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Unbounded Operator Algebras and BF-Spaces

By

Jean-Paul JURZAK*

Introduction

This paper concern the study of *-algebras, that Is to say, algebras of

operators, bounded or not, defined on a dense invariant domain X) of some

Hilbert space H. Such objects, suitably topologized, are natural DF-spaces of

analysis [5], and the aim of this paper is to present a development similar to

that of C*-algebras. The work has been divided as follows. In first part, we

examine properties of the domain X), and this leads to the analysis of the set

B(!D, T>) of continuous sesquilinear forms on T> x X): this space is a DF-space,

and admits a predual which is a Frechet space. Of course, B(T>, T>) plays the

role of the algebra of all bounded operators of C*-algebras. The question of

normality of the positive cone of $1 is solved for particular *-algebras 31 (see

part three), and its central role is described in Proposition 6. Second part

describes the second dual of 21. Third part is concerned with particular *-

algebras, for which we get an explicit description of the dual. The topological

contents of such algebras are quite opposite to that of C*-theory. It should be

pointed out that the study of positive linear forms on special *-algebras has been

undertaken, without topology, by Shermann [11] and Woronowicz [12], and

their methods are connected to our topological analysis. Theory of duality in

locally convex spaces, mainly in Frechet spaces, is essential for our study, and

our bibliography in this direction is very incomplete. The reader will find main

notations of this work in [9]: though [8] contains [9], its knowledge is not

necessary for the understanding of this paper.

Preliminaries

In this paper, we call *-algebra, in a Hilbert space H, an involutive algebra
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91 of operators, not necessarily bounded, all defined on a domain $ dense in H,

with the following properties :

1°) for 4 e 21, the adjoint operator A* satisfies Dom^4*=DD and

,4*21 c 21,

2°) for A E 21, B e 21, x e D we have

(A + £)x = 4x + £x, (AS) (x) = A(Bx) .

Moreover 1 e 21. An operator A € 21 is called positive (written A E 2I+, or

^4^0) iff (Ax, x)^0 for all x E X). Such an element defines canonically a vector

subspace

where by definition

°° for A>o,(Ax, x) \ 0

It follows that 91^ has a natural norm given by pA. Clearly, pA (restricted to

yiA) is the norm associated to the order-unit A of $1A : it is convenient to write

|| T || 4, instead of pA(T). It is immediate that subspaces 91A, for A varying in

2l+, constitute an inductive system of normed spaces : by definition, the locally

convex inductive limit topology of the system of normed spaces ($1A, || ||^),

for A e 2l+, is called p, and the topological space so obtained is denoted simply

(21, p): one has 2l = W^0^- It is easy to see that topology p can be con-
structed from a sequence of subspaces 9lAn, An e 2l+ for n e N, if and only if the

positive cone 2l+ of 21 admits a cofinal subset, for its natural order : equivalently,

if and only if the domain D is a metric space under its natural topology, defined

by semi-norms xe!D->||.4x|| for A varying in 21. Algebras of this type have

been called, in [9], countably dominated *-algebras. Since all examples met

in practice are of this form, the paper will deal only with countably dominated

*-algebras, denoted simply *-algebras.

Thus, a *-algebra 21, endowed with p, is a separated DF-space, and the strong

dual 21' is a Frechet space. If T> is the completion of the metric space D, X> is

a Frechet space, and obviously equal to r\Ae^ Dom (A) (here, A stands for the

closure of the operator A). It is important to note that the estimation pA(T),

calculated with respect to D or X>, defines the same numbers, so that we can
A.

assume in any theorem or proof, the equality between I) and D.

More generally, let 21 = \JieN 91A. be a *-algebra, and M be a vector space of
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continuous sesquilinear forms on D x 2), M containing 51 and satisfying M = M*,

where B-^B* is the involution of M given by J3*(x, y) = JB(j;5 x) (for x, y in D).

Here elements Tof 51 are identified to forms /?: (x, y) e D x £-»/?(*, j) = (Tx, j):

and jS* correspond therefore to element T* of 91. Of course, one has M = Mr

©fM r where Mr is the real vector space of hermitian sesquilinear forms of

M. Note that Mr has a natural order ^, associated to the cone M+, with

M+ = {]8eM; )S(x, x)^0 for all x of X)} .

For j8 taken in M, there exists M < -h oo and i e JV such that

MXty^MllArtl \\Aj\\

hence

Therefore, every cofinal subset of 5l+ is cofinal in M+. It follows that we

can introduce, for ft E M, the quantity

= + 0° for

which clearly defines, as precedently, a normed space (jfAj9 || H^) with order

unit AJ and a natural topology p on M given by

One check that linear forms coXjje (x being in D) on M, defined by

M - >

are continuous, hence (M, p) is separated. Moreover, since every simply

bounded set of sesquilinear continuous forms on T) x I) is equicontinuous, a

fundamental system of bounded sets of (M, p) is given by intervals [ — A, zf],

with A varying in M+ (or 9I+). We recall that [A, B], for A, B in M+, denotes

Of course, one can endow 51 or M with many other topologies. For ex-

ample, we can put on M the topology of bibounded convergence (resp. bicompact

convergence...) which is, taking in account the polarization equality, given by

semi-norms

sup |
xeB

for B varying in the family of bounded sets (resp. compact...) of 91. It is trivial
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that bounded sets for these topologies agree with bounded sets of (M, p). But,
these topologies are a priori not sufficiently fine, and it is not known, in general,
if vector spaces so obtained are quasi-barreled, or if their strong dual is complete.

