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A Theorem on Bimeromorphic Maps of
Kahler Manifolds Its Applications
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Akira FUJIKI

Introduction

For a compact complex manifold Z we denote by P(Z) (resp. SP(ZJ) the

convex cone in H2(Z, R) consisting of classes which are positive (resp. semiposi-

tive) in the sense of Kodaira. Thus we have P(Z)sSP(Z)gH l> l(Z)sH2(Z, R).

In particular Z is Kahler if and only if P(Z)^0, and in this case SP(Z) is the

closure of P(Z) in H2(Z, R).

Now let/: X-»ybe a bimeromorphic map of compact complex manifolds.

Suppose that / induces an isomorphism of complements of analytic subsets of

codimension S>2. Then as a main theorem of this note we shall show that

either f is biholomorphic or f*(P(XJ) ft SP(X) = 0 in H2(Y, B), where /*:

H2(X, R)-*H2(Y, R) is the homomorphism induced by f. (See Theorem 3.2

for a little more general statement.) In particular if X is projective with an

ample divisor D and if the linear system \f#D\ is base point free on Y, then/

must be biholomorphic, the fact which can be verified directly using the natural

isomorphism r(X, Ox(D})^r(Y, 0v(f*D)). However, in [4, (1.13)] we have
given another proof for this in a certain special case, which in fact is applicable

also to the general case in view of Lemma 3.1 below and of the transformation

formula (8) in Lemma 2.4, well-known for divisors. The advantage of the latter

proof lies in the fact that it can further be generalized to give the main theorem

as above. For this purpose, since a Kahler class, or more generally, a semi-

positive class cannot in general be represented by divisors, as substitutes we

consider positive currents of type (1,1) in the sense of Lelong [10]. They

include as special cases semipositive forms on the one hand, and effective
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divisors on the other hand. Moreover they are transformed just as divisors under

bimeromorphic maps; indeed the transformation formula (8) mentioned above

is verified for them. Once (8) is established the proof of the theorem is essential-

ly the same as in the case of divisors, though in the actual proof we do not

separate the case of divisors.

In Section 2 some lemmas on positive currents including Lemma 2.4 will

be shown and then in Section 3 Theorem 3.2 and some of its corollaries will

be given. Section 1 is devoted to some preliminary study on the functorial

behavior of line bundles and their chern classes under bimeromorphic maps.

On the other hand, in Section 4 as the main application of our theorem we shall

give a kahlerian analogue of a theorem of Matsusaka-Mumford [11] concern-

ing the uniqueness of the limit in smooth deformation of polarized manifolds

(Theorem 4.3). This result will play a fundamental role in our construction of

the coarse moduli space for polarized family of compact Kahler manifolds in

[5]. As a more specific application we also prove that every bimeromorphic

automorphism of a compact Kahler manifold X with h1>1(X) = l and c1(Z) = 0

is necessarily biholomorphic (Proposition 3.6).

In this paper complex manifolds are assumed to be paracompact and

connected. A complex space E of pure codimension 1 in a complex manifold

X is called an effective divisor, or simply a divisor when no confusion may

arise. In this case we denote by [E] the line bundle defined by E. Except for

the case of divisors complex spaces are in general assumed to be reduced.

§ 1. Bimeromorphic Maps, Line Bundles and Chern Classes

Let/: X-»7be a morphism of complex spaces. Then/is called bimero-

morphic if /is proper and there exists a dense Zariski open subset U (resp. V)

of X (resp. 7) such that / induces an isomorphism of U and V. In this case

there exist in fact unique maximal such U and V, which will again be denoted

by the same letters U and V respectively. Then we call E = X—U the excep-

tional set of/. Let F = Y- V( =/(£)). Then codimF^2 when 7 is normal

and £ is of pure codimension 1 when Y is nonsingular (cf. [6]).

Let X and Y be complex spaces as above. Then a meromorphic map

/: X->7 is an analytic subspace F of Xx 7called the graph of/, such that the

natural projection nl: F->X is bimeromorphic. We call / bimeromorphic, if

the other projection n2: F-^7also is bimeromorphic. In this case/"3: Y~*X
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is by definition the bimeromorphic map with the graph *F = {(y, x)e YxX;

Let X be a complex manifold and (^'Y, d) (resp. ('&x, d)) be the complex of

sheaves of germs of real valued C00 forms (resp. currents) on X. Then we

have the usual de Rham isomorphisms Hl(X, R) = Hir(X,> ^'x) = HiF(X^ '@°x)>

Let ^x'P = ̂ ¥ (resP- '&x'p^'®xp) be thesubsheafof germs of type (p9 p)9 /?>0.

Then we put^»1=Ker (d: ̂ i^-xfJJCresp.'^»l = Ker(d: '^ifl->'^x)) and

where dc = ̂ /—i(5 — d), 0 (resp. o) being the (1, 0) (resp. (0, 1)) component of

d. Let tPx be the sheaf of germs of pluriharmonic functions on X. Then we
have the following commutative diagram of exact sequences

A 0> _®0 ddc 0y\, 1 n

n o& '&iQ ddc rwu > y^x > i^x > -£

From this we get the natural isomorphisms

(1) ti^X^H^X, 0>x) = 'Hl

Then we denote by H1*1(X) the isomorphism class of these vector spaces. In

what follows, however, we often identify H l t l ( X ) with any of these vector

spaces. The natural map t61»l(X)-^H2(X9 R) induced by the inclusion '@}el

^'&x defines a linear map

l:Hl-l(X) >H2(X,K).

