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Unbounded Operator Algebras and DF-Spaces

By

Jean-Paul JURzAK*

Introduction

This paper concern the study of =x-algebras, that is to say, algebras of
operators, bounded or not, defined on a dense invariant domain ® of some
Hilbert space H. Such objects, suitably topologized, are natural DF-spaces of
analysis [5], and the aim of this paper is to present a development similar to
that of C*-algebras. The work has been divided as follows. In first part, we
examine properties of the domain D, and this leads to the analysis of the set
B(D, D) of continuous sesquilinear forms on D x D: this space is a DF-space,
and admits a predual which is a Fréchet space. Of course, B(D, D) plays the
role of the algebra of all bounded operators of C*-algebras. The question of
normality of the positive cone of U is solved for particular s-algebras 2 (see
part three), and its central role is described in Proposition 6. Second part
describes the second dual of . Third part is concerned with particular *-
algebras, for which we get an explicit description of the dual. The topological
contents of such algebras are quite opposite to that of C*-theory. It should be
pointed out that the study of positive linear forms on special =-algebras has been
undertaken, without topology, by Shermann [11] and Woronowicz [12], and
their methods are connected to our topological analysis. Theory of duality in
locally convex spaces, mainly in Fréchet spaces, is essential for our study, and
our bibliography in this direction is very incomplete. The reader will find main
notations of this work in [9]: though [8] contains [9], its knowledge is not
necessary for the understanding of this paper.

Preliminaries

In this paper, we call x-algebra, in a Hilbert space H, an involutive algebra
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A of operators, not necessarily bounded, all defined on a domain ® dense in H,
with the following properties:

1°) for A€ ¥, the adjoint operator A* satisfies Dom A*>D and 4ADcD,
A* U,

2)for AeUA, BeUA, xeD we have

(A+B)x=Ax+ Bx, (4AB)(x)=A(Bx).

Moreover 1€ A. An operator AeW is called positive (written AeA*, or
AZ=0)iff (Ax, x)=0 for all xe . Such an element defines canonically a vector

subspace
N, ={TeW; p(T)< + o}

where by definition

pAT):f}g%, <%=+oo for /I>O>.
It follows that 9%, has a natural norm given by p,. Clearly, p, (restricted to
9,) is the norm associated to the order-unit 4 of M ,: it is convenient to write
IT| 4 instead of p,(T). It is immediate that subspaces 9 ,, for A varying in
A+, constitute an inductive system of normed spaces: by definition, the locally
convex inductive limit topology of the system of normed spaces (9, | |.0),
for A e U*, is called p, and the topological space so obtained is denoted simply
(U, p): one has A=\ 4,,9,. It is easy to see that topology p can be con-
structed from a sequence of subspaces 9, , 4,€ A* for ne N, if and only if the
positive cone A+ of A admits a cofinal subset, for its natural order: equivalently,
if and only if the domain D is a metric space under its natural topology, defined
by semi-norms x € D—||Ax|| for A varying in U. Algebras of this type have
been called, in [9], countably dominated =-algebras. Since all examples met
in practice are of this form, the paper will deal only with countably dominated
x-algebras, denoted simply #-algebras.

Thus, a =-algebra U, endowed with p, is a separated DF-space, and the strong
dual %' is a Fréchet space. If D is the completion of the metric space D, D is
a Fréchet space, and obviously equal to N 4.y Dom (A4) (here, A stands for the
closure of the operator A). It is important to note that the estimation p,(T),
calculated with respect to D or 55, defines the same numbers, so that we can
assume in any theorem or proof, the equality between D and D.

More generally, let A=\, .y N4, be a *»-algebra, and M be a vector space of
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continuous sesquilinear forms on D x D, M containing U and satisfying M = M*,
where B— B* is the involution of M given by B*(x, y)=B(y, x) (for x, y in D).
Here elements T of U are identified to forms f: (x, y) € Dx D—-f(x, y)=(Tx, y):
and f* correspond therefore to element T* of 2A. Of course, one has M=M,
@iM, where M, is the real vector space of hermitian sesquilinear forms of
M. Note that M, has a natural order <, associated to the cone M™*, with

Mt={feM; B(x, x)=0 for all x of D}.
For B taken in M, there exists M < + oo and i € N such that
IBx, MI=M|Ax] Ayl
hence

IB(x, x)| = M(A}Ax, x).

Therefore, every cofinal subset of A" is cofinal in M*. It follows that we
can introduce, for f € M, the quantity

1B(x, x)| _ [B(x, x)] 2
i:lg (ij’ x) _il:g (ij’ x) (6'=+w for l>0>

which clearly defines, as precedently, a normed space (4", || [l4,) with order
unit 4; and a natural topology p on M given by

(M, p)=indlim (4", | I.1)-

One check that linear forms w, , (x being in D) on M, defined by

M — @, (B)=B(x, x)

are continuous, hence (M, p) is separated. Moreover, since every simply
bounded set of sesquilinear continuous forms on D x D is equicontinuous, a
fundamental system of bounded sets of (M, p) is given by intervals [—4, 4],
with 4 varying in M* (or UA"). We recall that [A, B], for A, B in M+, denotes
the set (A+M*)n (B—M™).

