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Deformation of Uniruled Manifolds
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Let f: X—S be a proper smooth morphism of complex spaces with con-
nected fibers. Suppose that each point s € S has a neighborhood s e U such that
there exist a Kihler manifold Yy, a proper morphism g: Yy,—U and a generi-
cally surjective meromorphic map h: Yy;— X, over U. The condition is satis-
fied, e.g., if each fiber of fis Moishezon or if fis a Kéhler morphism in the sense
of [1]. Then the main purpose of this note is to show the following (Propo-
sition 2.3): Under the above condition if X, is uniruled for some o€ S, then
X, is uniruled for all seS. (See Theorem 2.4 for a little more general state-
ment.) Thus the class of uniruled manifolds are closed under smooth defor-
mations which is ‘weakly polarized’ in the sense of the above condition. The
method of proof is nothing but a simple adaptation to our situation of the
method used by Mori in [8] (cf. Lemma 2.6).

Let R be the set of those points s€ S for which X are ruled. Then we also
show that, when restricted to any relatively compact subdomain S’ of S, R
is a union of at most countably many analytic subsets of S', under the stronger
assumption that f is a Moishezon morphism (Proposition 3.3).

Proposition 2.3 plays an important role in our construction of the coarse
moduli space for the polarized family of nonuniruled compact Ké&hler manifolds
in [5].

Convention. In this paper complex spaces are in general assumed to be
reduced. Let f: X—S be a morphism of complex spaces. For any locally
closed analytic subspace V of § we set X, =X xsVand fy=f|x,: Xy-»V. IV
consists of a single point s € S we write X instead of X;,. For X=X, we often
write X, ; iustead of (X,);. Pr denotes the complex projective space of complex
dimension r.
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§1. Preliminaries

The purpose of this section is to fix notations and to summarize some
known results on the Douady space of a complex space. The results stated
in this section will often be used without further reference in the later sections.

a) Let h: Y-S be a morphism of complex spaces. Then we denote by
By;s: Dy;s—S the relative Douady space of Y over S, parametrizing the com-
pact analytic subspaces of X contained in the fibers of h (cf. [1]). Let pys:
Zy,;s—Dy,s be the corresponding universal family, so that there is a natural
embedding Zy ;s < Dy;s x sY with pys induced by the natural projection Dy/s X sY
—Dy;s. Recall that py/s is proper and flat. We denote by ny;s the natural
morphism Zy,s—Y induced by the other projection DysxsY—Y. Let D, be
any irreducible component of Dys .4, the underlying reduced subspace of
Dy,s. Then we denote by p,: Z,—D, the restriction of py;s over D, and by
Ty: Z,— Y the restriction of ny,5 to Z,. Thus we have the following commuta-
tive diagram

Z,=D,xsY

When S is a point, we shall write py: Zy—Dy and ny: Zy— Y instead of py ;5 and
Tty;s Tespectively.

In general for any se S, Dy/s ; is naturally isomorphic to Dy, and we often
identify these two spaces.

Let f: X—S be a morphism of complex spaces. Let Y=P!x X and
h=pf: Y»S where p: Y- X is the natural projection. Obviously we have
Y,=P'x X, for all seS. We set Ty s=pny;s: Zy;s—X and @y 5=qny;s: Zy;s
—P! where q: Y->P! is the natural projection. Let D, be any irreducible
component of Dys .4 as above. Then we also set #,=pm,: Z,—»X and ¢,
=qn,: Z,~P.

b) Let X be a compact complex space and Y=P!x X. Let H=Hol (P!,
X) be the set of all holomorphic maps h: P!— X of P! into X. Associating to
each h its graph I',= P! x X we may regard H as a subspace of the Douady space
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Dy of Y. In fact, it is known that H is Zariski open in Dy with respect to this
inclusion. Let H, be the subset of H consisting of non-constant holomorphic
maps. Then H, is again Zariski open in D,. Then a point d € Dy beloungs to
H, if and only if the induced map ¢y 4: Zy 4~ P! is isomorphic and dim ny(Zy )
=1 in X, where Zy,=py!(d). This immediately follows from the definition.
Let B be an irreducible analytic subspace of Dy 4. Let ng: Zp—B and ¢p: Zg
— P! be induced by my and @y respectively. Let Ug=B N H,. Then it follows
that if Ug#@, Z is reduced and irreducible and pgx @g: Zg—»Bx P! is a
bimeromorphic morphism which is isomorphic over U x P1.

c) Let : Y-S and B=pPy;s: Dy;s—S be as in a). Let deDy;s and o
=p(d)eS. Let Z;=Zy;5,=py)s(d). Consider Z, naturally as a subspace of
Y, by ny;s,. Suppose that h is smooth and Z, is smooth. Let N=N, y be
the normal sheaf of Z,in Y,. Then we recall the following [7]: § is smooth at d
if H(Z,;, N)=0.