We consider the following commutative diagram of short exact sequences

0 0
1 I
Z— Z
I I

(2) 0 > R > Ox -^ 0>x > 0
1 i \\

0 > S{ > (9$ -^ &x > 0
1 I
0 0

where S1 is the circle, ju and JLI* are defined respectively by ju(/)= —(imaginary

part of/) and ju*(/) = (1/27r)log|/|, and the middle vertical line is the usual

exponential exact sequence. From this we have the following commutative
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diagram of cohomology exact sequences

- > W(X, R) -L-> Hl(X, 6X} - > Hl>l(X) -^ H2(X, R)

0)

where we have identified H1(X, 0>x) with Hl>l(X). Then for each holomorphic

line bundle LeHl(X, 0f) we define its refined chern class c(L)eH1'l(X) by

t(L) = d(L) (cf. [14]). On the other hand, A0 is easily identified with the A

above. In particular A is injective if and only if T is surjective. The latter is

the case if, e.g., X is compact and bimeromorphic to a compact Kahler mani-

fold (cf. [3]).

Let f:X-+Y be a proper morphism of complex manifolds. Let /*:

r(7, (fy)->r(X, &'x) be the pull-back of forms and /*: F(X, '®'x)-+r(Y, r@'Y)

the direct image of currents. Since they commute with d and dc and are com-

patible with types, they induce the natural homomorphisms f*:Hl(Y,R)-+

H'(X, H),/*: H^(Y)-+Hi-l(X) and /»: /f'(X, «)-*H'(Y, H), /,: H1-1^)^
#i.i(y) respectively. Suppose now that / is bimeromorphic. Then /#/* is

the identity on F(75 ^y)(gF(F, ;^y)) and hence so is /*/*. In particular

Hl(Y9R) (resp. H^Y)) is naturally a direct summand of W(X,R) (resp.

On the other hand, (still under the assumption that / is bimeromorphic)

we can also define

for the spaces of line bundles as well as the usual pull-back homomorphism

/*: Hl(Y9 G$)-+H\X, 0$). Indeed, let E be the exceptional set of/, F =/(£),

U = X - E, and V= Y- F. First note that ^(Of) = 0, i = 0, 1 , so that H$(Y9 0 J)

= 0, HKY, 0?)sH°(y, ^^y)^H°(Y9 Rlj*®$\ where j: F->Yis the inclusion.
So we have the following commutative diagram

#i(F, 0J) -^ H*(V9 0?) -

where r^, rF are restriction maps with rv injective, and 5 is the coboundary

homomorphism Hl(V9 0^)~>H|(7, 0f) composed with the above isomorphism.

We shall show that drjrv(L) = Q for every LeHl(X90x). Let
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is a coherent analytic sheaf on Y representing the class r\rv(L) on V.

Hence it is enough to show that for every open subset W of 7 which is isomorphic

to a polydisc,/*JS? is isomorphic to d?Y on W— W n Y. In fact take any nonzero

section ser(W,f#&\ Let A be the union of irreducible components of

codirnension 1 of the zero of s and [,4] the line bundle defined by A. Then

/*J2P = 0y([X]) on W- W n 7, while 0y([X]) = 0y on W since Wis isomorphic to
a polydisc. This proves our assertion. It then follows from the above diagram

that there exists a unique L'eHl(Y9 0J) such that rv(L') = r]rlj(L). Then /^L

= L' by definition.

In this case we also have /*/* = identity on H1(Y9 0*) (projection formula)

and hence H1(7, ^f) is naturally a direct summand of H1(X, 0J).

Now we shall study the kernel of/*. For this purpose let EV9 v = l? 2,...,

be the irreducible components of E and [£v] the line bundles on X defined by

£v. Further we denote by ev (resp. ev) the real first chern classes ^([EJ)

eH2(X,R) (resp. refined chern classes ^[EJJe//1'1^)) of [£v]. Then we

have following :

Proposition 1.1. Let /: J£-»Y be a bimeromorphic map of complex

manifolds as above. Then in the notation above we have the following com-

mutative diagram of (split) exact sequences

0 - > 0Z[£V] -*-» Hl(X, d?}) -^

'

0 - > QRev - , H2(X, R)

where T(©vrv[Ev]) = nv [Ev]®
rv fl/7^ the other maps are either defined above

or canonically defined.

Proof. Commutativity. The commutativity of the squares on the left

follows by the definition of the maps. (Actually we define the vertical maps on

the left by the commutativity of the squares.) The commutativity of the bottom

square on the right follows from the definition of A and/^.. Thus it remains to

show that £/*=/»£. First, in view of jfX^r) = 0, / = 0, 1, using Hl*\Z)^

H1(Z, &z)9 Z = X, Y, U, V, we get the following diagram of exact sequences
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(5) '•

£-> H°(Y,

with rv inject! ve in the same way as for (4). Moreover the commutativity of

the diagram is obvious. Then considering the natural map from (4) to (5) in-

duced by ^*: 0|-»^z in (2), we see immediately the desired commutativity.

The exactness of the third sequence. We consider the following commuta-

tive diagram of exact sequences of local cohomology

— >H1(X, R) — >H*(U, R) — +H\(X, R)-*-*H2(X, R) — >H2(U, R)

(6) |/. <>j J/. J/* ^

, R) _ >H1(V9 R) — >H$(Y, R) _ >H2(Y, R) _ >H2(V, R)

Since F is of codimension ^2 in Y, we get that #1(7, JR) = 0. From this and the

above sequence it follows immediately that H^(X, JR)^Ker/#,/*: H2(X, R)

-»H2(Y, R), by cp. On the other hand, we have the natural isomorphisms

H2(X, R)^H°(X, jel(R))^®y HQ(X, jf?2
Ev(Rj)^ ©v H°(£v, R) and the induced

isomorphism A: ®v H°(EV, H) = Ker/.j. is given by (rv)-»£v rvev, where we identi-

fied each H°(EV, R) naturally with R. This shows that the third sequence is

exact.

