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Centralizer of an Ergodic Measure
Preserving Transformation

By

Motosige OSIKAWA*

§1. Introduction

Let T be an ergodic measure preserving transformation of a Lebesgue
measure space (Q, B, P), P(Q)=1, that is, T is a one to one mapping from Q
onto itself, bimeasurable (T8 =23B), measure preserving (P(T~14)=P(A) for 4
in B) and ergodic (every measurable function f(w) with f(Tw)=f(w) a.e. is
constant a.e.). For measure preserving transformations U and U’ we write
U=U" if P(Uw#U'w)=0 and UsU’ otherwise. A measure preserving
transformation U of (2, B, P) is called a p-th root of T(p=2) if Ur=T. A
1-parameter group {U,} of measure preserving transformations of (2, B, P)
(ie. U, y=U,U, for —oo<t, s< + o0) is called a measurable flow if (w, )-» U,
is a measurable mapping from Q x I onto Q. If there exists a measurable flow
{U,} with U, =T, T is said to be embeddable in a measurable flow. The ex-
istence of a p-th root or an embedding measurable flow has been one of problems
in ergodic theory.

It is obvious that the existence of an embedding measurable flow of T
implies the existence of a p-th root of T for every p=2 and also that a p-th root
of T (if exists) and an embedding measurable flow of T (if exists) are ergodic.

A measure preserving transformation U of (@, B, P) is said to commute
with T if UT=TU. We denote by C(T) the group consisting of all measure
preserving transformations each of which commutes with T and call it the
centralizer of T. Since a p-th root of T (if exists) and a transformation U, for
fixed ¢ in an embedding measurable flow {U,} of T (if exists) are in C(T), we may
expect to solve the existence problem of roots and an embedding measurable
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flow of some kind of ergodic transformation by determining its centralizer. A
transformation U in C(T) is called to commute irrationally with T if T" #£U™
except for n=m=0. Whether an ergodic transformation commuting ir-
rationally with given ergodic transformation exists or does not is a new problem.

Blum and Friedman [1], [2] discussed the existence problem of roots for
ergodic transformations with discrete spectrum and constructed, for instance,
an example of such transformation without any roots. Chacon [3], [4] gave
an example of an ergodic transformation with continuous spectrum having no
square root and one having no roots. Ornstein [10] gave an example of
ergodic transformation T with C(T)={T": ne Z} which, in consequence, has
no roots nor an ergodic transformation commuting irrationally with it. In
[11] he showed that every Bernoulli shift is embeddable in a measurable flow.

In Section 2 using the property of an invariant y, of a transformation U in
C(T) which was introduced by T. Hamachi [6] we study the existence problem
of a p-th root and an embedding measurable flow for ergodic transformations
with pure point spectra. We show also that for an ergodic transformation with
pure point spectrum there exists an ergodic transformation which commutes
irrationally with it. In Section 3 we determine the C(T) for a kind of transfor-
maticns and give the following examples of ergodic transformations: (1) one
not having any root, (2) one having only square root but no others, (3) one having
a 2"-th root for any positive integer n but no others, (4) one having a n-th root
for any positive integer n but not embeddable in a measurable flow, and (5) one
whose commutant is not commutative. In Section 4 we give two examples of
normalizers of ergodic non-singular transformations; one of them is one not
having a square root and the other is one having any root but not embeddable
in a measurable flow.

The author would like to thank I. Miyawaki for his contribution to the
proof of Theorem 6 (2).

§2. Invariant y, and Transformation with Pure Point Spectra

Let T be an ergodic measure preserving transformation of a Lebesgue
measure space (2, B, P), P(2)=1. A number 7 in the unit interval [0, 1) and
a function f,(w) are called a point spectrum and an eigenfunction, respectively,
of Tif f(Tw)=exp (2niy) f(w) for a.e. w in Q and |f(w)|=1. We denote by
S,(T) the set of all point spectra of T. It is a countable subgroup of [0, 1)
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with respect to the additive operation modulo 1.

Lemma 1 ([6]). Let T be an ergodic measure preserving transformation
of a Lebesgue measure space (Q, B, P), P(Q)=1, then for a transformation U
in C(T) there is a homomorphism yy from S,(T) into [0, 1) such that f(Uw)
=exp (2miyy(y)) f(w) for a.e. w, for y in S(T) and an eigenfunction f(w).