Of course, one can endow U or M with many other topologies. For ex-
ample, we can put on M the topology of bibounded convergence (resp. bicompact
convergence...) which is, taking in account the polarization equality, given by
semi-norms

T— sup |(Tx, x)|
xeB

for B varying in the family of bounded sets (resp. compact...) of 2. It is trivial
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that bounded sets for these topologies agree with bounded sets of (M, p). But,
these topologies are a priori not sufficiently fine, and it is not known, in general,
if vector spaces so obtained are quasi-barreled, or if their strong dual is complete.
Topology p introduced is exactly the bornological space associated with U
endowed with bibounded topology, and invariance of p under isomorphisms,
as many other properties [9], make interest in this approach.

A technical topology of some interest, in the study of a given *-algebra A,
can be obtained by introducing estimations of the form sup,. | Tx|/]|Ax],
with T, A in 2, and usual convention 1/0=+ oo for A>0: such a procedure
leads, for every A of U, to a natural definition of the normed space (3, || |0,
hence to a topology, called A4 in [9], equal by definition to the locally convex
inductive limit topology of the system of normed spaces (M, || |l 4€N).
Continuity of multiplication (S, T) e A x A—-STe A is equivalent to the equality
of topologies A and p, [8], thus presence of A is indispensable only for certain
*-algebras.

§1. Generalities

Let D be the domain of a given #-algebra A=\, .y N,,, and H be the
Hilbert space completion of the prehilbert space ©. As mentioned in intro-
duction, we can assume, without loss of generality, the topological space D
equal to its completion D: it follows that D is a Fréchet space, under semi-norms
xeD—|A4x| (for ie N).

Proposition 1. If M is a bounded subset of the strong dual D' of D, then
there exists an integer i and a real number «, such that M is included in the set
of linear forms f on D, of type f(x)=(A4;x, y), with y varying in H, with norm
smaller than a.

In particular, if the Hilbert space H is separable, the strong dual D’ is
separable, therefore bornological. Converse of the proposition is trivial.

Proof. Since D is a Fréchet space, M is an equicontinuous set, therefore
there exists i e N and «>0 such that

LS Sall4;x]]
for all x of D and f of M. We can assume A¥A4;=1d, and we get
f@I<elul  for ued(D)
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having introduced f by the relation
J(AX)=f(x)

which leads immediately to the result. Let us now assume that H is separable,
and denote {y;} a sequence of vectors dense in the Hilbert space H. Linear
forms (4;-, y;), for i and j varying in N, are dense in the strong dual D’, because
one has, for a given y of H

sup [(4ix, )= (4x, y)I= |y —yjlisup || Aix]
which tends to zero when y; tends to y in H, for all bounded sets B of D.

Proposition 2. Let D be the domain of a *-algebra U. Then, D is a
Schwartz space (resp. a nuclear space) if and only if U can be written A=
Uien Ryfor A=\U ey A 4 ), A;A7}; being, for every i€ N, a compact operator
(resp. a nuclear operator) acting in the Hilbert space H.

Proof. Every A of U defines a semi-norm p, on D by p,(x)=|Ax|,
hence defines the disked neighborhood U={x e ®D; ||Ax| <1}, the normed space
Dy with “unit ball U”, and ’iA)U the Banach space completion of ;. When
A*A=1d, Dy (resp. @U) can be identified with a subspace (resp. a closed sub-
space) of H, by the map

xe®Dy— AxeH

Taking B another element of 9, and denoting by V the corresponding neigh-
borhood in D, we see that V< U if and only if |Ax]| £ || Bx| for all xe®. Thus,
the canonical map from ZDV into SDU corresponds to the operator AB™!, acting
in the Hilbert space H (in fact, AB~! is defined on B(®)=B(D) and is extended
to whole H by choosing its value equal to zero on the orthogonal complement of
B(®)). Now, the possibility of choosing V arbitrarily small means that we can
take, for every given ie N, an element B of U such that ||Bx||=|4;x]| for all
xe®D. Therefore, the existence of operators 4; follows from definitions of
nuclear and Schwartz spaces [5], [6].

Proposition 3. Under its natural topology, D is a reflexive Fréchet space,
and this property holds for every quotient and every closed subspace of a
finite product of ®. Bounded subsets of ® are relatively weakly compact
subsets.

To be more precise, the proof of the last proposition shows that ® is iso-
morphic to a topological vector subspace of a topological vector product of a
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family of Hilbert spaces. The affirmation relative to a finite product is obtained
by finite product of copies of D and weak compactness follows from reflexivity.

Using now a criterion in [6] page 70 remarque 2, we deduce

Theorem 1. Every bounded subset of the Fréchet space DR®D is con-
tained in the canonical image of the unit ball of a space D,®D, where A is
a bounded closed disk if ©.

Here, ® stands for the projective tensor product. Thus, from [6], we get

Corollary 1. The set B(D, D) of continuous sesquilinear forms on D
x D endowed with bibounded topology, is the strong dual of the Fréchet space
DRD.

The natural duality (D®D, B(D, D)) leads us to introduce the following.

Definition 1. We call the weak topology on U (resp. the o-weak topology),
relative to D®D, the topology on A induced by o(B(D, D), DR®D) (resp. by
o(B(D, D), DR®D), A being an arbitrary subset of B(D, D).