Exactness of the first sequence. By the commutativity of the diagram i is

injective, and by the definition of/*, it is clear that/* i = 0. So it suffices to show

that Ker/^glmT. Let LeKer/*. By commutativity there exists a sequence

(rv) of integers such that c1(L') = 0 with L' = Hv LEVYV®L9 where c1 denotes the

integral chern class of a line bundle. Consider the following commutative
diagram of exponential long exact sequence

r, Z) > Hl(X, Ox) -^ Hl(X, (9$) -̂ -> H2(X, Z) -

(7) J/* J/- J/* f/*

r, Z) —> jy^r, d?y) -^> HI(Y, G$) -^ /f2(r? Z)

Here the first/* is isomorphic as follows from (6) with R replaced by Z, and the

second /* is isomorphic since Rif*@x = Q, z^l, by Hironaka [7]. Now

C!(L') = 0 implies that L' = gx(p) for some fiEH\X,&x). Then g?f*-\P)
==/*/*firr/*~1(^)=/*^x(^) = 0- From these it follows easily that ft is in the
image of H1(X, Z) in the above diagram so that L' is trivial. Hence Lelmr.
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Finally the exactness of the second sequence can be proved just as above

using the following commutative diagram of exact sequences

> Hl(X, R) > H^(X, Ox) >Hl>i(X) > H2(X, M) >

T/* T/> tr tr*

> Hl(Y, R) > Hl(Y, 0y) > W-l(Y) > H2(Y, R) >

(cf. the top line of (3)) instead of (7), together with Hl^(Z)^Hl(Z9 0>z\ Z = X,Y.

Q.E.D.

A complex manifold X is called relatively minimal if any bimeromorphic

morphism/: X-+Yof X onto a complex manifold Yis necessarily isomorphic.

Corollary 1.2. Let X be a complex manifold with b2(X)<co, where b2

is the second Betti number. Then in the bimeromorphic equivalence class of

X there is at least one which is relatively minimal (cf. [9, VIII §3]).

Now in general let /: X-+Y be a bimeromorphic map of complex mani-

folds. We shall generalize the definition of/* and/* defined above for mor-

phisms as follows. Take any complex manifold Z with bimeromorphic mor-

phisms /v. Z-+X and h2: Z-»Fsuch that/=h2^T1» which is always possible
by resolving the graph of/. Then we define /*: H2(X, M)-»H2(Y, R) (resp.

H^W-tH^Y), Hl(X, 0$)-+H\Y9 0J)) by/* = fc2*''*» and define/* similar-
ly by/* = /71*tof. By a standard way we check easily that the definition is in

fact independent of the choice of Z as above.

§ 2. Bimeromorphic Maps Positive Currents

Let X be a complex manifold. Let cr be a real closed (1,1) current on X,

i.e., aer(X, '^x'1). Then for every point xeX there exist a neighborhood 17

of x and a current <p of degree zero on U such that a \ v = ddccp. Then according

to Lelong [10] we call a positive if <p is a plurisubharmonic function for every

x e X and U as above (cf. [10, IV. 4al)]). The definition is independent of the

choice of cp because cp is unique up to addition of plurisubharmonic functions on

U. (We refer to [10] for the definition of plurisubharmonic functions and its

fundamental properties.) We denote by P(X)^r(X9
 f&x*1} the set of positive

currents on X.

Let (p be a plurisubharmonic function defined on an open subset 17 of X.

Then we put S((p) = {ueUi q> is not locally bounded below at w}3 and
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S^v) = {ueU; <p(u) = - oo } . Then we define S(a) for cr e P(X) by S(a) n U = S(<p)

and 5^(0-) f| U = SaQ((p) for any open subset 17 and for any plurisubharmonic

function <p on U such that G\u = ddc(p. By the same reason as above this is

well-defined. By definition S(a) is a closed subset of X.

Let /: ^-^Y be a proper morphism of complex manifolds. Let cr be a

real closed (1, l)-current on X and f^a its direct image. Then if a is positive,

f*a is again positive ([10, p. 70]). On the other hand, for any teP(Y) with

/pQilSooCr) we define /*T e P(Z) as follows. Take an open covering U = {Ut}

of 7 such that on each Ut there is a plurisubharmonic function cpt with or | ^

= ddccpi. Then for each f, q>i = q>if is a plurisubharmonic function on t7f.=

f~l(Ut) [10, II. 1. Prop. 5]. Further since <Pi — <i>j = (<Pi — (pj)fis pluriharmonic
on l/j n UJ9 {ddc(pi} gives an element of P(X), which is by definition/*!. The

definition is easily seen to be independent of the particular choice of U and {</>,-}

as above and makes sense even if /is not proper. It is clear that 5(/*r) =

We call an element of Hlfl(X) (resp. H2(X, K)) current-positive if it is

represented by a positive current. We denote by P0(X) (resp. P(X)) the set of

current-positive classes which forms a convex cone in Hltl(X) (resp. H2(X, R)).

If aeP0(X) (resp. P(X)), then we set S(a)= r\ffS(a) where a is taken over all

the positive currents representing a, and call S(a) the set of base points of a.

Any effective divisor A = ̂ iniAi, where nt are positive integers, At are

irreducible subspaces of codimension 1 in X and the summation is locally

finite, defines a positive current <>4> = 2i w£<^4£> where <^> is the integration

current on At. A (refined) chern class of a line bundle is thus current-positive

if it has a nonzero section.

Lemma 2.1. Suppose that X is compact. Then any nonzero positive

current a on X defines a nonzero class [<j] in Hl*l(X). In particular PQ(X)

contains no straight line.

Proof. Let cr be a positive current. If [cr] = 0, then a = ddcg for some

g e F(X, f@x)- Since a is positive, g is plurisubharmonic. Hence g is con-

stant since X is compact. Thus cr = 0. If P0(^0 contains a straight line, there

is a nonzero element fieHltl(X) such that both /? and — ft are current positive.