Proof. Since f(Uw)/f(w) is a T-invariant function and T is ergodic, there
is a constant yy(y) such that f(Uw)/f(w)=exp (2riyy(y)) for a.e. w. This con-
stant yy(y) does not depend on the choice of an eigenfunction f,(w) for y and xy
is @ homomorphism from S,(T) into [0, 1).

Corollary 2. Jf S(T)={0} then for any ergodic transformation U in
C(T) S, (U)={0}.

Proof. Obvious from Lemma 1.

Lemma 3. (1) For U and Vin C(T)

Lov() =2u(P+xp(y) (mod 1) for 7y in Sp(T)'

Especially, yyu(y)=nyy(y) (mod 1) for y in S(T) and n in Z.
() xx(=y fory in S(T).
(3) IfU in C(T) is ergodic, yy(y)=0 implies y=0.

Proof. Obvious.

Theorem 4 ([2]). If 1/n is in S(T) for some integer n with (n, p)#1 then
there is no p-th root of T, where (n, p) is the greatest common measure of n and
p.

Proof. Assume that there is a p-th root U of T. Since pyy(y)=y (mod 1)
for y in S,(T), there is an integer ¢ such that y,(1/n)=(14nq)/np. Since
nyy(1/n)=0, (14+nq)/p is an integer, contradiction to (n, p)#1.

An ergodic measure preserving transformation T of a Lebesgue measure
space (Q, B, P), P(Q)=1 is said to have pure point spectra if there is a com-
plete orthonormal system of L*(Q, P) consisting of eigenfunctions of T.

Lemma 5. Let T be an ergodic measure preserving transformation of a
Lebesgue measure space (2, B, P), P(Q)=1 with pure point spectra.

(1) The mapping U—yy is one to one from C(T) onto the group consisting
of all homomorphisms from S,(T) into [0, 1).

(2) If yy(y)=0 implies y=0, then U is ergodic.
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(3) If there is a homomorphism ¢ from S,(T) into [0, 1) such that pg(y)
=y for y in S,(T), then there is a p-th root of T.

(4) If there is a 1-parameter group ¢, of homomorphisms from S,(T)
into [0, 1) such that ¢(y) is a measurable with respect to t and ¢,(y)=y for y
in S,(T), then T is embeddable in a measurable flow.

(5) If there is a homomorphism ¢ from S,(T) into [0, 1) such that ng(y)
=my for y in S,(T) implies n=m=0, and such that ¢(y)=0 implies y=0, then
there is an ergodic transformation irrationally commuting with T.

Proof. (1) We denote by Sf(?) the character group of S,(T) and by
{7, 9>,y 1in S,(T), g in S/p(?) an inner prod/ug which is a bilinear form with
absolute value 1. Let a be an element in S(T) defined by <y, a) =exp (2riy)
for yin S,(T) and identify it with the translation g—g+a of S,(T). By Halmos-
Neumann theorem [5] there is a measure preserving mapping ¥ from (@, B, P)
onto @") with the Haar measure such that g+a=¥YT¥ 1g for a.e. gin §”/(\1)'
For a homomorphism ¢ from S,(T) into [0, 1) identify the element b in S,(T)
defined by <y, b) =exp (2ni¢(y)) for y in S, (T) with the translation g—g+b of
g(? ). Then the transformation U of (@2, B, P) defined by Un=¥"1b¥w for
w in Q is in C(T) with xy(y)=¢(y) for y in S(T). This means the mapping is
onto. If xy(y)=0 for any y in S,(T), then f(Uw)=f,(w) for every eigenfunction
f(w) all of which span L%(Q, P). Hence, U is the identity transformation and
it follows that the mapping is one to one.

(2) Let f(w) be a U-invariant function in L2(Q, P). Then we have

| r@p@aP@ = | 1)/ Us)aP@)

= &% Criz ) | f(@F@)P(@).

Since xy(y)#0 for y+#£0, g_f(w)_];(_cg)dP(w)=O for y#£0. Hence, f(w) is con-
stant a.e. and U is ergodic.

(3), (4) and (5) follow easily from (1) and Lemma 3.