In other words, the weak topology on a linear space 2 is the topology
associated to semi-norms

T— (Tx, y)|

for x and y varying in D="2>. Clearly, the dual of U for this topology is the
linear span of the w, ,, with x, y belonging to ®. The g-weak topology on
is the topology defined by semi-norms

T— [ng (Tx;, x|
or

T— |5 (Tx, ),

(xj)jen(resp. (¥;)jen) being any o-convergent sequence of D (i.e. 3%, A(x;, x;)
< + oo for every 4 of some cofinal set of B¥(D, D), see [8]): every element u of
DRD is indeed the sum of an absolutely convergent series > 2, ,x;®y;, with
> %4 Al <+ 00 and (x));ens (Vi)ienw Sequences of elements in D converging to zero,
thus by polarization, u is a finite sum of elements of the form v=3%, u;z;®z;,
with p; =0 for all j, % u;<+ o0 and (z;);.n @ sequence tending to zero in .
Since, for Te B(D, D) one has

(T, ng Iljzj®zj> = ng Ile(zj, zj) s
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we get semi-norms mentioned. It is clear that the dual of % for o-weak topology

is the set of linear forms X} %, wy . (x);n and (y))jey o-convergent as
indicated.

In particular, the dual of (%, weak) (resp. (%, o-weak)) is contained in the
dual of (2, p), and one can check that g-weakly continuous linear forms on
belong to the closure, relative to the topology of the strong dual of (2, p), of
the dual of (U, weak). By Ascoli theorem, the weak topology and the o-weak
topology on 2 agree on bounded sets of (2, p).

It should be pointed out that any #-algebra 2 can be naturally considered
as a subspace of the strong dual of D H, and, in this point of view, the weak
topology and the g-weak topology, relative to D® H, make sense. These notions

are of interest only when A agree with p (see [8]).

Proposition 4. Any continuous (resp. equicontinuous set of) linear forms
on DD corresponds, under trivial identification, to sesquilinear forms B on
DxD of the form f(x, y)=(BA4;x, A;y) (with x, ye D), with A; suitably chosen
in the positive cone of U, and B being any (resp. B varying in a set of uniformly)
bounded operators acting in the Hilbert space H.

Recall that the set B(D, D) is ordered by the cone B*(D, D) of positive
sesquilinear forms on D x D: and every cofinal subset of the positive cone of A
is cofinal in B*(D, D).

Proof. If B is a continuous sesquilinear form on ® x D, we get, from con-
tinuity, a relation of the form

IB(x, NI=M|Ax]| Ayl x,yeD

where M is a finile number, and A; correctly chosen. Putting f(4;x, 4;y)
=pf(x, y) we obtain a continuous sesquilinear linear form on A4;,(D)x 4,(D)
satisfying

B, v)| < Mjul o] .

It is therefore trivial that B(u, v)=(Bu, v) for some bounded operator B, acting
in the Hilbert space H and choosen equal to zero on the orthogonal complement
of A(®). The argument holds for an equicontinuous set of (2®D)’, proving
our assertion.

Proposition 5. Let A=\U;.yN,, be a subspace of B(D, D), stable under
involution and containing a cofinal subset of the positive cone of B(D, D).
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Then W is o-weakly closed if and only if intervals [ — A;, A;] of W are o-weakly
(or weakly) compacts, for all ie N. When it is the case, every uniformly
bounded increasing directed set of hermitians elements of U converges to its

least upper bound for weak or a-weak topology.

Proof. One checks easily that the involution f— f* of B(D, D) is weakly
and o-weakly continuous. Thus it is sufficient to work on the set of hermitian
elements of ¥, denoted always ¥W,. The intervals [ —A4;, 4;], and their homo-
theties, relatively to order of B(D, D), with i varying in the set of integers, form
a fundamental system of bounded sets of (B(D, D), p) and are convex disked
equicontinuous sets. These sets are also weakly and o-weakly closed, since
one has

[—A. A]={BeB(D, D); |B(x, )| £A(x, x) forall xeD}

=be {ﬂeB(ZD, fD);<\/AiECx, ) ® \/Aigcx, Pk ﬂ>§1}.

Thus, by Ascoli theorem, these intervals are g-weakly compact (or weakly

compact, DD being dense in D& D), hence are exactly polars of neighborhood
of zero, by bipolar theorem. Therefore, the proposition follows from a theorem
of Banach-Dieudonné, characterizing weakly closed subspaces of dual of Fréchet
spaces. Assertion relative to uniformly bounded increasing directed set follows
from preceeding compactness.

An important notion, essential for our analysis, is summing up in the
following

Defimition 2. Let 2 be an ordered vector space with positive cone U*.
A vector topology # on U is said to be order-convex if it admits a base of
neighborhoods of the zero consisting of order-convex sets. When it is so,
the cone Ut is called a normal cone for (%, ¥).

Recall that a subset 4 of A is order-convex, if [a,, a,]< A whenever a,,
a,€A, and a;<a,. Since this definition is mainly adapted for real ordered
vector spaces, we will from now on turn our attention on the real vector space
of symmetric elements of a x-algebra U, or, more generally on the set A, of
symmetric elements of a subspace U of B(D, D), stable under involution and con-
taining a cofinal subset of the positive cone of B(D, D). Such an U splits in
the topological direct sum A=W ,DiA, under p, and it follows that the
study of A, and A are equivalent.
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This question of normality of such an U has not been solved in its great
generality. Only positive answers has been obtained in particular cases [8],
[1] and, due to this fact, normality of 2A* will be required in the next propo-
sitions. Let us note that normality is preserved under bijective positive linear
maps, since such applications preserve p-norms (the same proof as in [9]).