Let a and a' be positive currents representing /? and — /? respectively. Then

cr + d'ePpQ represents zero, so that a + a' = Q by what we have proved above.

The latter is possible only when cr = a/ = 0. This is a contradiction. Q. E. D.
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Lemma 2.2. Let f: X-+Y be a morphism of complex manifolds and

peHl>l(Y). Suppose that j] is current-positive and T is a positive current

representing j8. Then if f(X)^Sv(i\f*f$€Hl^(X) is represented by f*t.

In particular f*($ also is current-positive w/ t / i S(/*j8)^/~1(S(^)).

Proof. By (1) there exist r 'e /XY, #}.»l) and ger(Y,'&$) such that

T = i' + <Wc0. By the definition of/*,/*/? is represented by.fVeHX, ^i'1).

First we note that g is a locally summable function. In fact, for any point

y e Y we may write r f ~ d d c t (resp. t~ddcq>) for some CK (resp. plurisubhar-

monic) function f (resp. cp) defined in a neighborhood W of y. Then on W we

have g = cp — t + p for some pluriharmonic function p on W. Since f and p are

C°°, # is locally summable as well as <p. Now for any function ft on Y we write

h=hf. Then with Was above we have t = (p — g + p on W=f~l(W), where all

the functions involved are locally summable since t and p are C°° and cp is

plurisubharmonic by our assumption that f(X)^S^(i}. So we can apply ddc

on both sides of the equality considering each term as currents. Then we obtain

f*t' = ddc1 = ddc<p-ddcg + ddcp = dd('<p — ddcg on W. Since g is a global

function on X, this shows that /*/? is represented by /*T by the definition of

/*T. Q.E.D.

Corollary 23. The set of positive classes is preserved under a bimeromor-

phic map, i.e., iff: X-+Y is a bimeromorphic map of complex manifolds, then

f*(Po(X))<^P0(Y) and f*(P0(Y))^P0(X\ and similarly for P(X) and P(Y).

Before proceeding we note the following consequence of Lemma 2.2. Let

C be a compact irreducible curve on a complex manifold X, and j: C-+X the

inclusion. Then we have the natural isomorphism H2(C, R)^R induced by

the complex structure of C. Let a be a positive current on X such that C||

SJor). Let af E H2(X, K) be defined by c and a=j*a' e H2(C, R). Then a^Q

with respect to the above isomorphism. In fact, taking the normalization C of

C and observing the natural isomorphism H2(C, R)^H2(C, R) we get this easily

from Lemma 2.2.

Let E be a complex space and S a subset of E. Then S is called thin if

for each point veE there is a neighborhood U of v in E and a nowhere dense

analytic subset A of U such that S n U§>A.

Lemma 2A Let f:X-*Y be a bimeromorphic morphism of complex

manifolds. Let E be the exceptional set off and £v, v —1, 2,..., be the ir-

reducible components of E. Let a e P(X) such that S(cr) n E is a thin subset
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of E. Then there is a unique sequence (rv) of nonnegative real numbers rv

such that

(8) /*/*<r-ff=2>v<£v>
V

where <EV> denotes the integration current on Ev. Moreover rv^0 if the

following condition is satisfied: There is a compact irreducible curve C in

Ev such that C^f~l(y)for some je 7, C^Eflfor any u^v, C^S(cr) and that

the natural image of a in H2(C, R) is nonzero.

For the proof we need two lemmas.

Lemma 2.5. Let X be a complex manifold and E an analytic subset of

X of pure codimension 1. Let £v, v = l, 2,..., be the irreducible components of

E. Let a be a real closed locally flat (1, l)-current on X (cf. [8, 2.1]) whose

support is contained in E. Then there exists a unique real number rvfor each

v such that

Proof. See [8, Prop. 3.1.3].

Lemma 2.6. Let X be a complex manifold and q){, cp2 plurisubharmonic

functions on X. Let E be an analytic subset of X with E^X. Suppose that

9i~9z *s plurisubharmonic on X — E and S(<p2) fl E is a thin subset ofE. Then

(Pi — (p2 *s plurisubharmonic on the whole X.

Proof. Let U = X — S(cp2) fl E. Since <pl is upper semicontinuous and cp2

is locally bounded from below on U, (Pi~(p2 is locally bounded from above on

U. Let &s=<Pi—<p2\u-E' Then i// is plurisubharmonic on U — E and bounded
from above on any compact subset of U. Hence by a theorem of Grauert

and Remmert (cf. [10, p. 35, Theorem 4] or [14]), if/ extends to a unique pluri-

subharmonic function \j/ on U. Then since <A + ^i = ^2
 on U — E and both

terms are plurisubharmonic on U, they coincide on U. Thus cp1 — 92 = ^ and
is plurisubharmonic on U. Then since S(<p2} fl E is locally contained in an

analytic subset of codimension ^ 2 in X, by another theorem of Grauert and

Remmert [14, p. 337] together with the argument as above we get that (Pi—(p2

is plurisubharmonic on the whole X. Q. E. D.

Proof of Lemma 2.4. Since the problem is local, we may assume that

f#a = ddc(p for some plurisubharmonic function cp on Y. Let cp = (p-f. Then

/*/*0- is the current defined by ddc(p on X. Let xeX be an arbitrary point.
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Take a neighborhood V of x and a plurisubharmonic function q>' on V such

that a\v = ddc(p'. Then q> — <p' is pluriharmonic on V— E n F. Since S(<p') fl£
is thin in E by assumption, we conclude by Lemma 2.6 that cp — cp' is plurisub-

harmonic on the whole V. Then by Lemma 2.5 there is a unique nonnegative

real number rv for each v such that (ddc(f> — a) \ v ~ ddc(p — ddc(p' — Xv
 rv<^v H K>

as currents on V. In fact, since a positive current is representable by integration

[10, IV, Prop. 7], the d-closed positive current ddc<p — ddc(p' is locally normal

and hence is locally flat on F(cf. [8, 2.1]). Since x was arbitrary, this shows

the desired equality.

