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Finite Element Approximations Applied to
the Nonlinear Boundary Value Problem Au =

By

KazllO ISHIHARA*

Summary

In this paper, we consider finite element approximations for the nonlinear boundary
value problem Au=buz, based on piecewise linear polynomials, and discuss iterative methods
associated with the finite element schemes. Error estimates are obtained, which imply that
the approximate solutions converge uniformly to the exact solution. Finally, we give some
numerical examples indicating the effectiveness of our results.

§ 1. Introduction

Over the last few years, the powerfulness of the finite element methods has

become more widely recognized and they are applied not only to linear boundary

value problems, but also to nonlinear boundary value problems. In this paper,

we study the application of the finite element schemes to the nonlinear boundary

value problem of the form

Au = bu2 in Q,

u = g(x) on F.

Here Q is a bounded convex domain in the w-dimensional Euclidean space R"

(n^2), its boundary F is piecewise smooth, A is the Laplace operator (A =

Z?=i d2/dx2i), b is a positive constant, and a given function g(x) is smooth and

non-negative. Such problems arise, for example, in gas dynamics and chemical

reactions ([1], [5], [6]), so that we are interested in obtaining non-negative

solutions of (1.1). The uniqueness and existence of the non-negative solution

of the above problem was established by Ablow and Perry [1] and Pohozaev

[6].
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In the present paper, we concentrate on the finite element approximation

for (1.1), based on piecewise linear polynomials, and present the iterative methods

for solving algebraic nonlinear equations associated with the finite element

schemes. Furthermore, error estimates for the approximate solutions are

obtained. In particular, we establish uniform convergence of the finite element

solutions to the exact solution of (1.1). Finally, some numerical examples are

given to illustrate the effectiveness of our results.

For the approximate solution of (1.1) by the finite difference method, we

refer to Greenspan [5].

For the finite element method of the nonlinear eigenvalue problem Au + fiu

—f(x, H) = 0, we refer to Mizutani [10].

Throughout this paper, C, Cl9 C2,... denote generic positive constants,

independent of the discretization parameter, which are not necessarily the same

at each occurrence.

§ 2e Notations and Preliminaries

For simplicity, we assume that Q is a polyhedral domain of Rn. We shall

use the following notations : let Wr*p(Q) be the Sobolev space consisting of real-

valued functions which together with their generalized derivatives up to the

r-th order, belong to LP(Q). The norm in W r>p(Q) is given by

Nl*rr.,(0) = ( E II^Kllipd)))1", />£! ,
No-

where a = ((*!, a2,..., aj is a vector of non-negative integers,

n fl\a\
N = Z « i and D*= ~ . ~ g .1 1 £ i ' dxli—dx*»

Put

V= H&Q) = {ue H*(Q) ;u = Q on

The space V is equipped with the norm of Hl(Q). The inner product in L2(Q)

is denoted by

(K, 0)0= \
JJQ

We define a continuous symmetric bilinear form on Hl(Q) x Hl(Q) by
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a(u> v)= X (Su/dxi9
i=l

Then a(- , •) is F-elliptic by Poincare's inequality.

For a given function g(x)9 it is assumed that

with

Then, we note that g(x) belongs to the space C°(Q) from the Sobolev inclusion

theorem Wl^(Q) c C°(H), so that its restriction to F is well defined as g(x) e C°(F)

([3]). In addition, we assume that

maxg(;c)>0.
r

For the non-negative continuous function g(x)9 Pohozaev [6] showed the

existence and uniqueness of the non-negative solution of (1.1), applying the

maximum principle and Newton's method. Its solution is the limit function

of the following sequence {um}:

Aum-2bum^.1um=-bu^1 in Q,

u = g(x) on F,

for w = l, 2, 3,.... Here u0 is a solution such that

in Q9

on F.

