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Gravity Waves on the Free Surface of an
Incompressible Perfect Fluid of Finite Depth

By

Hideaki YOSIHARA*

§1. Introduction

We consider the nonstationary waves on the surface of an incompressible
perfect fluid of finite depth above the almost horizontal bottom in the case of
two dimensional irrotational motion.

We assume that the density of mass is equal to one, the gravitational field
to (0, —1) and at the time t =0 the fluid occupies the domain

QO={(yy;, y) Iy, eRY —h+b(y)Sy,<n(t, y,)}

where h is a positive constant. We denote by I', the bottom y,=—h+b(y,)
and by Iy the free surface y,=n(t, y;). The motion of the fluid occupying at
t=0 the given domain @ is described by the velocity v=(v,, v;), the pressure p
of the fluid and # satisfying the equations

0

(1.1 Wv+(v'7)v=—(0, H-rp for ¢t=20,yeQ()
0 o _9d. 0 _
(1.2) @'l—vl'i'-ay—zvz——a-;—lvz 5-]’—2171—-0 for t;o,yE.Q(t)
(1.3 (F+oF)n-yD=0, p=ps on T,
(1.4) v-N=0 on I,

and taking the prescribed values

(1.5) 10, y)=no(y1), v(0, y)=vo(y)

where F =grad, v-F =v,(0/0y,)+v,(0/3y,), po is a constant, N is the outer
normal to Iy and v, satisfies (1.2) for y e Q and (1.4).
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For the investigation of the solvability of this problem, it is convenient to
use the Lagrangian coordinates. Let

y1=x+X1(t’ X), y2=X2(t5 X), xERl

be the parameter-representation of the free surface y,=#(t, y,) such that
Xt ) =00, x+X,(t, %), X,(t, ).

We see that on the free surface X,=v,4+(v-V)v=—(0, 1)—Fp. On the other
hand, differentiating p(t, x + X ,(t, x), X,(t, x))=p, with respect 1o x, we have
(1+X,,, X,) - Pp=0. Hence we have (1+X,)X,+X,.(1+X,,)=0. It
follows from (1.2) and (1.4) that under the appropriate assumptions on v and
Q(#), vy | r, is uniquely determined by v, | .. Therefore we conclude that there
exists the operator K=K(X, b, h) such that X,,=KX,,. In Section 3 we shall
give the operator K the explicit form which enables us to investigate how the
operator K depends on X, b and h. In Section 4 the properties of the operator
K will be shown. Thus the problem is reduced to the initial value problem

(1.6) (14+X1)X 10+ X1+ X5,)=0, X,=KX,, 0s:=T,
1.7y X=U, X.,=V, t=0.

In this paper we shall show that this problem is uniquely solvable in a
Sobolev space when U, V, Tand b are small. The proof is based on the quasi-
linearization of (1.6) and the successive approximation for the obtained quasi-

linear system. QOur proof follows that of Nalimov [1] with the modifications
caused by the fact that the operator

K(0, 0, h)= —i tanh (hD), D=—§.— ?1%

is not an isomorphism of Hs. In Section 5 we shall show that by putting
Y=Xtt9 Z=an W=(X5 Y, Z): W/=(X3 YI):
we can reduce the problem (1.6), (1.7) to the problem

Xy=Y, Yi,+a(W)|D|Y,=f(W, W),
Y2t=f2(VV’ W:‘)s th=f2+j(VV’ W:‘)’ J=1’ 2’

1.9) W=W, W.=W, t=0.

(1.8) {

In applying the successive approximation to the problem (1.8), (1.9), the follow-
ing initial value problem is fundamental.
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(1.10) u,+a(W)|Dlu=g, 0<:<T,
(1.11) U=1ug, u,=u,, t=0,.

In Section 6 we shall deal with the initial value problems for these linear and
nonlinear equations.

In the case of the infinite depth, i.e., h=o00, V. I. Nalimov [1] showed the
unique solvability of (1.6), (1.7) in a Sobolev space. The unique solvability of
the problem on the irrotational motion of the incompressible perfect fluid with
the free surface has been proved in the class of functions analytic with respect to
space variables; in the case of the finite depth in two dimeusions, see [2], [3],
where the shallow water theory is treated; in three dimensions, see [4], [5].