Now suppose that there is a compact irreducible curve C in Ev satisfying

the condition of the lemma. Let a' E H2(X, K) be the class defined by a and

<j = /*<7' e!/2(C, JR) where j: C^X is the inclusion. Let eveH2(C, R) be the

real first chern class of [£v]|c- Via the natural isomorphism H2(C,R)^R

regard a and ev as real numbers. Then <7>0 by our assumption that C^S(cr)

(and hence the natural image of a in H2(C, K) is nonzero) and by the remark

after Corollary 2.3. Further if v^^, then evg:0 since C^={=EV. Thus ?y?M

= -o :-Zv^M rv^v<0- Hence r^O. Q.E.D.

Remark.1* The existence of rv with ddctp — ddc(pe = ̂ vrv(Ev{}Vy as

above can also be proved more elementarily as follows. Take a smooth point

xEEv—\J^vEfl and a polydisc neighborhood xeU with local coordinates

zl3..., ztt around x satisfying [z1=Q] = U n Ev. Let 5=^^ = 8, z2 = -- = zn = Q}

for a sufficiently small s>0. Let rv = \ d(cp — (pr). Then cp — cp' — (rv/27r) log \z1 \)s
is pluriharmonic on U. Then ±(ddccp — ddccp' — ̂ v rv<JEv n Vy are both

semipositive as in the proof of Lemma 2.6. From this we get the desired

equality.

§ 3. Main Theorem and Corollaries

Let X be an irreducible complex space and F an analytic subset of X of

codimension ^2. Let J*" be a coherent sheaf of ideals of Ox with support coin-

ciding with F, i.e., ̂ X-=(9X}X if and only if xt£F. Let h: Z-*X be the monoidal

transformation with center J. Let E = h~1(F) with reduced structure, EV5

v = l, 2,..., be the irreducible components of E and J^v the ideal sheaves of Ev.

Suppose that Z is nonsingular. Then «/v are locally principal and /: — h~\^)

1) This is pointed out by the refee of this paper.
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is written in the form e/ = t/f
1e/'f2--- for some positive integers av. Note that

/ is /?-very ample.

Lemma 3.1. The notation being as above, let (rl9 r2s...) be a sequence of

non-negative real numbers with at least one rv^0, say r^O. Then for any

open subset U of X such that /?(£i) fl U^0, there is a compact irreducible curve

B on Z contained in h~l(u) for some ueUnF such that ^vrveVsB<Q9 where

ev,B = Ci([Ev~]\B)eH2(B, #) naturally identified with R.

Proof. Let U = h~1(U). Let 9l = {v; Ev n U^0}. We may assume that

U is relatively compact so that 91 is finite. Take /xesJl such that rja^ is maxi-

mal in the set {rv/«v; ve91}. By our assumption r/t>0. Take any compact

irreducible curve B in E^ such that it is contained in f ~ l ( u ) for some u e U n F

and B^EV for any VT^. Then it is clear that eV}B^Q for every v^u. Hence

Sv rveVtB= Ev (rv/av)aveVtB£ Zv W^) aveV9B = rft/aft £ aveVtB, while the last term

<0 since / is /?-very ample and /~Ox(Ylv [^v]~
av)- Q- E- D.

Let X be a complex manifold. Then a real C00 (1, l)-form 0 on X is called

positive (resp. semipositive) at xeX if for any local coordinates (z1?..., zfl)

around x, 0 has the form 0 = ̂  — 1 £ fy^dz^ A rfzv with (0^) a positive definite

(resp. semipositive) Hermitian matrix at x where /? = dim Z. 0 is called positive

(resp. semipositive) on X if it is so at each point of X. Let oce/f1'1^) (resp.

H2(X, K)). Then a is called positive (resp. semipositive) if a is represented by

a positive (resp. semipositive) real closed C30 form of type (1, 1). A positive

class in H2(X, K) also is called a Kahler class. Note that if a is semipositive,

then a is current-positive with S(a) = 0. Further we recall that usually a line

bundle on X is called (semi) positive if its refined chern class c(L) is so.

Let/: X-*Y be a bimeromorphic map of complex manifolds arid £(l) the

exceptional set of nf, z = l, 2 where 7^: F-+X (resp. ?r2: r~>7) is the natural

projection of the graph F of/ onto X (resp. 7). Then we call a common ir-

reducible component of £(1) and E ( 2 ) a biexceptional component off. Further

we set £(/) = U7c1(£p)), F(f) = n1(E^) and S(f) = E(f) U F(f\ where in the

first equality the union is taken over all the irreducible components E\2) of £(2)

which are not biexceptional components of/. Thus £(/) is of pure codimension

linZandcodimF(/)^2in^ [6]. Wecall£(/)5 F(/)and S(/)the exceptional

set, the set of indeterminacy, and the singular set, respectively, of/. Clearly/

is holomorphic (resp. locally isomorphic) at xeX if and only if x^F(/) (resp.

SCO).



BlMEROMORPHIC MAPS OF KAHLER MANIFOLDS 747

Theorem 3.2. Letf:X-*Ybe a bimeromorphic map of complex mani-

folds. Let Fk be an irreducible component of F(f) with Fk^E(f). Suppose

that there exists a semipositive class ueH2(X, R) with the following property,

1) a admits a Cx representative which is semipositive everywhere and positive

at some point x e Fk, and 2) S(f*a) D S(f~l) = 0 where S(/JJea) is the set of base

points off*zeP(Y). Then there is no biexceptional component E0 of f such

Proof. By [7] together with resolution we can find a complex manifold Z

with bimeromorphic morphisms 1^: Z-+X and /?2: Z->7 such that f=h2h^*

and hi is locally a monoidal transformation with center a coherent analytic

sheaf of ideals of Ox with support contained in F(f). Let E ( i } be the excep-

tional sets of /if and £(
v°, v = l, 2,..., be the irreducible components of £< f ) .