Now, in order to construct the finite element approximations, we introduce

a variational form for (1.1) in such a way that:

Find u E H^Q) such that

3 for all veV9
(2-1) { ^

I u — q

It is noted that this solution is the limit function of the following sequence {um}:

Find um e H{(Q) such that

( a(um9 v) + 2b(um-1um9 v)0 = b(u^l9 v)0 for all veV9

( um-geV,

for m = l, 2, 3,.... Here u0 eH^Q) is a solution such that

i(u09v) = Q for all veV9



20 KAZUO ISHIHARA

§ 3. Finite Element Schemes

In this section, the finite element schemes are presented. First, we triangu-

late the polyhedral domain Q as follows :

Q= U Tk,k=i

where Tk (k= 1, 2,..., J) are non-degenerate closed H-simplices whose interiors

are pairwise disjoint. By Pf, l^i^N, (or Pf, IV+lg i rgJV + M), we denote

the vertices of the triangulation which belong to Q (or T). Put

fc(rk) = the diameter of Tk,

p(Tfe) = the supremum of the diameter of the inscribed sphere of Tfc,

h= max/i(Tfe),
l^k^J

7c = the maximum perpendicular length of all the simplices Tk (& = !,..., J).

We say that a family &~h of triangulations is regular if there exists a positive

constant c independent of the triangulation such that

h(Th) g cp(Tk) for all Tk e F h .

For Tk, let Pg = PI? Pf,...,P* be its vertices, and let /L^}(x) be the bary-
centric coordinate of x e Tk with respect to P) (Og j^ri). Put

<TTfc = max {cos
w

with

where <-, •> and | • |£ respectively denote the Euclidean scalar product and

Euclidean norm in Rn, and t denotes the transpose. Put

G= max <7T. .
i^^j

We say that a triangulation ^"* is of acute type if erg 0, and of strictly acute type

if cr<0. It is noted that for n = 2, &~h is of acute type if and only if all the

angles of the triangles of &"h are less than or equal to n/2 ([3], [4]).

Further, we define the lumped mass region B(Pt) corresponding to the

vertex Pf with respect to &~h. The barycentric subdivision B\ of Tk correspond-

ing to Pt is defined by
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=
7 = 1

Then, the lumped mass region £(P/) is the union of B\ having Pt as a vertex of

Tk. Let $,6C°(5) and $f (/ = !, 2,..., N + M) be the finite element basis such
that

is linear on each Tk ,

0, x

for 1^1,7^5 N + M. Here dtj is Kronecker's delta. Define finite element
spaces as follows:

Vh = {eYh; = Q on r}c=F.

Let Lh and //, be the lumping operator and the interpolating operator, respec-
tively given by

N+M_
Lh: C°(Q) - > X » , Lhv=

(3-1)
/„: C0(0)— »y», /

i=l

We now formulate the consistent scheme for (2.1) in the following way:

Find uh e Yh such that

( a(uh9 vh) + b(u%, ^)0 = 0 for all vheVh,

I Uk-9*eV*9

where

N+M

gh= Z flf(Pi)0i.
i=JV+l

This algebraic nonlinear equation is solved by the iterative method :

Find uhirtlE Yh (m = l, 2,...) swc/z r/zar

r fl(Mhfm» »fcHKl-0)(Wfc.m-l"M,> ^fc)o=-&0«w-l» ^)o

(3.3) J /or a//
1 ^.m-^eK*.

Here uh)0 E Yh is a solution such that
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f fl(iifci0, 170 = 0 for all vh e Vh,
I uh,0-gheVh

9

and 6 is a parameter with

(3.5) 0^-1.

It is assumed that the triangulation of the consistent scheme is regular and of

strictly acute type, and in addition satisfies the condition

(3.6) K< I -*(*1 ; =V A(l-

We note that the iterative method with 6= — 1 is Newton's method.
Similarly, we formulate the lumped scheme for (2.1) in the following way:

Find uh G Yh such that

^3 Lft^° = ° f°r M Vh e Vh*(3 1)
uh-gkeV*.

The corresponding iterative method is as follows :

Find uhtme Yh (m = l, 2,...) such that

him\ Lhvh)0

(3.8) =-be((L^m_1)
2,L,i;ft)o for all vheV\

where

it is assumed that the triangulation of the lumped scheme is regular and of

acute type.