Topology p introduced is exactly the bornological space associated with 21
endowed with bibounded topology, and invariance of p under isomorphisms,
as many other properties [9], make interest in this approach.

A technical topology of some interest, in the study of a given *-algebra 21,

can be obtained by introducing estimations of the form sup,^ ||rx||/|]y4x||,
with T, A in 21, and usual convention A/0 = +00 for A>0: such a procedure

leads, for every A of 21, to a natural definition of the normed space (WIA, \\\ \\\A),

hence to a topology, called A in [9], equal by definition to the locally convex

inductive limit topology of the system of normed spaces (WtA, ||| \\\A, Ae$f).
Continuity of multiplication (S, T) e 21 x 2I-»STe 21 is equivalent to the equality
of topologies A and p, [8], thus presence of A is indispensable only for certain

*-algebras.

§ 1. Generalities

Let X) be the domain of a given *-algebra 8l=Wi6W9l^4, and H be the
Hilbert space completion of the prehilbert space X). As mentioned in intro-
duction, we can assume, without loss of generality, the topological space X)

^
equal to its completion X> : it follows that D is a Frechet space, under semi-norms

x s D-» |I4*II (foriefl).

Proposition 1. If M is a bounded subset of the strong dual X)' of X), then
there exists an integer i and a real number a, such that Mis included in the set

of linear forms f on X), of type /(x) = (Atx, y), with y varying in H, with norm

smaller than a.

In particular, if the Hilbert space H is separable, the strong dual X)' is

separable, therefore bornological. Converse of the proposition is trivial.

Proof. Since X) is a Frechet space, M is an equicontinuous set, therefore

there exists i e JV and a>0 such that

for all x of D and/ of M. We can assume AfAt^ld, and we get

|| for
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having introduced / by the relation

which leads immediately to the result. Let us now assume that H is separable,

and denote {yt} a sequence of vectors dense in the Hilbert space H. Linear

forms (AI-, yj), for i and j varying in N, are dense in the strong dual D', because

one has, for a given v of H

sup \(Atx, y)-(Atx, yj)\^\\y-yj\\sup \\Atx\\
xeB xeB

which tends to zero when yj tends to y in H, for all bounded sets B of X).

Proposition 2. Let D be the domain of a *-algebra 91. Then, 2) is a

Schwartz space (resp. a nuclear space) if and only if 91 can be written 91 =

\JieN 9^4£(0r yt = \ J j e N * r f A ) 9 AiA^+i being, for every ieN, a compact operator

(resp. a nuclear operator) acting in the Hilbert space H.

Proof. Every A of 91 defines a semi-norm pA on D by pA(x) = \\Ax\\,

hence defines the disked neighborhood U = {x e D; ||>4x|| rg 1}, the normed space
/s

D^ with "unit ball 17", and D^ the Banach space completion of D^. When

A*A<z Id, Dp (resp. X^) can be identified with a subspace (resp. a closed sub-

space) of H, by the map

x e DU - > Ax EH

Taking 5 another element of 91, and denoting by V the corresponding neigh-

borhood in D, we see that Fez U if and only if \\Ax\\ ^ ||5jc|| for all xeD. Thus,
>v /s

the canonical map from IV into ^t/ corresponds to the operator AB~l, acting

in the Hilbert space H (in fact, AB~l is defined on jB(D) = 5(D) and is extended

to whole H by choosing its value equal to zero on the orthogonal complement of

B(E)). Now, the possibility of choosing V arbitrarily small means that we can

take, for every given ieN, an element B of 91 such that ||5x||^||^4fx|| for all

x E D. Therefore, the existence of operators At follows from definitions of

nuclear and Schwartz spaces [5], [6].

Proposition 3. Under its natural topology, D is a reflexive Frechet space,

and this property holds for every quotient and every closed subspace of a

finite product of !D. Bounded subsets of X) are relatively weakly compact

subsets.

To be more precise, the proof of the last proposition shows that D is iso-

morphic to a topological vector subspace of a topological vector product of a
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family of Hilbert spaces. The affirmation relative to a finite product is obtained

by finite product of copies of X) and weak compactness follows from reflexivity.

Using now a criterion in [6] page 70 remarque 2, we deduce

Theorem 1. Every bounded subset of the Frechet space X)®X) is con-

tained in the canonical image of the unit ball of a space %)A®T)A where A is

a bounded closed disk i/X>.

Here, (§) stands for the projective tensor product. Thus, from [6], we get

Corollary 1. The set £(X>, X)) of continuous sesquilinear forms on X)

x X) endowed with bibounded topology, is the strong dual of the Frechet space

D(x)D.

The natural duality <X)(§)X), B(X>, X>)> leads us to introduce the following.

Definition 1. We call the weak topology on $1 (resp. the a-weak topology),

relative to X5®X5, the topology on 91 induced by <7(£(X), X>), X>®X)) (resp. by

cr(JB(X>, X>), X>®X>), 91 being an arbitrary subset of 5(X), X>).

In other words, the weak topology on a linear space 91 is the topology

associated to semi-norms

T - > \(Tx, y)\
A

for x and y varying in X) = X>. Clearly, the dual of 91 for this topology is the

linear span of the coXty, with x, y belonging to X). The d-weak topology on 91

is the topology defined by semi-norms

or

T— | Z (TXj, yj)\ ,
7 = 1

(x/)/w(resP- (yj)jeff) being any cr-convergent sequence of X) (i.e. E^=i ^(x^-, Xj)

< + oo for every A of some cofinal set of 5+(X), X)), see [8]) : every element u of

X>(§)X5 is indeed the sum of an absolutely convergent series £S=i A^®)^, with

2 jLi |A4| < + oo and (x^)£6]V, (y£)feN sequences of elements in X) converging to zero,

thus by polarization, u is a finite sum of elements of the form v=^=i /^-z^Zj,

with ^j^O for all 7, Sy=i Mj< + °° and (zj)jeN a sequence tending to zero in X).
Since9 for Te£(X>, X)) one has

7=1 7=1
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we get semi-norms mentioned. It is clear that the dual of 21 for cr-weak topology

is the set of linear forms £"=i wXj,yj, (XJ)JGN and (yj)jeN cr-convergent as
indicated.

