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§ 1. Introduction

Let X be a connected complex manifold of (complex) dimension n. X

is called weakly 1 -complete if there exists an exhaustion function <P which is C°°

and plurisubharmonic on X. We set Xc = {x E X ; <P(x} < c} for any real number

c. Since S. Nakano established a vanishing theorem for positive bundles (cf.

[8]» [9]), there have been a lot of activities concerning analytic cohomology

groups of weakly l-complete manifolds (cf. [3], [6], [10], [11], [12], [13], [15],

[16]). The aim of these works is to treat the cohomology groups from dif-

ferential geometric viewpoint based on the curvature conditions on vector

bundles rather than the strong pseudoconvexity of the base manifold X. So

they are regarded as natural generalizations of the results obtained for compact

manifolds. Lately, generalizing J. Girbau's work [4], O. Abdelkader [1] proved

the following

Theorem 1. Let X be a weakly \-complete Kahler manifold and let B be

a semi-positive line bundle over X whose curvature form has everywhere at

least n — k+1 positive eigenvalues. Then

0 for p+q^n+k and any real c.

In [16], the first author generalized Theorem 1 as follows:

Theorem 2, Let X be a weakly \-complete Kahler manifold and B a

semipositive line bundle whose curvature form has at least n — k+1 positive

eigenvalues outside a proper compact subset KczX. Then

HP(X, Qn(BJ) = 0 foranyp^k.
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The present note is a continuation of the above works. We shall prove

the following

Theorem 3. Let X and B be as in Theorem 1, then

, Q«(B)) = Q fo

The key tool here is an approximation theorem of Runge type which was

introduced by the second author in [12].

During the preparation of this work (and the submission of [16]), H.

Skoda's note [14] appeared, proving Theorem 3 for p^k and q = n. But his

method does not seem to be applicable to prove Theorem 3 in general (cf. [14]

Remark 2).

§ 2. Notations and Basic Formulae

Let B—?-*X be a holomorphic line bundle over a complex manifold X and

let {btj} be a system of transition functions with respect to a coordinate cover

{^•}iei wrtn holomorphic coordinates (zj,..., zf). We fix a hermitian metric

{at}iel along the fibers of B with respect to {l/J^/ and assume that X is provided

with a Kahler metric ds2. We set

ds2= ± g^dzfdzl.
a,/3=l

Let CP**(X, B) be the space of B-valued differential forms on X, of class C00

and of type (p, q), and let Cfrq(X, B) be the space of the forms in CP>*(X, B)

with compact supports. We express <p = {<p,0 ie/
 e Cp*q(X, B) as

following the notation of [7]. For <p G Cp>i(X, B), we set

For simplicity we write

where 4p = (a1,..., ap), Bg = (j81?..., jSg), and so on. With respect to {af}te/

and ^s2, we set
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(2.1) < < 7 > , < A > = «; I VtA,!.*?'*',
Ap,Bq

where Ap = (xl9..., ap) and Bq = (f}l9..., p^) with 1 :ga, <a2< • • •<a p ^n and

{<^pl<-><fiq^n. Letting * be the star operator and c/Fthe volume element,

we have

For any real valued C°° -function <P on X, we put

0 <<P,^>* = <«^X~*
(2-2)

In particular, we set

We denote by B0 (resp. 3) the formal adjoint operator of d: C^q(X, J3)-»

Cg-€+1(X, B) with respect to the inner product (<p, i/^)0 (resp. (<jo, ^)). We

define the Laplace-Bel trami operator Q^ (resp. D) by

We denote by LP^(X, B, <P) the space of the square integrable B-valued (p, q)

forms with respect to || ||0. We denote by S: JJ>*(X9 B, 4>)->I/»«+1(X, B, 4>)

the maximal closed extension of the original 3. Since S is a closed densely defined

operator, the adjoint operator 8$ (resp. 5*) with respect to ((p, j/r)0 (resp. (<p, i/r))

can be defined. We denote the domain, the range, and the nullity of d in

IS-*(X, B, $), by D*-q, Rl>q and N^q, respectively. Similarly Df^7, JRftf and

AT|f are defined. We denote by e(g) the exterior multiplication by a differential

form £ on X. Let co be the fundamental form of the Kahler metric ds2 on X,

and let

(2.3)
^«(

We set

(2.4) X = /™T t
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, n d2 log a*where e^.——^..

Basic formulae:

(2.5)

(cf. [8] p. 489 (1.16)),

(2.6)

(cf. [7] p. 132-133).

§ 3. Approximation Theorem

In accordance with the definition of g-pseudoconvexity of complex spaces
(cf. [2]), we adopt the following definitions :

Definition 1. X is said to be weakly 1-complete if there exists an exhausting

plurisubharmonic function <f> of class C°°. 0 is called an exhaustion function.

