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The First Cohomology Groups of Infinite
Dimensional Lie Algebras1'

By

Nobutada NAKANISHI*

Introduction

Let y be a finite dimensional vector space. We denote by D(V) the Lie

algebra consisting of all formal vector fields over V. Let L be a Lie subalgebra

of D(V). We are interested in the first cohomology group Hl(L) of a Lie algebra
L with adjoint representation.

Let L be an infinite dimensional transitive simple Lie algebra, that is, L is

one of D(V), Lgt, Lip, or Lct. (For a notation, see §2.) It is known in T.

Morimoto [5] that Hl(D(V)) = H1(Lct) = Q, and dim H1(Lg[) = dim Hl(L9J = l.

In this paper we will treat the following two types of infinite dimensional

Lie algebras:

(1) Infinite dimensional transitive graded Lie algebras 9= Z^=-i 9P- (For
a precise definition, see § 1.)

(2) Infinite dimensional intransitive Lie algebras L[_W*~] whose transitive

parts L are infinite and simple. (In this case Wis a subspace of V.)

In Section 3 and Section 4, we will give two criteria for H1(g) to be of finite

dimension. More precisely we will prove

Theorem A. Let 9= X?=-i 9P be an infinite transitive graded Lie algebra

with a semi-simple linear isotropy algebra g0. Then f/1(g) is finite dimen-

sional.

Theorem B. Let 9= S^=-i QP be an infinite transitive graded Lie algebra

whose linear isotropy algebra g0 contains an element e which satisfies \e^ xp] =
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pxp for all xpeQp. Then HI(Q) is finite dimensional. Furthermore if g is

derived from g0, then ^(g) is isomorphic to n(g0)/gOJ where n(g0) denotes the

normalizer of g0 in gl(g_i).

It may well be doubted if every infinite transitive graded Lie algebra g has

the finite dimensional cohomology group Hx(g). But unfortunately this pre-

sumption is false. In Section 5 we will give an easy condition for g to be

dim H1 (of) = co. (For such a Lie algebra g, we can construct derivations of

arbitrarily large negative degree.)

That is, we will prove

Theorem C. Let g= Z?=-i 9P be an infinite transitive graded Lie algebra

-which satisfies g(2) = [g(1), g(1)]=0, where g(1) = [g, g]. Then Hl(§) is infinite

dimensional.

In Section 6 our objects are infinite intransitive Lie algebras L[W*]. Let

V=U+W(direct sum). We denote by S(W*) the ring of formal power series

over W. Let L be an infinite transitive simple Lie algebra over 17. Then a Lie

algebra L[FF*] is obtained as a topological completion of L®S(FF*). These

Lie algebras L[W*~] are obtained as the result of the classification theorem of

infinite intransitive Lie algebras [6]. In determining H1(L[W*'])9 V. Guillemin's

work is essential. Using his results we will prove

Theorem D. Let D(W) be a Lie algebra of all formal vector fields over W

and let e be a basis of one dimensional center of $l(U). Then we have

)^ {
D(W) for L = D(U) or Lct(U),

®e for L = Lsl(U) or

Above results can be considered as a formal version of Y. Kanie [3]. In

a forthcoming paper, we will give an example of an infinite intransitive Lie

algebra L such that H1(L) = 0.

Throughout this paper, all vector spaces and Lie algebras are assumed to

be defined over the field C of complex numbers.

§ I, Infinite Transitive Graded Lie Algebras

In this section, we define transitive graded Lie algebras which we will study

in the subsequent sections.
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Definition 1.1. Let g be a Lie algebra. Assume that there is given a family

(Qp}p^-i °f subspaces of g which satisfies the following conditions:

00

a) 9= Z 9P (direct sum);
P=-I

b) dimgp<oo;

c) [9P> gj^gp+g;
d) For every non-zero xpegp, p^O, there is an element x _ 1 e g _ 1 such

that [xp, x.J^O. Under these conditions, we say that the direct sum g

= ]Lp0=-i Op or simply g is a transitive graded Lie algebra.

By conditions c) and d), g0 is considered as a Lie subalgebra of gl(g_j).

