The First Cohomology Groups of Infinite Dimensional Lie Algebras¹⁾

By

Nobutada NAKANISHI*

Introduction

Let V be a finite dimensional vector space. We denote by D(V) the Lie algebra consisting of all formal vector fields over V. Let L be a Lie subalgebra of D(V). We are interested in the first cohomology group $H^1(L)$ of a Lie algebra L with adjoint representation.

Let L be an infinite dimensional transitive simple Lie algebra, that is, L is one of D(V), $L_{\mathfrak{sl}}$, $L_{\mathfrak{sp}}$, or $L_{\mathfrak{ct}}$. (For a notation, see §2.) It is known in T. Morimoto [5] that $H^1(D(V)) = H^1(L_{\mathfrak{ct}}) = 0$, and dim $H^1(L_{\mathfrak{sl}}) = \dim H^1(L_{\mathfrak{sp}}) = 1$.

In this paper we will treat the following two types of infinite dimensional Lie algebras:

(1) Infinite dimensional transitive graded Lie algebras $g = \sum_{p=-1}^{\infty} g_p$. (For a precise definition, see § 1.)

(2) Infinite dimensional intransitive Lie algebras $L[W^*]$ whose transitive parts L are infinite and simple. (In this case W is a subspace of V.)

In Section 3 and Section 4, we will give two criteria for $H^1(g)$ to be of finite dimension. More precisely we will prove

Theorem A. Let $g = \sum_{p=-1}^{\infty} g_p$ be an infinite transitive graded Lie algebra with a semi-simple linear isotropy algebra g_0 . Then $H^1(g)$ is finite dimensional.

Theorem B. Let $g = \sum_{p=-1}^{\infty} g_p$ be an infinite transitive graded Lie algebra whose linear isotropy algebra g_0 contains an element e which satisfies $[e, x_p] =$

Communicated by N. Shimada, February 8, 1980.

^{*} Department Mathematics, Maizuru Technical College, Maizuru 625, Japan.

¹⁾ This research was partially supported by Grant-in-Aid for Scientific Research (No. 474043), Ministry of Education.

 px_p for all $x_p \in g_p$. Then $H^1(g)$ is finite dimensional. Furthermore if g is derived from g_0 , then $H^1(g)$ is isomorphic to $n(g_0)/g_0$, where $n(g_0)$ denotes the normalizer of g_0 in $gl(g_{-1})$.

It may well be doubted if every infinite transitive graded Lie algebra g has the finite dimensional cohomology group $H^1(g)$. But unfortunately this presumption is false. In Section 5 we will give an easy condition for g to be dim $H^1(g) = \infty$. (For such a Lie algebra g, we can construct derivations of arbitrarily large negative degree.)

That is, we will prove

Theorem C. Let $g = \sum_{p=-1}^{\infty} g_p$ be an infinite transitive graded Lie algebra which satisfies $g^{(2)} = [g^{(1)}, g^{(1)}] = 0$, where $g^{(1)} = [g, g]$. Then $H^1(g)$ is infinite dimensional.

In Section 6 our objects are infinite intransitive Lie algebras $L[W^*]$. Let V=U+W (direct sum). We denote by $S(W^*)$ the ring of formal power series over W. Let L be an infinite transitive simple Lie algebra over U. Then a Lie algebra $L[W^*]$ is obtained as a topological completion of $L \otimes S(W^*)$. These Lie algebras $L[W^*]$ are obtained as the result of the classification theorem of infinite intransitive Lie algebras [6]. In determining $H^1(L[W^*])$, V. Guillemin's work is essential. Using his results we will prove

Theorem D. Let D(W) be a Lie algebra of all formal vector fields over W and let e be a basis of one dimensional center of gl(U). Then we have

$$H^{1}(L[W^{*}]) \cong \begin{cases} D(W) & \text{for } L = D(U) & \text{or } L_{\mathfrak{ct}}(U), \\ D(W) + S(W^{*}) \otimes e & \text{for } L = L_{\mathfrak{sl}}(U) & \text{or } L_{\mathfrak{sp}}(U). \end{cases}$$

Above results can be considered as a formal version of Y. Kanie [3]. In a forthcoming paper, we will give an example of an infinite intransitive Lie algebra L such that $H^1(L)=0$.

Throughout this paper, all vector spaces and Lie algebras are assumed to be defined over the field C of complex numbers.

§1. Infinite Transitive Graded Lie Algebras

In this section, we define transitive graded Lie algebras which we will study in the subsequent sections. **Definition 1.1.** Let g be a Lie algebra. Assume that there is given a family $\{g_p\}_{p \ge -1}$ of subspaces of g which satisfies the following conditions:

- a) $g = \sum_{p=-1}^{\infty} g_p$ (direct sum);
- b) dim $g_p < \infty$;
- c) $[g_p, g_q] \subset g_{p+q};$

d) For every non-zero $x_p \in g_p$, $p \ge 0$, there is an element $x_{-1} \in g_{-1}$ such that $[x_p, x_{-1}] \ne 0$. Under these conditions, we say that the direct sum $g = \sum_{p=-1}^{\infty} g_p$ or simply g is a transitive graded Lie algebra.

By conditions c) and d), g_0 is considered as a Lie subalgebra of $gl(g_{-1})$. The Lie algebra g_0 is called *the linear isotropy algebra* of g. A graded Lie algebra g is said to be *irreducible* if the representation of g_0 on the vector space g_{-1} given by $[g_0, g_{-1}] \subset g_{-1}$ is irreducible.

Definition 1.2. The space $g_0^{(p)}$ which is called *the p-th prolongation* of g_0 is defined by

$$\mathfrak{g}_0^{(p)} = \mathfrak{g}_0 \otimes S^p(\mathfrak{g}_{-1}^*) \cap \mathfrak{g}_{-1} \otimes S^{p+1}(\mathfrak{g}_{-1}^*),$$

where $S^{p}(g_{-1}^{*})$ denotes the *p*-times symmetric tensor of the dual space g_{-1}^{*} of g_{-1} .