Proposition 6. Let A, B be subspaces of B(D, D), stable under involution
and containing a cofinal subset of the positive cone of B(D, D) with A<B.
Denote the embedding from U to B by i. If the positive cone At is normal
under p, then the following properties holds:

1° the space (B, p) induces on A the topology (A, p),

2° the transposed mapping 'i of the strong dual B' of B into the strong
dual W of W is a surjective homomorphism of Fréchet spaces. Every bounded
subset of strong ' is contained in the canonical image of a bounded subset
of strong B'.

3° For every sequence y; in W tending to zero, there exists a sequence
x; in B’ tending to zero such that 'i(x;)=y; for every je N,

4° the strong bidual B" induces on A" the topology of strong bidual of
A”. The positive cone of W, the bipolar of U, is generating in N” and normal.

Proof. For first assertion, let ¥ be a zero-neighborhood of (2, p), assumed
convex, disked and order-convex for the order of 2. Denote [ V] the saturated
hull of V relatively to the order of B: [V] consists of elements T of B for which
there exists S; and S, in V with S;<T<S,. It follows that [V] is convex,
disked, and satisfies [V]n A=V. Therefore it remains to show that [V] is a
zero-neighborhood of (B, p). Put A=U; R, , V;=Vn%R,, and B=\U; 4/,
Clearly V; is convex, disked and saturated for the order of U and the saturated
hull W; of V; in &, coincides with the saturated hull of ¥; in B. Since V; is
a zero-neighborhood of the normed space 9, , it contains a suitable homothetic
of A;, implying that W; is a zero-neighborhood of .#°, . From relation [V]
N 4,>W;, we get that V' is a zero-neighborhood of (B, p), showing identity
of topologies on .

From normality and Proposition 1.1 [8], every positive bounded subset of
A’ is contained in the image of a bounded subset of B’ and therefore the second
assertion follows from normality of ¥+ and a classical theorem of homomor-
phisms. From quasi-normability of p-topology, we deduce lifting of strongly
convergent sequences of linear forms on (2, p). Since bounded sets of B’
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comes from bounded sets of ', by polarity, we get that the dual B” of B’
induces on A" the strong topology of A”. Seminorms of the strong dual A’
of 2 have been explicited in [8] implying immediately that the positive cone of
A’ is normal: it follows that the positive cone of " is generating. Now, the
topology of A" is also the topology of uniform convergence on bounded positive
subsets of A’ which leads to normality of the positive cone of 2U”.

§2. Second Dual

Let A be a #-algebra or any subspace (denoted also by %), stable under
involution and containing the given =-algebra. Endowed with bibounded
topology, U is a topological vector subspace of the strong dual of DD by
Corollary 1. By Grothendieck analysis, we know that in general a subspace
of strong dual of Fréchet space does not inherit properties of the dual itself.
As a particular example, let us considerer the case where U is a weakly closed
subspace of B(D, D), in the duality (D®D, B(D, D)) (with vocabular of
Definition 1, U is an ultraweakly closed subspace of B(®D, D)). The bipolar
theorem tell us that U is, as vector space, the dual of a quotient P of D®D,
therefore U is algebraically the dual of some Fréchet space P. However, the
strong topology of U (i.e. the topology of uniform convergence on bounded
subsets of P) is finer than bibounded topology of 2: and equality holds if and
only if every bounded subset of P is contained in the closure of a canonical image
of a bounded subset of D®D. Bounded subsets of the strong dual of P are
equicontinuous subsets, therefore by Hahn-Banach theorem, are equicontinuous
subsets of (D®D)’), contained in A. In short, bounded subsets of A, for
strong topology, or bibounded topology, or p-topology coincide, and a fun-
damental system of such sets can be obtained by taking order intervals [ — A4, A],
A varying in UA* (since one has W=\, xRN, with 4,20 for all i). In fact,
topology p being bornological, is the finest of these there topologies.

In order to clarify this too large generality, we will assume that the domain
D is, under its Fréchet topology, a quasi-normable space (a notion due to
Grothendieck [5]). Since all Fréchet spaces met in analysis are of this type,
this can be considered as a reasonable assumption, whose interest is that it
implies properties of U invariant under any isomorphism of the space 2. In
fact, for some next propositions, it suffices to know (or to show) that B(D, D)
is, under bibounded topology, a bornological space, a property weaker than
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quasi-normability of D. However, questions relative to second dual of U
require deeper informations, deduced here from quasi-normability of D.

Definition 3. The Fréchet space D is quasi-normable iff for every equicon-
tinuous disk A4 in D’ there exists an equicontinuous disk B> A4 such that on 4
the topologies induced by strong D’ and by D} are the same.

Note that Schwartz spaces, hence nuclear spaces, considered in Section 3
satisfy quasi-normability, and these particular situations have been already
met in [8] with examples chosen among enveloping algebras.

Proposition 7. Let U be a x-algebra with quasi-normable domain © and
A be the a-weak closure of W. Then

1° U is as a vector space, the strong dual of a Fréchet space,

2° the strong topology of W is equal to p-topology.

Proof. Introducing the duality (<D®D, B(D, D)>, we see that U is vec-
torially the dual of the Fréchet space D® D/2° where U° is the polar of .
Since quasi-normability is closed under projective tensor products and for-
mation of quotients, the strong dual of D& D/UA° is bornological, which implies
the second assertion.

Theorem 2. Let U be a subspace of B(D, D), stable under involution and
containing a cofinal subset of the positive cone of B(D, D). Assume that D
is quasi-normable. Then

1° the bibounded topology and the p-topology on U agree on bounded
subsets of U,

2° the space U, endowed with p, satisfies the strict condition of Mackey
convergence. In particular, the second dual W" of W is a bornological DF-
space for its strong topology.