Let Y=P!x X as in b) with X nonsingular. Identifying Dy, with Dy,
as in a), consider de Dy,. Then suppose that d e H=Hol (P!, X ;)€ Dy, in the
notation of b) (with X =X ) so that d corresponds to a holomorphic map h,: P!
—X,. Then Z,=I',=P! and we have N,y =h}Oy, where Oy, is the sheaf of
germs of holomorphic vector fields on X,. Thus we obtain the following:
B is smooth at d e H, if H\(P!, h}0x,)=0.

d) Letf: X—S be a proper morphism of complex spaces. Then we shall
write fe €/S if there exist a proper and locally Kahler morphism g: Y-S (e.g.
this is the case when Y is a Kahler manifold) (cf. [3, Section 2]), and a generi-
cally surjective meromorphic S-map h: Y- X. For instance fe %@/S if f itself
is a proper Kéhler morphism [1], or if f is a Moishezon morphism, i.e., bimero-
morphic over S to a projective morphism. Note that in the latter case each
fiber of f is a Moishezon space. Conversely, if f is smooth and each fiber is
Moishezon, then for every se S there exists a neighborhood se U such that f
is Moishezon in the sense mentioned above (cf. [6]). We write feloc-¢/S if
for every s € S there exists a neighborhood s € U such that the induced morphism
fu: Xy—=Ue®/S. Let X be a compact complex space. Then we write X € ¥
if there exist a compact Kéahler manifold Y and a surjective meromorphic map
h: Y->X. If fe €[S, then each fiber X of f belongs to %.

Recall from [1] [2] the following facts which explains our assumptions on
f in the results below. If fe €[S, then for any relatively compact subdomain
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S’ of S and for any irreducible component D, of Dy.s. .. Such that Z, is reduced,
the natural morphism D,—S' is proper and belongs to €|S’, where X' =f~%(S").
Similarly if f is Moishezon, then D,—S’ is again proper and Moishezon.

§2. Deformations of Uniruled Manifolds

Let N be a complex manifold and &: E-»N a holomorpihc vector bundle of
finite rank ». Identifying N with the zero section of E we set P(E)=(E— N)/C¥,
C* acting naturally on each fiber of &. Then ¢ induces a natural projection
&: P(E)> N making P(E) a holomorphic fiber bundle over N with typical fiber
pr-1

Definition 2.1. Let X be an irreducible compact complex space. 1) X is
called ruled if there exist a compact complex manifold N and a holomorphic
vector bundle E of rank 2 over N as above such that X is bimeromorphic to
P(E). 2) X is called uniruled if there exist N and E as above such that there
exists a generically surjective meromorphic map A: P(E)—»X which is not
factored by & and a meromorphic map N—X.

Remark. If X is Moishezon and uniruled, then we can take the above A

to be generically finite.

Let X be a compact complex space. Let g: Z—»T and : Z—X be mor-
phisms of compact irreducible complex spaces. Then we call the pair (g: Z— T,
Y: Z—X) a covering family of rational curves on X if the following conditions
are satisfied; 1) ¥ is surjective and 2) there exists a Zariski open subset US T
such that for all te U, Z, are isomorphic to P! and dim Y(Z,)=1.

Lemma 2.2. Let X be an irreducible compact complex space in %.
Then the following conditions are equivalent. 1) X is uniruled. 2) X admits
a covering family of rational curves. 3) Let Y=P!x X. Then there exists
an irreducible component D, of Dy ;.4 such that D,n Ho#@ (cf. Section 1, b))
and that ©,: Z,— X is surjective.