We say that g_0 is of *finite type* if $g_0^{(p)} = 0$ for some (and hence for all larger) *p*. Otherwise we say that g_0 is of *infinite type*. Put $g_0^{(-1)} = g_{-1}$, $g_0^{(0)} = g_0$ and $\tilde{g} = \sum_{p=-1}^{\infty} g_0^{(p)}$. Then \tilde{g} has a Lie algebra structure with respect to a canonical bracket operation. We say that the transitive graded Lie algebra $\tilde{g} = \sum_{p=-1}^{\infty} g_0^{(p)}$ thus obtained is *derived* from g_0 . If g is an abstract transitive graded Lie algebra with a linear isotropy algebra g_0 , then g is considered as a graded Lie subalgebra of \tilde{g} . It is clear that if a transitive graded Lie algebra g is of infinite dimension, its linear isotropy algebra g_0 must be of infinite type.

Let A be a Lie algebra. A derivation c of A is a linear mapping from A to itself satisfying c[x, y] = [c(x), y] + [x, c(y)] for all $x, y \in A$. We denote by Der (A) (resp. ad (A)) the derivation algebra (resp. the algebra of inner derivations of A). Then, by definition, the first cohomology group $H^1(A)$ of A with adjoint representation is equal to the space Der (A)/ad (A). A derivation c of a graded Lie algebra $g = \sum_{p=-1}^{\infty} g_p$ is said to be of degree r or deg c = r if it satisfies $c(g_p) \subset g_{p+r}$ for all p.

Nobutada Nakanishi

§2. Infinite Transitive Simple Lie Algebras

It is well-known that there are the following four classes of infinite transitive simple Lie algebras over C (see [5]).

(1) $L_{gl}(n)$: the Lie algebra of all formal (or better, formal power series) vector fields in *n*-variables $x_1, x_2, ..., x_n$.

(2) $L_{\mathfrak{FI}}(n)$: the Lie algebra of formal vector fields in *n*-variables x_1 , x_2, \ldots, x_n , preserving the volume form $dx_1 \wedge dx_2 \wedge \cdots \wedge dx_n$.

(3) $L_{\hat{s}p}(2n)$: the Lie algebra of formal vector fields in 2*n*-variables x_1 , $x_2, \ldots, x_n, y_1, y_2, \ldots, y_n$, preserving the symplectic form $\sum_{i=1}^n dx_i \wedge dy_i$.

(4) $L_{ct}(2n+1)$: the Lie algebra of formal vector fields in (2n+1)-variables $z, x_1, x_2, ..., x_n, y_1, y_2, ..., y_n$, preserving the contact form $dz + 2^{-1} \sum_{i=1}^n x_i \cdot dy_i - y_i dx_i$, up to functional factors.

We will often write D(V) for $L_{gl}(n)$, where V is an *n*-dimensional vector space with a basis $\partial/\partial x_1, \ldots, \partial/\partial x_n$. Let L be one of Lie algebras D(V), L_{gl} and L_{gp} . Each L has the natural filtration $\{L_p\}_{p \in \mathbb{Z}}$ defined as follows.

$$\begin{split} L_p = L & \text{for } p \leq -1; \\ L_0 = \{ X \in L; \text{ the value } X(0) \text{ of } X \text{ at the origin } = 0 \}; \\ L_p = \{ X \in L_{p-1}; [X, L] \subset L_{p-1} \} & \text{for } p \geq 1. \end{split}$$

Then the decreasing sequence of subspaces: $L = L_{-1} \supset L_0 \supset L_1 \supset L_2 \supset \cdots$ satisfies

- (a) $\bigcap_{n=-1}^{\infty} L_p = 0;$
- (b) $[L_p, L_q] \subset L_{p+q};$
- (c) dim $L_p/L_{p+1} < \infty$.

Put $g_p(L) = L_p/L_{p+1}$. Then by (b), (c) and the definition of L_p , $p \ge 1$, we have the transitive graded Lie algebra $gr(L) = \sum_{p=-1}^{\infty} g_p(L)$. We also have the Lie algebra $L' = \prod_{p=-1}^{\infty} g_p(L)$, which is the completion of gr(L).

Under these notations we will summarize a few useful properties of L. (For the proof, see Kobayashi-Nagano [4].)

(1) Each L is an infinite transitive irreducible Lie algebra and moreover L is isomorphic to L', where the word "irreducible" means that the action of $g_0(L)$ on $g_{-1}(L)$ is irreducible.

(2) The linear isotropy algebras $g_0(L)$ of D(V), $L_{\mathfrak{sl}}$ and $L_{\mathfrak{sp}}$ are $\mathfrak{gl}(n, C)$,

 $\mathfrak{sl}(n, \mathbb{C})$ and $\mathfrak{sp}(n, \mathbb{C})$ respectively, and for $p \ge 1 \mathfrak{g}_p(L)$ is isomorphic to the *p*-th prolongation $\mathfrak{g}_0(L)^{(p)}$ of $\mathfrak{g}_0(L)$.

- (3) For $g_0(L) = \mathfrak{sl}(n, \mathbb{C})$ or $\mathfrak{sp}(n, \mathbb{C})$, it holds that
- (i) $[g_0(L)^{(r)}, g_0(L)^{(s)}] = g_0(L)^{(r+s)}$ for $r, s \ge 0$,
- (ii) $g_0(L)$ acts irreducibly on $g_0(L)^{(r)}$ for $r \ge -1$.

By the classification theorem of Kobayashi-Nagano [4], we know that there are only three classes of transitive simple irreducible Lie algebras of infinite type over C, that is, they are D(V), L_{si} and L_{sp} .

For the contact Lie algebra $L_{ct}(2n+1)$ (or simply L_{ct}), we must define another filtration.

$$\begin{split} &L_p = L_{ct} \quad \text{for} \quad p \leq -2; \\ &L_{-1} = \{ X \in L_{ct}; \langle X, \theta \rangle_0 = 0, \text{ where } \theta \text{ is the contact form} \}; \\ &L_0 = \{ X \in L_{ct}; X(0) = 0 \}; \\ &L_p = \{ X \in L_{p-1}; [X, L_{-1}] \subset L_{p-1} \} \quad \text{for} \quad p \geq 1. \end{split}$$

Using this filtration, L_{ct} is isomorphic to $\prod_{p=-2}^{\infty} g_p(L)$. For the subsequent discussion about L_{ct} , we have only to recall that

(4) $L_{-1} = [L_{ct}, L_1].$

In Section 3 and Section 6, we essentially use the following facts which were proved by T. Morimoto [5].

