Publ. RIMS., Kyoto Univ.
17 (1981), 723-733

A Vanishing Theorem for H*(X, 29B))
on Weakly 1-Complete Manifolds

By

Kensho TAkeGosHI* and Takeo OHSAwWA*

§1. Introduction

Let X be a connected complex manifold of (complex) dimension n. X
is called weakly 1-complete if there exists an exhaustion function @ which is C*®
and plurisubharmonic on X. We set X,={x e X; ®(x)<c} for any real number
c. Since S. Nakano established a vanishing theorem for positive bundles (cf.
[81, [9]), there have been a lot of activities concerning analytic cohomology
groups of weakly l-complete manifolds (cf. [3], [6], [10], [11], [12], [13], [15],
[16]). The aim of these works is to treat the cohomology groups from dif-
ferential geometric viewpoint based on the curvature conditions on vector
bundles rather than the strong pseudoconvexity of the base manifold X. So
they are regarded as natural generalizations of the results obtained for compact
manifolds. Lately, generalizing J. Girbau’s work [4], O. Abdelkader [1] proved
the following

Theorem 1. Let X be a weakly 1-complete Kdhler manifold and let B be
a semi-positive line bundle over X whose curvature form has everywhere at

least n—k+1 positive eigenvalues. Then
H?(X,, Q4(B)=0  for p+q=n+k and any real c.
In [16], the first author generalized Theorem 1 as follows:

Theorem 2. Let X be a weakly 1-complete Kdihler manifold and B a
semipositive line bundle whose curvature form has at least n—k+1 positive

eigenvalues outside a proper compact subset K< X. Then

HP(X, Q%B))=0  forany p=k.
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The present note is a continuation of the above works. We shall prove

the following
Theorem 3. Let X and B be as in Theorem 1, then
Hr(X, Q4B))=0  for p+q=n+k.

The key tool here is an approximation theorem of Runge type which was
introduced by the second author in [12].

During the preparation of this work (and the submission of [16]), H.
Skoda’s note [14] appeared, proving Theorem 3 for p=k and g=n. But his
method does not seem to be applicable to prove Theorem 3 in general (cf. [14]
Remark 2).

§2. Notations and Basic Formulae

Let B—= X be a holomorphic line bundle over a complex manifold X and
let {b;;} be a system of transition functions with respect to a coordinate cover
{U;}ier with holomorphic coordinates (z},..., z}). We fix a hermitian metric
{a;};cr along the fibers of B with respect to {U,};.; and assume that X is provided
with a Kihler metric ds2. We set

ds?= Y g, ,gdzidzt.

a,f=1

Let CP-4(X, B) be the space of B-valued differential forms on X, of class C*®

and of type (p, q), and let C§-%(X, B) be the space of the forms in C?4(X, B)

with compact supports. We express ¢ ={¢;];.; € C?*4(X, B) as

=p_'_q—' ay Za (pi,al...apsﬁx...ﬁqdz%l A Ndzie A dzygl A A dzﬁiq s
g1l

following the notation of [7]. For ¢ € CP4(X, B), we set
QFirsFo BB

—_ & [ d d
= ¥ gha..ghbcrghbi... g qpq(Pi,clwcpa;'--Hq )
ClsenesCp
154058 g

For simplicity we write
pfrBa= ng’c"g?“a"%,cpn., s
where A,=(xy,..., 2,), B,=(Bi,..., B;), and so on. With respect to {a;};;,

and ds2, we set
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2.1 o, ¥y=a; > Pia WP,

where A,=(a,,...,0,) and B,=(f,,..., p,) with 1=Za, <a,<---<o,=n and
=B, <--<B,En. Letting * be the star operator and dV the volume element,

we have
api A=< @, YydV.
For any real valued C”-function @ on X, we put
{ 1) £, ¥de=<0, Y)e™®

(2.2)
i) (0 Wo=| (0. ¥DedV  for ¢,y eCEUX. B).