We turn the reader’s attention to that we do not distinguish the inessential
positive constants occurring in proofs and use the same symbol C.

Finally I wish to thank T. Nishida who communicated the problem to me
and T. Kano for the fruitful discussion with him.

§2. Operators in Sobolev Spaces

In this section we give the results of the functional analysis which will be
required in later sections. In solving the problems stated in Section 1, we use
only the spaces of real-valued functions of one variable, but here we deal with
complex-valued functions of several variables except the last article.

2.1. Notations and Definitions. Let k=0 be an integer, 0<T< oo and B
be a Banach space. We say that ue C¥[0, T], B) if u is a B-valued k-times
continuously differentiable function on [0, T]. Let Q be an open set in R".
By CHQ), 0= k= o0, we denote the set of all functions defined in Q, which have
continuous partial derivatives of order <k. By C§(Q) we denote the totality
of u e CKQ) whose support is compact in Q. By #*(Q), (k=0 is an integer,
0=r<1), we denote the set of all u e C¥(Q) with

lu)l grsr@y=sup |D*u(x)] +l sup Q|D°‘lt(x)—D°‘u(y)llx—y|"< o

la|Sk,xeR «|=k,x,ye

where a=(0;,..., ®,), ®;20 is an integer, |«|=0ay+---+a,, D;=(1/i)d/0x;, D*
=Dy...Dz», By &(R") we denote the set of u € C*(R") such that

sup |x*DBu(x)| < oo

for all @ and fB, where x*=x%..-x%». For the details of distribution theory
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(Z(R"), &#'(R"), Fourier transformation, convolution and others), see [6],
[8]. We denote by H¥(R”), — o0 <s< + o0, the set of all ue&#'(R") such that
(1 +|&)ya(&) e L,(R"). Hs(R") is a Hilbert space with the inner product

(u, 0=y { (1+12) 20O0@E, 2= uwesdx
We put lully= /@ Wy (4, 0)=(u, v)o, |ull=ullo. Note that
(u, v)=(2m)" S ﬁ(é)ﬁ(—é)d£=g u(xJo(X)dx, (Parseval’s formula).

For u=(uy,..., u,), if u;€ HS(R"), j=1,..., m, then we say that u € H5(R") and
write  (u, V)s = (uy, vg) + - + (U, V), lully=+/(u, u), for u,ve H(R"). A
pseudo-differential operator P(D) with a symbol P() is defined by

P(DYu=(n)"| POIE)e<de
Note that ||u|,=|(1+|D|)ul|. For the convolution u*v(x)=g u(x— y)v(y)dy
note that #x0 =109, v =(2n)""i*d.
2.2. Convolution and Mollifier.

Lemma 2.1 (Hausdorff-Young’s inequality). Let 1<p<gq=co, | —(1/p)
+(1/q)=1/r. Then for fe L(R"), g € L,(R") the inequality

| f*g ”L.,(R")§ ”f“L,(Rn)”g”L,(m)

holds.

Lemma 2.2 (Hardy-Littlewood-Sobolev’s inequality). Let 1<p<g< o
and put r=n(1—(1/p)+(1/q)). Then for fe L,(R")

IF %1% | Lycrmy S KIS Nl cemy

holds where K=K(p, q, n)>0. There is the another formulation equivalent
to the above. Letp>1, q>1and(1/p)+(1/q)>1 and put r=n(2—(1/p)—(1/q)).
Then for fe L,(R"), g € L(R")

{76090 = y1r dxdy| S ULyl ycae

holds where C=C(p, q, n)>0.

For proofs of Lemmas 2.1 and 2.2 we refer to [7] Section 2.

Take ¢ € C(R") such that ¢ =1 in a neighbourhood of x=0, ¢(x)=0 and
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S @(x)dx=1 and put ¢,(x)=e"p(¢"x), e>0. Since @(\é)=¢(s§), we have

[#OI<1 and @,(&)—1, (e—>+0). Using the equality ¢ *u(£)=¢.(5)(¢) and
the definition of the norm || - ||, we have

Lemma 2.3. Let —oco<s<+oo. Then for ue H(R") we have | @ *ul,
<|uls and |@#u—u|;—0 when e— +0.

Lemma 2.4 (see [6] Lemma 6.1). Let ae #'(R") and define A, by

Au= "’=*("%) — a<¢e*%> .