Thus, if B is a subspace of B(D, D), with B=B* and B <=, we get that
(B, p) agrees with (2, p) on any bounded subset of 9. The second assertion
implies the weaker following statement: if T, is a sequence of elements of A
=\; N, converging to T in A (endowed with p-topology), there exists some
integer i and a sequence &(n) of real numbers, tending to zero such that
I((T,,— T)x, x)| S&(n)(4;x, x)
for all x of D.

Proof. As usual, let A=\ ;;x N, and B=B(D, D)=\U;pnt",, Where
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My | 1l4) and (# 4, || 14,) are order-unit normed spaces, with norm || [,
induced by the positive element A;. One has B=B*, and from Corollary 1,
B endowed with bibounded topology is a DF-space. Since D®D is quasi-
normable, this DF-space is bornological, therefore we get identity on B of the
bibounded topology and the p-topology.

For clarity of the text, let us adopt the following convention: if E is any set
endowed with some topology ¢ and X is a given subset of E, notation (X, (E, %))
will refer to the space X endowed with the topology induced by (E, ¥). Since
the space (B, p) satisfies the strict condition of Mackey convergence, there exists,
for every element A=0 of 2, some element A4; such that the identity mapping

(=4+B)N(A=B%), | ll4)— (—=4+B*)n(4—-B"), (B, p))

is bicontinuous (B* being the positive cone of B). Put X=(—A+B*)n(4A—B")

NA=(—A4+A*)n(A-U*). By restriction to X, the spaces (X, | |,,) and
(X, (3B, p)) are homeomorphic. But (X, | |,,) is finer than (X, (%, p)),
which is finer than (X, (B, p)), since injections from 9, into (2, p) and (U, p)
into (B, p) are continuous. This establish the proposition, since the assertion
relative to the second dual follows from [5] and metrisability of bounded sets.

Proposition 8. Let U be as in Theorem 2 with D quasi-normable. Denote
by P the vector subspace of the strong dual W of (U, p), linearly spanned
by linear forms w, , for x and y varying in ©. The following properties holds.

1° P is weakly dense in U'.

2° if B and C are bounded subsets of D, the set wg of elements w, , with
x in B and y in C, is a bounded subset of W included in P.

3° Every bounded positive subset of W' is weakly contained in a bounded
subset of P of type wgc. The positive cone W is normal for p if and only if
every bounded subset of W is weakly contained in a bounded set of type wpg.

Proof. In duality {2, "), the polar of P is trivially the null space, there-
fore our affirmation follows from bipolar theorem. It is easy to see that the

sesquilinear map
x,))eDXxD— w, ,eW

is separately continuous, hence continuous in both variables since ® is a Fréchet

space. The image of B x C is therefore a bounded set in 2, included in P.
Introduce now (2, x) the vector space A endowed with the topology of

uniform convergence on equicontinuous positive sets of A’: clearly U is normal
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for y. The bibounded topology corresponds to the uniform convergence of
equicontinuous subsets of type wp . and, due to polarization equality, is less
finer than (2, x). Let V be an open disked convex zero neighborhood of (U, y),
order-convex. By induction, we construct a sequence of elements B;=0 of
W=\, 9N,, satisfying for all integer i B;<B;.,, N ,=Np, and [-B,;, B;jcV.
Thus, the set Q which equals to the union of [ —B;, B;] for ie N, is contained
in V and saturated for the order of . An adaptation of the proof of Pro-
position 6 implies the equality of (20, ¥) and U endowed with the bibounded
topology. Therefore the third assertion is a consequence of Mackey theorem.

Theorem 3. Let U be a s-algebra satisfying the strict condition of Mackey
convergence and D be the domain of W. Assume that every continuous linear
form on W is o-weakly continuous. Then we have the followings.

1° The second dual W' of W can be vectorially identified to the o-weak
closure of WU. This space N consists of continuous sesquilinear forms on
D x D, satisfies W' =(WU")*, and the order induced by the bipolar of W coincides
with the order of B(D, ©). The strong topology of W" is exactly the p-topology
for which 0" is a complete ultrabornological DF-space.

2° The second dual N" is a x-algebra if and only if A agrees with p on .
When it is the case, elements of " are closeable operators preserving the
domain ® invariant.

It should be pointed out that the first assertion of Theorem 3 holds if A
is any subspace of B(D, D) with A=A*, containing a cofinal subset of the
positive cone of B(D, D) and satisfying the strict condition of Mackey con-
vergence.

Before proving this theorem, let us carry out the case of a general *-algebra.
One has naturally to introduce the universal representation n of U, the direct
sum of all G.N.S. representations associated to positive states on 2. To be
more precise in details, if ¢ is a linear positive form on A=\U; N,,, ¢ canonically
defines a Hilbert space H,, a dense subspace ©, of H,, and a representation
m, of A such that for Te U, n,(T1)D,=D,, ¢(T)=(n,(T){,{,), with j, the
canonical surjection of U onto D,. If T is positive in A, one has 7n,(T)=0
since

(p(T)jo(S), jol(8) =F(S*TS) 20

for all S in A. From [10] it follows that m, is a positive homomorphism,
therefore the relation [T 4, <1 implies ||7,(T)ll,,4)=1 so that =, defines,
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by restriction, a continuous linear map of norm=1 of the normed space
(94 I 14) into the normed space ((7o(W)ry,ans | np(an)s Where mo(We, 4y
is the vector subspace of m,(2) consisting of operators bounded above by some
homothetic of n,(4;). Hence, n,(A) is a countably dominated *-algebra and
m, is a continuous homomorphism from (2, p) into (7,(2), p). Recall that for
S en,(A).
ISlnocen= S99 1, Chye, 3 = S, T, A0,

where ﬁ,, is the completion of the metric space.