Proof. 1)-2). Leté: P(E)>N and A: P(E)— X be as in 2) of Definition
2.1. Let P=P(E). Eliminating the indeterminacy of 2 by some bimeromor-
phic morphism PP, we obtain the induced surjective morphism 1: P-X and
g: P-N. Clearly the general fiber of & is isomorphic to P!. The pair (1:
P-X, & I~’—>N) then gives the covering family of rational curves on X. 2)—3).
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Let (g: Z-T,y: Z—X) be a covering family of rational curves on X. Let
U< T be a Zariski open subset such that g is smooth over U and Z,=P! for
teU. Then g,: Zy,—»U is a holomorphic P!-bundle. Let v: P-U be the
principal PGL(2)-bundle to which g, is associated. Then the induced bundle
P X yZ,— P is trivial so that we have a P-isomorphism é: Px P'=P x yZ,. Let
u=yp,6: Px P!> X, where p,: PxZy—Z, is the natural projection. Since ¥
is surjective and hence is smooth at general point of Z,, the image of u contains
an open subset of X and dim u({p} x P!)=1 for all pe P.

Let T€PxP'x X be the graph of u. Let p: I'=P, f: -PxP\ 7:
I'-X be the morphisms induced by the natural projections from Px P! x X.
Clearly #=u-f. Further since f is an isomorphism over P (I is over P by p),
p is naturally regarded as a smooth family of subspaces of Y=P!xX. Thus
there exists a unique morphism t: P—D, such that p is induced from the uni-

versal family py: Z,—>Dy by . We have the associated commutative diagram

r ! Zy
P

T DY'

Let D, be any irreducible component of Dy .4 containing 7(P). Then we claim
that this D, enjoys the desired property. Note first that for all d € 7(P) we have
Z, =T',=Z,=P" and 7(Z,,)=ny(,)=&I,)=u(Z, for any peP with
7(p)=d. Hence for such d, Z, ;=P and dim 7T(Z,,)=1, i.e., D,N Hy#@ (cf.
Section 1, b)). Moreover we have 7,(Z,)=X. In fact, Z, is compact since
X €€, so that m(Z,) is an analytic set. Further 7(Z,)2#(I")=u(P x P!) and
u(P x PY) contains an open subset of X. Hence X=7,(Z,). 3)—1) Let D, be
asin 3). Then p, % @,: Z,—D,x P! is bimeromorphic (cf. Section 1, b)). Thus
there exists a surjective meromorphic map D, x P!— X which is not factored by
the projection D, x P'— D, where D, is any resolution of D,. Q.E.D.

Remark. If X is uniruled, then the Kodaira dimension k(X)= —o0.
Proof: 1In 3) of the above lemma take any smooth subspace N<H, n D, with
dim N=dim X —1 such that the associated holomorphic map /liy: P! x N—>X
is locally biholomorphic at some point. Then any non-zero element of I'(X, K%),
m >0, would induce a nonzero element of I'(P! x N, K¥) which in turn gives rise
to a nonzero element of I'(P!, K#t)=0 for general ve N (where PL=P!xv),
leading to a contradiction.
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The following proposition shows the stability of uniruled complex mani-

folds under smooth deformations which is ‘polarized’ in a weak sense there.

Proposition 2.3. Let f: X—S be a proper smooth morphism of complex
spaces with connected fibers. Suppose that feloc-%/S (c¢f. Section 1, d)) and
that S is connected. Then if X, is uniruled for some o€ S, X, are uniruled for

all se 8.

For the proof we may clearly assume that S is irreducible. Hence the

proposition is a special case of the following:

Theorem 2.4. Let f: X—S be a proper morphism of irreducible com-
plex spaces with connected fibers. Suppose that feloc-%/S (cf. Section 1,
d)) and that there exists an open subset U of S such that f| ;-iyy: f~H(U)—>U is
smooth. Then if X, is uniruled for some o€ U, every irreducible component

of X, is again uniruled for all se S.

First we need a lemma. Consider a commutative diagram

VA
X‘ﬁ/ XD
f\) /
S
of irreducible complex spaces where f and f are proper. Let o€ S be a fixed
point. We assume that p is proper, flat and surjective and that in a neighbor-
hood of X,, fis smooth and has connected fibers.

Lemma 2.5. Let d,e D with B(d,)=0. Assume the following conditions;
1) B is smooth at d,, 2) Z; =p~'d,) is irreducible, smooth and of dimension 1
and dim7(Z; )=1, and 3) ®(Z,)=X, for some irreducible component Z, of
Z, containing Z,,. Then for each seS and for each irreducible component
X Of X req there exists an irreducible component Zg, of Z, .4 such that
WZs ) =Xy and that dim7((Z,,),)=1 for all de Dy, where (Z,;)q=Z,, N Z,
and D, =p(Z,).