The Lie algebra g0 is called the linear isotropy algebra of g. A, graded Lie

algebra g is said to be irreducible if the representation of g0 on the vector space

g_i given by [g0, g-Jczg.j is irreducible.

Definition 1.2. The space g[f) which is called the p-th prolongation of g0

is defined by

9^ = 900^(9?!) n 9-i®5*+1(9?i) ,

where Sp(g^.1) denotes the p- times symmetric tensor of the dual space g*x of

We say that g0 is of finite type if g^p) = 0 for some (and hence for all larger)

p. Otherwise we say that g0 is of infinite type. Put go~1) = 9-i3 9o°) = 9o and
g^Xp^-i 9op)- Then g has a Lie algebra structure with respect to a canonical

bracket operation. We say that the transitive graded Lie algebra § = Zp°=- 1 9op)

thus obtained is derived from g0. If g is an abstract transitive graded Lie algebra

with a linear isotropy algebra g0, then g is considered as a graded Lie subalgebra

of g. It is clear that if a transitive graded Lie algebra g is of infinite dimension,

its linear isotropy algebra g0 must be of infinite type.

Let A be a Lie algebra. A derivation c of A is a linear mapping from A

to itself satisfying c[x, j] = [c(x), y] + [x, c(yj\ for all x, ye A. We denote by

Der(^4) (resp. ad (A)) the derivation algebra (resp. the algebra of inner deri-

vations of A). Then, by definition, the first cohomology group H1(A) of A

with adjoint representation is equal to the space Der (^4)/ad (^4). A derivation

c of a graded Lie algebra 9= Xp°=-i 9P is said to be of degree r or deg c = r if it
satisfies c(gp)c:gp+r for all p.
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§ 2. Infinite Transitive Simple Lie Algebras

It is well-known that there are the following four classes of infinite transi-

tive simple Lie algebras over C (see [5]).

(1) LQl(n): the Lie algebra of all formal (or better, formal power series)

vector fields in ^-variables xl9 x2,..., xn.

(2) Lst(n): the Lie algebra of formal vector fields in n-variables xl9

x2,..., xn, preserving the volume form dx^ A dx2 A ••• A dxn.

(3) Lg|3(2n): the Lie algebra of formal vector fields in 2n-variables xl9

*2»-»» xn, yl9 y2,...9 yn9 preserving the symplectic form £?=i dx^dy^

(4) Lct(2n + l): the Lie algebra of formal vector fields in (2n + ^-vari-

ables z, xl9 x2,...,*„, yl9 y2,-~, yn, preserving the contact form dz + 2'1 Z?=iXr

dyt — yidxi9 up to functional factors.

We will often write D(V) for Lgl(n), where V is an ^-dimensional vector

space with a basis d / d x l 9 . . . 9 d/dxn. Let L be one of Lie algebras D(F), L§r and

Lg|3. Each L has the natural filtration {Lp}peZ defined as follows.

Lp = L for p^-1;

L0 = {X e L; the value X(Q) of X at the origin = 0};

J for

Then the decreasing sequence of subspaces: L = L_ 1 =>L 0 =>L 1 =5L 2 =>-- - satisfies

00

(a) n Lp = 0;
P=-i

(b) [Lp, .
(c) dimLp/Lp+1<oo.

Put Qp(L) = Lp/Lp+l. Then by (b), (c) and the definition of Lp, p^l , we

have the transitive graded Lie algebra gt(L)=2p
0

=_1 gp(L). We also have the

Lie algebra L' = np°=-i 9p(^)> which is the completion of gr(L).

Under these notations we will summarize a few useful properties of L.

(For the proof, see Kobayashi-Nagano [4].)

(1) Each L is an infinite transitive irreducible Lie algebra and moreover

L is isomorphic to L', where the word "irreducible" means that the action of

g0(L) on g_!(L) is irreducible.

(2) The linear isotropy algebras g0(L) of D(F), L8I and Lgp are gl(n, €),
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sl(n, C) and sp(n, C) respectively, and for p^l gp(L) is isomorphic to the p-th

prolongation g0(L)(p) of SoC1-)-
(3) For g0(L) = sl(n, C) or sp(n, C), it holds that

(i) [goW),9oa)(s)] = 9oa)(r+s) for r,s^0,
(ii) g0(L) acts irreducibly on g0(L)(r) for r^— 1.