In particular, we set

((/), ¢)=(<P, lp)O )
lol?=(¢, @),
leld=(¢, P)o-

We denote by 3 (resp. §) the formal adjoint operator of ¢: C54X, B)—
CP:7+1(X, B) with respect to the inner product (¢, ¥), (resp. (@, ¥)). We
define the Laplace-Beltrami operator [, (resp. [J) by

Oe=0%+ 340 (resp. (01 =03+ 90) .

We denote by L?:4(X, B, @) the space of the square integrable B-valued (p, q)
forms with respect to || |- We denote by d: LP-4X, B, ®)—LP-7"(X, B, ®)
the maximal closed extension of the original 0. Since 0 is a closed densely defined
operator, the adjoint operator 0% (resp. 0*) with respect to (¢, ¥)g (resp. (@, ¥))
can be defined. We denote the domain, the range, and the nullity of ¢ in
Lr4(X, B, ), by D%1, RE-? and NZ-9, respectively. Similarly Dg—’jz", R% and
NZ:g are defined. We denote by e(£) the exterior multiplication by a differential
form £ on X. Let w be the fundamental form of the Kihler metric ds? on X,

and let

L=¢(w)
(2.3)

A=(=1)P*9%Lx*,
We set

(2.4) 1=J=1 3 0,,dzzAdt,
8=

[:3 1
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_ 0*loga;
where 0i,05=— e
Basic formulae:
(2.5) e(A—Ade(x)=0—=*""0=
(cf. [8] p. 489 (1.16)),
(2.6) {Ae(x)—e(x) Ao, gp):(a;é] 970, )<, ¢
1 nooo o
TG 2, 5 2 I 0P n 01
1 DI i g?aei,av(pmpﬁaq_lm:

T plg=D! 4 F =
(cf. [7] p. 132~133).

§3. Approximation Theorem

In accordance with the definition of g-pseudoconvexity of complex spaces
(cf. [2]), we adopt the following definitions:

Definition 1. X is said to be weakly 1-complete if there exists an exhausting
plurisubharmonic function @ of class C*. @ is called an exhaustion function.

Definition 2. A holomorphic line bundle B—=- X is said to be k-semipositive
if there exists a trivializing coordinate cover {U,};,; with holomorphic
coordinates (z1,..., z¥) and a metric {a;} along the fibers of B such that the her-
mitian matrix (—82log a;/0z¢0z%) is positive semi-definite and has everywhere
at least n —k+ 1 positive eigenvalues.

From now on, let X be a weakly 1-complete Kéhler manifold with an
exhaustion function @ and let B—%, X be a k-semi-positive line bundle. We
set X, ={xe X; &(x)<c} for any real number c.

Let (c, d) be a pair of real numbers such that d is a non-critical value of @
and ¢>d>0. We put A(t)=—2nlog(d—t). A satisfies

3.1) g:\/ﬂT’(f)dt; +oo.

Let {4,},5, be a sequence of C*-strictly convex increasing functions on
(— o0, ¢) such that
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i) gc\/mdt=+oo, forany u=1,
(3.2) [ o

ii) for every d’' <d and every non-negative integer v,

lim sup M‘(‘v)(t) - )v(\')(t)l =0 ,

p~++o te(—0,d’)

where A(" (resp. A() denotes the v-th derivative of 1, (resp. 7).
Let {a;} be a fiber metric of B which corresponds to the assumption and set

0% log a;
(3.3) @i‘—'(ei,aﬁ)l <a.f<n where 9:’,«5: - 62'}‘62’? .
We set
(34) Gi = (gi,azﬁ)l Za,B5n>

where ds2=Zg,ﬁ=1gm§dz?d2€ is the given Ké&hler metric on X. For some
positive constant x, which is determined later, we put

1) dst= Y (KGiu+0;.5+0,05M(P)dz¥dzE, on X,,
(3.5) =
) ds2= 3 (Kgiag+0;.+0,050,(®)dz2dzE, on X,, for p=1,
ﬁ:

1) Gy i=(KGiap+ 0,05+ 0,05M( D)) 1<0p<n>
ll) Gu,i = (Kgi,aﬁ + Oi‘aﬁ + aaaﬁxu(dj))l Za,p<n> for u ; 1 >
lll) @(M,i = (Bi,aﬁ + aaaﬁx(d)))l Sa,f<n>
iV) @u,i = (91',0:/? + aaaﬁj“u(¢))1 <a,<n> for H ; l 5
1) a;;=a;-exp(—AP)),
(3.7)
it) a,;=a;-exp(—=i,P)), for uz=1.