Proof. Note that y and 7 also are proper. First we show that 7 is surjec-
tive. Since p is flat and Z,, is smooth, p is smooth along Z,. Together with
the smoothness of § at d,, this implies that y is smooth in a neighborhood V of
Z,,in Z. In particular y(V) is open. Moreover for each s e y(V) and for each
connected component of Zy(V) of Z, n Vthere is a unique irreducible component
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Zy of Z,.q such that Z; n V=ZyV). (For s=o0 we may assume that Z,nV
is connected and the corresponding component is Z,. Hence the notations are
compatible.) Let k=dim(Z;nV) and n=dim X,, both of which we may
assume to be independent of se€y(V) in view of the smoothness of f and y near
Z,,. ForzeZletb(z)=dim_717(z) and by(z)=0b(z)|,,. Since b(z) is upper
semicontinuous with respect to the Zariski topology and Z;; is irreducible, there
is a densec Zariski open subset W,; of Z;; such that by(z) has thc minimum
value, say by, on W,;. Then if s is sufficiently near to o, we have b;<b,, k—b
=dim 7%(Z,;)<n and further k—b,=n since @(Z,)=X, by our assumption. It
follows that dim #(Zy;)=n, i.e., T;=7|,, is surjective for all sey(V) since X,
is irreducible if V is sufficiently small as we may assume. Hence the image
under 7% of Z contains the open set f~!y(V) and hence 7 is surjective by the
irreducibility of X and the properness of 7.

Next, let F=pxgii: Z»Dx (X, Z=F(Z) and let p,: Z—D and n,: Z—X
the natural projections. Let A={zeZ;dim.F'F(z)=1} and A=p,(A).
Then by Remmert 4 and A are analytic subsets of Z and D respectively. On
the other hand, since Z,  is irreducible, from our assumption that dim 7(Z, ) =1
it follows that d,& A4 and therefore A is a proper analytic subset of D. This
then implies that every fiber of p, is again of dimension 1 as well as p. Hence
for every deD, dim#(Z,)=dimn;(Z)=1. Since Ti=mn;F and #(Z)=X, we
have n,(Z)=X, for every seS. Hence for every irreducible component X,
of X q there is an irreducible component Z,, of Z; ., such that n,(Z,,)=X,.
Note that since fibers of p, are connected as well as p the dimension of the general
fiber of p, ;1 Z,,— X, cannot be zero, and hence each fiber of p, ;, has dimen-
sion one. Then it suffices to take any irreducible component Z , of Z, 4
which are mapped surjectively onto Z, by F. Q.E.D.

Now we shall prove Theorem 3.4. We first reduce the proof to the case
where fe €/S: Suppose that the theorem is true if fe €/S. In general let U
be any dense Zariski open subset of S such that f;: X;—U is smooth. Let
V={ueU; X,is uniruled}]. Then in view of the definition of loc-%/S together
with our assumption it follows immediately that V is open and closed in U.
Hence V=U since o€ V. Then since U is dense in S, again by the definition of
loc-# /S the theorem follows from the case fe%/S. So in what follows we
assume that fe €|S.

Set Y=P'x X and let h=pf: Y-S be as in Section i, a). Since X, is
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uniruled, by Lemma 2.2 there exists an irreducible component D,, of Dy, .4
such that D,, N Hy#@ and that the natural morphism #,,: Z, ,— X, is surjec-
tive where Z, ,=Zy xp, D,, and m,, is the restriction of my , to Z,,. Identify-
ing Dy, with Dys , as in Section 1, a) we regard D, , as an irreducible component
of (Dy;s,0)rea- Then take any irreducible component D, of Dys .. Which contains
D Let 8,: D,—S be the natural morphism. Let U,=D,,n H, and U, the

set of smooth points of U,.

o,

Lemma 2.6. There exists a Zariski open subset V of D, , with V2 U;, such

that B, is smooth at each point of V.