Theorem 2.1. Let L be an infinite transitive simple Lie algebra over C. Then

$$H^{1}(L) \cong \begin{cases} 0 & \text{for } L = D(V) \text{ or } L_{ct} \\ C & \text{for } L = L_{al} \text{ or } L_{ap}. \end{cases}$$

Remark 1. Let L be one of Lie algebras $L_{\mathfrak{sl}}$ or $L_{\mathfrak{sp}}$. Since L is isomorphic with the Lie algebra $L' = \prod_{p=-1}^{\infty} \mathfrak{g}_p(L)$, their isotropy algebras $\mathfrak{sl}(V)$ and $\mathfrak{sp}(V)$ are considered to be subalgebras of them. Let e denote a unit matrix in $\mathfrak{gl}(V)$. Then the above theorem asserts that $\mathfrak{ad}(e)$ yields a basis of one dimensional space $H^1(L)$.

Remark 2. Let gr(L) be a graded Lie algebra associated with an infinite transitive simple Lie algebra L. Then we also have $H^1(gr(L))=0$ for L=D(V) or L_{ct} , and $H^1(gr(L))\cong C$ for $L=L_{\mathfrak{sl}}$ or $L_{\mathfrak{sp}}$. These facts are particularly used in Section 3.

§3. The First Cohomology Groups of Infinite Transitive Graded Lie Algebras (I)

Throughout this section, let $g = \sum_{p=-1}^{\infty} g_p$ be an infinite (dimensional) transitive graded Lie algebra over C and let its linear isotropy algebra g_0 be semi-simple. Put $g_{-1} = V$. Then g_0 is considered as a Lie subalgebra of gl(V). First we will determine the type of g.

Since g_0 is semi-simple, we can decompose V into $V = V_1 + V_2 + \dots + V_k$ (vector space direct sum), where each V_i $(i=1, 2, \dots, k)$ is a g_0 -invariant subspace and g_0 acts irreducibly on V_i . We denote by \mathfrak{h}_i the Lie algebra of linear transformations of V_i induced by g_0 . By the natural inclusion, \mathfrak{h}_i is considered as a Lie subalgebra of $\mathfrak{gl}(V)$. We also denote it by the same letter \mathfrak{h}_i if there is no confusion. Put $\mathfrak{n}_i = \{t \in \mathfrak{g}_0; t(V_j) = 0 \text{ for all } j \neq i\}$. Then each \mathfrak{n}_i is an ideal of \mathfrak{g}_0 and $\mathfrak{n}_1 + \dots + \mathfrak{n}_k$ is a direct sum as Lie algebras. It clearly holds

(3.1)
$$\mathfrak{n}_1 + \cdots + \mathfrak{n}_k \subset \mathfrak{g}_0 \subset \mathfrak{h}_1 + \cdots + \mathfrak{h}_k.$$

Lemma 3.1. For $p \ge 1$, $g_0^{(p)} = n_1^{(p)} + \dots + n_k^{(p)}$ (direct sum).

Proof. Let $t: V \times \cdots \times V \to V$ be an element of $g_0^{(p)}$. First note that $t(v_1, \ldots, v_{p+1}) = 0$ if $v_i \in V_i$, $v_j \in V_j$ for $i \neq j$. (It is easy to see that $t(v_1, \ldots, v_{p+1}) \in V_i \cap V_j$.) Let $v_1, \ldots, v_{p+1} \in V$ and $v_i = v_i^1 + \cdots + v_i^k$ with $v_i^1 \in V_1$, $v_i^2 \in V_2$, \ldots , $v_i^k \in V_k$ for $i = 1, \ldots, p+1$. Then by the above remark, we have

(3.2)
$$t(v_1,...,v_{p+1}) = t(v_1^1,...,v_{p+1}^1) + \dots + t(v_1^k,...,v_{p+1}^k)$$
$$= t_1(v_1^1,...,v_{p+1}^1) + \dots + t_k(v_1^k,...,v_{p+1}^k)$$
$$= t_1(v_1,...,v_{p+1}) + \dots + t_k(v_1,...,v_{p+1}),$$

where t_i denotes an element of $\mathfrak{n}_i^{(p)}$ induced by t. (Since $t_i(*, v'_1, ..., v'_p) \in \mathfrak{n}_i$ for $v'_1, ..., v'_p \in V$, t_i is an element of $\mathfrak{n}_i^{(p)}$.) Since $\mathfrak{n}_1 + \cdots + \mathfrak{n}_k$ is a direct sum, our assertion is obvious. q.e.d.

Since g is infinite dimensional and g_p is a subspace of $g_0^{(p)}$, g_0 must be of infinite type by Lemma 3.1. From now on, without loss of generality, we assume that n_1, \ldots, n_l ($l \le k$) are of infinite type and n_{l+1}, \ldots, n_k are of finite type.

Lemma 3.2. Let g_0 be a linear isotropy algebra of an infinite transitive graded Lie algebra g_b . Then there exists a Lie subalgebra g_b of finite type of $\mathfrak{h}_{l+1} + \cdots + \mathfrak{h}_k$ and g_0 is written as

(3.3)
$$g_0 = n_1 + \dots + n_l + g_b$$
 (Lie algebra direct sum),

where each ideal n_i (i=1,..., l) is isomorphic to either $\mathfrak{sl}(V_i)$ or $\mathfrak{sp}(V_i)$.

Proof. Let $\pi: g_0 \rightarrow \mathfrak{h}_i$ (i=1,...,l) be a natural projection. Since π is a Lie algebra homomorphism, $g_0/\operatorname{Ker} \pi$ is isomorphic to \mathfrak{h}_i . Recall that the quotient space of a semi-simple Lie algebra is also semi-simple. Thus \mathfrak{h}_i is semi-simple and its center is zero. Moreover each \mathfrak{h}_i acts irreducibly on V_i and is of infinite type. Hence by the classification theorem of transitive irreducible Lie algebras of infinite type, we know that \mathfrak{h}_i must be equal to either $\mathfrak{sl}(V_i)$ or $\mathfrak{sp}(V_i)$. Since \mathfrak{n}_i is an ideal of \mathfrak{h}_i , we have $\mathfrak{n}_i = \mathfrak{sl}(V_i)$ or $\mathfrak{sp}(V_i)$. $(\mathfrak{sl}(V_i) \text{ and } \mathfrak{sp}(V_i)$ are naturally imbedded in $\mathfrak{gl}(V)$.) Note that $\mathfrak{n}_1 = \mathfrak{h}_1$, $\mathfrak{n}_2 = \mathfrak{h}_2, ..., \mathfrak{n}_l = \mathfrak{h}_l$. Then we can find a subspace \mathfrak{g}_b such that $\mathfrak{n}_{l+1} + \cdots + \mathfrak{n}_k \subset \mathfrak{g}_b \subset \mathfrak{h}_{l+1} + \cdots + \mathfrak{h}_k$. Considering (3.1), we obtain the expression of \mathfrak{g}_0 as (3.3). By Lemma 3.1, we also have $\mathfrak{g}_b^{(p)} = \mathfrak{n}_{l+1}^{(p)} + \cdots + \mathfrak{n}_k^{(p)}$. Thus \mathfrak{g}_b is of finite type.