§ 4. Convergence Results

In this section, we show the convergence of the iterative methods and
derive error estimates for the finite element solutions. Consider a variational

form of the linear boundary value problem :

Find weH^jQ) such that

(4 1) ' ' » > )0 for all

( w-geV,
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where a0,fk (0^/c^n), g are given functions satisfying

Then, (4.1) has a unique solution ([11, Chapter 3]). The consistent scheme

for (4.1) with the regular triangulation of strictly acute type consists of finding

wh E Yh such that

(4 2) I a^h' ^ + <^°w/" u*)o = (/o> y*)o+ JC (/*> dty/axOo /or a" u*e 7*,

( w fc-0 fce7*,

where
JV+M

This scheme has a unique solution and is written in matrix form as

where

n ^ N+M

Pi = (fo, &)o + S (A, 30,/gjcOo ~ Z
fc=l j=JV+l

Following Ciarlet and Raviart [3], we say that the matrix {atj}

I ^ j g N + M) is of non-negative type if

Then, we have the following lemma ([9, Lemma 2.1], [4, Lemma 3], [3, p. 23]).

Lemma 1. Suppose that the triangulation is of strictly acute type. Then,

the matrix {atj} (l^i^N, l^j^N + M) is of non-negative type. Moreover,

N+M
E ay=0, Ig igJV,
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where Ttj = 0 when PtPj is not a side of any Tke^~h or TitJ- is the union of

having PtPj as a side of Tfe, and meas(7) j) Is the Lebesgue measure of

Further, Ciarlet and Raviart [3] showed the following result.

Proposition 1. Suppose that p>n. If the matrix {dtj}

l ^ j ^N + M) is of non-negative type, then there exists a positive constant

independent of h such that

(4.3) llwJt-co^llffllL-cn + C!
fc=0

and there exists a positive constant C2 independent of h such thai

(4-4) l|w-wJLoo(

provided that weW2*p(Q). In addition, the following discrete maximum

principle holds:

(4.5) max wh g max {0, max gh} g max g ,
a r r

provided that

or

(4.6) min wh ̂  rain {0, min gh} = 0 ,
n r

provided that

Now, in order to show the convergence of {uh>m} defined by (3.3) and (3.4)

to the solution uh of (3.2), some lemmas are prepared. We first recall that the

triangulation of the consistent scheme is regular and of strictly acute type and

satisfies the condition (3.6).

Lemma 2. // (3.2) has a non-negative solution uh, then the solution is

unique and satisfies

0 ̂  uh !g max g .
r
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Proof. From (3.2), it follows that

a(uh, vh) = (- bu2
h, vh)0 for all vh € Vh .

Since — 6wj;^0, applying Lemma 1 and the discrete maximum principle (4.5)

yields

0 ̂  uh :§ max g .
r

Assume that there exist two solutions uh, z]r Putting eh = uh — zh, we have

a(uh - zh, vh) + b(ul - zl yfc)0 = 0 for all vh e Vh .

Thus, eh e Fh is a solution such that

(wfc + z,,)^,, vh)0 = 0 for all vh e Fft .

We denote the coefficients of this matrix equation by ati. Using Lemma 1,

(3.6), (3.5), we have that

g + 2 * m a x , - - - meas (r,y)

— 0) max g 26 max 0 meas

+0) max

and that

AH-M N+M

N+Af
= b E ((«» + r»)^, ^)0 ^ 0, 1 ^ i g AT .

J=l

Therefore, from the discrete maximum principle it follows that

eh g max {0, max (uh — zh)} = 0.
r

Thus,

By reversing the roles of uh and z,,, we have

"h^Zh-

Hence, we obtain
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uh = zh.

The proof is complete.

Lemma 3, For a given function wh e Vh such that

define uh e Yh by

a(uh, vh) + fo(l - 9)(whuh, vh)0 = - b9(w%, vh)0 for all vh e Vh

(4-7) I *
I Ut,-

Then, the matrix {a^} (l^i^N, l^j^N + M) associated with (4.7) is of non-

negative type and

Proof. Using Lemma 1 and (3.6), we have that

= -
— 9) m&xg

= 0, i*j, l£i£N, l^j^

and that

N+M
E Sy^O,

Since — bOw^Q, an application of the discrete maximum principle (4.6) gives

uh ̂  min {0, min gh} = 0 .