In particular, the dual of (21, weak) (resp. (21, cr-weak)) is contained in the

dual of (21, p), and one can check that cr-weakly continuous linear forms on 21

belong to the closure, relative to the topology of the strong dual of (21, p), of

the dual of (21, weak). By Ascoli theorem, the weak topology and the cr-weak

topology on 21 agree on bounded sets of (21, p).

It should be pointed out that any *-algebra 21 can be naturally considered

as a subspace of the strong dual of X)®H, and, in this point of view, the weak

topology and the cr-weak topology, relative to D®H, make sense. These notions

are of interest only when A agree with p (see [8]).

Proposition 4. Any continuous (resp. equicontinuous set of) linear forms

on D®T> corresponds, under trivial identification, to sesquilinear forms {$ on

DxD of the form j5(x, y) = (BAix, Aty) (with x, j>eD), with Ai suitably chosen

in the positive cone 0/21, and B being any (resp. B varying in a set of uniformly)

bounded operators acting in the Hilbert space H.

Recall that the set B(D, D) is ordered by the cone 5+(X>, D) of positive

sesquilinear forms on T> x X) : and every cofinal subset of the positive cone of 21

is cofinal in £+(D, D).

Proof. If ft is a continuous sesquilinear form on D x D, we get, from con-

tinuity, a relation of the form

\ \\Aj\\

where M is a finite number, and At correctly chosen. Putting ^(Atx, Aty)

= P ( x , y ) we obtain a continuous sesquilinear linear form on At(T)) x Affi)

satisfying

\P(u,v)\^M\\u\\ \ \ v \ \ .

It is therefore trivial that j$(u, v) = (Bu, v) for some bounded operator B, acting

in the Hilbert space H and choosen equal to zero on the orthogonal complement

of AiCS). The argument holds for an equicontinuous set of (D(x}D)'? proving

our assertion.

Proposition 5. Let 21=^^3^ be a subspace of 5(D3 D), stable under

involution and containing a cofinal subset of the positive cone of B(D3 2)).
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Then 91 is a-weakly closed if and only if intervals [ — Ai9 A^\ 0/91 are a-weakly

(or weakly) compacts, for all ieN. When it is the case, every uniformly

bounded increasing directed set of hermitians elements of 91 converges to its

least upper bound for weak or a-weak topology.

Proof. One checks easily that the involution /?->/?* of B(X), £>) is weakly

and a- weakly continuous. Thus it is sufficient to work on the set of hermitian

elements of 91, denoted always 91̂ . The intervals [ — Ai9 Aj}9 and their homo-

theties, relatively to order of B(X), I)), with i varying in the set of integers, form

a fundamental system of bounded sets of (-B(T), 3)), p) and are convex disked

equicontinuous sets. These sets are also weakly and a- weakly closed, since

one has

[-4, At~] = {/]E B(D, D); |/?(x, x)\ ̂ At(x, x) for all x e D}

, , .-,(x9 x) ^At(x, x)

Thus, by Ascoli theorem, these intervals are a-weakly compact (or weakly

compact, £>®D being dense in D(i)D), hence are exactly polars of neighborhood

of zero, by bipolar theorem. Therefore, the proposition follows from a theorem

of Banach-Dieudonne, characterizing weakly closed subspaces of dual of Frechet

spaces. Assertion relative to uniformly bounded increasing directed set follows

from preceeding compactness.

An important notion, essential for our analysis, is summing up in the

following

Definition 2. Let 81 be an ordered vector space with positive cone 8I+.

A vector topology <8 on 81 is said to be order-convex if it admits a base of

neighborhoods of the zero consisting of order-convex sets. When it is so,

the cone 8l+ is called a normal cone for (91, #).

Recall that a subset A of 91 is order-convex, if [0l5 a2~\^A whenever al9

a2eA, and a1^a2. Since this definition is mainly adapted for real ordered

vector spaces, we will from now on turn our attention on the real vector space

of symmetric elements of a *-algebra 91, or, more generally on the set 91^ of

symmetric elements of a subspace 91 of B(X>, £>), stable under involution and con-

taining a cofinal subset of the positive cone of B(D, T)). Such an 91 splits in

the topological direct sum 9l = 9I^©i9I^ under p, and it follows that the

study of 2l# and 91 are equivalent,
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This question of normality of such an 91 has not been solved in its great

generality. Only positive answers has been obtained in particular cases [8],

[1] and, due to this fact, normality of 9l+ will be required in the next propo-

sitions. Let us note that normality is preserved under bijective positive linear

maps, since such applications preserve p-norrns (the same proof as in [9]).

Proposition 6. Let 91, 23 be subspaces of B(1), D), stable under involution

and containing a cofinal subset of the positive cone of B(X), D) with 9lc:23.

