretic expression for the matrix Y(x)

of the previous section. 7(x) can be written in the form

(31)(3.1)
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where ^*(x0) and ^(x) are free fermion fields and <p\P (/(=!,..., n\ y= I,..., in)

is a Clifford operator. Here we call an operator which belongs to the Clifford
group a Clifford operator. We refer the reader to [1] (Chapter I) as for the
generalities on the Clifford group. We also give several operator identities for

our free field operators and Clifford operators.
We introduce several species of free fermion field: I/SK(X), ^*(x) (xe^0),

(^(x), ffi^M (x e /i**), <^/}(x), 0*("/}(x) (x e //</">). The expectation value

is defined as follows.

(3.2) <0i(*)<W*')> = 0, <<£?(*)*?(*')> = 0

and

if <£,. = ^a, 0j>> or 0J/"> and if 0 J = ^*, 0*<") or

(3.3) ^

(3.4) <^*

(3.5)

(3.6)

(3.7) <<^)(*)<^v)^

(3.8)

(3.9)

We note that C(^} and A^7) have been introduced in the previous section.

We define a Clifford operator <p£° using the kernel R(/\x, x') of (2.14):

(3.10)

where ^(x)==^}(x)+I,& <&M\x) and ̂ (/l)W = ^
In (3.10), if x and x' belong to the same contour, we take x' to be on the right

bank of the contour for x.

Theorem 301. The quadratic kernel for ihe product of (p^ (^ = 1,..., ni

a =!,..., m) is given by K^v)(x, x') of (2.2). Namely we have
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P= t f
fl,V=l (Z,P=1

Proof. We set

(3. 12) K<y»(x, x') =

Then if

(3.13) *<y>

where x e /(/) and x' e /Jv) . We have also

(3.14)

where x, x'e//^n (/ = !,..., 2r^). The direct application of Wick's theorem

leads to the following expression for the kernel in question :

co (• ("

(3.15) E \dXl-\dx
j=0 J J

2j
vi,..., Vj- 1 = 1 ai, . . . ,aj- 1=1

x /{Cvo) ( jCf Xl)K^\xl9 x2)'"R^(x2J.29 x2J_J

x ̂ ijiir'^y-i, X2j)R(i'\X2j, x')9 (v0 = v, vj = v) .

If v k _ 1 =v f c , x2fc-i can be integrated out. If v k _! ^vfc, the contour for x2 f c^i is

/ (v k - i ) > ^e singularities of the integrand with respect to x2k~ i, which is located

outside of I(
E

Vk~l\ are the pole at x2k and the branch point at oo. Since fo!aj-l

is small, the contour for x2k- \ can be deformed into a circle around x2fc. Taking

the residue at x2k, we obtain the desired expression (2.2) for £^v)(x, xf).

By a similar argument we have

Theorem 3.2. 77te m x m matrix Y(x) can be written as (3.1).

We extend the domain of existence for i/fa(x) and ^*(x), which were de-

fined, thus far, only for XE@O. For each \JL we divide C into three pieces:

C=#i"+) U /JM) U ̂ i"-), where 0J"+) (resp. ^-^ is the inside (resp. outside) of

/^}. We define the following expectation values:

(3.16) <^*(*W,(*')>= -<^(^O

if jc, x' e C and

if

If xe/^X^aW^^^')) (resp. <0^}(x')^*(x)» is defined to be the boundary
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value of <^*(x)0y°(x')> with xe^l~} (resp. <0J/0(x')^*(x)> with x

(3. 1 8) <W»(xWp(x'» = - <^(

if

If x' e/^l), \0J(M)(x)^(x')} (resp. <^(x')$*l/l)(x)» is defined to be the boundary

value of <0*(M)(x)i/^(x')> with x' e^l~} (resp. OA/^x'^J^O*)) with x' e ,

Note the following identities:

(3.20) [</>*(/0Ov), \l/p(x')']T. = C(
g$8(x-x') if

We also set

if <^. = ^a!) <^>^ or 0aM/^ and if 0* = i//J, (j>*^l) or

if $* = ^* and (l)2 = 4>pfl1^ or if 0* = (/>*^J) and

We set

(3.23) ^kW = (^-^)fc^«|l)W (£e^

and define the following operators:

(3.24)

(3.25)

(3.26)

(3.27)

(3.28)

From (3.19) and (3.20) we have

Proposition 33.

m
(3.29) [>«,*>, £

//
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m
(330) f£ C^il/*(x) (p^~\

y=i

I
03

0 //
WI

(3.31) [>*<!$, Z ^7!

f _JL_m(
P( Inf 9<z
\ *''*'*

(3.32)

rn(^^ ^t/x) Tv^-i if(rx»-k-lleait-k\x) V'

0 if

The derivatives of our field operators can be calculated by using the follow-

ing formulas.