Definition 2. A holomorphic line bundle B-^->X is said to be k-semipositive

if there exists a trivializing coordinate cover {Ut}iel with holomorphic

coordinates (z},..., z?) and a metric {af} along the fibers of B such that the her-
mitian matrix (— d2log ajdzf3zf) is positive semi-definite and has everywhere
at least n — k+1 positive eigenvalues.

From now on, let X be a weakly 1-complete Kahler manifold with an
exhaustion function $ and let B—^X be a /osemi-positive line bundle. We

set Xc = {xe X; $(x)<c} for any real number c.
Let (c, d) be a pair of real numbers such that d is a non-critical value of 0

and c>d>0. We put A(f) = -2n log (d- i). A satisfies

(3.1) (dJr(fjdt= + oo.

Let {k^^i be a sequence of C^-strictly convex increasing functions on

(—00, c) such that
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Jk"u(t)dt = + oo, for any u ̂  1,
(3.2) ; —v

[ ii) for every d' < d and every non-negative integer v,

lim sup |A<*>( / ) -A<»>(OI=0,
#-++00 re(-oo,d')

where A£v) (resp. A(v)) denotes the v-th derivative of AM (resp. A).

Let {at} be a fiber metric of B which corresponds to the assumption and set

f"i Q\ /si —.("fl. _\ where o- — —- ———

We set

(3-4) C/ = (fl^«jj)l£a f/^ii>

where ds2==^^=lgii(xpdzfdz^ is the given Kahler metric on X. For some

positive constant K, which is determined later, we put

( i) dsl= (Kg^ + e^ + d.d-^^dzfdzl on Xd,
(3.5) *'*=1

(3.6)

i) GAi,

(3.7)
t 11) aM>f = arexp(-/lM(<i>)), for ^^1.

Proposition 1. T/ie hennitian metric ds* (resp. dsj) is a complete metric

on Xc (resp. Xd) for every j.i^l and /c>0.

Proof. From (3.1) and (3.2) i), it follows similarly as Proposition 1 in [8].

We can choose a matrix Tt which depends, together with Tf 1, difFerentiably

on x E Ui9 satisfying Gf =
 tTi Tt. Then we have

(3.8) 'rr^Tj-^'TT^Tr1, for n^l.

Let yM j l^y^2^5 . . . , ^^ jn^0 be the eigenvalues of iT^l0^iT^1 at x0. By

(3.8), for any point x0 e Zc,

(3.9) ^n_ fc+1^K:0, for j u ^ l ,
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where

K 0 =inf min max > > >0 .
vLL I a2

Setting

(3.10) K,J^T,

we obtain the following proposition with respect to (3.5) ii) and (3.7) ii).

Proposition 2.

(3.11) llvll3M^2{||39lllM+l|5t<PllU

for any <peD^qnD^q cZ/'*(Xc, B, 4(#)) with p + q^n + k and fi^l.
AM

Proof. Since the base metric ds% is complete for ^x^J (cf. Proposition 1),

C%>q(Xc9 B) is dense in Df'*n0£;« with respect to the graph norm

+Pt^lli)1/2 (cf. [17] Theorem 1.1). Therefore it suffices to prove
(3.11) for <p e C$'q(Xc, B). According to Girbau's idea [4] our proof proceeds

as follows.

We put

^V^T
a, 0 = 1

where *M denotes the star operator with respect to ds*. Fix \i and let p-l-q

^n + k. We take a system of local coordinates (z\,...9 zl\) around XOEXc so

that we have

—f""V
We choose an m = w?(x0)^l so that t ;^ j M_ f e + m>0 and f^w_ f c + w + 1=0. Com-
bining these with (2.6), we have
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+ v.

—- _ L
1) ! O, V.tl ̂ TivZ/ •=« + °»~ -i + "

a=1K+vn,«,

We put

8V = 1 —

From (3.10)5 we have 0<eygi/2n for y ^ w - k + 1 and 0<e y ^l for n - fc+1

Let Si (resp. s2) be the number of indices with a f f ^ n — k + m (resp. PT^n

— k + m), then s t^1, s2^l and 51+s2^« — k + 2m. In fact, since p + q^n + k,

we have p + g + n — k + 1^2n + l, thus any blocks ^4p of p indices and Bq of q

indices taken from {1, 2,..., n} contain one of the indices {1, 2,..., n — k + m}.

Hence s t^l and s2^l. On the other hand, in the indices {1, 2,..., n} — {a1?

..., ap} and {I, 2,..., n} — {/?15..., jSJ, the sum of the number of indices contained

in {1, 2,..., 77 — /c + m} is 2(n — /c + m) — (s!+s2). This number does not exceed

n — k. Hence we have s1 + s2^n — k + 2m . So we have

n—k+m
Z ev

n-fc+1

-(w-l-

n-fc+1 w-fc+1
E By)- E
y=l y=l
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<-T .n-k+l
= 2n

-~T'

Therefore, from (*) and (**), we have

(***) {(^/X60^)

1
2 \T ' TS

Combining (2.5) with (***), we have

' ?)AM^ ylMli • q-e.d.