Then for u € L,(R") we have

lAull=Cllul, [|Au—ul-0,  (e—>+0)

where C>0 is independent of u and £¢>0.

2.3. Sobolev Spaces. Here we pick up the several facts which we shall

use in estimating integral operators. For the proofs of them, see [6] Chapter 7.

Lemma 2.5.

D H®R)SLRY, 0Ss<f, —=g-S=l(T_y),

i.e., there exists a constant C>0 such that |u|,, &= Clulls for any u e H¥(R").

2) Hs(Rn)qgr(Rn),%q, 0§r<s—_’”2-, r<l.

Corollary 2.6.

H5(R")s L,(R"), %<s, 25p=.

Lemma 2.7 (see [8] Lemma 2.6.1).

For 0<s<1, there exists A=A(s, n)
>0 such that for any u € #(R")

@ry{la@P+162de = {lucordx-+ A{ flucx+ ) - uPply-r-2sdxdy .
Moreover
2-2eul2 5@y { 12O +18P)dE S 2 ul?.

Remark 2.8.
and

Let O<s<l, —o<r<+4o0. Since [ul,4,=][(1+|D)ul,
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flotmdy{ e+ 3) —uGorEiy-2edx= {1 +9) =uC D 1 Fmnlyidy
the norm |u|,, is equivalent to the norm

1/2
fal, +(§ 1G4 =uC DIy
Lemma 2.9. For any integer m=[n/2]+1, u;e H*(R"), j=1,..., I, and
multi-indices v;, j=1,..., I, [v{|+ -+ +|v| Sm, the estimate

1(DY1uy)--- (D" )| S Cllta [l 1wl m

holds where C>0 is a constant depending only on n, m, 1. H™R") is an
algebra, i.e., if u, ve H"(R") then uv e H"(R") and |uv| < C|ulull0]m-

Remark 2.10. By Remark 2.8 and simple calculations, we have the
estimate

1011+ (D¥ 1), S Cltty st

for u;e H™*"(R"), 0<r<1. Therefore HS(R") is an algebra for any real
s=[n/2]+1. Letu, ve(R"), s>n/2. From

(L +[Elyied(&) = 2m)™ S (L+ DA ~md(m)dn

and (1+[E) =@ +[E—nl+ ) =25A +1E—nl)*+25(1 +|n)* we obtain by
Lemma 2.1

luvls = Cllullsg L+l 1ol (L+InD)~*dn
+Cllvllsg A+ DA A+]ED~dE = Cllul,lv]s-
Consequently H5(R") is an algebra for s>n/2.
Lemma 2.11. For u, v;e H"(R"), j=1,..., |, the estimate

IFC, v)ulln = ClIF L gmeay(1 + 0l [l

holds where m is an integer =[n/2]+1, Q is an open set containing {(x, v(x))
eR"xC'|xeR"}, F belongs to #™(Q) and C=C(m, n, )>0.

Remark 2.12. Using Remark 2.8 we obtain

IFC s 0)llmsr = CIF | gme 1)1+ [01m)" (L4 10l £) 18]

where O<r<1 and Q is an open set containing {(x, z)|xeR", zeC, |z|
<sup Jo]}.
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2.4. Estimates for Commutators. Here we deal with the case n=1, so
we omit R?! in the notations. It is known that

(2.13) v.p.~1—=—nisgn§, —7—6—2=ne‘0|51, Zx 5= —mie ¢l sgn &
X x“+c x“+c

where sgn é=1 for >0, sgn ¢ = —1 for £<0 and ¢>0.

Lemma 2.14. Let r=0, s>1/2 and m be an integer =2. For a,ue¥
we have

) llsgn D, alul,=Clla],+uls-r, 120
2) |[D™, aJull =Clallmllullm-

3) ILA+IDIY, alull =CllalJlull,-1, t>3/2
4 DI, aJul| £Cllally+sllull,-1, 0<t=1

where [A, Bl=AB—BA and C is a constant independent of a and u.
Proof. 1) Putv=[sgnD, aJu. Then we have

(L+1ED5(E) =(2n)“S(1 + ¢ (sgn & —sgnm)a(& —m)a(n)dn .