Propesition 1. The hermitian metric ds2 (resp.ds?) is a complete metric
on X, (resp. X,) for every u=1 and x>0.

Proof. From (3.1) and (3.2) i), it follows similarly as Proposition 1 in [8].

We can choose a matrix 7; which depends, together with 77!, differentiably
on x € U,, satisfying G;='T;T;. Then we have

(3.3) 'T710,,; T 2'T7'0, T, for ux1.

Let v,;2v,,2,..., 20,,20 be the eigenvalues of ‘T;'@,,T;! at x,. By
(3.8), for any point x, € X,

(39) Uu,n—-k-f—lékm for /‘lg];
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where
iyt T-10 . T -15
ko= inf min max 2L G:iTi'® ¢
MRS 1V YN PUE
a=1

Setting

K
3.10 K==—0
(3.10) 2n—-1"

we obtain the following proposition with respect to (3.5) ii) and (3.7) ii).
Proposition 2.

(3.11) lolZ, <2018013,+ 133,013,}

for any peD%n D%j{iCL""’(Xu B, 2,(®)) with p+q=n+k and p=1.

Proof. Since the base metric ds2 is complete for p=1 (cf. Proposition 1),
C8U X, B) is dense in D%?n D5? with respect to the graph norm (o3, +
loel3,+ 0%, @l3)12 (cf. [17] Theorem 1.1). Therefore it suffices to prove
(3.11) for ¢ € C§4(X,, B). According to Girbau’s idea [4] our proof proceeds
as follows.

We put
0=/ =1 Y (K154 0; 5+ 0050, (B)d2E A dE",
a,f=1

te=v—~1 ; (01,05 + 0,052,(®))dz% A dZ°
a,f=1

L,=e(w,), A,=(—1)?%9%,L*,,

where #, denotes the star operator with respect to ds2. Fix u and let p+¢q
=n+k. We take a system of local coordinates (zi,..., z%) around x,€ X, so
that we have

Gu,i = ((K + Uu,a)éaﬁ) 1Z5a,p<n

Vp,a )
K+0,, %)1zapzn

Gri0u=(

We choose an m=m(xp)=1 so that v,,_4,+,>0 and v,,_in+;=0. Com-
bining these with (2.6), we have
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() (4e(w,)—e(w,)4,)0, ¢3;,(x0)
= 1 - Uu,*/~> £ <___~_1 > <____1 ) do. , 5 |2
p’ q' AEB,, <7§1 K+ l)“’), oljl K+ Uu,ad rg K +U;1,51 a’l"](p"AquI

-G 5, (i) 1 (o) B Gy
(P—=D!q! 4B, \S16+0, ../ et \K+V, o,/ =i \K+ Uy p,

x a;x.il@i,z{pﬁqlz

v ) G ) B Ge,)
+v B/ o=1 K+Uu,aa =1 K+Uus/fr

Xau,il(Pi,A,,B.,lz

1 q
RO

=Z<i Uy V,aq __i uﬁc>p< 1 )
ApBa\i=1 K40, , o=1K+UV,, =1K+0V,, K+Uy,q,

q 1 2
X H<K+v”’pt>au,i|§0i,/¢p§q| °

We put

From (3.10), we have 0<e,<1/2n for y<n—k+1 and 0<e, <1 for n—k+1
<y<n.