In particular, in this universal representation = of U, the algebra n(A)=
@ p30 7,(Y) is countably dominated and one can choose as an invariant domain
D the direct sum of D, (for ¢ € A'™*) or its completion.

Corollary 2. Let U be a =x-algebra satisfying the strict condition of
Mackey convergence and m be the universal representation of W. Denote
B=mn(A) the x-algebra, endowed with p-topology, isomorphic to (U, p). Then,
if the positive cone of U is weakly normal, the space B satisfies hypothesis
and properties of the preceeding theorem: in particular, the o-weak closure
B of B is isomorphic, under the bitransposed map "'z of , to the second dual
A" of W: the second dual N’ (or B) is a *-algebra if and only if A agrees with
pon . Topology p and the bibounded topology agree on B (or on B") if and
only if the positive cone of U is normal for p.

Proof. We first show Theorem 3 with, as usual, D equals to its completion

D. The bilinear map j from D x D into A’ defined by
J(x, y)=ay,

is continuous and induces a continuous linear map j from D® D into A’ satisfying
j(x®y)=w,,. From hypothesis, this application is surjective. Therefore A’
is isomorphic to some quotient of D& D, so that the second dual A" is vectorially
isomorphic to the orthogonal of j~1(0) in (D® D)’, exactly equals to bipolar of
A in duality (D® D, (DR®D)’>. Since a fundamental system of bounded subsets
of A" consist of order intervals [ —A;, A;], where (4,;);.y is a cofinal subset of
the positive cone of ¥ and these sets being o-weakly compact, we easily deduce
the first assertion using [5].

Assume now that topologies 4 and p agree on A=\;N,,. The topology
of the strong dual of (U, p) is therefore defined by semi-norms || || 4, for ie N,
with
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I Way=sup {I£T)I: sup P2k <1}

xed
for fe W. In particular, we get for x in D and y in H
Nyl < 14l Il
If T belongs to A", there exists M < + co and i€ N such that
ITN=MIfll4,  for fel,
hence
IT(w, N=M|Ax] Iyl

Thus there exists a bounded operator B acting in the Hilbert space H such that

T(w,,)=(BA:x, y) for xe®, yeH

Let T” be the closeable operator, defined on D by T"=BA;: clearly T” does
not depend on i. One has now to show that T"(D)=®D. Let us fix x in D.
The map j,

TeWA— j(T)=TxeD
is continuous when ® is endowed with its Fréchet topology. Indeed, it is
continuous from U into the Hilbert space H and our affirmation follows from
continuity of operations T— ST from (2, p) or from (2, 1) into itself (for any S
of A). Since D is reflexive, the bitransposed **j, is a strongly continuous linear
map from A" into D”"=D. Let us first prove that
(o) "j/(T)=T"x
for Te A", T" being the closeable operator canonically associated to T defined by
T(w,,)=(T"x, y), xe€®, yeH.

The map

AeUA— (4;4x, y)

for xe®, yeH is a linear continuous form on 2 (denoted wy,.,,,) and satisfies
for Te A"

(:B) T(wA;’-x,y)=(Z’ikT”x’ .v)s

A¥ being the closed operator equals to the adjoint of the restriction of 4; to D.
In fact, we note that the map y—w,,.,, is continuous from the Hilbert space H
into A’, being obtained from the succession of the continuous map y—aw,,
from H into 2, and the continuous map of 2’ into A’ obtained from trans-
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position of the operation T—A4;T in A. It follows that relation (f) will be true
if it is satisfied with y in D. But, y in D implies wg,., , =, 4, therefore

IT(@ 4, x N =IT"%, AP =Ml @4, | (, =M ¥]

for some suitable constant M’ depending on x: hence T"x belongs to the domain
of A¥ and

T(wAi- x,y) = (T”x: Azy) = (ZT T”X, J’)

establishes relation ().

Recall that every linear continuous form f on ® can be written f(x)=
(4;x, y) with 4; and y correctly choosen (not unique) in %« and H, and to simplify
notations we denote f=(4;-, y)

The transposed map *!j, of j, is the map from 2’ into D’ given in duality
(D, D) by

A, (A, )0 =<4, x(Air, YD =<4, Oypx,0
for A in U, so that **j is defined by
(I (T (Ar, y)=T(@4,. 1) =(AFTx, y)
with (4;-, y) varying in " and T'in Y”. But the application
f=(4;, y) — (4¥Tx, y)eC

defines an element of D" and, from reflexivity, is associated to a unique vector
of ®. Since elements (4;-, y) with y in D and A4; in U are strongly dense in D/,
our vector is well determined by restriction of the preceeding map to this dense
subspace, thus coincide with T"x, proving relation («). The positive cone
A+ of the dual A’ being normal, every element of A" is a linear combination of
positive ones. Relation (T, +iT,)*=T,—iT, for T;=TF and T,=T% in U
easily extends to U”. And, from relation (), we get that elements of U” and
their adjoints send the domain D into itself.