If sgn£—sgnn+#0 then sgné= —sgny and |&|+|y|=Esgn E+nsgny=(E—7)-
sgn £Z|E—n|. Since t, r=0 we have

(L+1ED18() é;lc— S (L+1E=nlyA+1E=n1a€—mI A +nD)~*1a)ldn .

Taking L,-norm with respect to ¢ and using Hausdorff-Young’s inequality, we
obtain

ol S lal, . § L+ iD=l

<tlal o+ mD-2ean) (e aciean)

T
=Cllall+lulls-. -

2) Putv=[D™ alu. From the estimate " —n"|ZC|E—n| {(1+]|E—n|)m 1!
+(1+|n))m1} we obtain

s =C | +1E-nriac—naeidn
+ ¢ 1g—nblac—mi+ b lawidy.

Since m =2, we can choose g such that 1/2<g<m—1. Therefore
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lol<Cllall, g (1 + InDela)] (1 + [l)~%dn

+ Clttfpes S(l F1ED A (L + E)2de
éC“a”m”u“q+C”u”m— 1 “a” 1 +q§C”a”m”u”m—1 .

3) From [(1+[E])'=(1+n) 1< CIE—nl{(1+IE=nD)""+(1+nl)*""} and
1/2<q<t—1, we obtain 3) in the same way as in 2).
4) Putv=[|D|*, aJu. Then we have

B(&)=(2m)™! S €I =) A+ D =t @€ —m) (A + Inl) = a(n)dn .

Noting that 0<t=<1, we estimate f=||é|*—|nl*|(1+n)'"t. For [y|=1,
f=CA+|E—nl). For |n|z1 and |{]2nl,

rsiar (1=(H) yemn=rs a1 -2 )@t
< (lel=1n) (F2) " 212 1.
For Inl 21 and ¢|<Inl,
r(1=(45) @i s (1= rrin s 2161

Hence we have f < C(1+|¢—n|) and
BEI=C S (L+1E=nD1aE—mI A+ |nDy~*a(m)ldn .
In the same way as in 1), we obtain |v|| =C|la|, +slull.—;- The proof is com-
plete.
Lemma 2.15. Let h>0,5s=0. For ue H°, the estimates
(sgn D —tanh (hD))u ;= Cllull, [I(1—tanh?(hD))ul|;= Cllu|
hold where C=C(h, s)>0.

Proof. Since tanh (hé) = (e"® — e 1) (e + e 1¢)~1 = (sgn &) {1 — 2e~hi¢l.
(ehlél 4 e~h1¢<N~11 we have

|sgn & —tanh (h&)| + |1 —tanh?2 (hé)| < Ce kI3l
From this we obtain the required estimates.

Lemma 2.16. For O<s<1 and an integer m=0, there exists A=A(s, m)
>0 such that for any ue &
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@m @ R0 +iga
=S|u(x)!2dx+ASgiD:; u(x+y)—u(x) Zl_v|“2‘d.\'dy.

1

Moreover
22, < (2 | QP+ EP2) dES 2l

Proof. Using the Parseval’s formula,

gg.Dm u(.\'+,v)-—gﬂ‘zh,|1—zsdxd1.
o7 v : o

=yt la@pag ||y €2 =L [y
by the transformation y—¢&-1z,
= (fla@riera)({|or €20 iz ar).
Since |D7(et? — 1)/z|?|z|' 725 < C(1 + |z|)72|z|' =2 and 0<s< I, the integral
S}D'g it YL WTEE AR
z |

converges. It is obvious that if we put this integral equal to A~! then we obtain
the equality in question. For a>0,b>0, we have 1+ b*Z14+(1+b)
<2(1+b)*. By a substitution a—a~!, we have 1 +b'/*<2(1+b)!/%, and by b—
be, 1 +b=2(1+b%)'a. Hence 27%(1+b)*<1+b°<2(1+b)? is valid. Putting
a=2m+2s, b=|¢&|, we obtain 272m=25(1 4 |£[)2m+2° < | 4 [€]2m+2s S 2(1 + |E])Pm+2s,
If we multiply these by (2n)7!|i(¢)|> and integrate, then we obtain thc
required inequality.