By the classification theorem of Kobayashi-Nagano [4], we know that

there are only three classes of transitive simple irreducible Lie algebras of infinite

type over C, that is, they are D(F), Lgl and Lgp.

For the contact Lie algebra Lct(2n + l) (or simply Lct), we must define

another filtration.

Lp = Lct for pg-2;

L_ i = {X e Lc t; <Z, 0>0 = 0, where 9 is the contact form};

.J for p^l.

Using this filtration, Lct is isomorphic to Tl^=-2QP(L)- For the subsequent

discussion about Lct, we have only to recall that

In Section 3 and Section 6, we essentially use the following facts which were

proved by T. Morimoto [5].

Theorem 2.1. Let L be an infinite transitive simple Lie algebra over C.

Then

for L = D(V) or Let

for L = Lgt or L g p .

Remark 1. Let L be one of Lie algebras Lgl or Lgp. Since L is isomorphic

with the Lie algebra L' = n?=-i 9P(£)> their isotropy algebras sl(F) and sp(F)
are considered to be subalgebras of them. Let e denote a unit matrix in gl(F).

Then the above theorem asserts that ad (e) yields a basis of one dimensional

space Hl(L).

Remark 2. Let gr(L) be a graded Lie algebra associated with an infinite

transitive simple Lie algebra L. Then we also have H1(gr(L)) = 0 for L = D(F)

or Lct, and //1(gr(L))^C for L = Lg( or Lg|3. These facts are particularly used

in Section 3.
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§38 The First Cofiomology Groups of Infinite Transitive

Graded Lie Algebras (I)

Throughout this section, let g = ££= _ i gp be an infinite (dimensional)

transitive graded Lie algebra over C and let its linear isotropy algebra g0 be

semi-simple. Put g_x = F. Then g0 is considered as a Lie subalgebra of gl(F).

First we will determine the type of g.

Since g0 is semi-simple, we can decompose V into V= V1 + V2-\ ----- h Vk

(vector space direct sum), where each Vt (i = 1, 2,..., k) is a g0-invariant subspace

and g0 acts irreducibly on Vt. We denote by ^ the Lie algebra of linear transfor-

mations of Vi induced by g0. By the natural inclusion, \ is considered as a Lie

subalgebra of gl(F). We also denote it by the same letter i)£ if there is no con-

fusion. Put nf = {£eg0; r(Fj) = 0 for all j+i}. Then each n^ is an ideal of g0

and n1 H ----- h nk is a direct sum as Lie algebras. It clearly holds

(3.1) n1 + -

Lemma 3.1. For p^l, g^p) = n[p} + - • - + n^} (direct sum).

Proof. Let t : Vx - - • x F-» V be an element of g^}. First note that t(vl9...9
vp+1) = Q if ^e Vi9 Vj-e Vj for i^j. (It is easy to see that t(vl9...9 vp+1)e Vi n Vj.)

Let vl9...9vp+1EV and Vi = v\-\ ----- ht;f with v\ e Vl9 v^e F2,..., v\ e Vk for

i = 1 , . . . , p + 1 . Then by the above remark, we have

(3.2) + i

where tt denotes an element of n^ induced by t. (Since rt.(*, fi,..., vp)ent for

v'l9...9v'pEV9 tt is an element of n^}.) Since nxH ----- hn/£ is a direct sum, our

assertion is obvious. q. e. d.

Since g is infinite dimensional and gp is a subspace of g^}, g0 must be of

infinite type by Lemma 3.1. From now on, without loss of generality, we as-

sume that n1?..., nt (l^k) are of infinite type and nz+lv.., nfe are of finite type.

Lemma 3.2e Let g0 be a linear isotropy algebra of an infinite transitive

graded Lie algebra g. Then there exists a Lie subalgebra g& of finite type of

^ h + i H ----- J-^fc and 9o zs written as
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(3.3) 9o = n i~l ----- I~itz + g& (Lie algebra direct sum),

where each ideal nt (i = l,..., I) is isomorphic to either sI(FJ) or sp(7f).