This completes the proof.

We are now in a position to show that {uhtm} is a monotonically decreasing

sequence and converges to the solution uh of (3.2).

Theorem 1. The sequence {uhiin} defined by (3.3), (3.4) satisfies

and converges to the unique non-negative solution uh of (3.2).
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Proof. From (3.4), Lemma 1 and the discrete maximum principle, it

follows that

(4.8)

Hence, applying Lemma 3 to (3.3) with m = 1, we have

Put

By (3.4) and (3.3) with m = 1, we have

, %>o for all i > f c e 7 * .

Thus,

«(WM, fy) + 6(1 ~ 6) (M*,owfcfi, «?fc)o = - K<o> ^) for all vheVh.

From (4.8), Lemma 3 and the discrete maximum principle, it follows that

ftjl f£ max {0, max w f t j l} =0 .

Hence,

Assume that

(4.9) 0 ̂  uhitn ̂  uhtm _ ! ̂  - - g wh t l ^ ttfcf0 ̂  max ̂  .

By (3.3), we have

(4.10) a(uhtm+ 19 ̂  + 6(1 - 0) (uhtmuhtM+

= -60«m,i;,)0 for all ^e

(4.11) ^(w^m, »fc) + 6(1 - 9) (ttfc>m_ xw,^, t;ft)0

= -60«m_1? ^o for all ^

Applying Lemma 3 to (4.9) and (4.10) yields

(4.12) uhtm+l^Q.

Substracting (4.11) from (4.10),
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. . i f - i ) J f*)o ^ a l l v h

Hence, we obtain

-i}» »*)o, for all i?*eK*.

Thus, from (4.9), Lemma 3 and the discrete maximum principle, it follows that

whtfn + ! ̂  max {0, max wft,m + 1 } = 0 ,

since - b(uh>m - uh>m. 0 {uhM - uh>m_ l + (1 + 0)uhM. J ^ 0. Therefore,

(4-13) w * . m ^ w M l f l .

Hence, (4.9) holds with m replaced by m + 1. By induction, the sequence {uht,n}

(m = 0, 1, 2,...) are non-negative and monotone decreasing. This implies the

convergence of {uhtm}. From (3.3), the limit function 3;fc = lim l l l_00MMl satisfies

o(yk9 »k) + b(yl vh)0 = 0 for all vh e Vh ,

Thus, {uht,n} converges to the unique solution uh of (3.2), by Lemma 2. This

completes the proof.

Next, we shall derive an error estimate which asserts that the finite element

solution uh of the consistent scheme (3.2) converges uniformly to the exact

solution u of (2.1) as h tends to zero. We begin with the properties of the

interpolating functions which are well known by Lemma 4 of [3] and the

Sobolev imbedding theorem.

Lemma 4. Let ve W2>P(Q\ p>n. Then Ihv defined by (3.1) satisfies

where C{ and C2 are positive constants independent of h.

We can now prove the following theorem.

Theorem 2. Let u be the solution of (2.1). Let uh be the solution of the

consistent scheme (3.2). // the triangulation is regular and of strictly acute

type and satisfies the condition (3.6), then there exists a positive constant C

independent of h such that
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provided that u e W2'P(Q\ p>n.

Proof. Put

From (3.2) and (2.1), we have

a(uh, vh)-a(uh, vh) + b(u%, vh)0-b(u2
h, vh)0

= a(u, vh) - a(fift, vh) + Kw2, ^)0 - b(ul, vh)0 for all

Hence, eh eVh is a solution such that

(4.14) a(eh, vh) + b((uh + uh)eh, vh)0

= (/o, «*)o+ Z (/*, 3^/flx^o for all vhk=\

with

/fc = du/8xk — duh/dxk,

We note that the matrix associated with (4.14) is of non-negative type, from the

property of strictly acute type, (3.6) and the facts that

It is also noted that

by Lemma 4. Thus, applying Proposition 1 to (4.14) yields

\M\L-(Q)

Hence, using Lemma 4, we obtain

where C is a positive constant independent of h. Thus, the proof is complete.