§3. Representation of the Operator K

In this section we give the operator K the representation which is adequate
when we investigate the dependence of K on functions defining the bottom and
the {ree surface. We can not assert the validity of the following calculation if
we do not indicate which space the functions under consideration belong to,
but we proceed with calculations under the ambiguous assumption that all
occurring functions are smooth, small and tend to zero when variables tend to
the infinity.
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Let Q be the domain in the y,, y,-space which is identified with the z
=y,;+iy, plane. Assume that the boundary of Q consists of I'; and I', which
are given by
G.1) { Ig: (x+X(x), X5(x)) or z(x)=x+X,(x)+iX,(x),

’ I'y: (x, —h+b(x)) or w(x)=x+i(—h+b(x)), —0<x<+00.

Let vy, v, be defined in Q and satisfy the equations

0 0 9, 0 -
V] U, =—0; ——0,=0 in Q
0y, ! 0y, 2 0y, ! 0y, 2

v-N=0 on TI},.
Then F=v,—iv, is holomorphic in Q. Put
) =F()+if,() = F(()
(3.2) 9(x)=g1(x)+ ig»(x)=F(w(x))
bi(x)=22).

From v-N=0 we have g,(x)=—b,(x)g,(x). Taking z,ely and the closed
path y in Q and letting y—I" U I',, we obtain

_ 1 F(z) m S F@) ,4 S F(z)
O_EZSY z—1z, dz =i F(z0) = 2mvP s z—zo 2ni)r, z ——zod

Using (3.1) and (3.2) we have

1 S(y) dz(y) 9(») dW(J’)
(3.3 f(x)+ﬁ V-P-Sz(y)fz(x) iiyy dy=— Sw(y) yZ(x) dy

By
1 dz(y) () - z(x)
G . ~ dy 198 G0 =) = 5 (log (y =) +10g ZHZIE)

_ 1 40 - X,() |, X(0) - o)
=5y e (140 =),

1 dw(y) _ 0
w(y)—z(x) vzly By log (w(y)— z(x))

(10g (y —x—ih) +log LVQLLZQQ)

ih
_ y—x+ih , 0 — X, (x)+ib(y) —iX,(x)
_(y—x)2+h2+ 10g(1+ y—x—ih )

and (2.13), the real part of (3.3) becomes after the partial integration in the
integrals containing log,
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(B4 fit+isgnDf,+A fi+A,f,=e"Plg, +isgn De #Plg,+ A,g,+Asg,

where
- du F1. 9
A=\a;(x, ), (Ndy, j=1,2,34,
__ 1 X (x)—Xi(y) | . X(x)—X(p)
a,-——nlmlog<1+ x=y +i X~y >
_ 1 Xi(x)— X1 () | . Xo(x) —X(p)
(3.5) = —LRe 10g<1+ T )
_ 1 Xi(x) +iX5(x) —ib(y)
a3-—nImlog<1+ X—y +ik )
__1 X1 (x) +iX5(x) —ib(y)
ay=——Re log(1+ X—y+ik )

Taking wy e I', and proceeding in the same way as the above, we obtain

(3.6) g,—isgn Dg,+Asg,+Aeg,=e "P! f, —isgn De MPI £, + 4, f + Ag f>

where
ape={a,(n By, j=5,6,1.8,
as =%Im log (1 +i b______(x))c:l;(y)>
(3.7) as =%Re log<1 +i&c—)£:—l;)(ﬂ)
a; =~71t— Im log (1 +— Xl(y);_i?)(f)i; 1X5(y) )
o =L Re log (1.4 =XV 0)Y,

Eliminating ¢,, g, from (3.4), (3.6) and g,= —b,g,, we obtain
{1 —e=28PI —jsgn D(1+ ¢ 2MPNB,} f; = —isgn D(1 +e 24P (1 +B,)f,.

Since f; =v,, fy= —v,, K=K(X)=K(X, b, h) can be written in the form

(3.8) K= —(1+B,)"(i tanh (hD) + B,)
= —itanh (hD)— B, + B,(1 + B;)"!(i tanh (hD)+ B,)
= —itanh (hD)+ K,

where

By=isgn D (1+e 2MP)~1{— 4, + e MPl 4y + By(~i sgn De™"IP!
+ Ag) — (e7*P1 4+ B3) B,(1 + B,)~'(—isgn De Pl + 45)},
B,=isgn D(1+e2kP)~1{ 4 — e kDI 4, — B,(e "Dl + 4,)

(3.9) +(e P + B) By (1 + B,) L(e P + 4,)},
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B3= —i Sgn De—hIlel +A3_A4bl s
B,=isgn Db, + As— Agh,,
A;, j=1,..., 8, are defined by (3.5), (3.7),

db

bl =-6—l‘x—.