An infinite sequence A, 4,,..., 4,,... of real numbers is called to be ration-
ally independent if for any positive integer n g4, +g,4;+ - +4,4,=0, g; in
Q,i=1,2,..,n implies g, =q,=--=¢q,=0, where { is the set of all rational

numbers.

Theorem 6. Let T be an ergodic measure preserving transformation of a
Lebesgue space (R, B, P), P(Q)=1 with pure point spectrum.
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(1) If there is a rationally independent sequence 1, Ay, Ay,..., Ap,..., Suich
that S(T)c{m+q,A+qrly+ -+ g,k neN, meZ, q;eQ}, then T is em-
beddable in a measurable flow.

(2) Ifn/pisnotin S,T) for n=1, 2,..., p—1, then there is a p-th root of
T.

Proof. (1) Define ¢[y)=1qg,Ai+g24,+-+4q,4,) (modl) for y=
m+qA +qA,+-+4,4, and —oo<t<+o0, then {¢,} is a l-parameter
measurable group of homomorphisms from S,(T) into [0, 1) with ¢,(y)=y for
yin S,(T). Hence, by Lemma 5 (4) T is embeddable in a measurable flow.

(2) We show first a proof of (2) in case of prime p (Blum and Friedman
[2]) for completeness of the discussion, and next, one in case of not prime p.

Let I' be a maximal subgroup of [0, 1) such that I includes S,(T) and that
n/pisnotin I forn=1, 2,..., p—1. We show that there exists a homomorphism
¢ from I into itself such that pp(y)=y for y in I'. It is enough to see that for
any y in I" there exists uniquely an integer n, n=0, 1,..., p—1 such that (y+n)/p
isin I'. If there is y in I" such that (y+n)/p is not in I for any n=0, 1,..., p—1,
then {my/p+n: meZ, nel} is a subgroup of [0, 1) including I" and does not
contain n/p for any n=1, 2,..., p—1. This contradicts to the maximality of
I'. The uniqueness follows easily from that n/p is not in I for any n=1, 2,...,
p—1.

Let p=p;p,*--py, Where p;’s are prime numbers. Since 1/p, is not in S,(T),
from the above discussion there is a homomorphism ¢, from S,(T) into [0, 1)
such that p;¢(y)=y for y in S(T). Denote by I'; the ¢,-image of S(T). If
¢,(y)=1/p, for some y in S,(T), then y=p,$,(y)=p,/p,, which contradicts the
assumption of S,(T) if p; #p,, and y#0 if p,=p,, respectively. Therefore,
1/p, is not in I';. By the same way we can obtain a sequence ¢,, ¢s,..., ¢, of
homomorphisms and a sequence I',, I's,..., I';, of subgroups of [0, 1) such that
¢; is a homomorphism from I';,_, onto I'; and p;p,(y)=y for y in I';_,, for
i=2,3,..., k. Define a homomorphism ¢ from S(T) into [0,1) by ¢(y)
=i+ (¢3(h2(94(y))---)) for y in S,(T). Then we have pd(y)=7y for y in S,(T)
and by Lemma 5 (3) there is a p-th root of T.

Lemma 7. Let p’ and q' be positive integers with (p’, q')=1, then for a
prime number p and a positive integer q

@' +p'q, P'p)=1 or (¢'+p'(g+1), p'p)=1.
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Proof. Assume that a=(q'+p'q, p'p)>1 and a’=(p’, a)>1. Then since
a is a divisor of q'+p’q, a’ is a divisor of ¢’, and hence, (p’, g')=a’>1, con-
tradiction. Thus (¢’ +p’q, p’'p)>1 implies that (p’, a)=1, that p=a=(q'+p’q,
p'p) because p is prime, and hence, that p is a divisor of g’ + p’q but not of p'.
Therefore the assumption that (q’'+p'q, p'p)>1 and (¢'+p'(q+1), p'p)>1
implies that p is a divisor both of ¢’ + p’q and q'+p’(g+1) but not of p’. It is
impossible. This proves the lemma.

Theorem 8. For an ergodic measure preserving T with pure point spectra
there exists an ergodic measure preserving transformation which commutes

irrationally with T.

Proof. By Lemma 5 (5) it is enough to construct a homomorphism ¢
from S,(T) into [0, 1) such that ¢(y)=0 implies y=0 and such that [¢(y)=my
for y in S,(T) implies |=m=0.