Next we will determine the type of g_1 . From (3.3) in Lemma 3.2, we have $g_0^{(1)} = \mathfrak{n}_1^{(1)} + \cdots + \mathfrak{n}_l^{(1)} + \mathfrak{g}_b^{(1)}$, and g_1 is a subspace of $g_0^{(1)}$. Without loss of generality, we assume that $g_1 \cap \mathfrak{n}_1^{(1)} \neq 0, \ldots, g_1 \cap \mathfrak{n}_m^{(1)} \neq 0$ and $g_1 \cap \mathfrak{n}_{m+1}^{(1)} = 0, \ldots, g_1 \cap \mathfrak{n}_l^{(1)} = 0$. Then we have

Lemma 3.3. g_1 has the following form:

 $g_1 = n_1^{(1)} + \dots + n_m^{(1)} + H_1,$

where H_1 is a subspace of $\mathfrak{g}_b^{(1)}$.

Proof. For i = 1, ..., m, $g_1 \cap \mathfrak{n}_i^{(1)}$ is an n_i -invariant subspace of $\mathfrak{n}_i^{(1)}$. By the property (3) (ii) in Section 2, we have $g_1 \supset \mathfrak{n}_1^{(1)} + \cdots + \mathfrak{n}_m^{(1)}$. Hence there exists a subspace H_1 of $\mathfrak{n}_{m+1}^{(1)} + \cdots + \mathfrak{n}_l^{(1)} + \mathfrak{g}_b^{(1)}$ such that $g_1 = \mathfrak{n}_1^{(1)} + \cdots + \mathfrak{n}_m^{(1)} + H_1$ and $H_1 \cap \mathfrak{n}_{m+1}^{(1)} = 0, \ldots, H_1 \cap \mathfrak{n}_l^{(1)} = 0$. For $j = m+1, \ldots, l$, decompose $t \in H_1$ into $t = t_{m+1} + \cdots + t_l + t_b$ with $t_{m+1} \in \mathfrak{n}_{m+1}^{(1)}, \ldots, t_l \in \mathfrak{n}_l^{(1)}, t_b \in \mathfrak{g}_b^{(1)}$. Define a subspace A_j of $\mathfrak{n}_j^{(1)}$ by

$$A_{j} = \{t_{j} \in \mathfrak{n}_{j}^{(1)}; t = t_{m+1} + \dots + t_{l} + t_{b} \in H_{1}\}.$$

For all $x_j \in \mathfrak{n}_j$ and $t_j \in A_j$, it holds that $[x_j, t_j] = [x_j, t] \in \mathfrak{n}_j^{(1)} \cap \mathfrak{g}_l = \{0\}$. This means that $[\mathfrak{n}_j, A_j] = 0$. Using the property (3) (ii), we have $A_j = 0$ for j = m+1, ..., l. Hence $H_1 \subset \mathfrak{g}_0^{(1)}$. q.e.d.

Since $g_p \supset [g_1, [g_1, [..., [g_1, g_1]...]$ for p > 1, g_p contains $\mathfrak{n}_1^{(p)} + \cdots + \mathfrak{n}_m^{(p)}$ by Lemma 3.3 and the property (3) (i) in Section 2. By the same argument as Lemma 3.3, we get

Nobutada Nakanishi

Lemma 3.4. For p > 1, g_p has the following form:

$$\mathfrak{g}_p = \mathfrak{n}_1^{(p)} + \cdots + \mathfrak{n}_m^{(p)} + H_p,$$

where H_p is a subspace of $g_b^{(p)}$. (For sufficiently large p, $H_p=0$ since g_b is of finite type.)

By Lemma 3.3 and Lemma 3.4, we can easily determine the form of the given infinite transitive graded Lie algebra $g = \sum_{p=-1}^{\infty} g_p$. That is, we have

Proposition 3.5. Let $g = \sum_{p=-1}^{\infty} g_p$ be an infinite transitive graded Lie algebra. Then g has the following form:

$$g = G_1 + \dots + G_m + G'_{m+1} + \dots + G'_l + G'_b \quad (direct \ sum) \ ,$$

where G_i (i=1,...,m) is of the form $gr(L_{\mathfrak{sl}}(V_i))$ or $gr(L_{\mathfrak{sp}}(V_i))$, and G'_j (j=m+1,...,l) is of the form $V_j+\mathfrak{sl}(V_j)$ or $V_j+\mathfrak{sp}(V_j)$, and G'_b is a finite dimensional Lie algebra. (From now on, we put $G'=G'_{m+1}+\cdots+G'_l+G'_b$. Then G' is a finite dimensional ideal of g.)

For computing $H^1(g)$, we need some lemmas.

Lemma 3.6. Let A be an abstract Lie algebra and let A_i (i=1,...,k) be perfect ideals of A. If $A = A_1 + \cdots + A_k$ (direct sum), then $H^1(A) \cong H^1(A_1) + \cdots + H^1(A_k)$ (direct sum).

Proof. Let $c \in \text{Der}(A)$. We denote by c_{ij} the Hom (A_i, A_j) -component of c. For $x, y \in A_i$, we have

(3.4)

$$c[x, y] = [c(x), y] + [x, c(y)]$$

$$= \sum_{j=1}^{k} [c_{ij}(x), y] + \sum_{j=1}^{k} [x, c_{ij}(y)]$$

$$= [c_{ii}(x), y] + [x, c_{ii}(y)] \in A_{i}.$$

Combined this with $A_i = [A_i, A_i]$, we obtain $c_{ij} = 0$ for $i \neq j$. Put $c_{ii} = c_i$. By (3.4), c_i induces a derivation of A_i . Hence $\text{Der}(A) = \text{Der}(A_1) + \dots + \text{Der}(A_k)$ (direct sum). Our assertion is now evident. q.e.d.

Lemma 3.7. Let A be an abstract Lie algebra such that $A = A_1 + A_2$ (direct sum) with $A_1 = [A_1, A_1]$. Moreover assume that the center of A_1 is zero. Then $H^1(A) \cong H^1(A_1) + H^1(A_2)$ (direct sum).