Proof. Let TT: g0-»i); (i = l, . . . ,/) be a natural projection. Since TT is a

Lie algebra homomorphism, g0/Ker7i is isomorphic to f)f. Recall that the

quotient space of a semi-simple Lie algebra is also semi-simple. Thus i)t is semi-

simple and its center is zero. Moreover each I)f acts irreducibly on Vi and is of

infinite type. Hence by the classification theorem of transitive irreducible Lie

algebras of infinite type, we know that ^ must be equal to either sI(Ff) or sp(Ff).

Since n^ is an ideal of i^, we have n~sl(V^ or sp(Ff). (sI(Ff) and $p(Vt) are

naturally imbedded in gl(F).) Note that n1=I)1, n2 = I ) 2 j - - - j ""z=:J)z- Then
we can find a subspace g6 such that n / + 1 H ----- hn f ccig&c:f) I + 1H ----- \-§k. Con-

sidering (3.1), we obtain the expression of g0
 as (3.3). By Lemma 3.1, we also

have $(
b

p) = n{5\ + • • • + n£p). Thus gfc is of finite type. q. e. d.

Next we will determine the type of g^ From (3.3) in Lemma 3.2, we have

g^D^n^H ----- hn^ + g^, and gx is a subspace of g^. Without loss of gener-

ality, we assume that gx n n^^O,..., gt n n^^O and gx n n^1
+

)i=05---5 9i n ttz
(1)

= 0. Then we have

Lemma 303, gt /ias the following form:

where H± is a subspace o/g^1}.

Proof. For z" = l,..., m, gx n n^1} is an nrinvariant subspace of n[1}. By

the property (3) (ii) in Section 2, we have Qi^n^-l ----- hn^1}. Hence there

exists a subspace H± of nj^^H ----- hn{1) + g^1) such that g1=n(
1

1)H ----- [-n^ + H^

and H1 nn^1=0,..., H^ nnp } = 0. For j = m + l, . . . , / , decompose teH^ into

* = tm+l + — + tl + tb with rm+1en^1
+

)i?..., ̂ en[1}, tbegfr\ Define a subspace
by

For all ^Cj-enj and tjEAj9 it holds that [xj, tj-] = [xj-, O
eny1) H 9i = {0}. This

means that [n^ Aj\ = 0. Using the property (3) (ii), we have Aj = 0 for j

= m-fl , . .0 , i. Hence H tcz g^1}. q.e.d.

Since gp=>[g l5 [gl5 [..., [gl5 fli]...] for p > l ? g p contains n^ + '-'+n^
by Lemma 3.3 and the property (3) (i) in Section 2. By the same argument as

Lemma 3.3, we get
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Lemma 3.4. For p>\, gp has the following form :

where Hp is a subspace 0/g|,p). (For sufficiently large p9 Hp = 0 since gd is of

finite type.)

By Lemma 3.3 and Lemma 3.4, we can easily determine the form of the

given infinite transitive graded Lie algebra g = ££L-i Qp. That is, we have

Proposition 3.5. Let 9=ZpC=-i9 j P be an infinite transitive graded Lie

algebra. Then g has the following form:

Q = Gl + - + Gm + G'm+i + - + Gf
l + G'b (direct sum) 9

where Gt (i = l,..., m) is of the form gr(Lgl(Ff)) or gr(L8,,(F;)), and G} (j

= m + l,..., 0 is of the form Vj + sl(Vj) or Vj + $p(Vj), and GJ, is a finite dimen-

sional Lie algebra. (From now on, we put G' = G'm+1-\ ----- \-G\ + G'b. Then G'

is a finite dimensional ideal o/g.)

For computing /f K9)> we need some lemmas.

Lemma 3.6. Let A be an abstract Lie algebra and let Ai (/ = !,..., k) be

perfect ideals of A. If A = Al + — +Ak (direct sum), then

4k) (direct sum).

Proof. Let ceDer(yl). We denote by ctj the Hom(y4^ A ^-component

of c. For x, y e Ah we have

(3.4) c[x,y] = [c(Jc

= i M^),^]+ i

Combined this with At = [Al9 ^4,-], we obtain cfj- = 0for i^j. Put cit = Ci. By

(3.4), ct- induces a derivation of At. Hence Der(y4) = Der(^41)H ----- hDer (Ak)

(direct sum). Our assertion is now evident. q. e. d.