Now we take the functions {A^J^j satisfying (3.2) and the following ad-

ditional condition:

(3.12) There exists a constant C such that for every \JL and cpe

L?.*(Xe, B,

The existence of such functions has been proved (for any p, q) in [12], where B

was assumed to be positive unnecessarily. We can easily obtain {^^^i with

required properties without any significant modifications.

Approximation Theorem. If p + q^n + k—1, then for any feLp>q(Xd, B,

with 5/=0 and for every e>0, there exists an integer f.i0 andfe LP'*(XC, B,

with Sf=Q and \\f\Xd-fh<e.

Proof. It suffices to show that if geD>**(Xd, B, A(4>)) and

for any/e G IP«(XC, B, A^)) with 3/=0, then fe,/)A = 0 for

J5, A(0>)) with 5/=0. Now for any w e LP^(XC, B, A/^)) we have

where C is the constant introduced in (3.12).

This implies that (#, • \Xd)* is a continuous linear functional on Lp>q(Xc, B,

), hence from the Riesz representation theorem there exists a g^eLP^X^

such that (^, W)AM = (^W |^)A for every MeL^X,, B, A^*)) and

Since for every <peCfr«(Xc\^, B), we have (^, 9)^
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is contained in Xd and \\g^\Xdh^C2\\g\\^ By (3.2) ii)

and the fact that supp g^Xd for /^ 1, we have (#M | Xd, y)A-^fe, v)x as /*-» 4- oo
for every VE C%'q(Xd9 B). Therefore {gj Xd} converges weakly to g in Lp>4(Xd,

B, A($)). On the other hand, since 0M is orthogonal to JVf»* in LP«(XC9 B,

A/A^)), 9p is contained in the closure of R$iqcLP'*(Xc, B, A^($)). From (3.11),

there exists a wMeI>*+1(Zc, 5, A^)) for any ^ such that 0M = 5jMwM and ||wJ|A/t

^21/2H^||AM (cf. [5] Lemma 4.1.1 and Lemma 4.1.2). We have l lw^l^L

^C|iw/1LMg21/2C3||^||;, Hence a subsequence {w.J^},^ of {wj^}^

converges weakly to some wElP>i+1(Xd, B, A(^)). For any i? e Cg'5(Zd, 5),

we have (g, i?)A= lim (0 i;), = lim (wMk, 3u)A = lim (w^k, 3y)A = (w, 5u)A.
jfe-*-t-oo k k-* + oo k fe-f + cx)

Since dsl is a complete metric on Xd9 C^q(Xd, B) is dense in DfrqcU>*(Xd9 B9

A(#)) with respect to the graph norm (||9||3+II^II3)1/2 (cf- C171 Theorem 1.1).
Thus (0, (;)A = (w, Sv)x for any veD^q, whence 5fw = 0 in LP««(XC, B, A(4>)).

Therefore, for every feL?-*(Xd, B, 1(0)) with 5/=0, (flf,/)A = (3jw,/) = (w, 3/)A

= 0. q.e.d.

§ 4. Proof of Theorem 3

By Sard's theorem, we can choose a sequence {cv}v==0fi,... of real numbers
such that

i) cv + 1>cv>0 and cv-> + oo as v~> + oo,

ii) the boundary dXCv of {XE X ; <$>(x)^cv} is smooth for any v^O.

For any v^O, we set

ii) Xv

For any pair (cv+2J
 cv) (v^0) and lv, we choose a sequence of C°°-strictly

convex increasing functions {Aj!4"2}^! on (—00, cv+2) satisfying the properties

(3.2) and (3.12). The Approximation Theorem holds for any pair (cv+2, cv)

(v ̂  0). We denote by Lp^q(X, B) (resp. Lf>*(Xv, B)) the set of the locally square

integrable (p, q) forms on X (resp. Xv) with values in B. For pj j^ l , there is a

natural isomorphism

(4.1)

{/eL(^,^) ;g/=Q} _
(X9 B);f=Sg for some geL^^(X9 B)}
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Therefore, in order to prove HP(X9 Qq(B)) = 0 for p + q ̂  n + fe, it suffices to show

that for any (p e Lf*(X, B) with S(p = Q, there exists a \l/ e l$£~l(X9 E) such that

(p = d\lt. We set (pv = (p\Xv f°r any v^O. Then from Theorem 1 and (4.1),
there exists a ^eL\^\XV9 B) with <pv = 5\l/'v for every v^2.