Proof. Let n=dim X,. Let W be a nonempty Zariski open subset of
Z,, on which =,, is smooth. This is possible since =,, is surjective. Set
V=U, Np,(W). Then it is immediate to see that V is Zariski open in D,,.
We show that this V has the desired property. Let d €V be any point. Then
m,. is smooth at points of Z,n W#@ where Z,=Z, ,=(Z,,)s. Moreover we
see readily that there exist a neighborhood V(d) of d in V and an irreducible
and smooth subspace N of V(d) of dimension n—1 with d e N such that if we
put M=p,L(N), then h=m,,[,: M—-X, is locally biholomorphic at some
point of Z,.

Now in general let @ be the sheaf of germs of holomorphic vector fields on
B. Then we have the natural homomorphism of ¢j-modules A: @y —>h*Oy.
Since & is locally biholomorphic at a point of Z,, A is injective and, after restrict-

ing to C=Z,, we obtain the following exact sequence of ¢c-modules

0 — Oyl — I*Oy ¢ — 2 — 0

where 2 is a torsion Oc-module. Since HY(C, 2)=0 and h*Oy |c=h}Oy,
where h, is the holomorphic map P'—X, corresponding to de U,, for the
lemma we have only to show that HY(M, @,]|c)=0, in view of Section I, c).
On the other hand, since the normal bundle of C in M is trivial, we have the

following exact sequence of ¢--modules

0 —> @C —_ OMIC — 0?("_1) _— 0 .

Then from the long exact sequence associated to this sequence we get the desired
vanishing of H!(C, @ |c) since Cx= P!, Q.E.D.

Remark 2.7. Tensoring 0.(—1) with the two short exact sequences ap-
pearing in the above proof and taking the long exact sequences of cohomology
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we even cbtain the vanishing: H'(C, hj@x (—1))=0. In fact this also has some
geometric significance which will be discussed at the end of this section.

Now fix any relatively compact subdomain S’ 0. It suffices to show the
theorem for fs: X —S’ since S’ is arbitrary. For notational simplicity we
denote S’ again by S and hence X by X and fs. by f. We then consider the
following commutative diagram

T z Pe
X<L>ﬁ D,

and show that this satisfies the conditions of Lemma 2.5. First of all by our
restriction of S as above, 8, and 7, are proper (cf. Section 1, d)). Further by
our definition p, is flat and surjective, and in a neighborhood of X, f is smooth
and has connected fibers by assumption. We take d, e D, , to be any point from
VeU, in Lemma 2.6. Then S, is smooth at d,, so that 1) of Lemma 2.5 is
satisfied. Moreover since d,e U,, 2) also is satisfied in view of Section 1, b).
Finally taking Z,=Z,,, 3) also is true. Thus by that lemma for every se S
and for every irreducible component X, of X ., there exists an irreducible
component Z% ¢ of (Z, o)eq Such that m(Z% )= X, and dim 7, ((Z% ),)=1 for all
deD,,=p(Zk,). Let pu:Z% —~Zk be the normalization of Z& and §: Zh
—Dk ; be p followed by the natural map pf: Zk —DE . Let gk: Z{;’s—> T,
T% —Dk ; be the Stein factorization of g Then g% is a proper morphism of
irreducible complex spaces with connected fibers. Further, every fiber of p,,
and hence that of p% , also, is union of rational curves as a specialization of P!.
Hence the general fiber of g is isomorphic to P! being a normalization of that
of pk .. Therefore g¥ together with 7 u: Z{;’saXs,k gives a covering family of
rational curves on X ;. Hence X, is uniruled by Lemma 2.2. Q.E.D.

In the rest of this section we shall give a geometric implication of the vanish-
ing result mentioned in Remark 2.7. Since the method of proof is essentially
the same as above (cf. Mori [8]), we omit the proof and give the statements only.

Definition 2.8. Let X be an irreducible compact complex space. We call
X rationally connected (resp. to a point x € X) if there exists a covering family
of rational curves (g: Z—T, Y: Z—X) on X such that Yy x pf: Zx 1 Z—>X x X
is surjective (resp. gy~ 1(x)="T).
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Remark. It is immediate to see that if X is rationally connected, then it is
rationally connected to any general point of X. Further, X is rationally con-
nected if and only if there exists a Zariski open subset V' £ X such that any two
points x,, x, € V can be connected by an irreducible rational curve. In this case
X is Moishezon. If, further, X is normal, then X is simply connected. The
proof of the last two facts will be given in the Appendix.