Denote the embedding from 91 to 23 by i. If the positive cone 9l+ is normal

under p, then the following properties holds:

1° the space (23, p) induces on 91 the topology (91, p),

2° the transposed mapping ii of the strong dual 23' of 93 into the strong

dual 9T q/91 is a surjective homomorphism of Freehet spaces. Every bounded

subset of strong 91' is contained in the canonical image of a bounded subset

of strong 23'.

3° For every sequence y^ in 9T tending to zero, there exists a sequence

Xj in 93' tending to zero such that ti(xj) = yjfor every jEN,

4° the strong bidual 23" induces on 91" the topology of strong bidual of

91". The positive cone 0/91", the bipolar 0/9I+, is generating in 91" and normal.

Proof. For first assertion, let Fbe a zero-neighborhood of (91, p), assumed

convex, disked and order-convex for the order of 91. Denote [F] the saturated

hull of V relatively to the order of 23: [F] consists of elements Tof 23 for which

there exists S1 and S2 in V with S1^T^S2. It follows that [F] is convex,

disked, and satisfies [F] n 91 =F. Therefore it remains to show that [F] is a

zero-neighborhood of (23, p). Put 91 = Wy 9lAj9 F7- = Fn 9lAj, and <3& = \jJjrAj.

Clearly F7- is convex, disked and saturated for the order of 91 and the saturated

hull Wj of Vj in Jf A. coincides with the saturated hull of F7- in 23. Since Vj is

a zero-neighborhood of the normed space 91 Aj, it contains a suitable homothetic

of AJ9 implying that Wj is a zero-neighborhood of jVAj. From relation [F]

n^A.^>Wj9 we get that Fis a zero-neighborhood of (23, p), showing identity

of topologies on 91.

From normality and Proposition 1.1 [8], every positive bounded subset of

91' is contained in the image of a bounded subset of 23' and therefore the second

assertion follows from normality of 9t+ and a classical theorem of homomor-

phisms. From quasi-normability of p-topology, we deduce lifting of strongly

convergent sequences of linear forms on (91, p). Since bounded sets of 95'
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comes from bounded sets of 51', by polarity, we get that the dual 93" of 23'

induces on 51" the strong topology of 51". Seminorms of the strong dual 5T

of 51 have been explicited in [8] implying immediately that the positive cone of

51' is normal: it follows that the positive cone of 51" is generating. Now, the

topology of 51" is also the topology of uniform convergence on bounded positive

subsets of 5T which leads to normality of the positive cone of 51".

§ 2. Second Dual

Let 51 be a *-algebra or any subspace (denoted also by 51), stable under

involution and containing the given *-algebra. Endowed with bibounded

topology, 51 is a topological vector subspace of the strong dual of D®T) by

Corollary 1. By Grothendieck analysis, we know that in general a subspace

of strong dual of Frechet space does not inherit properties of the dual itself.

As a particular example, let us considerer the case where 51 is a weakly closed

subspace of 5(1), D), in the duality <T>®X>, £(£>, D)> (with vocabular of

Definition 1, 51 is an ultraweakly closed subspace of B(T>, D)). The bipolar

theorem tell us that 51 is, as vector space, the dual of a quotient P of £>®X),

therefore 51 is algebraically the dual of some Frechet space P. However, the

strong topology of 51 (i.e. the topology of uniform convergence on bounded

subsets of P) is finer than bibounded topology of 51: and equality holds if and

only if every bounded subset of P is contained in the closure of a canonical image

of a bounded subset of T)(x)T5. Bounded subsets of the strong dual of P are

equicontinuous subsets, therefore by Hahn-Banach theorem, are equicontinuous

subsets of ((X)® £>)'), contained in 51. In short, bounded subsets of 51, for

strong topology, or bibounded topology, or p-topology coincide, and a fun-

damental system of such sets can be obtained by taking order intervals [ — A, A],

A varying in 5l+ (since one has 5l = W,-6]v^i5 with ^4^0 for all /). In fact,
topology p being bornological, is the finest of these there topologies.

In order to clarify this too large generality, we will assume that the domain

X) is, under its Frechet topology, a quasi-normable space (a notion due to

Grothendieck [5]). Since all Frechet spaces met in analysis are of this type,

this can be considered as a reasonable assumption, whose interest is that it

implies properties of 51 invariant under any isomorphism of the space 51. In

fact, for some next propositions, it suffices to know (or to show) that B(D, T>)

is, under bibounded topology, a bornological space, a property weaker than
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quasi-normability of X). However, questions relative to second dual of 51

require deeper informations, deduced here from quasi-normability of X>.

Definition 3. The Frechet space X) is quasi-normable iff for every equicon-

tinuous disk A in X)' there exists an equicontinuous disk B^A such that on A

the topologies induced by strong X)' and by D^ are the same.

Note that Schwartz spaces, hence nuclear spaces, considered in Section 3

satisfy quasi-normability, and these particular situations have been already

met in [8] with examples chosen among enveloping algebras.

Proposition 7. Let 51 be a *-algebra with quasi-normable domain X> and

91 be the a-weak closure 0/51. Then

1° 51 is as a vector space, the strong dual of a Frechet space,

2° the strong topology o/9t is equal to p-topology.

Proof. Introducing the duality <X)(x)X>, 5(X>, X>)>, we see that 9C is vec-

torially the dual of the Frechet space X)(x)X>/5l0 where 51° is the polar of 91.

Since quasi-normability is closed under projective tensor products and for-

mation of quotients, the strong dual of X)®X>/5T is bornological, which implies

the second assertion.