Proposition 3.4.

;$,/,(» rM
(3.33)

"̂'̂  ^(AI) =Y^i.> + l J
Ul-j,QL J

(3.35) ^L=-g^j
oa^ j=0

(3.36)

(3.37)

(3.38)

We denote by y(£\p) the translation

(3.39) roy fB l_^ /oy i a + py.

Proposition 3.5. Let MS denote by ^ l/je congruence modulo pr»+l.

Then we have

(3.40)
r=o
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(3.42)

(3.43) *•<*>(-pW*<4 3 P*

(3.44)

k=l

Let & = (xl5 x2, x3,...) be a ordered set of infinite variables. We define a

polynomial P/#) of X j , . . . , x7- by

(3.46) exp(f; PJXi) = E p J P t ( x ) .
7=1 7=1

Proposition 3.6. MFe sef d^=(d/dt^taL9 d/dtL^..., d/dtL^, 0,...). T/i^

we /?aye

(3.47)

(3.48)

(3.49) ^)-»,=

We omit the proof of Propositions 3.3-3.6 since it is a straightforward

calculation. We only note that we use the following property of a free fermion.

Lemma 3.7. Let f ( x ) and f*(x) be arbitrary functions on /J*0 U / / J M i l )

U ••• U //^•2r"). Then we have

(3.50)

§ 4. Wave Function

A function of x is called a wave function if its x-dependence comes from a

free field in the expectation value. In (3.1) we gave an example of a wave func-
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tion which solves the Riemann's monodromy problem. In this section we

exploit the operator identities to study wave functions in detail. As a by-

product we obtain operator expressions for the characteristic matrices and the

Schlesinger transforms [10].

We consider the following wave function.

(4.1)

By the same argument as in Sections 2 and 3 we can show that

(^MaAc/^i,.,*, satisfies (Ml), (M3), (M4) and (M5). Moreover it is so

normalized that

(4.2) ri*> (x) = 0(\x\k^) \x\ - > oo ,

(4.3) (nM)WC<")-1).^)W1-«./» + 0(|jc-flJ*) \x-a\ - >

In fact we have

(4.4) Y^(x)^ = e^(x}C^-(x-atlY dxdx2

Theorem 4.1. The monodromy properties (Ml), (M3), (M4), (M5) and the

normalization (4.2), (4.3) uniquely determines the matrix 7^}(x), if it ever

exists. If the parameters tL*]^ and A^° (^=1,..., n\ j = 0, 1,..., r^; a, /?=!,...,

m; / = !,..., 2rM) are sufficiently small, such Y(jfl\x) exists and it can be expressed

as a wave function (4.1).

Proof. It is sufficient to prove the uniqueness. If k = 1, the proof is similar

to that of Proposition 2.1. (Y\^(x)C(ll}-^e(/'\x)-1 has an asymptotic ex-

pansion of the form Y(^(x)(xft = dxp-{-O(\x — afl\) at x = afl. We define a poly-

nomial J^iOOa/? °f degree k— 1 by

(4.5) (^W-^sa&Oc)., (mod !*-«„!*).

Now from (4.2) and (4.3) we can easily show that

(4.6) Y^(x) = R^(x)Y^(x).

Thus Y^(X) is also unique.

Theorem 4.2. At x = av, Y^(x) has the following asymptotic expansion:

(4.7)
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If k, /§:!, we have

(4.8) G<

Proof. One can prove Theorem 4.2 by following the argument in Section

2. If we substitute Y(x) by Y^\x), (2.21) corresponds to the second expression

of G^v)(fel) in (4.8), then the first expression follows from Wick's theorem.
A direct way to show (4.8) is to exploit (3.29) and (3.31). Assume that /«v or

H = v, a<fi. If xe/^0, the boundary value of (7(/)(x)C(v)~1)^ from ^0 is given

by

<9^"'9t-i-"9(i}(t ^y(x)(C^'l)7f)'"9(
1f

)>

(4.9) 2ni(x — a )k y=1

while the boundary value of F^v)(x) from ^*(vl) is given by

(4.10)

Thus F^v)(x) is given by

<^i1}-<(^-[^v)
s (f

Hence using (3.29) we obtain (4.8).

The matrices G ( / iv) ( /c / ) were introduced in [10], where they are called the

characteristic matrices. The following differential equations for the character-

istic matrices are known [10]. We can derive them using the infinite series ex-
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pressions (4.8) for G^v)U'n. Here we shall give another proof by exploiting

their operator expressions.

Theorem 43.