Lemma 3.7. Let A be an abstract Lie algebra such that A = A1+A2

(direct sum) with A1 = [A1, A^~\. Moreover assume that the center of A1 is

zero. Then H1(A)^H1(Al) + H1(A2) (direct sum).

Proof. We can write c = c11 + c12 + c2i + c22 by using same notations as
Lemma 3.6. Since Ai is perfect, we have c12 = 0. Let xeAi and yeA2. By

the equation 0 = c[x, y] = [c(x), y"] + [x, c(j)], we get [x, c21(>>)] = 0. This
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means that c2\(y)£ {center of A^. Since the center of Al is zero, we have

c2i =0. Now it is easy to verify the assertion. q. e. d.

Combined with Theorem 2.1, we obtain finally the following theorem.

Theorem 3.8. Let g=S?=-i QP be an infinite transitive graded Lie alge-

bra with a semi-simple linear isotropy algebra g0. Then H1^) is finite

dimensional.

Proof. By Proposition 3.5, g has the following form: g = G1H

G', where dimG'<oo. Since GjH ----- \-Gm is perfect and has no non-trivial

center, we have H1(g) = #1(G1-t---- + Gw) + HJ(G') by Lemma 3.7. On the

other hand, H1(G1 + -» + GJ^#1(G1)+----hH1(Gw) by Lemma 3.6, and

dim jFf1(Gf) = l or 0 for f = l,..., m by Theorem 2.1. (See also Remark 2, and

recall that Gt = gr(LeI(Kf)) or gr(LB,,(7,)).) Thus we obtain dim H1(g)< oo.

q.e.d.

§4. The First Cohomology Groups of Infinite Transitive

Graded Lie Algebras (II)

In this section, we assume that the linear isotropy algebra g0 of g

^Z^-ig/; contains an element e which satisfies [e, Xp] = pxp for all XPEQP.

Put g_j = K We can write c(e)=^™=_lxp with xpegp . For all veV, we

have

[c(», i;] + [e, c(i?)] = c\_e, y] = - c(v) .

Comparing the K-components of this equation, we obtain [x0, u] = 0, and hence

x0 = 0 by the transitivity condition of g. We now define a new derivation c'

derived from c by

(4.1) c'

It is clear that c'(e) = Q.

Lemma 4.1a degc' = 0. (For the definition of "degree" of a derivation,

see$l.)

Proof. We must show that c'(gp) c gp for all p ̂  - 1 . Put c'(x) = E J= - 1 ^

(yq e gg) for x e gp. Then we have

c'[e,x] = pc'(x) = p £ 3; =[P, c'(x)]= f g^.
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Hence yq = 0 for q / p and thus c'(x) = ypE gp. q. e. d.

Lemma 4.2e J/c' = 0 on V, then c' = 0 on g.

Proof. For xeg 0 and VE¥, it holds that [c'(X), y] + [x, c'(vy] = c'[x, v}.

By the assumption of c', we obtain [c'(x), t;]=0. Combining c'feo^Qo
the transitivity of g, we obtain c'(x) = 0. Repeating this procedure for all p ̂  1 ,

we can also obtain that c'(gp) = 0. Hence c' = 0 on g. q. e. d.

Let [c] e H^g) denote an equivalence class of a derivation c of g. Since

c' = c + ad(Xp=fo *A we nave [c] = [c/]- % Lemma 4.1, a restriction of c'

to Fis an element of gl(F). We denote this linear mapping by c' \v .

Theorem 4.3. Let g=Z?=-i 9P be an infinite transitive graded Lie alge-

bra whose linear isotropy algebra g0 contains an element e which satisfies

O, xp] =pxpfor all xp E gp. Then dim H1(g)^(dim F)2.

Proof. Let c be any derivation of g. We define a linear mapping \j/:

Der (g)-»gI(F) by \l/(c) = c' \ v. By Lemma 4.2, we obtain that if c is contained

in Ker i/f, then c is an inner derivation. Hence our assertion is obvious.

q.e.d.