Proposition 2.9. Let f: X—Y be a proper smooth morphism of irreducible
complex spaces with connected fibers. Suppose that fe €[S and X, is rationally
connected to a point x € X, for some o€ S. Then there exists a dense open sub-

set 0e USS such that X, is rationally connected for every se U.

Corollary. A compact complex manifold X which is rationally connected

to some of its points is rationally connected.

Corollary is false if X has a singularity. (Consider the projective cone
over a non-uniruled projective variety.) The above proposition shows that
general quartic threefolds in P# are rationally connected in view of the result of

Segre-Iskovskih-Manin.

§3. Locus of Ruled Manifolds

We begin with the following lemma analogous to Lemma 2.2.

Lemma 3.1. Let X be an irreducible compact Moishezon space of dimen-
sion n. Then the following conditions are equivalent. 1) X is ruled. 2)
Let Y=P'x X. Then there exists an irreducible complex subspace B of
Dy eq of dimension n—1 such that a) BN Hy#@ (cf. Section 1, b)) and b)
ng: Zg— X is bimeromorphic, where Zz=Zy X ;, B and ng=mny|z,.

Proof. 1)-2). Let &: P(E)->N be a P!-bundle as in 1) of Definition
2.1. Since N is Moishezon, & is actually bimeromorphic to a product bundle
N xP!>N. Therefore we may assume that P(E)=N xP1l. Let A: NxPl->X
be the given bimeromorphic map. Then there exists a Zariski open subset
U < N such that A is holomorphic on Ux P!. Let 'cU x P! x X be the graph
of this holomorphic map;

UxP'=IcUxP'xX=UxY

N7

U
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Considering the above diagram as a smooth family of subspaces of Y parame-
trized by U we get a holomorphic map t: U— Dy such that the family is induced
from the corresponding universal family. Let B be the closure of 7(U) in Dy,
which is an analytic subset of Dy (cf. [1]). We shall see that this B satisfies all
the desired properties. In fact we have the following commutative diagram of
meromorphic maps

Nx P! o

l\/

N

i

where t* is the meromorphic map extending 7 and 7* is induced by t*. Since

T

T* is surjective, Tz must be bimeromorphic as well as A. (This is b).) In par-
ticular dim Zg=n. Hence dim B=n—1 since the general fiber of pg: Zz—B is
P!'. In fact, we have Hy n B2t(U)#®, which is a).

2)—1). @yXxpy induces a bimeromorphic morphism Zz—P!x B. Thus
X is bimeromorphic to P! x B as desired. Q.E.D.

We consider the following commutative diagram of irreducible complex
spaces
(Wx g X)yxPloZ 2 , P!
i3 I P
It l\ W
f\‘ /
E
where f is proper, smooth and has connected fibers, p and ¢ are proper, flat and
surjective, and where 7, p and ¢ are induced by the projections from (Wx gX)
x P! onto X, Wand P! respectively.

Lemma 3.2. Suppose further that the following conditions are satisfied:
1) The general fiber of & is irreducible, 2) ¢, :Z, —P' is isomorphic for
some w,e W, and 3) n,: Z, —»X, is bimeromorphic for some e,c E. Then
X, is ruled for all ec E.

Proof. o) We show that X, is ruled for general ec E. Define U={we W,
¢, Z,—~P! is isomorphic}, and M={e€E; n,: Z,~»X, is bimeromorphic}.
Then U and M are Zariski open in W and E respectively (cf. [1, Lemma 5.5]).
Moreover since w,e U and e, € M, they are nonempty. Let U=¢&U). Then it
is easy to see that U contains a Zariski open subset, say V,, of E. Restricting

V, if necessary, we may assume that W, are reduced and irreducible for all
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ecV, by 1) and [1, Lemma 1.4]. Then we show that X, is ruled for any ee V
=V,nNM. Since X, is bimeromorphic to Z,, it is enough to show that Z, is
ruled for any eeV,. First since UNn W, is dense in W,, the general fiber of
po: Z,—»W, is isomorphic to P! via ¢,. Then it follows that p,xo,: Z,—
W,x P! is bimeromorphic (cf. Section 1, b)). Thus Z, is ruled. (By the flat-
ness of p, Z, is actually reduced and irreducible.)