(4.12)
7=1 7=0 seZ

vKtO -
(4.13) - S i i — = —7-2 (?<«><*

ut-jix J seZ

Proof. We restrict ourselves to the case ju = A<v in (4.12):

a

-

7=1

Here we use Proposition 3.4 and the following formula (see [1] Chapter IV,

Appendix):

Then noting that G^Hk--k+1)=S,f (k^l) we obtain (4.12).

Let us consider the Schlesinger transformation [10] of wave functions.

Let J<") (/( = !,..., n; « = !,..., m) be integers satisfying £» = 1 D«=i '1")=0- We

set as follows :
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(4.14) <^<s)-

(4.15) <p^ =

if
if

/ _ \&-l , x s-fc+1 / % , x

••' -
/ % , x

2m • V -^' if

i i - V - V ^ i f
(4.16) Y/ • —

^ if Og* , ( /^ l ) .

V~' -̂ .'V:.̂ ^ if ^ -/,

if -

if Og
(4.17) ^L'J, = <

if fcgj, (/, fc^l).

Theorem 4.4. The following wave function Y'(x) = (Y'(x)a[^)Xtf=i ..... m satis-

fies (M1)-(M6) wif/7 f^} replaced by l^l + t^.

Proof. (M2) is obvious. We set JV=£,<>)>0 /<">. We define an NxN

matrix Wand a n ( A T + l ) x ( N + l ) matrix ^(x; aj8) by

(4.18) Y'(

(4 19)

(=1 ..... !

and

(4.20) W(x; a/?)

. =i , . . . ,? i
7=1, . . . ,m

\

Then we have

yr^ -?ir/rv Y \ de— — x0) ^
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Hence Y'(x) is a linear combination of matrices satisfying (Ml), (M3)5 (M4),

(M5) and (M6) with t$> replaced by t$ plus a certain integer l'^\ Using (3.29)

we have

(4.22) [><"•>, £ iM^XCW-1),,]*
7=1

f ^ S ^tfi^J+iM if= '1=0
( 0 if

Here [ , ]± denote [ , ] or [ , ]+ according as s is even or odd. This ex-

pansion shows that V™ = I™ for our Y'(x).

Theorem 485. The following wave function satisfies (Ml), (M3), (M4),

(M5), (4.2) and (4.3) with ttfl replaced by tffi + l™:

(4.23)

Proof. It is sufficient to check (4.3) with t$l replaced by t$l + l¥*. From

(3.29) we have

(4.24)
y = l

1 _ m(ns)p(ri (r\ i
-j./ r'a ^a.s-fcV^ "^

which shows (4.3).

Theorem 4.6. At x = avY
(
k^

f(x) has the following asymptotic expansion:

(4.25) (rW'WCW-1)^^)-1- E G
leZ

Ifk, J£l w

(4.26) G\

' ( y^...^^2ni<^})---<P^

or /x =
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Proof. This is a direct consequence of (4.21) and (4.24).

Remark. (4.26) is equivalent to (17) in [20] II.

§ 5. Correlation Function

In this section we shall prove that the correlation function (<p{1)m"(p^y of
our Clifford operators <p^ (JM = 1,..., n\ a= 1,..., m) coincides with the T function

defined in [9] :

(5.1) T = <9i1>-9ir)>.

The application of Wick's theorem leads us to the following Fredholm

determinant for the correlation function.

co / y n m r r
(5.2) <vP-<P™>= Z-M- Z. I \dXl...\dX,

/=0 /• v j f . . . , v i = l ai, . . . , « { = ! J J

x det f-i- — 1
xdet

Xj-xk *;

Unfortunately because of the infinite length of contours for integration (5.2)

does not give a finite quantity. The following Neumann series defines instead

the logarithmic derivative of the correlation function.

(5.3) rflog^i"-^)
oo n m C C

= -£ Z Z \dXl-\dXl
1=1 v i , . . . , v i = l ai, . . . ,ai = l J J

Here ^/ denotes the exterior differentiation with respect to the deformation

parameters a^ fL^a (/t=l,..., a; j = l,..., r^; a=l,..., m). We can show the

convergence of this Neumann series by a similar argument as in Section 2.

In [9] a closed 1-form co was introduced and the T function was defined by

co = d log T. Now we have

Theorem 5.L

(5.4) co = ^log<(p(
1

1)---^)>.

Proof. We use the following characterization of T function (see (27) in

[20] III).

Lemma 5.2. Let f be a function of the deformation parameters. If f

satisfies
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(5.5)
f 1=0

then we have dfldtL^d-t/dt^ 0 = 1,..., rj.

Together with (3.44) and (4.8), Lemma 5.2 shows

(5.6)

Using the notation of [9] Section 5, we have

(5-7) -fc- log T = j^ £ 0'+ 1)/L»;,

(5.8)

We note also that

(5.9) 'S
j=o

Hence from (3.37), (3.38), (4.8), (5.6)-(5.9), we have
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