In case that g is derived from g0, we can get the more precise result. Let

^($0) denote the normalizer of g0 in gl(F). Then we have

Lemma 4A Let g be a Lie algebra derived from g0. Then for all XE
w(9o)j ad (x) is a derivation of g.

Proof. It is sufficient to prove that ad (x) (Q(
O

P)) c g^} for all p^l. Let

and v E V. With respect to the bracket operation in D(F), we have

[ad (x) (z\ v] = ad (x) [z, i?] + [z, [>, x]] G g0 .

Hence we have ad (x)(z) 6 g^\ that is, ad WCg^^^g^^. Since

it can be inductively proved that ad (x) (gop)) c 9op) for all p ̂  1 . q. e. d.

Theorem 4.5. Let g be an infinite transitive graded Lie algebra derived

from g0. Moreover assume that g0 contains an element e "which satisfies

\_e, Xp]=pxpfor all XPE$P. Then H^g) is isomorphic to n(g0)/9o-

Proof. By Lemma 4.4, we can define a linear mapping/: K^o)-^1^) by
/(:*) = [ad (X)]. We prove that / is surjective. Let c be any derivation of g.

Recall that [c] = [c']. Since c' satisfies c'(F)c=F, there exists an element x of

gl(F) such that c' = ad(x) on F. Let VE Fand y eg0. By the Jacobi identity
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in D(F), we have

(4.2) ad (x) |>, j>] = [>d (x) (i>), j] + [v9 ad (x) GO] .

On the other hand, c' satisfies

(4.3) c'[«,3'] = [c/(^J'] + [^c'^)].

Note that ad(x)[u, y] = c'\v9 y] and ad(x)(v) = c'(v). From equations (4.2)

and (4.3), it holds that [u, (ad (x) — c7) (y)] = 0. By the transitivity condition of

g, we obtain that ad(x) = e' on g0 and hence xen(g0). By Lemma 4.4, ad(x)

is a derivation of g, and c' — ad (x) vanishes on V. Now by Lemma 4.2, we

clearly have c' = ad(x) on g. Thus we have proved that /is surjective. Since

Ker/=g0, we obtain that Hl(§) is isomorphic to «(g0)/9o- q.e.d.

§5. Example of Infinite Transitive Graded Lie Algebra g

with dim H1(g) = o)

As stated in Introduction, we give an example of g such that If *(g) is of

infinite dimension. Note that a derivation c of degree g — 2 is necessarily an

outer derivation. We define a sequence of derived ideals g<p) of g inductively

by g(1) = [9, g],..., g(p) = [g(p-1}
5 g

(p"1}]. Then we prove

Theorem 5.1. Let g = Z^=-i 8P be an infinite transitive graded Lie alge-

bra -which satisfies g<2)=0. Then dim ̂ (g) = 00.

Proof. Put <j9fc = ad(i;1)ad(t;2)...ad(yjfc) for vl9 v2,..., v k E Q _ 1 . We show

that cpk (k^ 1) is a derivation of g by induction. In the case of fc= 1, q>^ =ad (vj

is an "inner" derivation. Let k^l. Assume that </>fe[x, j] = [<pk(x)9 y] +

[x, <pk(yy] for any x, yeg. Put <pk+i=<p fc°ad(t; /c+1) for vk+leg,.l. Then by

the Jacobi identity, we have

By the assumption of induction and by g^2)=0, this element is equal to

t, x],

Hence (pfc is a derivation for all k ^ 1 . Now if cpk = ad (yj ad (v2)
m - °ad (ufe) = 0 on

g for all vl9 v29...,vkeQ-i9 we would have [g_ l 5 [g_1? [..., [g_1? gj--] = 0.
k- times

By the transitivity condition of g, we must have gfc = 0. This is a contradiction.
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Thus there exist vl9 v2,...,vkeQ.l for arbitrarily large k such that cpk = a d ( v l ) -

ad(u2)"-ad(i;fc)7^0. Since degcp f c=— k, cpk is a non-trivial outer derivation of
g, and hence dim HI(Q) =00. q. e. d.