Moreover, we can show the following theorems for the lumped scheme



30 KAZUO ISHIHARA

under the hypothesis that the triangulation is regular and of acute type. Since

these results are obtained by the same arguments as used for the consistent

scheme, we omit the proofs.

Theorem 3. The sequence {uh>m} (ra = 0, 1,2,...) defined by (3.8) satisfies

uhtm^Q, ra = 0, 1, 2,...,

and converges to the unique non-negative solution uh of (3.7).

Theorem 4. Let u be the solution of (2.1). Let uh be the solution of the

lumped scheme (3.7). // the triangulation is regular and of acute type, then

there exists a positive constant C independent of h such that

provided that u e W2'P(Q), p>n.

§ 5. Numerical Examples

In this section, some numerical examples are presented to illustrate the

effectiveness of the convergence results derived in the preceding section. We

deal with the two-dimensional problem (n = 2). Let Q± and Q2 be the equilateral

triangular domain and the square domain of U2, respectively defined by

l9 0<x2<l}.

By Fx and F2, we denote the boundaries of Ql and Q2, respectively. The ex-

amples are as follows :

Example 1.

( Au = u2 in Ql ,

1 u = 12/(xl+x2 + 2)2 on /V

Example 2.

Au = u2 in Q2,

u = 12/(xi + x2 + l)2 on F2.

The exact solution for Example 1 is u1(xl9 x2) = 12/(x1 + x2 + 2)2, and the

exact solution for Example 2 is w2(xls X2) = 12/(x1+x2 + l)2.

As shown in Figure 1, Q± is divided into uniform mesh with equilateral
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triangles, which is of strictly acute type and satisfies the condition (3.6) (10, 28,

91 nodes). Also Q2 is divided into uniform mesh with right isosceles triangles,
which is of acute type (9, 25, 49, 81 nodes). The favorite choices for the parame-

ter 9 are —1, —2, —3, — 4, —5. The numerical convergence criterion for the

iterative methods is employed in such a way that

max <1CT

Table 1 gives the comparative numbers of iterations to achieve our criterion

for Example 1 with 28 nodes. These results indicate that the choice 6= — 1

which corresponds to Newton's method is both practical and efficient. Figure 2

shows that {uhtm} is a monotonically decreasing sequence for Example 1 with

91 nodes. Tables 2 and 3 show the finite element solutions, compared with the

exact solutions. They demonstrate that the approximate solutions converge to

the exact ones with the mesh size in good agreements with our theorems.

All the computations were carried out on the FACOM 230-28 computer

at Ehime University, by using single-precision arithmetic.

(a) Example 1 (28 nodes). (b) Example 2 (25 nodes).

Figure 1. Uniform mesh.
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Uk.md/2, /T/6)

1.64

1.6120

1.60

1.50

exact
1.5431 1.5430 1.5430 (1.543068-)

m
0 1 2 3

Figure 2. Monotone convergence. (Example 1, 91 nodes, 0 = — l, consistent.)

Table 1. Number of iterations (Example 1, 28 nodes),

number of iterations (m)
17

-1

-2
-3
-4

«

consistent

3
4
5
5
6

lumped

3
4
5
5
6
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Table 2. Numerical results for Example 1 (0= -1).

Nodes

10
28
91

/I

1/3
1/6
1/12

consistent
Mfc(l/2, VJ/6)

lumped
^(1/2,^/1/6)

1.5416 1.5453
1.5427
1.5430

1.5437
1.5432

exact W l( l /2, v
;3/6) 1.54306- ••

Table 3. Numerical results for Example 2 (6= — 1).

Nodes

9

25

49

81

ft

x/2/2

V2/4

V2/6

V2/8

lumped
i/,,0/2, 1/2)

3.0466

3.0163

3.0079

3.0046

-\ 1 /^\ j.UUUU, 1/2)
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