Since /??a is a semipositive class in H 2(Z, R), applying Lemma 2.4 to (any posi-

tive currents representing) /?fa and to h2'- Z-»7 we get in H2(Z, R) the relation

(9) A3/i2*fcfa-fcJa=Srv* (v2 )

V

for some nonnegalive real numbers rv, where ev2) = Ci([E^2)'])EH2(Z9 R) is the

real first chern class of the line bundle [E(
V

2)]. Now let g: Z-+F be the natural

map of Z onto the graph F. First we show that rv^0 for any v such that /?j(E{,2))

==Ffc and g(E(
v
2)) is a biexceptional component of/. In fact for any such v let

ze£(
v

2) be any point with h1(z) = x. Replacing x by a point of Fk in a small
neighborhood of x if necessary we may assume that z <£ E^ for any ju^v. Since

N: = h21(h2(zJ) is a compact Moishezon space, and 0(El2)) is a biexceptional

component of/, there is a compact irreducible curve C in N passing through z

and not contained in ft71(x). (Use the fact that there is a bimeromorphic

morphism u: N-+N with JV projective.) Let C' = h1(C). By our choice of

C, C' is a compact irreducible curve in Fk passing through x. Since xeC',

the image a of a in H2(C, R) is nonzero by the condition 1 ). Since the induced

map h\\ H2(C, R)->H2(C, JR) is clearly injective, we get that j*ft?(a) = S?(a)^0

in H2(C, R) where j: C-+Z is the inclusion. Thus by Lemma 2.4 rv^0 as was

desired.

Therefore the theorem will be proved if we show that rv = 0 for any £(
V

2)

with /i1(£
(
v

2))=Fk. Let x' be any point of Fk with x'&Fj for any j^k, where

Fj, 7 = 1, 2,..., are the irreducible components of F(f). Take any relatively

compact neighborhood U of x' in X such that
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(10) C/f]£(/) = 0, and

and that hl\0\ G->U, V = h^(V}, is the monoidal transformation of U with

center a coherent sheaf of ideals J of 0^ with support contained in U n Fk.

(Note that Ffc§|E(/).) Let ^4 l v . . ,>4 T O be the irreducible components of

1h1(Fk n £/) with reduced structure. Then there is a natural bijective cor-

respondence between the set Ms}i^s^,,, and the set of irreducible components

E$ of £^° n t7, ju= 1> 2,... . In particular for each 5 we have unique fjL = fi(s)9

i=i(s) such that AS = E$ n J7. Then define a real number rs by rv if £<1} = £<2)

for some E(2} (which is unique if any), and rs = 0, otherwise. Suppose that rs^0

for some 5. Then by Lemma 3.1 there is a compact irreducible curve B on U

such that

(11) jBgAj1^) for some u e U f ] F k

and that if as are the real first chern classes of the line bundles Q/4J in H2(U, R)

and as the natural images of them in H2(B, R), then we have Zs
rA<0 with

respect to the natural isomorphism H2(B, R)=R. From our definition of rs

this is easily seen to be equivalent to

(12) 2

where 9l = {v; /i1(E^,2)) = F/c] and e(2) denotes the natural image of e(2} in

H2(B, JR). On the other hand, in view of (10) and (11), from (9) we have

]Tvrv42) = £*/?2/h*^ia^O, for fc*'72*'7*a ^s current-positive by 1) and Corollary

2.3, and S(h%h2+h^v)[\B = 0 by 2) and Lemma 2.2, where c: B-*Z is the

natural inclusion. This contradicts (12). Hence rs = 0 for all l^s^m. From

the definition of rs we then get our assertion, and hence the theorem is proved.

Remark. As follows from the above proof the conditions 1) and 2) of the

theorem can be weakened to the following 1)' and 2)' respectively. 1)' a is

current-positive (but may not be semipositive) with £*oc^0 for any compact

irreducible curve B contained in Fk with respect to the natural isomorphism

H2(B, R)^Ry where c*: H2(X, R)-*H2(B, R) is the natural map induced by

the inclusion c: B-+X and 2)' S(/*a) n S(f~*) is discrete.

Let/: X->Y be a bimeromorphic map of complex manifolds and g=f~1.

Then we say that /is semi-holomorphic if E(g) = 0, or equivalently, codim S(g)

^ 2. Clearly a semi-holomorphic bimeromorphic map / with no biexceptional

component is holomorphic. Further if /is holomorphic and g is semi-holomor-

phic, then /is biholomorphic.
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We say that a line bundle L on a complex manifold X is base point free if

the common zero of all the holomorphic sections of L is empty. If L is base

point free and X is compact, then L is semipositivc in the sense mentioned above.

Corollary 3.3. Let f: X->Y be a bimeromorphic map of complex mani-

folds and g=f~1. Suppose that g is semi-holomorphic. Then g is actually

holomorphic if either of the following conditions is satisfied. 1) X is a Kahler

manifold with a Kahler class (x,eH2(X,R) such that /^.a is semipositive. 2)

X is a projective manifold with an ample line bundle L such that (/*L)®lfl is

base point free for some m>0.

For a complex manifold Z we denote by K7 the canonical bundle of Z and

Cj(Z) is the real first chern class of Z.

Lemma 3e4. Letf: X-+Ybe a bimeromorphic map of complex manifolds.