A typical example. Let g_x be a two dimensional vector space with a

basis d/dx, d/dy, and let gp be a one dimensional vector space with a basis

xp+ld/dy for p^O. Then we have an infinite transitive graded Lie algebra

9=Z£=-i 9P> which satisfies g<2)=0. In this case, (pk = ad (d/dx)- -ad (d/dx) are
fc- times

non-trivial derivations of g for all /c^l. Hence //](g) is of infinite dimension.

§ 6. The First Cohomology Groups of Infinite Intransitive

Lie Algebras L[W*]

6.1. First we explain a Lie algebra L[^*] which is a main object in this

section. Let Fbe a finite dimensional vector space with V= U + W (direct sum).

We denote by S(W*) the ring of formal power series over W. Let L be an

infinite transitive simple Lie algebra over U. Both L and S(W*) are complete

topological vector spaces with respect to their natural topology induced by the

filtrations. Then a Lie algebra L[VP*] is obtained as a topological completion

of L®S(J^*). Since L[FF*] is a perfect Lie algebra, we know that each deri-

vation c of L[W*~\ is continuous.

6.2. Let A be an abstract Lie algebra over C. Then the commutator

ring of A, which we denote by CA9 is defined as follows:

CA = {p e Homc (A, A); p°ad (x) = ad (x)°p for all x e A] .

In this sub-section we want to determine the commutator rings CL and CL^W^.

Proposition 6.1. For an infinite transitive simple Lie algebra L, it holds

thatCL=C.

For the proof of Proposition 6.1, we need three lemmas. First we rewrite

the some properties of L stated in Section 2 in the following lemma.

Lemma 6.2. (1) L0 = [L, LJ,/or L = D(C7), L8l(l7) and

(2) L_1 = [L,L1],/orL =

Lemma 6.3. (V. Guillemin [1]). CL is a commutative field which canoni-

cally contains the field C.
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Proof. For a e C, let pa be a mapping such that x*-*ax for x e L. Then it

is clear that pa belongs to CL. Through a mapping cn-*pa, we can consider €

is contained in CL. Let p be a non-zero element of CL. Since L is simple, we

have p(L) = L and Kerp = 0. Hence a non-zero p has an inverse. Let pl9

p2eCL. It is clear that Pi°p2^^L- Now it is sufficient to show that p^p2

= p2op1. For all x, veL we have P!°p2[>, .y] = [pi(x), PiOOl^Pz^itX y'].

Combining this equation with L = [L, L], we obtain Pi0p2==P20Pi- q.e. d.

Lemma 6A. Each CL has a faithful representation as a ring of endo-

morphisms as follows:

(1) CLc;Homc(L/L0, L/Lo) for L =
(2) C^Hom^L/L^L/L^) for L = Let(l/).

Proof. (1) Let p be an element of CL. Since the filtration {Lp} of L

satisfies L0 = [L, LJ by Lemma 6.2, we obtain p(L0)c=L0. Hence a linear

mapping p*->p e Homc (L/L0, L/L0) is naturally induced. Assume p = 0. Then

p(L) is an ideal of L contained in L0, and hence p(L) = 0. Thus a linear mapping

p-»p is faithful. The assertion (2) is proved by the same argument as (1).

q.e.d.

Proof of Proposition 6.1. First let L be an infinite irreducible transitive

Lie algebra. Then by Remark 1 in Section 2, the linear isotropy algebra g0 of

L is considered as a Lie subalgebra of gl(l/). Recall that g0 °f L = D(U),

L§l(U) and Lsp(l/) are cjl(n, C), sl(n, C) and sp(n, C) respectively. By Lemma

6.3 and Lemma 6.4, CL can be regarded as an abelian Lie subalgebra of $l(U).

We will show that CL is contained in the centralizer of g0 in gl(U). Let p e CL,

x e g0 and u E U. Then in D(U) we clearly have

[CA *], W] = [p, [x, i/]]-[x, [p, iO]=(p°ad(x)-ad(x)op)(w) = 0.

Since [p, x] e g0 and L is transitive, we obtain [p, x] =0, and hence [CL, g0] =0.

Put g0 = 9o + ^L- Then g0 yields a Lie subalgebra of gl(£/) and CL is contained

in the center of §0. Since g0 acts irreducibly on (7, g0 also acts irreducibly on

U. Note that g0 is of infinite type. By the classification theorem of Lie algebras

of infinite type ([2] or [4]), g0 must be equal to gl(l/) or csp(U). Thus we have
CL=C.