Theorem 2. Let 51 be a subspace 0/jB(X), D), stable under involution and

containing a cofinal subset of the positive cone of 5(X), X>). Assume that X)

is quasi-normable. Then

1° the bibounded topology and the p-topology on 91 agree on bounded

subsets 0/91,

2° the space 91, endowed with p, satisfies the strict condition of Mackey

convergence. In particular, the second dual 91" of 51 is a bornological DF-

space for its strong topology.

Thus, if 95 is a subspace of B(X>, £), with S = S* and 93c9l, we get that

(95, p) agrees with (91, p) on any bounded subset of 91. The second assertion

implies the weaker following statement: if Tn is a sequence of elements of 91

= \Jt %lAi, converging to T in 91 (endowed with p-topology), there exists some

integer i and a sequence e(n) of real numbers, tending to zero such that

\((TH-T)x,x)\£e(n)(Atx,x)

for all x of X).

Proof. As usual, let 9I = UjW and B = B(^9 ^>) = \JjeN^Aj where
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(W-Aj* II \\A) and (^Af II \\A) are order-unit normed spaces, with norm || \\Aj,
induced by the positive element Af. One has B = B*, and from Corollary 1,

B endowed with bibounded topology is a DF-space. Since D(x)T> is quasi-

normable, this DF-space is bornological, therefore we get identity on B of the

bibounded topology and the p-topology.

For clarity of the text, let us adopt the following convention: if E is any set

endowed with some topology ^ and X is a given subset of £, notation (X, (£, <£))

will refer to the space X endowed with the topology induced by (£, &). Since

the space (B, p) satisfies the strict condition of Mackey convergence, there exists,

for every element ^4^0 of 31, some element Aj such that the identity mapping

((-A + B+)(](A-B+), || \\Aj)—>((-A + B+)n(A-B+),(B,p))

is bicontinuous (B+ being the positive cone of B). Put X = ( - A + B+) n (A - B+)

n8l = (-A + 8l+)nG4-8l+). By restriction to X, the spaces (X, \\ \\A) and
(X, (23, p)) are homeomorphic. But (X, \\ \\Aj) is finer than (X, (81, p)),

which is finer than (X, (B, p)), since injections from 9tAj into (81, p) and (81, p)

into (83, p) are continuous. This establish the proposition, since the assertion

relative to the second dual follows from [5] and metrisability of bounded sets.

Proposition 8. Let 81 be as in Theorem! with D quasi-normable. Denote

by P the vector subspace of the strong dual 8T of (81, p), linearly spanned

by linear forms coXiyfor x and y varying in £>. The following properties holds.

1° P is weakly dense in 81'.

2° if B and C are bounded subsets of £>, the set ojBtC of elements coxy with

x in B and y in C, is a bounded subset 0/8T included in P.

3° Every bounded positive subset of 81' is weakly contained in a bounded

subset of P of type OJBC. The positive cone 8l+ is normal for p if and only if

every bounded subset 0/8T is weakly contained in a bounded set of type OJBC.

Proof. In duality <8l, 8I'>, the polar of P is trivially the null space, there-

fore our affirmation follows from bipolar theorem. It is easy to see that the

sesquilinear map

(x, j;) e D x I) > coXty e 81'

is separately continuous, hence continuous in both variables since 15 is a Frechet

space. The image of B x C is therefore a bounded set in 8T, included in P.

Introduce now (81, %) the vector space 81 endowed with the topology of

uniform convergence on equicontinuous positive sets of 8T: clearly 8l+ is normal
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for x- The bibounded topology corresponds to the uniform convergence of

equicontinuous subsets of type COB}C and, due to polarization equality, is less

finer than (91, #). Let Fbe an open disked convex zero neighborhood of (91, #),

order-convex. By induction, we construct a sequence of elements B^O of

W = \j.<!flAi satisfying for all integer i B^Bi+1, 9lAi = 9lBi
 an<* [-Bf, BJcF.

Thus, the set Q which equals to the union of \_ — Bh 5J for I'eJV, is contained

in V and saturated for the order of 91. An adaptation of the proof of Pro-

position 6 implies the equality of (91, x) and 51 endowed with the bibounded

topology. Therefore the third assertion is a consequence of Mackey theorem.

Theorem 3. Let 91 be a *-algebra satisfying the strict condition of Mackey

convergence and D be the domain 0/91. Assume that every continuous linear

form on 9t is a-weakly continuous. Then we have the follow ings.

1° The second dual 91" of 91 can be vectorially identified to the a-weak

closure of 91. This space 91" consists of continuous sesquilinear forms on

T) x !D, satisfies 9l" = (9l")*, and the order induced by the bipolar 0/9l+ coincides

with the order of £(£>, T>). The strong topology 0/91" is exactly the p-topology

for which 91" is a complete ultrabornological DF-space.

2° The second dual 91" is a *-algebra if and only if A agrees with p on 91.

When it is the case, elements of 91" are closeable operators preserving the

domain D invariant.

It should be pointed out that the first assertion of Theorem 3 holds if 91

is any subspace of £(D, D) with 91 = 91*, containing a cofinal subset of the

positive cone of B(£>, X>) and satisfying the strict condition of Mackey con-

vergence.
Before proving this theorem, let us carry out the case of a general *-algebra.