Suppose that the linear system \mKY\ has no fixed component for some m>0,

i.e., the common zero of elements of H°(Y, Kfm) has no component of codimen-

sion 1. Then f is semi-holomorphic.

Proof. In general let ft: Z-»Z' be a bimeromorphic map of complex

manifolds. Then for any integer m>0 we have a natural isomorphism h*:

H°(Z', Xf ?l)-»#°(Z, Kfm). In fact, if U = Z-F(h), then for any <pe#°(Z',

Xf/«), h*(p is the unique extension of (h \ v)*<p to Z (cf. [9, VIII § 2]). Then

(/i-1)* gives the inverse to h*. Now take any coe#°(y, X?m). Then letting

g=f~l we have a) = g*f*w. Hence < w | y _ F ( f f ) vanishes on £(#) n (Y— F(gJ),

and therefore if E(g)^0, then E(^) is contained in the common zero of the

elements of H°(Y, Kfm), contradicting our assumption. Thus E(g) = 0.

Q.E.D.

Proposition 3.5a Let X be a projective manifold with c1(J^)<0 and Y

a Moishezon manifold which is bimeromorphic to X. Then if c^IOrgO and

Y^X, then \mKY\ have fixed components for all m>0.

Proof. Let/: X-*Ybz any bimeromorphic map and g=f~1. Suppose

that |mXy| has no fixed component for some w>0. Then by Lemma 3.4/is

semi-holomorphic. Hence we have an isomorphism/: X — E(f)^Y— F(g), so

/*CiW|y.F(ff) = c1(y-F(gf)) = c 1 (Y) ly -F ( f f ) - Then, since F(g) is of codimen-
sion ^2 in Y so that the natural restriction H2(Y, R)-+H2(Y-F(g), R) is iso-

morphic, we have/J!:c1(^r) = c1(Y). On the other hand, since the high multiple

of Kx is very ample, again by Lemma 3.4 g is semi-holomorphic. Hence by
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Corollary 3.3 g is holomorphic, and hence isomorphic since/is semi-holomor-

phic. Thus X^ Y. Q.E.D.

In particular for any compact complex manifold Z which is bimero-

morphic to X and ^X, \mKz\ have base points for all m>0, which also follows

directly from the arguments of Peters in [13]. On the other hand, the author

knows no example of a Moishezon manifold with c^Z^O such that \mKz\

have fixed components for all m>0.

For a compact complex manifold Z we set h1'i(Z) = dimcH
1>1(Z) and

p(Z) = dimc (f/
2(Z, (?) n AC//1'HZ))) (the Picard number of Z). Recall that A is

injective when Z is bimerornorphic to a compact Kahler manifold.

Proposition 3.6. Let X be a compact Kahler (resp. project ive) manifold

with hl'\X) = l (resp. p(X) = V) and with cl(X) = Q. Let Y be any compact

complex manifold bimerornorphic to X with h1-l(Y)=l (resp. p(7) = l) and

with a semipositive class ft in H2(Y, R) (resp. H2(Y, QJ). Then every bimero-

morphic map f: X-^Yis isomorphic.

Proof. Let /: X-+Y be any bimeromorphic map and g=f~1. Then by

[I, Theorem 3'] (or directly from [3, Prop. 6.6]) Kfm is trivial for some m>0

so that by Lemma 3.4 g is semi-holomorphic. Since h l i l ( X ) = h l f l ( Y ) (resp.

p(X) = p(Y)), by considering Z as in the proof of Theorem 3.2, from Propo-

sition 1.1 we infer readily that/also is semi-holomorphic. On the other hand,

let a be a Kahler class in H2(X, R) (resp. H2(X, (?)). Then we may write

/#(x = rj5 for some reR (resp. Q). Then since A is injective on Y, by Lemma

2.1 and Corollary 2.3 r^O. Hence g is holomorphic by Corollary 3.3. Hence

/ is biholomorphic. Q. E. D.

In [2] it was conjectured that every bimeromorphic automorphism of a

projective manifold X with trivial canonical bundle is necessarily isomorphic.

The above result gives a partial answer to this conjecture (cf. also [2, Theorem

5]).

§ 4. Kahlerian Analogue of a Theorem of Matsusaka-Mumford

Besides Lemma 3.4 there is a case in which a given bimeromorphic map is

necessarily semi-holomorphic. First we recall a definition. Let Z be a compact

complex manifold and n: V-+Z a holomorphic vector bundle over Z of finite



BlMEROMORPHIC MAPS OF KAHLtR MANIFOLDS 751

rank >1. Then we denote by P(V) the associated projective bundle over Z.

Then a compact irreducible complex space B is called ruled if it is bimeroniorphic

to P(V) for some Z and Fas above.

Lemma 4.1. Let f:X-*Y be a bimeromorphic map of complex mani-

folds. Suppose that E(f) is compact. Then every irreducible component of

E(f) is ruled.

Proof. Since E(f) is compact, F(f~*) also is compact. Hence by

Hironaka [7] there is a finite succession of monoidal transformations with non-

singular centers crf: Xi+l-*Xh l ^ f ^ s , Xl = Y such that h=f~1a}~-G5: Xs+l

->X is a morphism. Let E be the exceptional set of G = GI'-GS. Then each

irreducible component of E is ruled as well as those of crf. Since each irre-

ducible component of £(/) is a bimeromorphic image by h of some irreducible

component of £ (note that codimjp(/?~1)^2 and E(f) is of pure codimension 1

in X), it is ruled. Q. E. D.

Lemma 42, Let X and Y be complex manifolds, and A and B compact

irreducible divisors on X and Y respectively. Letf: X-»Ybe a bimeromorphic

map which induces an isomorphism f':X — A=Y—B. Suppose that X is

Kahler with a Kdhler class ae#2(X, R) and that cx([J5] |B) = Q in H2(B, R)

where CL denotes the first chern class. Suppose further that /*(a|x_^)6

H2(Y—B, R) extends to a semipositive class p on Y. Then f is isomorphic if

either A or B is nonruled.