pB) Let E'={eeE; X, is not ruled}. Supposing that E'#@ we shall
derive a contradiction. Let H={teC; |t|<1}. Take a morphism g: H—E
in such a way that ¢g™'(V)=H': =H—{0} and q(0)e E’. Then taking the base
change of everything to H by g we may assume {rom the beginning that E=H,
E'={0} and V=H’'. (Recall that f, p, ¢ are all flat.) In particular we shall
denote the point of E by t. Recall from «) that for each 10, (p, x @,)7T;! gives
a bimeromorphic map of X, and W, x P!. This in turn implies that h=(p x p)7~!
gives a bimeromorphic map of X and Wx P! over E. Let r: W— W be any reso-
lution of W. W is a complex space over E by ¢r. Let /i: X—Wx P! be the bi-
meromorphic map over E induced by h. Now if X, corresponds to an ir-
reducible component Wy of W, x P! by h, then X, is ruled since W is necessarily
of the form Wy, x P! for some irreducible component of W,; of W,. This is
impossible by our assumption that 0e E’. Thus X, must be an exceptional
divisor for the map h, i.e., must correspond to a lower dimensional subspace of
Wx P!, Then since Wx P! is nonsingular, X, is again ruled (cf. [4, Lemma
4.17). Thus we get a desired contradiction. Q.E.D.

Proposition 3.3. Let f: X—S be a proper smooth morphism of irreduci-
ble complex spaces with connected fibers. Let R={seS; X, is ruled}. Sup-
pose that f is Moishezon (cf. Section 1, d)). Then for any relatively compact
open subset S' of S, RNS’' is a union of at most countably many analytic
subsets of S'.

Proof. Fix any relatively compact open subset S'=S. Replacing S by
S’ we denote S’ again by S. Let n=dim X,, which is independent of s since
f is smooth and X and S are irreducible. We first construct the following
commutative diagram of irreducible complex spaces

(WX g, X)xP2Z, %, P!
T Pu
(*) X/J\;W# .
A/g

I
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Fix any irreducible component D, of Dy/s .4 Where Y=X xP'. Let E, be any
irreducible component of Dp /5. Let &,: W,—E, be the morphism induced
from the universal family pj_,s: Wp,s—Dp, s by restriction so that we have
the following commutative diagram corresponding to the one in Section 1, a)

: w,c E(;y x sD,
n »
Eu< >D, :
Bu
S

Let Z,=W,xp Z, and let p,: Z,—»W, be induced from p,: Z,—»D,. Let
X,=E,xsX and let f,: X,—E, be induced from f. On the other hand, r,: Z,
—X (resp. ¢,: Z,—P?Y) (cf. Section 1, a)) induces the morphism 7,: Z,—»X,
(resp. ¢,: Z,—P*'), and the natural inclusion Z,=(D, x sX)x P! induces the
natural inclusion Z,S(W,x sX)x P'=(W,x g, X,)x P! such that =, p, and
¢, are induced by the natural projections from (W, x g, X,) x P! onto the cor-
responding factors. This completes the construction of (¥). Now we impose
some additional conditions on our choice of D, and E,, so that () satisfies
the conditions of Lemma 3.2. 1) There exists a dense Zariski open subset V,
of E, such that W, , are reduced and irreducible of dimension n—1 for all ee V.
2) Let U,={deD,; ¢,4: Z,,~P"' is isomorphic}. Then 6, (W,)nU,#0. 3)
Ty e Z,o—X,, is a bimeromorphic morphism for some ¢’€ E,. Note that
from 2) it follows that W, is reduced and irreducible and from 3) that Z,, is
irreducible as well as X, ,. Then we see readily that (+) satisfies all the con-
ditions of Lemma 3.2. Therefore by that lemma it follows that X, =X, .,
is ruled for all ee E.

Now let S,=f,(E,). We show that S, is an analytic subset of S. In fact,
since f is Moishezon, D,— S is again proper and Moishezon (cf. Section 1, d)).
Hence E,— S also is proper and Moishezon. Thus by Remmert S, is an analytic
subset of S.  Let 2 be the set of indices («, u) such that the pair (D,, E,) satisfies
the conditions 1)-3) above. Then by [2] U is at most a countable set. We
have thus constructed at most countably many analytic subsets S,=S
(o, w) e AU, of S such that \ U, ,cu S, ER.