One has naturally to introduce the universal representation n of 91, the direct

sum of all G.N.S. representations associated to positive states on 91. To be

more precise in details, if (p is a linear positive form on 91 = \Jt 9lAi, (p canonically

defines a Hilbert space H9, a dense subspace D^, of H^, and a representation

7i „ of 91 such that for Te9I, 7^(r)l>9c:l>,, ^(T) = (7r^(T)^^), with J9 the
canonical surjection of 91 onto 2)^. If T is positive in 91, one has n9(T)^0

since

for all S in 91. From [10] it follows that 7i9 is a positive homomorphism,

therefore the relation ||r||^.^l implies \\n(p(T)\\rt(p(A.}^i so that n^ defines,
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by restriction, a continuous linear map of normal of the normed space

WAV II IU)into the normed space ((n9(9f)),9(A^ \\ \\n(p(Ai^ where 7^(91)^^
is the vector subspace of 7 (̂91) consisting of operators bounded above by some

homothetic of n9(Aj). Hence, 71 (̂91) is a countably dominated *-algebra and

TT ̂  is a continuous homomorphism from (91, p) into (7^(91), p). Recall that for

Se 7 (̂91).

II 911 - cnn IQS*> *)l _ s - \(Sx, x)\l l ^ l l u ^ c x , ) - s u p . . . , - sup ,
jces.p tfj^iyij.*:, ;*;; ^ex^ UjplAv-** x)

>v

where D^ is the completion of the metric space.

In particular, in this universal representation n of 91, the algebra 7i(9T) =

©<P^O ^(2i) is countably dominated and one can choose as an invariant domain

D the direct sum of D^ (for (p e 9T+) or its completion.

Corollary 2, Let ^ be a *-algebra satisfying the strict condition of

Mackey convergence and n be the universal representation of 91. Denote

23 = 7r(9l) the *-algebra, endowed with p-topology, isomorphic to (91, p). Then,

if the positive cone of 91 is weakly normal, the space S satisfies hypothesis

and properties of the preceeding theorem: in particular, the a-weak closure

23 of 25 is isomorphic, under the bitransposed map "n of n, to the second dual

91" o/9l: the second dual 91" (or 83) is a *-algebra if and only if A agrees with

p on 91. Topology p and the bibounded topology agree on © (or on 93") if and

only if the positive cone 0/91 is normal for p.

Proof. We first show Theorem 3 with, as usual, D equals to its completion
^
D. The bilinear map j from D x X) into 91' defined by

j(x, y) = coXiy

is continuous and induces a continuous linear mapj from D(g)D into 9T satisfying

j(x®y) = tox,y From hypothesis, this application is surjective. Therefore 91'
is isomorphic to some quotient of D® D, so that the second dual 91" is vectorially

isomorphic to the orthogonal of j~l(0) in (£>(§):!))', exactly equals to bipolar of

91 in duality <D® X), (D(x) D)'>. Since a fundamental system of bounded subsets

of 9T consist of order intervals [ — At, A^], where (At)ieN is a cofinal subset of

the positive cone of 91 and these sets being <7-weakly compact, we easily deduce

the first assertion using [5].

Assume now that topologies A and p agree on 91 = WjSft^.. The topology

of the strong dual of (91, p) is therefore defined by semi-norms ||| \\\Ai for i eJV,

with
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for/e 9f. In particular, we get for x in X> and j in H

IIKjgiK-xllW.

If r belongs to 91", there exists M < + oo and ieN such that

\ T ( f ) \ ^ M \ \ \ f \ \ \ A i for feW,

hence

Thus there exists a bounded operator B acting in the Hilbert space H such that

T(cQx,y) = (BAtx, y) for x e D, y e H

Let T" be the closeable operator, denned on D by T" = BAt: clearly T" does
not depend on /. One has now to show that T"(T>)c:X>. Let us fix x in D.

The map jx

Te9l - >jx(T)=Txe%)

is continuous when T) is endowed with its Frechet topology. Indeed, it is

continuous from 91 into the Hilbert space H and our affirmation follows from

continuity of operations T-»STfrom (91, p) or from (91, A) into itself (for any S

of 91). Since D is reflexive, the bitransposed njx is a strongly continuous linear

map from 91" into D" = 1X Let us first prove that

(a) »jx(T) = T"x

for Te 91", T" being the closeable operator canonically associated to T defined by

T(a}x,y) = (T"x, y), xe2), yeH.

The map

A E 91 - > (AtAx9 y)

for x E T), j; elf is a linear continuous form on 91 (denoted o)A..Xfy) and satisfies

for re 91"

05)

Af being the closed operator equals to the adjoint of the restriction of At to I).

In fact, we note that the map y-+coA.'.Xty is continuous from the Hilbert space H

into 91', being obtained from the succession of the continuous map y-+coXfy

from H into 9T, and the continuous map of 9C into 9T obtained from trans-



770 JEAN-PAUL JURZAK

position of the operation T-*^Tm 21. It follows that relation (/?) will be true

if it is satisfied with y in D. But, y in T) implies o^A..Xty = (DXtA.y, therefore

for some suitable constant AT depending on x : hence T"x belongs to the domain

of Af and

T(coAi.Xiy) = (T"x, Aiy) = (AfT"x, y)

establishes relation (/?).

Recall that every linear continuous form / on X) can be written f ( x ) =

(Atx, y) with At and y correctly choosen (not unique) in 21 and H , and to simplify

notations we denote f=(Ai-, y)

The transposed map tjx of jx is the map from 21' into I)' given in duality

<£, »'> by

for A in 21, so that njx is defined by

with (^4r, y) varying in D' and Tin 21". But the application

f=(AC9y) - >(lfTx,y)e€

defines an element of T)" and, from reflexivity, is associated to a unique vector

of T>. Since elements (At-, y) with 3; in I) and At in 21 are strongly dense in 3V,

our vector is well determined by restriction of the preceeding map to this dense

subspace, thus coincide with T"x, proving relation (a). The positive cone

2l'+ of the dual 21' being normal, every element of 91" is a linear combination of

positive ones. Relation (r1 + iT2)* = r1-iT2 for T1 = rf and T2 = r| in 21

easily extends to 21". And, from relation (a), we get that elements of 21" and

their adjoints send the domain £> into itself.