It remains to show that A" is a #-algebra. Let S be in : by transposing
two times, we see that the operation

(S): Te A — n(S)T=ST
extends in
tr(S): T"e W — ST" e U”,

since !7(S) is completely defined by
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'1(S) (@y,y) =Wy 54y X, YED
implying

("7 (S)T") (@) = T"(x,5%) =(T"x, $*y)=(ST"x, y).

In order to extend operation Se A—-ST” e A" with T" fixed in A", we need to
endow A” with the weak topology o(”, A’): bounded subsets of A" for this
topology agree with bounded subsets of the strong dual U” since A’ is Fréchet,
and are weakly relatively compact subsets. The map

8(T"): SeW —> §(T")S=ST" e A"

is continuous from (2, p) into the weak dual A”: indeed, any f in A’ can be
written as f=3>2, 0, , With (x;);cx and (y;),n being o-convergent sequences
in D, so that the map

fo0(T"): SeN — f(ST")
can be detailed as

S(ST)= § (ST, 3

and, from polarization equality, it follows that this linear form is a linear com-
bination of positive ones, therefore is continuous. Thus, the second transposed
t§(T") of 6(T") is a continuous linear map from the strong bidual (", p) into
the weak dual A”. One has for x and y in ®

(o( T”))wx,y =Wrrx,ys

the formula being analogous for f= 2, w hence for S in A"

Xi,Yi?
[*O(T) (SN x,y) =S"[*H(T") ] (ws,y) = 8" (@7, ) =(S"T"x, y)
having here identified operator S” with the linear form, it defines on ".
In short, the multiplication (S, T)e UxA—-STeN extends in (S”, T")

eW x W —-S"T"eN”. Since " is bornological, this last map is separately
continuous hence continuous for both variables showing Theorem 3.

The proof of Corollary 2 is therefore straightforward. Moreover, when
A+ (or equivalently B*) is normal for p, any equicontinuous subsets M of B’
corresponds to some bounded subset of the domain. To be more precise, as-
suming without loss of generality M included in B'*, we associated to each
f, of M an element x, of the domain such that f(T)=(Tx,, x,) for all T of B.
It is immediate that the set of x, is a bounded subset we are looking for and,
topology of B or of B” being topology of uniform convergence on equicontinuous
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subset of B’, we get equality of p-topology and bibounded topology. Other
details are trivial.

§3. Particular %-Algebras

This part of the work will discuss particular *-algebras often met in group
theory: namely, those for which the domain D is a Schwartz or nuclear space,
for its natural Fréchet topology. This situation of course cannot happen in
C*-theory, since Hilbert space of infinite dimension never belong to this type of

domain.

Proposition 9. Let U be a *-algebra or any subspace of B(D, D) stable
under involution containing a cofinal subset of the positive cone of B(D, D).
When D is a Schwartz space for its Fréchet topology, one has:

1° The space (U, p) the strong dual W' and the bidual N’ are Schwartz
spaces. The completion 9 of U coincide with N”.

2° The positive cone U+ of W is normal. Topology p and the bibounded
topology agree on .

It is worthwhile to note that A’ and A” are reflexive spaces, the situation
quite opposite to that of C*-algebras.

Proof. The projective tensor product D&® D is a Fréchet space and nuclear
space, therefore its strong dual is a Schwartz bornological space. If B is any
bounded subset of (%, p), with A=\; R, B is bounded in (DYDY =\U; S 4,
hence precompact in some normed space (A4, || || 4,), from the strict condition
of Mackey convergence. But (,,, | |l4) can be identified to a subspace of
(A 4p || ll4), so that B is precompact in (2, p). Since space (%, p) is quasi-
normable it is a Schwartz space. From Mackey theorem, the dual 2" of strong
A’ can be identified to the subspace of the weak completion of ¥ generated by
weak closures of bounded subsets of 2. Since we deal with Schwartz spaces,
it follows that 9 agree with A”. For the second assertions, we refer to [8], or
for more details to [1].

Let U be a =-algebra and D be the dense domain invariant under operators
of A. Define
Dx= N Dom (4*)
Ae¥YU

where A is the closure of the closeable operator A defined on D, and A* be
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its adjoint which is a closed operator in the Hilbert space completion of D.
Clearly D<=, and it is convenient to introduce the following.

Definition 4. The domain D is called symmetric iff D=2D,.

Symmetry of the domain does not depend on the algebraic structure of
9, so that our terminology seems more adapted than [10].

Proposition 10. Let A be a *x-algebra and f be a linear positive (resp.
continuous) form on (A, p). Assume D is symmetric and is a Schwartz space.
Then there exists, in the Hilbert space H an orthonormal system {@;}iex of
vectors of © and real numbers 1,20 (resp. A; complex numbers) such that for
every T of A

f(D= X W(Tei 9),
the preceeding series being absolutely convergent for all T.

Note that the converse of the proposition holds: every linear form on %, of
type T—> A(Ty;, ¥;) (obvious notations), with absolutely converging series for
every T of 9, is continuous. Indeed, such a form is a linear combination of
positive ones.

More generally, if B is a bounded subset of the strong dual of U=\, 9,
the normality of U* (from Proposition 9) implies that there exists bounded
positive subsets B; and B, of A’ such that B B, —B,. And, from [9], bounded
positive sets of A’ consist of sets { f,},.; of positive linear forms satisfying

Supfa(Ai) <+
aed
for all i of N.