Let s; (resp.s,) be the number of indices with a,<n—k+m (resp. f,<n
—k+m), then s, =1, s,=1 and s, +s,=2n—k+2m. In fact, since p+qg=n+k,
we have p+q+n—k+122n+1, thus any blocks 4, of p indices and B, of ¢
indices taken from {1, 2,..., n} contain one of the indices {I, 2,..., n—k+m}.
Hence s;=1 and s,=1. On the other hand, in the indices {1, 2,..., n} —{a;,

, 0,0 and {1, 2,..., n} —{By,..., B,}, the sum of the number of indices contained
in {1, 2,..., n—k+m} is 2(n—k+m)—(s; +5,). This number does not exceed
n—k. Hence we have s, +s,=n—k+2m. So we have

(%%) Z": Vu,y __:‘: Vu,a0 __i Vu,8-
y=1 K+, , =1 K+0, . =1K+V,

—k+m
=n—k+m—(s;+8)+ X g+ X s—nz g,

de=n—k+m Be<n—k+m N y=1
n—k+1
é -1+ Z gaa+ Z aﬁ, - Z
agS<n—k+1 B:Sn—k+1 y=1
n—k+m
—(m—1- 2 €q,) +( > &g, — X &)
n—k+25asSn—k+m n—k+25f.Sn—k+m y=n—k+2

—k+1

n n—k+1
=-1+20 2 &)— 2 5
y=

y=1
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n—k+1
2n

IIA

-1+

IIA

1

7
Therefore, from (*) and (*x), we have
() {(4,6(w,)—e(w,)A,)0, ¢>;,(%0)

< —é—(tp, ®)1,(x0) -

Combining (2.5) with (x%x), we have
100113, + 10,013, =(01,0, ©),,=(310,,%:,0, 0),

+ (@) 4, — 4,2(0,)0, 9);, 22013, q.c.d.

Now we take the functions {1,},,, satisfying (3.2) and the following ad-
ditional condition:

(3.12) There exists a constant C such that for every p and ¢e
Lr4(X,, B, 1,(®)),

lolx,l.=Clel.,, -
The existence of such functions has been proved (for any p, q) in [12], where B

was assumed to be positive unnecessarily. We can easily obtain {4,},>; with
required properties without any significant modifications.

Approximation Theorem. If p+q=n+k—1, then for any feLr4(X,, B,
M®)) with 0f =0 and for every >0, there exists an integer u, and fe LP-4(X,, B,
Ay D)) with 6f=0 and | f|x,—fll;<e.

Proof. It suffices to show that if ge L?:9(X,, B, A(®)) and (g,f'[xd),1=0
for any fe v, LP4(X,, B, 1,(®)) with f=0, then (g, f),=0 for any fe Lr-4(X,,
=1
B, A(®)) with 3f=0. Now for any u € L?-9(X,, B, 1,(®)) we have

I(g, u |xd)z|§C“9”A”u”Au,

where C is the constant introduced in (3.12).

This implies that (g, - | x,), is a continuous linear functional on L?-4(X, B,
2,(®)), hence from the Riesz representation theorem there exists a g, € LP>4(X,
B, 4,(®)) such that (g,, u);,=(g, uly,), for every uelLr9X, B, 1,(P)) and
Igul;,<Cllgll,. Since for every @eCRUX)\X, B), we have (g, 9);,
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=(¢> ¢ x,)2=0, supp g,, is contained in X, and ||g, | x,[:<C?[gl;- By (3.2)1ii)
and the fact that supp g, X, for p=1, we have (g, | x,, v),—(g, v); as p—+ 0
for every ve C5%X,, B). Therefore {g,|x,} converges weakly to g in L?-4(X,,
B, J(®)). On the other hand, since g, is orthogonal to NZ? in L*4(X,, B,
2(®)), g, is contained in the closure of Rg%“ cLri(X,, B, A,(9)). From (3.11),
there exists a w, € LP-4*}(X, B, 1,(®)) for a%y u such that g,,:éj{‘“w,‘ and [w,,,
£2'2||g,ll;, (cf. [S] Lemma 4.1.1 and Lemma 4.1.2). We have [w,|x,l,
SCllw,ll,, £2'2C3||g|l,- Hence a subsequence {w, [x k=1 Of {Wulx}uz1
converges weakly to some we LP:9tY(X,, B, A(®)). For any ve C§ %X, B),
we have (g, u)l=klj£nw(guk, v)hk=k131-31m(wuk, év)luk=kljﬂ, (W O0); = (W, 0V);.
Since ds7 is a complete metric on X,, C§-%(X,, B) is dense in D5:?< LP-4(X,, B,
(®)) with respect to the graph norm (|¢|2+ ||Cp|?)!/? (cf. [17] Theorem 1.1).
Thus (g, v),=(w, ¢v), for any veDZ?, whence dfw=g in L?-X, B, A(®)).
Therefore, for every fe L?-9(X,, B, A(®)) with df=0, (g, f),=(0%w, f)=(w, ),
=0. g.e.d.