It remains to show that 21" is a *-algebra. Let S be in 21: by transposing

two times, we see that the operation

7r(S): TG 21 - >n(S)T=ST

extends in

«7c(S): T"e2T - >S

since *7r(S) is completely defined by
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*n(S) (coXty) = cox>s*y, x, y e D

implying

("n(S)T")(a)Xty)=T"(a)XfS*y) = (T"x9 S*y) = (ST"x9 y).

In order to extend operation Se9l-»ST"e9l" with T" fixed in 51", we need to

endow 91" with the weak topology <r(9T, 91'): bounded subsets of 91" for this

topology agree with bounded subsets of the strong dual 91" since 91' is Predict,

and are weakly relatively compact subsets. The map

5(T") : S e 91 - > 5(T")S = ST"e 91"

is continuous from (91, p) into the weak dual 91" : indeed, any / in 91' can be

written as f=^T=i°>xi,yt w*tn (xt)ieN and (yOiw being cr-convergent sequences
in D, so that the map

/°(5(T") : S 6 91

can be detailed as

and, from polarization equality, it follows that this linear form is a linear com-

bination of positive ones, therefore is continuous. Thus, the second transposed
nd(T") of d(T") is a continuous linear map from the strong bidual (91", p) into

the weak dual 91". One has for x and y in D

the formula being analogous for /=ZS=i ^.y^ hence for S in 91"

having here identified operator S" with the linear form, it defines on 91'.

In short, the multiplication (S, T)e9lx9l->STe9l extends in (5"', T")

e9l"x9l"->S"T"e9T. Since 91" is bornological, this last map is separately

continuous hence continuous for both variables showing Theorem 3.

The proof of Corollary 2 is therefore straightforward. Moreover, when

9I+ (or equivalently 33+) is normal for p, any equicontinuous subsets M of 93'

corresponds to some bounded subset of the domain. To be more precise, as-

suming without loss of generality M included in S'+, we associated to each

fa of M an element xa of the domain such that /a(T) = (Txa, xa) for all T of 23.

It is immediate that the set of xa is a bounded subset we are looking for and,

topology of® or of 23" being topology of uniform convergence on equicontinuous
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subset of 23', we get equality of p-topology and bibounded topology. Other

details are trivial.

§ 3. Particular *-Algebras

This part of the work will discuss particular * -algebras often met in group

theory: namely, those for which the domain I) is a Schwartz or nuclear space,

for its natural Frechet topology. This situation of course cannot happen in

C*-theory, since Hilbert space of infinite dimension never belong to this type of

domain.

Proposition 9. Let 91 be a *-algebra or any subspace of B(S9 X)) stable

under involution containing a cofinal subset of the positive cone of £(£>, £>).

When D is a Schwartz space for its Frechet topology, one has:

1° The space (91, p) the strong dual 91' and the bidual 91" are Schwartz
*.

spaces. The completion 91 o/9l coincide with 91".

2° The positive cone 9l+ of 91 is normal. Topology p and the bibounded

topology agree on 91.

It is worthwhile to note that 91' and 91" are reflexive spaces, the situation

quite opposite to that of C*-algebras.

Proof. The projective tensor product D®D is a Frechet space and nuclear

space, therefore its strong dual is a Schwartz bornological space. If B is any

bounded subset of (91, p), with 91 = ̂ 91 ,̂ B is bounded in ($&£)' = Wj-/^,

hence precompact in some normed space (^Ai, \\ \\A), from the strict condition

of Mackey convergence. But (91A., \\ \\A) can be identified to a subspace of

(JV'A? II ILfX so that B is precompact in (91, p). Since space (91, p) is quasi-
normable it is a Schwartz space. From Mackey theorem, the dual 91" of strong

9T can be identified to the subspace of the weak completion of 91 generated by

weak closures of bounded subsets of 91. Since we deal with Schwartz spaces,
*\

it follows that 91 agree with 91". For the second assertions, we refer to [8], or

for more details to [1].

Let 91 be a ^-algebra and S be the dense domain invariant under operators

of 91. Define

X>*=n Dom(I*)
^teSl

where A is the closure of the closeable operator A defined on X), and A* be
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its adjoint which is a closed operator in the Hilbert space completion of 3).

Clearly D c B* and it is convenient to introduce the following.

Definition 4. The domain £> is called symmetric iff T) = X)^.

Symmetry of the domain does not depend on the algebraic structure of

31, so that our terminology seems more adapted than [10].

Proposition 10. Let 31 be a *-algebra and f be a linear positive (res p.

continuous) form on (31, p). Assume T) is symmetric and is a Schwartz space.

Then there exists, in the Hilbert space H an orthonormal system {(pt}ieN of

vectors of X) and real numbers A f ^0 (resp. A,- complex numbers) such that for

every To/ 31

i=0

the preceeding series being absolutely convergent for all T.

Note that the converse of the proposition holds : every linear form on 31, of

type T-» £/!,•( Ti^, W (obvious notations), with absolutely converging series for

every T of 31, is continuous. Indeed, such a form is a linear combination of

positive ones.

More generally, if B is a bounded subset of the strong dual of 31= W^S^.

the normality of 3l+ (from Proposition 9) implies that there exists bounded

positive subsets Bl and B2 of 31' such that BaBi~B2. And, from [9], bounded

positive sets of 31' consist of sets {/a}a6j of positive linear forms satisfying

sup/a(4)<+oo
aeJ

for all i of N.