(1) First we construct it in case that S (T)=@. In this case there is a
Sequence Py, Py, Pas---» Pu--. Of prime integers such that S, (T)={m/pyp,---p,:
neN,meZ}. Letl,l,,...,1,... be a sequence of positive integers in which
every positive integer appears infinitely often.

(1-1) In case that there are infinitely many distinct prime numbers in the
Sequence Py, Pi,---s Ppe--- Let ng=0 and go=1. Having chosen ng, ny,...,
n,—1 and qo, gy,.... 4,,_,> N, can be chosen such that there is an integer g with
113, <(g—1)/p, <(g+1)/p,.<2/3l;, and g; for i=n,_+1, n_+2,...,n,— 1,
n, can be chosen by Lemma 7 such that (qo+ poq;+ -+ PoP1***Pi—19i> PoP1 " Pi)
=1 for m_;+1=i<nm, and 1/3l,<q,,/p, <(q, +1/p, <2/3l;. For the ob-

tained qg, g1,---» Gy»--. We define

d(m[popy---pa)=m(qo+ Poqd1+ "+ PoP1"*Pu-149x)/PoPy***P, (mod 1).

Then ¢ is a homomorphism from S,(T) into [0, 1). If ¢(m/pop,---p,)=0
(mod 1), then from (g + pogy +:* +PoP1***Pu—1Gus PoP1- -Pn)=1 m is a multiple
of popy--+ps and hence, m/pyp;-+-p,=0 (mod 1). For a positive integer / and
infinitely many positive integers k such that I, =1 we have 1/3<Il¢(1/pop;---p,,.)
=0(qo+Poqy+ 4+ PoP1 Pue—19m)/PoPy " Pu. <2/3. Since, on the other hand,
m/popy-* Py, converges to 0 as k—oco for an integer m, l¢(y)=my (mod 1) for y
in S,(T) does not hold for positive integers / and m.

(1-2) In case that there are only finite number of distinct prime numbers
in the sequence pg, py,..., Pp-.., We may assume that S(T)={s/p§+1/pps---pu:
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n, meN, s, te Z}, where p, does not appear in the sequence py, Pa,..., Pys--- -
Let no=0 and go=1. Having chosen ny, n,,..., n,_; and qq, q4,..., §—1, W€
take n, (>n,_,) and ¢, such that 1/31,<gq,/ps-—"-1<(q,+1)/pg"~-1<2/3],.
For the obtained ny, n,,..., n,... and qq, q1,---, 4p,-.. define

¢(5/P6" + t/plp2" 'pm)
=s(qo+p8iq,+ -+ pg*-'q,) p+t/p;py---p,, (mod ).

Then ¢ is a homomorphism from S,(T) into [0, 1). From g,=1, (g0+ p§'q,
+ -+ phr-1g,, pi)=1, and hence, ¢(y)=0 implies y=0. Since 1/3</(q,
+pbig+ -+ pir-1q)/ pek <2/3, by the same way as one in (1-1) we can show
that I¢(y)=my for y in S,(T) holds only for [=m=0.

(2) In case that an irrational number 2, is in S,(T), there is a rationally
independent sequence |, 4, 2;,..., 4,,... such that any number in S(T) has a
form qo+q.A ++q s neN, q,€Q, i=0,1,..., 0. Let 1,15, Nayeees Hyse--
be another rationally independent sequence such that #, and 2, are rationally
independent and define

(,b(‘m"“ll)*] +'“+qn)“n)=q0+ql’7l +"'+qu’1n (l'nOd ])5 ”GN, qiEQ’

i=0, 1,...,n. Then ¢ is a homomorphism from S,(T) into [0, 1). Itis obvious
that ¢(y)=0 implies y=0. If I¢(y)=my for y in S(T), we have Ip(1,)=1In,
=mn, and I=m=0 follows from that A; and n, are rationally independent.
The proof is complete.

§3. Examples

Let I' be a torsionfree countable abelian group and G the character group
of I which is a separable compact abelian group. We denote by {y, g>, ye T,
g € G their inner product and by dg the Haar measure on G. We note that an
endomorphism (automorphism) ¢ of G determines uniquely an endomorphism
(automorphism, respectively) ¢ of I' by <y, a(g))=<{8é(), g>. yel, ge G, and
vice versa. We denote by End (G) and End (I") the sets of all endomorphisms
of G and I, respectively.