It remains to show that R&\Uy S, , for some (a, u) e A. Namely we have
to show that if X is ruled for some se€ S, then se S, , for some (a, u)eA. Let

a,u

Y,=P'x X,. Then by Lemma 3.1 there exists an irreducible analytic subset
B, of Dy, of dimension n—1 such that B,n Hy#® and that np: Zp —X; is
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bimeromorphic (cf. Section 1, b)). Identifying Dy with Dy, ., let D, be any
irreducible component of Dy/s,.q containing B,. Then B defines a point e, of
Dp,ss- Let E, be any irreducible component of Dy, s ..q COntaining e;.  Then
we claim that the pair (D,, E,) satisfies 1)-3), i.e., (¢, p) €. This would prove
the proposition since s=p,(e)ep(E,)=S,,. Now we prove 1)-3). 1)
5,(WH)nU,2B,nU,=B,nHy#9D. 2) W,, =B, and hence is reduced, ir-
reducible and of dimension n—1. By the flatness of ¢, it follows readily that
the same is true for any W, . where e’ is from some Zariski open subset of E,
(cf. [1, Lemma 1.4]). 3) It suffices to take e=e¢; by our construction. Q.E.D.

Proposition 3.4. Let f: X—S be a proper smooth morphism of irreducible
complex spaces with connected fibers. Suppose that there exist compact com-
plex spaces X* and S* such that 1) X and S are Zariski open subsets of X*
and S* respectively, and 2) f extends to a Moishezon morphism f*: X*—S*,
Then the set R={seS; X, is ruled} is a union of at most countably many
analytic subsets of S which extend to analytic subsets of S*.

The proof is the same as that of the above proposition if we take D, to be
irreducible components of Dy /s« instead of those of Dy/s.

Appendix

Let X be an irreducible compact complex space. Suppose that X is ration-
ally connected to x € X (cf. Definition 2.8). First we show that X is Moishezon.
In fact, in the notation of Definition 2.8 y~!(x) is Moishezon by [3] and hence
T also is Moishezon. Then since g: Z— T is a Moishezon morphism, being of
fiber dimension 1, Z also is Moishezon. Hence X is Moishezon as a surjective
image of Z. Next we show the following:

Proposition A. Suppose that X is normal. Then X is simply connected.

Proof. Let a: X—X be the universal covering of X. Suppose that there
exist an unramified covering a,: X,—»X, of complex spaces and surjective
morphisms ¢: X;—»X and @: X,—X such that ga, =ad and that (pa,)"1(x)
is connected. Then it follows that ¢~!(a~1(x)), and hence a~(x) also, is con-
nected. This implies that « is isomorphic and hence X is simply connected.
Thus it suffices to show the existence of «;, ¢, ¢ as above. By our assumption
it follows that there exists an irreducible component D, of Dy .4 such that
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Z,,=p;'(d) is an irreducible and rational curve, and that D,x {x}SZ,. Then
as in the proof of Lemma 2.2 after a suitable base change T— D, which is proper
and surjective, the induced map Z;=Z, r— Tis bimeromorphic to the projection
TxP'>T. In particular if we take T to be nonsingular as we may, then for
any resolution Z—Z; of Z; the natural map Z—T induces an isomorphism
n(Z)==,(T) of the fundamental groups. Then we set X;=Z and define ¢
by the natural morphism Z;—X which is obviously surjective. Next we con-
struct «,. Let Z be an irreducible component of Zx yX. Let X, be the
image of Z under the natural proper bimeromorphic morphism Z x ,X—
X,xxX. Then X, is an irreducible component of X; x yX. Leta;: X,-X,
be the natural projection Z—Z. We show that the other projection ¢: X, »X
is surjective. In fact, ¢ is proper as well as ¢. Therefore ¢(X,) is an analytic
subset of X. On the other hand, we have dim $(X,)=dim X. Since X is
normal as well as X, this implies that @(X,)=X. Thus it remains only to
show that (@a,)"!(x) is connected. First, since n,(Z)=n(T), there exists an
unramified covering u: T—T such that Z=Zx,;T. Let X,=X,x,T and let
ay: X7—X, be the natural projection. 1 is naturally bimeromorphic to Z.
Then we get the following commutative diagram

X, —£ X,
X,

where § is a bimeromorphic map. Since o, and « are unramified, it is easy to
show that f is actually isomorphic. Then (@a,) " '(x)=a;"Y(Tx {x})= T x {x},
which is connected. Q.E.D.

Note finally that there is no holomorphic p-form on X for any p>0 by
Roytman [9]9. (In fact, in our special case the proof becomes quite simple.)
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