Proof. We can write $c = c_{11} + c_{12} + c_{21} + c_{22}$ by using same notations as Lemma 3.6. Since A_1 is perfect, we have $c_{12}=0$. Let $x \in A_1$ and $y \in A_2$. By the equation 0 = c[x, y] = [c(x), y] + [x, c(y)], we get $[x, c_{21}(y)] = 0$. This means that $c_{21}(y) \in \{\text{center of } A_1\}$. Since the center of A_1 is zero, we have $c_{21}=0$. Now it is easy to verify the assertion. q.e.d.

Combined with Theorem 2.1, we obtain finally the following theorem.

Theorem 3.8. Let $g = \sum_{p=-1}^{\infty} g_p$ be an infinite transitive graded Lie algebra with a semi-simple linear isotropy algebra g_0 . Then $H^1(g)$ is finite dimensional.

Proof. By Proposition 3.5, g has the following form: $g = G_1 + \dots + G_m + G'$, where dim $G' < \infty$. Since $G_1 + \dots + G_m$ is perfect and has no non-trivial center, we have $H^1(g) \cong H^1(G_1 + \dots + G_m) + H^1(G')$ by Lemma 3.7. On the other hand, $H^1(G_1 + \dots + G_m) \cong H^1(G_1) + \dots + H^1(G_m)$ by Lemma 3.6, and dim $H^1(G_i) = 1$ or 0 for $i = 1, \dots, m$ by Theorem 2.1. (See also Remark 2, and recall that $G_i = \operatorname{gr}(L_{\mathfrak{el}}(V_i))$ or $\operatorname{gr}(L_{\mathfrak{sp}}(V_i))$.) Thus we obtain dim $H^1(g) < \infty$.

q. e. d.

§4. The First Cohomology Groups of Infinite Transitive Graded Lie Algebras (II)

In this section, we assume that the linear isotropy algebra g_0 of $g = \sum_{p=-1}^{\infty} g_p$ contains an element e which satisfies $[e, x_p] = px_p$ for all $x_p \in g_p$. Put $g_{-1} = V$. We can write $c(e) = \sum_{p=-1}^{\infty} x_p$ with $x_p \in g_p$. For all $v \in V$, we have

$$[c(e), v] + [e, c(v)] = c[e, v] = -c(v).$$

Comparing the V-components of this equation, we obtain $[x_0, v] = 0$, and hence $x_0 = 0$ by the transitivity condition of g. We now define a new derivation c' derived from c by

(4.1)
$$c' = c + \operatorname{ad}\left(\sum_{p \neq 0} \frac{1}{p} x_p\right)$$

It is clear that c'(e) = 0.

Lemma 4.1. deg c' = 0. (For the definition of "degree" of a derivation, see § 1.)

Proof. We must show that $c'(\mathfrak{g}_p) \subset \mathfrak{g}_p$ for all $p \ge -1$. Put $c'(x) = \sum_{q=-1}^{\infty} y_q$ $(y_q \in \mathfrak{g}_q)$ for $x \in \mathfrak{g}_p$. Then we have

$$c'[e, x] = pc'(x) = p \sum_{q=-1}^{\infty} y_q = [e, c'(x)] = \sum_{q=-1}^{\infty} q y_q.$$

Hence $y_q = 0$ for $q \neq p$ and thus $c'(x) = y_p \in \mathfrak{g}_p$.

Lemma 4.2. If c' = 0 on V, then c' = 0 on g.

Proof. For $x \in g_0$ and $v \in V$, it holds that [c'(x), v] + [x, c'(v)] = c'[x, v]. By the assumption of c', we obtain [c'(x), v] = 0. Combining $c'(g_0) \subset g_0$ with the transitivity of g, we obtain c'(x) = 0. Repeating this procedure for all $p \ge 1$, we can also obtain that $c'(g_p) = 0$. Hence c' = 0 on g. q.e.d.

Let $[c] \in H^1(\mathfrak{g})$ denote an equivalence class of a derivation c of \mathfrak{g} . Since $c' = c + \operatorname{ad}\left(\sum_{p \neq 0} \frac{1}{p} x_p\right)$, we have [c] = [c']. By Lemma 4.1, a restriction of c' to V is an element of $\mathfrak{gl}(V)$. We denote this linear mapping by $c'|_V$.

Theorem 4.3. Let $g = \sum_{p=-1}^{\infty} g_p$ be an infinite transitive graded Lie algebra whose linear isotropy algebra g_0 contains an element e which satisfies $[e, x_p] = px_p$ for all $x_p \in g_p$. Then dim $H^1(g) \leq (\dim V)^2$.

Proof. Let c be any derivation of g. We define a linear mapping ψ : Der (g) \rightarrow gl(V) by $\psi(c)=c'|_V$. By Lemma 4.2, we obtain that if c is contained in Ker ψ , then c is an inner derivation. Hence our assertion is obvious.

q. e. d.

q. e. d.

In case that g is derived from g_0 , we can get the more precise result. Let $n(g_0)$ denote the normalizer of g_0 in gl(V). Then we have

Lemma 4.4. Let g be a Lie algebra derived from g_0 . Then for all $x \in n(g_0)$, ad (x) is a derivation of g.

Proof. It is sufficient to prove that $\operatorname{ad}(x)(\mathfrak{g}_0^{(p)}) \subset \mathfrak{g}_0^{(p)}$ for all $p \ge 1$. Let $z \in \mathfrak{g}_0^{(1)}$ and $v \in V$. With respect to the bracket operation in D(V), we have

$$[ad(x)(z), v] = ad(x)[z, v] + [z, [v, x]] \in g_0$$

Hence we have ad $(x)(z) \in g_0^{(1)}$, that is, ad $(x)(g_0^{(1)}) \subset g_0^{(1)}$. Since $g_0^{(p+1)} = (g_0^{(p)})^{(1)}$, it can be inductively proved that ad $(x)(g_0^{(p)}) \subset g_0^{(p)}$ for all $p \ge 1$. q.e.d.

Theorem 4.5. Let g be an infinite transitive graded Lie algebra derived from g_0 . Moreover assume that g_0 contains an element e which satisfies $[e, x_p] = px_p$ for all $x_p \in g_p$. Then $H^1(g)$ is isomorphic to $n(g_0)/g_0$.