Theorem 9. For elements A and n in G and ¢ in End(G) let U, ;, be a
measure preserving transformation of the direct product measure spuce (G x G,

dg x dg) defined by U, ; (9. 9)=(g+4, g'+a(g)+n) for (g,g") in GxG. If
{y, Ay=1 implies y=0 and if 6(y)=0 implies y=0, then (1) U, ,, is ergodic,
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(2) eXp (27TiSp(Ua',l,u))={<y7 )‘>: y Er} a”d (3) C(Ua',l,)y):{UJ,a,ﬁ: 56End (G)7
o, Be G with o(x)=08(A)}, where the left side of (2) is the set consisting of all
exp (2nil) for { in SP(U,,M).

Proof. Since {y, g><y’, g'>: 7y, y'€l'} is a complete orthonormal system
of L*(G x G, dg x dg), any function in it is represented as f(g, g)=2,, a,,
9>y, 9> for (g,9") in GxG and we have f(U,;,(9, 9))=2,y dyy
s ALY > <y +6(), g><¥', ') for (g, g') in GXG.

(1) From (U, (g, 90)=f(g, g") for (9, g') in GxG we have a, <y, 2>
Vs M) =0ays4¢),y for p, 7" in I'. Hence, |a,, /=181 50,1 =105+ 2507,1="
Since f(g, g') is in L*%(G x G, dg x dg), I is torsionfree and since &(y)=0 implies
=0, we have a,,=0 for y’#0. Since a,({y, A)=a,, and since <y, A)=1
implies y=0 we have a,,=0 for y#0. Hence, f(g, g)=ao, and U, ,, is
ergodic.

(2) Let f(g, g') be an eigenfunction of U, ,, for a point spectrum {, then
we have a,,<y, )Y, n)=exp 2nil)a, s, V> 7' €. By the same way
as one in (1) we have a, ,,=0 for y’#0. Since f(g, g') is not zero function there
is y with a,,#0. For such y it follows from a, ({y, ) =exp (2ni{)a, o that
{y, Ay =exp (2ni{), which means exp (2niS,(U,;,)=1{y, A>:yel}. It is
obvious that every {y, 1) is in exp (27iS (U, ; ,))-

(3) Let V'be a transformation in C(U, , ,) and put f,(g, g") =<y, g» for y in
I'and (g, g')in Gx G. Since f, is an eigenfunction of U, ; ,, by Lemma 1 there
is an element « in G such that f(V(g, g"))=<y, > f,(g, g') for (g, g') in GXG.
From f(V(g, g")) =<y, g +«) there is a mapping @ from G x G onto G such that
V(g, 9)=(g+a, (g, g") for (g9, g') in GxG. From VU, ,,=U,,,V we have
D(U,,14(9, 9N)=2(g, g)+0a(g+a)+n for (g,9) in GxG. Put ¥(g,g")=
@(g, g')—g’', then Y(U, ;.(9, 9)=¥(g, g')+0o(x) for (g, g’) in Gx G. Hence,
{y, o(2)> is in exp (2niS, (U, ;) for any y in I'. By (2) there is an element
é(y) in T such that (y, a(x)> =<5(y), Ay for y in I'. From the property of 2, &
is an endomorphism of I" and o(x)=45(1). Put (g, g')=¥(g, g')—g’'—(g) for
(9, 9") in Gx G, we have O(U, ,;,(9, 9")=06(g, g') for (g, g') in GxG. From
(1) there is an element f in G such that ©(g, g")=p for (g, g') in Gx G. Hence,
V(g, g)=(9+% g’ +0(g)+p) for (g, g') in Gx G, thatis, V=U;,,;. Converse-
ly, Us 5 With a()=6(4) is in C(U, ;).