§4. Proof of Theorem 3

By Sard’s theorem, we can choose a sequence {c,},-o ... of real numbers
such that

) ¢4e1>c,>0 and c¢,—>+0 as v—+o0,

ii) the boundary 60X, of {xe X; &(x)=c,} is smooth for any v=0.
For any v=0, we set

i) A¥(t)=—2nlog(c,—1),

i) X,={xeX; d(x)<c,}.

For any pair (c,,, ¢,) (v=0) and 1¥, we choose a sequence of C®-strictly

convex increasing functions {4}*2},., on (—o0, ¢, ,) satisfying the properties

(3.2) and (3.12). The Approximation Theorem holds for any pair (c,.,, c,)
(v=0). We denote by L}:(X, B) (resp. LE;2(X,, B)) the set of the locally square
integrable (p, q) forms on X (resp. X,) with values in B. For p=1, there is a
natural isomorphism

4.1) H* (X, QUB))

{feLBi(X, B); of=0}
= {fe LR XX, B); f=0g for some ge Ly;"1(X, B)}
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Therefore, in order to prove H?(X, Q4(B))=0 for p+ q=n+k, it suffices to show
that for any ¢ € L£;4(X, B) with dp =0, there exists a y € LZ24-1(X, B) such that
@=0y. We set ¢,=¢|x, for any v=0. Then from Theorem 1 and (4.1),
there exists a Y/, € L%;2-1(X,, B) with ¢,=0y/, for every v=2.

For any v=1, let L?-%(X,, B) be the completion of C§%X,, B) by the
norm || |x, with respect to the original Kéhler metric ds? and the fiber metric
{a;}. Inductively, we choose a sequence {¥,},> so that

i) ¥,elraX,, B),
4.2) (i) o,=0,,
) Wyes—VlE, -, < -

First we set y,=y}|x,. Since @,=0y; in L{AX,, B), Y5|x,€D%%1c
LP-%~1(X,, B) and so dy; =¢, on X,. Suppose ¥,,..., ¥,_, are chosen. Then
W1 =Vy-Dlx,., e LPTYX,_y, B, A*"1(®)) and 641 —Vy-1) | x,_, =0

By Approximation Theorem, for any ¢>0, there exists a g e L?:97 (X,
B, Ax¥1(®)) such that |g|x,_,—W\e1—V¥y—1)lx,_,lI3v-1<e and dg=0. Since
| llzv-1,%x,-, and || [x,_, are equivalent norms on L?471(X, _,, B), we may
assume

191 xyoa = W =Yo= D) xpald s <t -

We set ,=(,+1—g) | x,- Then we have
i) y,eDri-tcLra-i(X,, B),
i) ¢,=0y,,
T VAN | e =
Thus {y,},>; has been chosen. From (4.2), for any v, {{,},>,+1 coOnverges

with respect to the norm | ||y, and clearly the limit is the same as the restriction
of lim y, for any n=v+2. Thus we can define an element ¥ of L{;J~*(X, B)

loc
2>
by ‘:ﬁ_; limy,. Since dis a closed operator in L#-9-1(X,, B) for every v=1, we
y=>+00
have

¢v=5l// in Lp,q(Xv’ B) (Vgl) .
Hence we have ¢ =0y in LE;4(X, B). g.e.d.
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