Proof. By Lemma 4.4, we can define a linear mapping $f: n(g_0) \rightarrow H^1(g)$ by f(x) = [ad(x)]. We prove that f is surjective. Let c be any derivation of g. Recall that [c] = [c']. Since c' satisfies $c'(V) \subset V$, there exists an element x of gl(V) such that c' = ad(x) on V. Let $v \in V$ and $y \in g_0$. By the Jacobi identity

10

in D(V), we have

(4.2)
$$\operatorname{ad}(x)[v, y] = [\operatorname{ad}(x)(v), y] + [v, \operatorname{ad}(x)(y)].$$

On the other hand, c' satisfies

(4.3)
$$c'[v, y] = [c'(v), y] + [v, c'(y)].$$

Note that $\operatorname{ad}(x)[v, y] = c'[v, y]$ and $\operatorname{ad}(x)(v) = c'(v)$. From equations (4.2) and (4.3), it holds that $[v, (\operatorname{ad}(x) - c')(y)] = 0$. By the transitivity condition of g, we obtain that $\operatorname{ad}(x) = c'$ on g_0 and hence $x \in n(g_0)$. By Lemma 4.4, $\operatorname{ad}(x)$ is a derivation of g, and $c' - \operatorname{ad}(x)$ vanishes on V. Now by Lemma 4.2, we clearly have $c' = \operatorname{ad}(x)$ on g. Thus we have proved that f is surjective. Since Ker $f = g_0$, we obtain that $H^1(g)$ is isomorphic to $n(g_0)/g_0$. q.e.d.

§5. Example of Infinite Transitive Graded Lie Algebra g with dim $H^1(g) = \infty$

As stated in Introduction, we give an example of g such that $H^1(g)$ is of infinite dimension. Note that a derivation c of degree ≤ -2 is necessarily an outer derivation. We define a sequence of derived ideals $g^{(p)}$ of g inductively by $g^{(1)} = [g, g], \dots, g^{(p)} = [g^{(p-1)}, g^{(p-1)}]$. Then we prove

Theorem 5.1. Let $g = \sum_{p=-1}^{\infty} g_p$ be an infinite transitive graded Lie algebra which satisfies $g^{(2)} = 0$. Then dim $H^1(g) = \infty$.

Proof. Put $\varphi_k = \operatorname{ad}(v_1) \operatorname{ad}(v_2) \ldots \operatorname{ad}(v_k)$ for $v_1, v_2, \ldots, v_k \in \mathfrak{g}_{-1}$. We show that φ_k $(k \ge 1)$ is a derivation of \mathfrak{g} by induction. In the case of k=1, $\varphi_1 = \operatorname{ad}(v_1)$ is an "inner" derivation. Let $k \ge 1$. Assume that $\varphi_k[x, y] = [\varphi_k(x), y] + [x, \varphi_k(y)]$ for any $x, y \in \mathfrak{g}$. Put $\varphi_{k+1} = \varphi_k \circ \operatorname{ad}(v_{k+1})$ for $v_{k+1} \in \mathfrak{g}_{-1}$. Then by the Jacobi identity, we have

$$\varphi_{k+1}[x, y] = \varphi_k[v_{k+1}, [x, y]] = \varphi_k[[v_{k+1}, x], y] + \varphi_k[x, [v_{k+1}, y]].$$

By the assumption of induction and by $g^{(2)} = 0$, this element is equal to

$$\varphi_{k}[[v_{k+1}, x], y] + \varphi_{k}[x, [v_{k+1}, y]] = [\varphi_{k}[v_{k+1}, x], y] + [x, \varphi_{k}[v_{k+1}, y]]$$
$$= [\varphi_{k+1}(x), y] + [x, \varphi_{k+1}(y)].$$

Hence φ_k is a derivation for all $k \ge 1$. Now if $\varphi_k = \operatorname{ad}(v_1) \operatorname{ad}(v_2) \cdots \operatorname{ad}(v_k) = 0$ on g for all $v_1, v_2, \dots, v_k \in \mathfrak{g}_{-1}$, we would have $\underbrace{[\mathfrak{g}_{-1}, [\mathfrak{g}_{-1}, [\mathfrak{g}_{-1}, [\mathfrak{g}_{-1}, [\mathfrak{g}_{-1}, \mathfrak{g}_k] \cdots] = 0}_{k-\operatorname{times}}$. By the transitivity condition of g, we must have $\mathfrak{g}_k = 0$. This is a contradiction. Thus there exist $v_1, v_2, ..., v_k \in g_{-1}$ for arbitrarily large k such that $\varphi_k = \operatorname{ad}(v_1) \cdot \operatorname{ad}(v_2) \cdots \operatorname{ad}(v_k) \neq 0$. Since deg $\varphi_k = -k$, φ_k is a non-trivial outer derivation of g, and hence dim $H^1(\mathfrak{g}) = \infty$. q.e.d.

A typical example. Let g_{-1} be a two dimensional vector space with a basis $\partial/\partial x$, $\partial/\partial y$, and let g_p be a one dimensional vector space with a basis $x^{p+1}\partial/\partial y$ for $p \ge 0$. Then we have an infinite transitive graded Lie algebra $g = \sum_{p=-1}^{\infty} g_p$, which satisfies $g^{(2)} = 0$. In this case, $\varphi_k = \operatorname{ad} (\partial/\partial x) \cdots \operatorname{ad} (\partial/\partial x)$ are non-trivial derivations of g for all $k \ge 1$. Hence $H^1(g)$ is of infinite dimension.

§6. The First Cohomology Groups of Infinite Intransitive Lie Algebras $L[W^*]$

6.1. First we explain a Lie algebra $L[W^*]$ which is a main object in this section. Let V be a finite dimensional vector space with V = U + W (direct sum). We denote by $S(W^*)$ the ring of formal power series over W. Let L be an infinite transitive simple Lie algebra over U. Both L and $S(W^*)$ are complete topological vector spaces with respect to their natural topology induced by the filtrations. Then a Lie algebra $L[W^*]$ is obtained as a topological completion of $L \otimes S(W^*)$. Since $L[W^*]$ is a perfect Lie algebra, we know that each derivation c of $L[W^*]$ is continuous.

6.2. Let A be an abstract Lie algebra over C. Then the commutator ring of A, which we denote by C_A , is defined as follows:

 $\boldsymbol{C}_{A} = \{ \rho \in \operatorname{Hom}_{\boldsymbol{C}}(A, A); \rho \circ \operatorname{ad}(x) = \operatorname{ad}(x) \circ \rho \quad \text{for all} \quad x \in A \}.$

In this sub-section we want to determine the commutator rings C_L and $C_{L[W^*]}$.