For a sequence p;, ps,.-.» Pu-.. Of prime numbers let {, be the subgroup
of @ consisting of all rational numbers of the form m/p,p,---p,, neN, meZ,
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and @ be the infinite direct product set [0, ) x ]2, {0, 1,..., p,—1}. Define
{q, ) for g=m/p,p,---p, in @y and w in Q by (g, w)=exp 2rim(w,+ w,
+ 1@y + -+ PPy Pue 104/ P1 P2 D), Where w, is the n-th coordinate of w.
Then Q is the dual of ), with respect to the inner product (g, w)». The adding
operation in Q defined by {q, w+w')={q, ©)<{gq, 0", eQ,, w, ' € Q2 may
be called a generalized adding machine. The Haar measure P on Q is the
infinite direct product dwo x [ T2 {1/pu 1/Pw---» 1/pa}- Let @y be the set of
all rational numbers of the form m/p(1)"Vp(2)*@)...p(k)"®, keN, meZ,
n(i)e N and p(i)’s are prime numbers each of which appears infinitely many
times in the sequence py, p,,..., P».... For a number g, in ¢J; a mapping q—
44 is an endomorphism of (J, and so, for g, in J; and w in Q, g,w is defined
such that w—q,w is an endomorphism of 2. We can see that there are no other
endomorphisms of @, (or ) except ones determined by numbers in ¢J; as
above. Let {0, be the set of all numbers g, in {#; such that 1/g, is also in @,
then the endomorphism of @, (or Q) determined by g, in {?, is an automorphism
if and only if ¢, is in Q,.

Theorem 10. Let Q be the compact abelian group described above and
A be an element of Q whose 0-th coordinate A, is irrational. Define a measure
preserving transformation T of the direct product space (2xQ, PxP) by
T(w, )=(w+1, o'+ w) for (v, @) in Qx Q. Then we have the followings:

(1) Tis ergodic.

2 AMN)={U,,: 9:€Q, x€Q}, where

Uy oo, 0)=(w+q4, o' +q0+a) for (o, ) in @xQ.
(3) Tis not embeddable in a measurable flow.
4 IfU% ,=Tm p, meZ, then m=pq, and
pu=m(m—1)A/2—p(p—1)q3A/2.
(5) If there is u p-th root of T, p is in 0,.

(6) There is an ergodic measure preserving transformation which com-
mutes irrationally with T.

Proof. (1) and (2) follow from Theorem 9.

(3) Let {U,} be a measurable flow in C(T), then by (2) we may assume
Ui=U, ) for q,(9) in @ and «(f) in Q. Since w—w+ q,(1)4 is a measurable
flow of Q, g,(f)=0 follows {rom the countability of ;. Thus we conclude that
U, =Upyuy# T for any measurable flow {U,} in C(T).
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(4) follows from T™(w, w)=(w+ml o' +mw+m(m—1)A/2) and
Uj o0, @)=(w+pq,2, o'+ pq,0+ pr+p(p—1)q32/2), (0, ) € 2 x Q.

(5) Let U=U,,, is a p-th root of T then by (4) we have pg, =1, which
implies that p is in Q,.

(6) LetU=U,, ,for g;#0in Q, and « in Q such that the 0-th coordinate
oy of o is rationally independent with A,. Then by Theorem 9 U is ergodic.
If Ur=T"™ then by (4) pa={m(m—1)/2—p(p—1)q?/2}4, and hence, p=m=0
follows {rom that «, and 4, are rationally independent.

Example 1. For an irrational number A define a transformation T of
[0, ) x [0, 1) by

T(x, y)=(x+4, y+x) for (x,y) in [0, 1)x[0, 1).

This T is the same transformation as one in Theorem 9 in case of p,=1 for
every neN, in which case Qy=Q,=Z and Q,={1}. Since C(T)={U,,:
neZ,oel0, 1)}, where U, (x, y)=(x+nl, y+nx+a) for (x,y) in [0, 1)
x [0, 1), it is easy to see that T has no p-th root for every p=2. By Theorem 9
T2 is also ergodic and C(T?)=C(T)U {U, ;: neZ, fe[0, 1)}, where U, 4(x, y)
=(x+nl+1/2, y+nx+p) for (x, y) in [0, 1)x [0, 1). Hence, T? has only a

square root T but no other root.

Example 2. For the transformation T of Theorem 10 in case of p,=2 for
every n, we have that J,=@, =the group of all 2-adic rational numbers and
Q,={2":neZ}. Then T has a 2"-th root U, u, (a=—(2"—1)A/22"*1) for
every n=1 but no other root.