Next let L = Lct(l/). Put L/L_l = U'. Then U' is a one dimensional

subspace of gl(l/'), which contains C. Hence CL = C. q. e. d.
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Using Proposition 6.1, we can verify the following proposition originally

proved by V. Guillemin [1].

Proposition 6.5, The commutator ring of L[FF*], i.e., CL^W^ is iso-

morphic to S(W*).

Outline of proof. We will regard L as imbedded in L[W*~\. Let p be an

element of CL[_W^. We will denote by {/«} the monomial basis in S(W*). If

x eL,, then we can write

P(*)= Z Pjtof, P«0)eL,
a=0

where pa depends linearly on x. Since p is an element of CL^W^ we clearly

obtain pa e CL. By Proposition 6.1, pa is an element of C. Hence we can write

00

p(x) = x® n Pa/a> f°r an< xeL.
a=0

Since L is simple, we have [L, L[FF*]] = L[FF*]. Hence if p e €L[W,*]5 it is de-

termined completely by its restriction to L. The isomorphism between €L[W^

and S(FP*) is given by p>-*n?=o Pa/"- This completes the proof. q. e. d.

By Proposition 6.5, Der (€L[r*-j) is identified with Der (S(W*)). Now we

have a homomorphism : /: Der(S(Pf*))-^Der(L[Pf*]). Let ZeDer(L[W^*])

and peCL[Wr*-]. Then X°p — p°X is an element of CL[Wr*]. We denote this

element of CL[Wr*] by Lxp. By an easy consideration, the mapping X*-*LX is a

homomorphism of Der(L[FF*]) into Der(CL[frt]) = Der(S(FK*)). Hence there

is a natural homomorphism

L:

It is easy to see that L°l = identity, which implies that a homomorphism L is

surjective. Since any elements of the kernel of L are S(FF*)-linear mappings,

the kernel of L is identified with the set of all mappings c: L-»L[FF*] satisfying

the identity

c&, J>] = [c(x), j] + [x, c(yj] for all x, y e L.

We denote this set by Der(L, L[W*J).

Summarizing the above remarks, we have

Proposition 6.6 (V. Guillemin [1]). There is a split exact sequence of

Lie algebras:
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0 > Der (L, L[PF*]) > Der (L[W*J) -±+ Der (S(W*)) > 0.

6o30 In this sub-section, we will determine the first cohomology group

Hl(L\W*~$). By Proposition 6.6, we have a natural isomorphism:

*]) + Der (S(W*)) (direct sum) .

The space Der(S(W*)) is canonically identified with D(W), the Lie algebra of

all formal vector fields over W. Hence it suffices to determine Der(L, L[W*])

for calculating Der(L[Pf*]).

Let xel and ceDer(L, L[PF*]). We denote by /a the basis of S(W*)

consisting of monomials. Then we can write:

c(x)= ft *«®/a, ^a^L.
a=0

Put xa = ca(X). Then ca is a linear mapping of L into itself. For x, y eL, we

have

c[x, yl= ft ca[x
a=0

= [ n c^
a=0 a=0

a=0

Hence ca[x, y] = [ca(x), y] + [x, ca(y)], which implies that ca is an element of

Der(L). By Theorem 2.1, there exists a unique element za of L (resp. L + Ce)

such that ca = ad(za) for L = D(U) or Lct(C7) (resp. L = L8I(LO or L8p(C7)).

Thus we have c = ad(n*=o za®/a)- Here the symbol g denotes a unit matrix,
i.e. a basis of one dimensional center of 9l(C/). Now we easily obtain the

following isomorphism :

for L=D(U} or Lct(l7)
®e) + D(W) for L = L8I(17) or L

Since L[Pf*] has no non-trivial center, the space ad(L[FF*]) of all inner

derivations of L[PF*] is naturally isomorphic to L[PF*].

Summarizing the above results, we have proved :

Theorem 6»7e Let D(W) be a Lie algebra of all formal vector fields over

W and let e be a basis of one dimensional center of gl(t7). Then we have the

following isomorphism:
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for L = L9l(U) or
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