Proposition 6.1. For an infinite transitive simple Lie algebra L, it holds that $C_L = C$.

For the proof of Proposition 6.1, we need three lemmas. First we rewrite the some properties of L stated in Section 2 in the following lemma.

Lemma 6.2. (1) $L_0 = [L, L_1]$, for L = D(U), $L_{\mathfrak{sl}}(U)$ and $L_{\mathfrak{sp}}(U)$, (2) $L_{-1} = [L, L_1]$, for $L = L_{\mathfrak{cl}}(U)$.

Lemma 6.3. (V. Guillemin [1]). C_L is a commutative field which canonically contains the field C.

Proof. For $a \in C$, let ρ_a be a mapping such that $x \mapsto ax$ for $x \in L$. Then it is clear that ρ_a belongs to C_L . Through a mapping $a \mapsto \rho_a$, we can consider Cis contained in C_L . Let ρ be a non-zero element of C_L . Since L is simple, we have $\rho(L) = L$ and Ker $\rho = 0$. Hence a non-zero ρ has an inverse. Let ρ_1 , $\rho_2 \in C_L$. It is clear that $\rho_1 \circ \rho_2 \in C_L$. Now it is sufficient to show that $\rho_1 \circ \rho_2$ $= \rho_2 \circ \rho_1$. For all $x, y \in L$ we have $\rho_1 \circ \rho_2[x, y] = [\rho_1(x), \rho_2(y)] = \rho_2 \circ \rho_1[x, y]$. Combining this equation with L = [L, L], we obtain $\rho_1 \circ \rho_2 = \rho_2 \circ \rho_1$. q.e.d.

Lemma 6.4. Each C_L has a faithful representation as a ring of endomorphisms as follows:

- (1) $C_L \subseteq \operatorname{Hom}_{c}(L/L_0, L/L_0)$ for $L = D(U), L_{\mathfrak{sl}}(U)$ and $L_{\mathfrak{sp}}(U)$,
- (2) $C_L \subseteq \operatorname{Hom}_{c}(L/L_{-1}, L/L_{-1})$ for $L = L_{ct}(U)$.

Proof. (1) Let ρ be an element of C_L . Since the filtration $\{L_p\}$ of L satisfies $L_0 = [L, L_1]$ by Lemma 6.2, we obtain $\rho(L_0) \subset L_0$. Hence a linear mapping $\rho \mapsto \bar{\rho} \in \operatorname{Hom}_{\mathbf{C}}(L/L_0, L/L_0)$ is naturally induced. Assume $\bar{\rho} = 0$. Then $\rho(L)$ is an ideal of L contained in L_0 , and hence $\rho(L) = 0$. Thus a linear mapping $\rho \to \bar{\rho}$ is faithful. The assertion (2) is proved by the same argument as (1).

q. e. d.

Proof of Proposition 6.1. First let L be an infinite irreducible transitive Lie algebra. Then by Remark 1 in Section 2, the linear isotropy algebra g_0 of L is considered as a Lie subalgebra of gl(U). Recall that g_0 of L=D(U), $L_{\mathfrak{sl}}(U)$ and $L_{\mathfrak{sp}}(U)$ are gl(n, C), $\mathfrak{sl}(n, C)$ and $\mathfrak{sp}(n, C)$ respectively. By Lemma 6.3 and Lemma 6.4, C_L can be regarded as an abelian Lie subalgebra of gl(U). We will show that C_L is contained in the centralizer of g_0 in gl(U). Let $\rho \in C_L$, $x \in g_0$ and $u \in U$. Then in D(U) we clearly have

$$[[\rho, x], u] = [\rho, [x, u]] - [x, [\rho, u]] = (\rho \circ \operatorname{ad} (x) - \operatorname{ad} (x) \circ \rho)(u) = 0.$$

Since $[\rho, x] \in g_0$ and L is transitive, we obtain $[\rho, x] = 0$, and hence $[\mathcal{C}_L, g_0] = 0$. Put $\tilde{g}_0 = g_0 + \mathcal{C}_L$. Then \tilde{g}_0 yields a Lie subalgebra of gl(U) and \mathcal{C}_L is contained in the center of \tilde{g}_0 . Since g_0 acts irreducibly on U, \tilde{g}_0 also acts irreducibly on U. Note that \tilde{g}_0 is of infinite type. By the classification theorem of Lie algebras of infinite type ([2] or [4]), \tilde{g}_0 must be equal to gl(U) or csp(U). Thus we have $\mathcal{C}_L = \mathcal{C}$.

Next let $L = L_{ct}(U)$. Put $L/L_{-1} = U'$. Then U' is a one dimensional subspace of gl(U'), which contains C. Hence $C_L = C$. q.e.d.

Using Proposition 6.1, we can verify the following proposition originally proved by V. Guillemin [1].

Proposition 6.5. The commutator ring of $L[W^*]$, i.e., $C_{L[W^*]}$, is isomorphic to $S(W^*)$.

Outline of proof. We will regard L as imbedded in $L[W^*]$. Let ρ be an element of $C_{L[W^*]}$. We will denote by $\{f^{\alpha}\}$ the monomial basis in $S(W^*)$. If $x \in L_{\gamma}$, then we can write

$$\rho(x) = \sum_{\alpha=0}^{\infty} \rho_{\alpha}(x) f^{\alpha}, \qquad \rho_{\alpha}(x) \in L,$$

where ρ_{α} depends linearly on x. Since ρ is an element of $C_{L[W^*]}$, we clearly obtain $\rho_{\alpha} \in C_L$. By Proposition 6.1, ρ_{α} is an element of C. Hence we can write

$$\rho(x) = x \otimes \prod_{\alpha=0}^{\infty} \rho_{\alpha} f^{\alpha}, \quad \text{for all} \quad x \in L.$$

Since L is simple, we have $[L, L[W^*]] = L[W^*]$. Hence if $\rho \in C_{L[W^*]}$, it is determined completely by its restriction to L. The isomorphism between $C_{L[W^*]}$ and $S(W^*)$ is given by $\rho \mapsto \prod_{\alpha=0}^{\infty} \rho_{\alpha} f^{\alpha}$. This completes the proof. q.e.d.