Lemma 1. Let A=\U,;%N,, be a *x-algebra, containing the set F of all
bounded operators B of finite rank, acting in the Hilbert space H, and satisfying
B(®)=D, B¥D)=D. If D is a Schwartz space, the Hilbert space H is
separable and any element of W can be approximated in some suitable normed
space N4, by elements of . In particular, & is dense in (U, p) for p-topology.

Note that even the identity operator is limit of elements of & for p-topology.

Proof of the lemma. Since D is Fréchet-Montel, ® is separable [3],
hence contains a countable dense subset. Noting that the norm of the Hilbert
space H induces a continuous norm on D, we get separability of H.

Let Y 4,..., ¥,,.... be an orthonormal basis of H consisting of elements of
D. Let B, be the finite rank operator defined by
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B, (x)= gl x, ¥, xed.

Let A be in A and 4,=A4-B,. One has, for every x of D

lim | B,x — x| =0.

Elements (B,—1) can be viewed as a linear continuous map from D into H and
the preceeding relation means that the sequence (B, —Id) is simply convergent on
D, hence uniformly convergent on any compact subset of D, or any bounded
subset of D, since D is Montel. Linear forms

xe®D— ((B,—1)x, y)
for y varying in the unit ball of H and n varying in the set of integers, tends uni-
formly to zero in the strong dual D’ of D, and quasinormability of D shows that
(B,—1) tends to zero in some normed space P, ([8]). Namely, we can find
4 in U and a sequence &(n) of reals numbers converging to zero satisfying

(B, — x| = &(n) || Ax||
for all x of D. Now this leads to

I(A—A4,x, x)|=|((1-B,), A*x)| Ze&(n)]| A*x] || 4x]

showing so approximation of 4 by the A, in the normed space 9, us e4.
One immediately deduces the density of & in (2, p).

Proof of the proposition. The =-algebra U can be written as W=\ RN ,,
with for every integer £ and x of D, ||4,x||=]x| and 4,=0. Denkgtné 2(D)
the #-algebra of all operators, bounded or not, which together with their adjoint
are defined on D, and let this domain invariant under their action. With
natural notations, one has 2(D)=\U;y A 4%4, Assume f is a linear positive
form on 2, and choose f a positive linear form on £(D), extending f, from [8]

Proposition 1. The restriction of f to each normed space 4", 4, being con-
tinuous, there exists, for every integer k, a finite number M, such that

(DI =Ml Tl 45 40

for T'in #"4*4,. Denote, for ¢ and ¥ in D, by (-, @)Y, the rank one operator
associated to the one-dimensional projector x € D—(x, @)¥y. One has

Lf((-> Ao =Millol Y1,

thus we get a bounded positive operator t, acting in the Hilbert space H, with
property
F((5 o)=Y, ¢).
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Since (-, @) is positive in (D), t is hermitian and the relation

(0, Awp)l =Mool W]

implies t*(H)=t(H)< Ny Dom (4F)=D,=D. As D is a Schwartz space,
the injection from ® into H is a linear compact map. From closed graph
theorem, t is continuous from the Hilbert space H into the Fréchet space D,
implying that ¢ is a compact operator in the Hilbert space H. Let {¢;},.y be
an orthonormal basis (necessarily countable) associated to the spectral decom-
position of t. One has tp,=2,p; from some suitable 4;,=0. Therefore, the re-
lation t(H) <D implies that ¢;e D for 1,>0.

Let us now show that, for every 4 in (D), the series > 2o 4, (Ap,, @,)
converges absolutely. The element 4 belonging to some A", or A 4,,, We
can assume A equal to 4,. Put for n and k in N,

A = i;o (-, Ap)o;.
Clearly A{" belongs to (D) and

(n)
sup 1A% D] <

[4ex|?+1xI? -
o (A A x, x) ap =1

1
2 xed [ 4, x1?
gives |f(4,)| < M,: but

J?(( < A0 0) = (to;, Axp) =LA 03,
thus

i;o A(Axp;, 0) M,

From positivity of terms of this series, we deduce the convergence, and the
correspondence

Ae QD) — go APy @)

is clearly a positive linear form, which agree with f on operators of rank one,
therefore on £(®) by Lemma 1 and [8] Theorem 1.

Let us now turn to the case that f continuous on (2, p). We can assume f
is hermitian on U, and from Hahn-Banach theorem, f can be extended to an
hermitian linear continuous form on (2(%), p): indeed, from Proposition 6,
the space £(®) endowed with p induces on the subspace U the topology p.
An adaptation of preceeding arguments leads to a compact operator ¢ hermitian
in the Hilbert space H, and absolute convergence of series is obtained by in-
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troducing the A{® uniquely with respect to vectors ¢; associated to scalars
A; of same sign.

Corollary 3. Let U be a *-algebra with ® nuclear and H be the Hilbert
space completion of ®. Denote Q,(H, D) the real vector space of continuous
linear map t from the Hilbert space H into the Fréchet space ® such that
t=t*, endowed with topology of uniform convergence on the unit ball of H.
Then we have the followings.

1° The space (U, p) is a nuclear DF-space and its strong dual W’ is a nuclear
Fréchet space.

2°) If ® is symmetric, any hermitian linear continuous linear form f on
(A, p) can be written

f(A)=Tr (41, AeA

for some suitable te ,(H, D): here Tr stands for usual trace in H. If f is
positive, t can be choosen positive. The correspondence te & (H, D)—fe W,
associated to the preceeding relation is well defined and is a surjective homo-

morphism of Fréchet spaces exchanging bounded sets.

The proof is left to the reader.
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