Example 3. For the transformation T of Theorem 10 in casc that cvery
prime number appears infinitely often in the sequence py, ps,..., Pys---» Qo=@
=Q and Q,=Q—{0}. Then T has a p-th root U,,,, (x=—(p—1)4/2p?) for
every p=2, but is not embeddable in a measurable flow as seen in Theorem 10.

Example 4. We consider a dual pair Z2=ZxZ, [0, 1)>=[0, 1)x [0, 1)
with an inner product {(n, m), (x, y)> =exp 2ri(nx +my)), (n, m)eZ?, (x, y)
€ [0, 1)2. For irrational numbers A and n which are rationally independent

define a transformation T of [0, 1)* by
T(x, y, z, w)y=(x+4, y+n, z+x, w+y) for (x, y, z, w) in [0, 1)*.

Then by Theorem 9 T is ergodic, S,(T)={nA+mn (mod1): (n, m)e Z2} and
C(T)={U,,: aisan endomorphism of S,(T), « in [0, 1)?}, where U, ,(x, y, z, w)
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=(x+ai+cn, y+bi+dn, z+ax+cy+e, w+bx+dy+f) for (x,y, z,w) in
[0, 1)*if ¢ is given by 2 x 2 matrix (ccz 3) with integer components a, b, ¢, d and
a=(e, f). Since 2 x 2 matrices are not commuiative, C(T) is not commutative.
Note that this T is the product transformation of ones of Example 1, whose
commutants are commutative.

Example 5. For irrational numbers A and n which are rationally inde-
pendent define a transformation T of [0, 1)® by T(x,y, z)=(x+2, y+n,
x+y+z) for (x, y, z) in [0, 1)3. By the same way as one of Theorem 9 we can
see that T is ergodic and C(T)={U,,.s: 1 meZ, a, be[0, 1)}, where
Upmap(X, ¥, 2)=(x+ni+a, y+mn—a, z+nx+my+>b) for (x, y, z) in [0, 1)3.
This C(T) is also not commutative.

§4. Application to the Theory of Normalizer of Ergodic
Nen-singular Transformation

For an ergodic non-singular transformation t of a Lebesgue space (W, &, v)
we denote by Orb, (w) the orbit {t"w: neZ} of win W. The full group [1] of
7 is defined as the set consisting of all non-singular transformations ¢ of (W, §, v)
such that &w is in Orb, (w) for a.e. w in W. A non-singular transformation R
of (W, &, v) is called a normalizer of [t] if R[tTJR™!=[1]. An ergodic non-
singular transformation t determines uniquely up to conjugacy an ergodic
non-singular flow {4,} called the associated flow of [t] ([7], [9]) and a normal-
izer R of [t] determines a non-singular transformation mod R which commutes
with the associated flow {4,} ([8]). In this paper we call the pair ([z], R) a
non-commutative dynamics with characteristic ({4,}, mod R). T. Hamachi
[6] showed that for an ergodic non-singular flow {T;} and a non-singular trans-
formation U in C({T,}) there is a non-commutative dynamics with characteristic
(T}, U). A non-commutative dynamics ([t], R) is said to have a p-th root
if there is a p-th root of R which is also a normalizer of [t] and to be embed-
dable in a measurable flow if R is embeddable in a measurable flow which
consists of normalizers of [t]. We can easily see that a non-commutative
dynamics ([t], R) has a p-th root (is embeddable in a measurable flow) mod R
has a p-th root in C({4,}) (is embeddable in a measurable flow in C({4,}), respec-
tively).

Let T be an ergodic measure preserving transformation of a Lebesgue space
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(2, B, P) with P(Q)=1 and ¢>0. We define a measurable flow {T;} on the
product set 2,=Qx[0, ¢) by T(w, u)=(T"®, u+t—cn) if cnSu+t<c(n+1),
(w, u)eQ,. {T,} is ergodic and called the special flow with constant ceiling ¢
with base transformation T.

Lemma 11. Let {T;} be the special flow with constant ceiling ¢>0 with an
ergodic base transformation T.

(1) Denote by C({T;}) the group consisting of all transformations each of
which commutes with T, for every t, then C{T,})={T,U: a€[0, 1), Ue C(T)},
where U(w, u)=(Uw, u) for (w, u) in 2, ([8]).