Lemma 1, Let 3l = W,-9l^. be a *-algebra, containing the set 3? of all

bounded operators B of finite rank, acting in the Hilbert space H, and satisfying

£(D)c=D, jB*(D)c:D. // D is a Schwartz space, the Hilbert space H is

separable and any element 0/31 can be approximated in some suitable normed

space 9lAi by elements of^. In particular, & is dense in (31, p)for p-topology.

Note that even the identity operator is limit of elements of & for p-topology.

Proof of the lemma. Since D is Frechet-Montel, D is separable [3],

hence contains a countable dense subset. Noting that the norm of the Hilbert

space H induces a continuous norm on X>, we get separability of H.

Let \l/1,...,\l/n,.... be an orthonormal basis of H consisting of elements of

D. Let Bn be the finite rank operator defined by
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Let A be in 91 and An = A-Bn. One has, for every x of D

lim\\Bnx-x\\=Q.
«~>00

Elements (Bn— 1) can be viewed as a linear continuous map from D into H and

the preceeding relation means that the sequence (Bn — Id) is simply convergent on

D, hence uniformly convergent on any compact subset of D, or any bounded

subset of £>, since D is Montel. Linear forms

xe% - >((Bn-l)x,y)

for y varying in the unit ball of H and n varying in the set of integers, tends uni-

formly to zero in the strong dual D; of D, and quasinormability of D shows that

(Bn — 1) tends to zero in some normed space $JIA ([8]). Namely, we can find

A in 91 and a sequence s(ri) of reals numbers converging to zero satisfying

\\(Bn-l)x\\^s(n)\\Ax\\

for all x of D. Now this leads to

\(A-Anx, x)\ = \((l-BJ, A*x)\£e(n)\\A*x\\ \\Ax\\

showing so approximation of A by the An in the normed space $1AA*+A*A.

One immediately deduces the density of & in (91, p).

Proof of the proposition. The *-algebra 91 can be written as 91= W Sfc^Jxk
fcelV

with for every integer /c and x of D, ||Akx|| ^ ||x|| and Ak^0. Denote fi(D)

the *-algebra of all operators, bounded or not, which together with their adjoint

are defined on I), and let this domain invariant under their action. With

natural notations, one has £(!)) = \J I&N >^ A*kA*- Assume / is a linear positive
form on 91, and choose / a positive linear form on £(D), extending /, from [8]

Proposition 1. The restriction of/ to each normed space ^AlAk being con-

tinuous, there exists, for every integer /c, a finite number Mk such that

for Tin ^A*kAk. Denote, for <p and \j/ in D, by (-, <p)i/f, the rank one operator

associated to the one-dimensional projector x e £>-»(;c, cp)\j/. One has

thus we get a bounded positive operator t, acting in the Hilbert space H, with

property
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Since ( • , cp)cp is positive in £(D), t is hermitian and the relation

implies t*(H) = t(H)c:r\keNDom(A%) = D^D. As D is a Schwartz space,

the injection from X) into H is a linear compact map. From closed graph

theorem, f is continuous from the Hilbert space H into the Frechet space T),

implying that t is a compact operator in the Hilbert space H. Let {(pi}ieN be

an orthonormal basis (necessarily countable) associated to the spectral decom-

position of t. One has ^ = A-cp . from some suitable A^O. Therefore, the re-

lation r(H)c:D implies that cpte D for A f>0.

Let us now show that, for every A in £(X>), the series X?=o &n(A(pn9 cpn)

converges absolutely. The element A belonging to some ^Ajc or ^A*kAk, we

can assume A equal to Ak. Put for n and k in N,

i=0

Clearly ^^n) belongs to £(X>) and

ouu —7 — ̂  - j - r — — ̂  — — OUp - n — -. - rr*

xe® (AkAkx9 x) 2 X6$ \\Akx\\

gives \f(AJ\£Mk: but

thus

From positivity of terms of this series, we deduce the convergence, and the

correspondence

n=0

is clearly a positive linear form, which agree with / on operators of rank one,

therefore on £(X5) by Lemma 1 and [8] Theorem 1.

Let us now turn to the case that/continuous on (21, p). We can assume/

is hermitian on 21, and from Hahn-Banach theorem, / can be extended to an

hermitian linear continuous form on (fl(D), p): indeed, from Proposition 6,

the space £(D) endowed with p induces on the subspace 21 the topology p.

An adaptation of preceeding arguments leads to a compact operator t hermitian

in the Hilbert space H, and absolute convergence of series is obtained by in-
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troducing the A[n^ uniquely with respect to vectors cpt associated to scalars

Af of same sign.

Corollary 3. Let 91 be a *-algebra with £> nuclear and H be the Hilbert

space completion of 1X Denote Qb(H, D) the real vector space of continuous

linear map t from the Hilbert space H into the Frechet space X) such that

t = t*, endowed with topology of uniform convergence on the unit ball of H.

Then we have the followings.

1° The space (91, p) is a nuclear DF-space and its strong dual 91' is a nuclear

Frechet space.

2°) // T) is symmetric, any hermitian linear continuous linear form f on

(91, p) can be written

f(A) = Tr(At), A eft

for some suitable teQb(H, X>): here Tr stands for usual trace in H. If f is

positive, t can be choosen positive. The correspondence te£,b(H9 !D)->/e9T,

associated to the preceeding relation is well defined and is a surjective homo-

morphism of Frechet spaces exchanging bounded sets.

The proof is left to the reader.
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