For any v^l, let LP«(XV9 B) be the completion of Cfrq(Xv9 B) by the

norm || \\Xv with respect to the original Kahler metric ds2 and the fiber metric

{flj. Inductively, we choose a sequence {^v}v^i so that

(4.2) ii)

First we set ^ = ̂ 1^. Since 92 = ̂ 2 in Lfi€(X2, B), ^l^
£p,€-i(^i5 5) ancj so d\l/l=(pi on Zj. Suppose ^19..., ^v_! are chosen. Then

(^+1-^-1)1x^,61/^(^-1, ^ ^W) and ̂ Ui-^-Ob.-^O.
By Approximation Theorem, for any e>0, there exists a g eLp»q~1(Xv+l9

B9 AJJH*)) such that l l^ lxv- . -^Ui-^v-Olxv-i l lJv-^f i and ^ = °- Since

|| | |Av-i> X v_2 and || ||xv_2 are equivalent norms on Lp>q~1(Xv-.2> B)9 we may
assume

We set \l/v=(ij/'v+l —g)\Xv- Then we have

ii) <pv =

iii) ||^v-

Thus {^v}v^i has been chosen. From (4.2), for any v, {^/J/^v+i converges
with respect to the norm || ||Xv and clearly the limit is the same as the restriction

of lim^ for any r j ^ v + 2. Thus we can define an element \j/ of L%£~l(X9 B)

by ^T=lim \l/v. Since 5 is a closed operator in Lp^~l(Xy9 B) for every v^ 1, we
v-»+oo

have

cpv = dils in

Hence we have <p = d\l/m Lfc?(X, B). q. e. d.



A VANISHING THEOREM FOR H»(X, Q«(B)) 733

References

[ 1 ] Abdelkader, O., Vanishing of the cohomology of a weakly 1-complete Ka'hler manifold
with value in a semi-positive vector bundle, C. R. Acad. Sci. Paris, 290 (1980), 75-78.

[ 2 ] Andreotti, A. and Grauerl, H., Theoreme de finitude pour la cohomologie des espaces
complexes, Bull. Soc. Math. France, 90 (1962), 193-259.

[3] Dolbeault, P., Un theoreme dannulation sur les varietes faiblement 1-completes,
Lecture notes in Math., 743, Romanian-Finnish seminar on complex analysis, Springer-
Verlag, 1979, 402-407.

[4] Girbau, J., Sur le theoreme de Je Potier d'annulation de la cohcmologie, C. R. Acad.
Sci. Paris, 283 (1976), 355-358.

[ 5 ] Hormander, L., An introduction to complex analysis in several variables, North-
Holland, 1973.

[ 6 ] Kazama, H., Approximation theorem and application to Nakano's vanishing theorem
for weakly 1-complete manifolds, Mem. Fac. Sci. Kyushu Univ., 27 (1973), 221-240.

[ 7 ] Morrow, J. and Kodaira, K., Complex manifolds, Holt, Rinehart and Winston, New
York, 1971.

[ 8 ] Nakano, S., On the inverse of monoidal transformation, Publ. RIMS, Kyoto Univ.,
6 (1970/71), 483-502.

[9] ^ Vanishing theorems for weakly 1-complete manifolds, Number Theory,
Algebraic Geometry and Commutative Algebra, in honor of Y. Akizuki, Kinokuniya,
Tokyo, 1973, 169-179.

[10] , Vanishing theorems for weakly 1-complete manifolds, II, Publ. RIMS,
Kyoto Univ., 10 (1974), 101-110.

[11] Ohsawa, T., Finiteness theorems on weakly 1-complete manifolds, Publ. RIMS,
Kyoto Univ., 15 (1979), 853-870.

[12] , On H*-*(X, B) of weakly 1-complete manifolds, Publ. RIMS, Kyoto Univ.,
17(1981), 113-126.

[13] 9 Weakly 1-complete manifold and Levi problem, Publ. RIMS, Kyoto
Univ., 11 (1981), 153-164.

[14] Skoda, H., Remarques a propos des theoremes d'annulation pour les fibres semi-
positifs, Seminaire P. Lelong, H. Skoda, {Analyse) 18^ et 19e annee, Lecture Notes in
Math., 822 Springer-Varlag, 1978-79.

[15] Suzuki, O., Simple proofs of Nakano's vanishing theorem and Kazama's approxi-
mation theorem for weakly 1-complete manifolds, Publ. RIMS, Kyoto Univ., 11 (1975),
201-211.

[16] Takegoshi, K., A generalization of vanishig theorems for weakly 1-complete mani-
folds, Publ. RIMS, Kyoto Univ., 17 (1981), 311-330.

[17] Vesentini, E., Lectures on Levi convexity of complex manifolds and cohomology vanish-
ing theorems, Tata Institute of Fundamental Research, Bombay, 1967.