Proof. Consider the following exact sequence of local cohomology

> Hl(Y9 R) > H2(Y, R) -y-> H2(Y-B, R) > .

Then in view of the natural isomorphism HQ(B, R)^H2(Y, R) we infer readily

that the kernel of v is generated by CI([B]). Now we may replace Y by a tubular

neighborhood U of Bin Yand X by/(I/), so that the natural restriction H2(Y, R)

-*H2(B, R) is isomorphic. Then by assumption c1([JB]) = 0. Thus v is injec-

tive. Hence the assumption that/^(a|x_^) = ̂ | Y_B implies that f*u = p on Y.

Hence if A is nonruled, then from Lemma 4.1 and Corollary 3.3 it follows that

g:=f~l is holomorphic, and hence is isomorphic, for g(B) = A is of codimension

1 so that Bgi£(0). So suppose that B is nonruled. Then by Lemma 4.1 g

is locally biholomorphic at a general point y of B. Then since g(Y)eA;>

Asj=E(f). Hence E(f) = 0 and g is semi-holomorphic. Then by the same

argument as above the lemma follows.
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A typical application of the above lemma is to the case where B is a fiber of

a proper morphism g: Y-^S of Y onto a disc S. In this case, however, the

condition can be reduced to a more manageable form under an additional

condition on the morphism. So let Xt, f = l ,2 , be complex manifolds and

S = {seC:> \s\<\] the unit disc. Let g{\ Xf-*S be proper flat morphisms with

connected fibers. Let S' = S — (0) and X'^g'f^S'). For seS we write

Xis = gj1(s) with the natural complex structure. We assume that gt are smooth

on X\ and Xi0 are irreducible for i = l, 2. Let/: .A^-*^ be a bimeromorphic

map over S which induces an isomorphism/': X[-^X2. For seS' we denote

by f's the isomorphism f\xls' Xis~*X2s. Further for a cohomology class

\l/ E H2(Xh R), we shall denote by \I/S9 s e S, the natural restriction of \l/ to

H2(Xis, R).

Theorem 4.3. The notation and assumption being as above, suppose that

there exist a Kahler class aeH2(Xl9 R) and a semipositive class f$eH2(X2, R)

such that f*(<x)s = Ps for some (and hence all) seS'. Suppose further that

either g2 is smooth or b1(X2s) = Q for seS', where b1 denotes the first Betti

number. Then f is isomorphic if either of Xi0 is nonruled.

Proof. Considering the Leray spectral sequence for the map g'2: X'2-*S'

and the fact that H*(S', Rqg2*R) = Q, z'^2, g^O, we have the exact sequence

0 —> #i(S", Rig'2Jl) —> H*(X'29 R) -£-> H»(S'9 R2g'2*R).

First if b1(X2s) = Q9 seS', then ^^2*^ = 0 and hence i is injective. Thus the
condition /#(a)s = /?& implies that f*ot \ x'2 =/3 \ X

r
2. Next, if g2 is smooth, then it

is clear that the composition H2(X2, R)->H2(X2, R)->H°(X', R2g2*R) is injec-

tive so that we also have /*a|x '2=J?|x^. Now we put A = X10 and B = X20.

Clearly [J5] is trivial so that c1([B]) = 0. Hence the proposition follows from

Lemma 4.2.

Remark. The above proof shows that the condition b1(X2s) = Q may be

replaced by the condition that H^S', R1g2*R) = Q. The latter is equivalent to

saying that 1 is not in the eigenvalues of the monodromy transformation on

H1(XS, R), which are known to be roots of unity.

In terms of line bundles (instead of chern classes corresponding to them)

we can get a more complete result.

Theorem 44. Let gt: Xf->S9 / = !, 2, andf\ Xl-^X2 be as in Theorem 4.3.

Suppose that there exist line bundles Lt on Xi such that c^L^) (resp. c^L^) is
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positive (resp. semipositive), and Lls^ffL2sfor seS' where Lis = Lt \ x.s. Then

f is isomorphic if either X10 or X20 is nonruled.

Proof. Let Ll=f*Ll. Then we show that c1(L1)\x'7 = cl(L2)\x'^ which
would give the proposition as in the proof of the above proposition. We set

L = L1®Lj1 so that L,=L®L2 . Since L |^ 2 s is trivia], L\x\ is in the image

of the natural map H\X'2< ^Y;)^//°(S', Rlgr
2^x^H°(S', Rlg'2^'2) =

H\X'2,(9^2)3L\X'2. Thus C l(LLYi) = 0, so Cl(L,)\X2=(c,(L) + c1(L1))\x'2 =

c1(L2) | x'2
 as was desired. Q. E. D.

A result of the type considered above was first found by Matsusaka and

Mumford [11, Theorem 2] when gt are both smooth and c^L,-) are both posi-

tive, i.e., LI are #rample.

Proposition 4.5. Let gt: X^S, i = l, 2, be as in Theorem 4.3. Suppose

that Xt are Kahler with Kahler classes a£e//2(^ /5 R) and that the canonical

bundles Kx. of Xi are trivial for / = !, 2. Letf: Xi-+X2 be a bimeromorphic

map over S which is isomorphic over S' = S— {0]. Then if f^l = c(.2,f is

isomorphic.

Proof. Immediate from Lemma 4.3 and Corollary 3.3.

The above proposition is interesting because of the recent result of Persson

and Pinkham [12] to the effect that if g: X-+S is a semi-stable degeneration of

compact analytic surfaces with trivial canonical bundles, then there always exists

a degeneration g1: Xl-^S bimeromorphic to g such that KXl is trivial.
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