By Proposition 6.5, $\operatorname{Der} (C_{L[W^*]})$ is identified with $\operatorname{Der} (S(W^*))$. Now we have a homomorphism: $l: \operatorname{Der} (S(W^*)) \to \operatorname{Der} (L[W^*])$. Let $X \in \operatorname{Der} (L[W^*])$ and $\rho \in C_{L[W^*]}$. Then $X \circ \rho - \rho \circ X$ is an element of $C_{L[W^*]}$. We denote this element of $C_{L[W^*]}$ by $L_X \rho$. By an easy consideration, the mapping $X \mapsto L_X$ is a homomorphism of $\operatorname{Der} (L[W^*])$ into $\operatorname{Der} (C_{L[W^*]}) = \operatorname{Der} (S(W^*))$. Hence there is a natural homomorphism

$$L: \operatorname{Der} \left(L[W^*] \right) \longrightarrow \operatorname{Der} \left(S(W^*) \right).$$

It is easy to see that $L \circ l =$ identity, which implies that a homomorphism L is surjective. Since any elements of the kernel of L are $S(W^*)$ -linear mappings, the kernel of L is identified with the set of all mappings $c: L \rightarrow L[W^*]$ satisfying the identity

$$c[x, y] = [c(x), y] + [x, c(y)]$$
 for all $x, y \in L$.

We denote this set by $Der(L, L[W^*])$.

Summarizing the above remarks, we have

Proposition 6.6 (V. Guillemin [1]). There is a split exact sequence of Lie algebras:

14

COHOMOLOGY GROUPS OF LIE ALGEBRAS

$$0 \longrightarrow \operatorname{Der} (L, L[W^*]) \longrightarrow \operatorname{Der} (L[W^*]) \xrightarrow{L} \operatorname{Der} (S(W^*)) \longrightarrow 0$$

6.3. In this sub-section, we will determine the first cohomology group $H^1(L[W^*])$. By Proposition 6.6, we have a natural isomorphism:

$$\operatorname{Der} \left(L[W^*] \right) \cong \operatorname{Der} \left(L, L[W^*] \right) + \operatorname{Der} \left(S(W^*) \right) \quad (\operatorname{direct sum}).$$

The space $Der(S(W^*))$ is canonically identified with D(W), the Lie algebra of all formal vector fields over W. Hence it suffices to determine $Der(L, L[W^*])$ for calculating $Der(L[W^*])$.

Let $x \in L$ and $c \in \text{Der}(L, L[W^*])$. We denote by f^{α} the basis of $S(W^*)$ consisting of monomials. Then we can write:

$$c(x) = \prod_{\alpha=0}^{\infty} x_{\alpha} \otimes f^{\alpha}, \qquad x_{\alpha} \in L.$$

Put $x_{\alpha} = c_{\alpha}(x)$. Then c_{α} is a linear mapping of L into itself. For x, $y \in L$, we have

$$c[x, y] = \prod_{\alpha=0}^{\infty} c_{\alpha}[x, y] \otimes f^{\alpha} = [c(x), y] + [x, c(y)]$$
$$= [\prod_{\alpha=0}^{\infty} c_{\alpha}(x) \otimes f^{\alpha}, y] + [x, \prod_{\alpha=0}^{\infty} c_{\alpha}(y) \otimes f^{\alpha}]$$
$$= \prod_{\alpha=0}^{\infty} ([c_{\alpha}(x), y] + [x, c_{\alpha}(y)]) \otimes f^{\alpha}.$$

Hence $c_{\alpha}[x, y] = [c_{\alpha}(x), y] + [x, c_{\alpha}(y)]$, which implies that c_{α} is an element of Der (L). By Theorem 2.1, there exists a unique element z_{α} of L (resp. $L + \mathbb{C}e$) such that $c_{\alpha} = \operatorname{ad}(z_{\alpha})$ for L = D(U) or $L_{\operatorname{ct}}(U)$ (resp. $L = L_{\mathfrak{sl}}(U)$ or $L_{\mathfrak{sp}}(U)$). Thus we have $c = \operatorname{ad}(\prod_{\alpha=0}^{\infty} z_{\alpha} \otimes f^{\alpha})$. Here the symbol *e* denotes a unit matrix, i.e. a basis of one dimensional center of $\operatorname{gl}(U)$. Now we easily obtain the following isomorphism:

$$\operatorname{Der} (L[W^*]) \cong \begin{cases} L[W^*] + D(W) & \text{for } L = D(U) & \text{or } L_{\mathfrak{ct}}(U) \\ (L[W^*] + S(W^*) \otimes e) + D(W) & \text{for } L = L_{\mathfrak{sl}}(U) & \text{or } L_{\mathfrak{sp}}(U). \end{cases}$$

Since $L[W^*]$ has no non-trivial center, the space ad $(L[W^*])$ of all inner derivations of $L[W^*]$ is naturally isomorphic to $L[W^*]$.

Summarizing the above results, we have proved:

Theorem 6.7. Let D(W) be a Lie algebra of all formal vector fields over W and let e be a basis of one dimensional center of gl(U). Then we have the following isomorphism:

Nobutada Nakanishi

$$H^{1}(L[W^{*}]) \cong \begin{cases} D(W) & \text{for } L = D(U) & \text{or } L_{\mathfrak{ct}}(U) \\ D(W) + S(W^{*}) \otimes e & \text{for } L = L_{\mathfrak{sl}}(U) & \text{or } L_{\mathfrak{sp}}(U) \end{cases}$$

References

- Guillemin, V., A Jordan-Hölder decomposition for certain class of infinite dimensional Lie algebras, J. Differential Geometry, 2 (1968), 313–345.
- [2] Guillemin, V., Quillen, D. and Sternberg, S., The classification of the complex primitive infinite pseudogroups, Proc. Nat. Acad. Sci. U. S. A., 55 (1966), 687–690.
- [3] Kanie, Y., Some Lie algebras of vector fields and their derivations; Case of partially classical type, (to appear in *Nagoya Math. J.*).
- [4] Kobayashi, S. and Nagano, T., On filtered Lie algebras and geometric structures, III and IV, J. Math. Mech., 14 (1965), 679-706 and 15 (1966), 163-175.
- [5] Morimoto, T., The derivation algebras of the classical infinite Lie algebras, J. Math. Kyoto Univ., 16 (1976), 1-24.
- [6] ———, On the intransitive Lie algebras whose transitive parts are infinite and primitive, J. Math. Soc. Japan, 29 (1977), 35–65.