(2) A measurable flow in C{T,}) has a form T,U,, t in R, where « is a
real number and {U,} is a measurable flow in C(T).

(3) A transformation T,U in C({T}}) has a p-th root if and only if T"U
has a p-th root in C(T) for some n.

Proof. (1) Let IT be the mapping from @, onto [0, c¢) defined by (w, u)
=u for (w, u) in Q, and L a transformation in C({T;}). Since II(L(w, u))—u is
a {T,}-invariant measurable function and {T;} is ergodic, there is a constant o
in [0, ¢) such that ITI(L(w, u))=u+« (mod ¢) for (w, u) in Q,. Hence, L has
the form L(w, u)=(U(w, u), u+«) for (w,u) in @, From T_,L(w, u)
=(U(w, u), u) for (w, u) in @, and T(T_,L)=(T-,L)T, for t in R follows that
U(w, u+t)=U(w, u) if 0Zu+t<c, so that U(w, u) does not depend on u in
[0, ¢). From T T_,L)=(T_,L)T, we have U(Tw)=TU(w), that is, U is in
C(T). Wehave L=T_,U.

(2) Let L, be a measurable flow in C({T;}), then by (1) L, has the form
L,=T,,U,, where for each ¢, U, is in C(T) and of(z) is a real number. Since
ot)=II(L(w, u))—II(w, u) is a measurable function and a(t+s)=a(t)+o(s)
(mod ¢) for t, s in R there is a real number o with o(f)=at (mod ¢) for ¢t in R.
Since U,=T_,L,, t in R is a measurable flow, so is {U,}.

(3) Let T,V be a p-th root of T,U, where U is in C(T) and f is in [0, 1).
From T,,V?=T,U there is an integer n such that pf=a—cn and V?=T"U.
Conversely, let V be a transformation in C(T) such that V?=T"U for some
integer n and f=(x—cn)/p, then T,V is a p-th root of T,U.

Example 6. For an irrational number A define transformations T and U
of [0, 1)2 by

T(x, y)=(x+24, y+2x) and U(x, y)=(x+4, y+x) for (x, y) in [0, 1)
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As seen in Example 1 T is ergodic and U is in C(T). Since T"U(x, y)=
(x+Q@n+ 1A, y+Q2n+1)x+2n22) for (x, y) in [0, 1)? and n in Z, by Theorem 9
we have C(T"U)={U, ;,: keZ, j=0,1,....2n, fe[0, 1)} for n in Z, where
Uy jp(x, )=(x+kA+j/2n+1), y+kx+p) for (x, y) in [0, 1)®. Hence, every
T"U for n in Z does not have a square root. Therefore, by Lemma 11 (3) U
does not have a square root in C({T;}). Then a non-commutative dynamics
with characteristic ({T;}, U) has no square root.

Example 7. For a sequence p,, p,,..-, Pp--- Of prime numbers in which
every prime number appears infinitely many times let @=[0, 1) x 12, {0, 1,...,
pn.— 1} be the compact abelian group as same as one in Theorem 10. For an
element 4 in @ such that {y, A)> =1 implies y=0 define transformations T and U
of @xQ by T(w, w)=(w+24, ©'+2w) and U(w, ®)=(@+41, o' +w) for
(w, @) in 2x Q. Then by Theorem 10 T is ergodic and U in C(T). By the
same discussion as one in the proof of Theorem 10 (3) a measurable flow in
C(T) has the form U,y (0, o)=(w, ®'+a(t)), where «t) is a 1-parameter
subgroup of Q. Hence, by Lemma 11 (2) a measurable flow in C({T;}) has the
form TjU, (0, o', u)=(w+2ni, © +2nw+2n(n—1)A+a(t), u+pt—cn) if cn
<u+pt<c(n+1), where B is a constant. Since A#2nA for any integer n, U
# T4 Uy for any ¢, that is, U which is in C({T}}) is not embeddable in a measur-
able flow in C({T;}). Since U has a p-th root in C(T) for every p=2 as seen in
Example 3, there exists a non-coramutative dynamics with characteristic
({T;}, U) which has a p-th root for every p=2 but which is not embeddable in
a measurable flow.
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