§4. Estimates for Integral Operators

We shall show that, roughly speaking, K, and [0%dZ, K] are operators of
order —1. To this end, first of all, we consider the integral operator of the
form

@.1) Au(x) = g(ﬁ 2;(x)=a;(y) >F<b(x) ‘b(y)>u(_v)dy

x—y x—y

where b=(by,..., by), a;, b; are real-valued and F is smooth in a neighbourhood
of 0e R¥, or

(4.2) Au(x) = g(ﬁ "fi"_) ;ifi(}f’) > F(f ix_) 1_ i(l;l’ ) )u(y)dy

where f=(fi,....fn), 9=(g1,..-, gy) and F is smooth in a neighbourhood of
0eCV.

In the following two articles we shall show that if functions a, b,..., oc-
curring in the kernel are in Hs, then Au is in H* and Lipschitz continuous with
respect to a, b,.... Since & is dense in H®, to simplify the statements we shall
assume that, unless the contrary is stated, all functions a, b,..., are in &#.

4.1. Operators of the Form (4.1).
Lemma 4.3. Let k be an integer =0, r=0 and s>1/2. For A defined by

Au(x) = Sg%:;—(ﬂ D*u(y)dy = Sg@-—;}q}ii—y—)Dku(x —y)dy

= S(Dﬁa—%(x) —a(x—y )>u(x —y)dy

y
we have ||Au|, = Clla| ., |ulls where C=C(k, r, s)>0.
Proof. Since
—alvo LaD)—v o Lx(aD
Au-a(v.p. x*D u> v.p. x*(aD u)
= —ni[a, sgn D]D*u
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the lemma follows from Lemma 2.14.

Lemma 4.4. Let j be an integer 20 and
160)= || ED=AE=D) |y (x— y)ay

Then || S Cllall; . »lull where C=C(j)>0.

Proof. Since

Sl(x)z dx< g dx S | D;;f!!x),f':{,x )

2
" ay Stu(x—.v)lZd.v

= (| pyatm 2 =al= Py pupe,

we obtain the required estimate if we put m=j, s=1/2 in Lemma 2.16.

Lemma 4.5. Let j, k be integers =20, s>1/2 and

pia(x)—alx—y)
y v

I(x)=g

I Dk b(-x;) —;ﬁ(x:_]!) l dy .
J .1] [

Then |1 =Cllall; /| bllx+, where C=C(j, k, s)>0.

Proof. LetO<r<!1. Then
(4.6) |49 =8 =0) | —jagw) — a(e =) Iy
< Cllallar (1+1y )"yl

If m=1 then

@7 ome®—alx=y)_am S"

V]
; a‘“(.\'+ty)dt=g g™t (x +ty) dt
1 -1

]
= S_ m %}— %a(”)(x+ty) dt

mt" g™ (x +1ty) dt}
1

1
=== =) -
So 1 tm_l {a("')(x‘y) _a('")(x+ty)}dt

— _%{(_ Dma™ (x—y) +m6’;“1 L(E);:_(i_ﬂ}

where al)(x)=0ia(x). Therefore for s=0, r we have

|y D=8 <yt petiam e -)

—a™(x+y)| |y +ey |7+ 1%y |°dt
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0
amly= {7 mtie+ 110 def 107l
-1
0
Since O<r<1, S [tf"=1|t+1|"dt<oo. These inequalities and (4.6) show that
-1
| Py =822 | < )l 1+ 1Dy

holds where m=0 and C=C(m, r)>0. From this it follows that

XI(x)zdx = gdx{g

§CIID"aII§,r{deS (1L+y)~r|y|a/pe-n

D} a(x) —;l(x—y) ' |D’;, b(x) —Jlj(x_y) l dy}z

v ‘D’; b(x) —b(x—y) I ly |(‘/2)“(1'(’/2))dy}2

y
scipials | @ +1y>lyr—ay

— —_ 2
XS|D’§b(x) Jl:(x y)l Iy |1=20-0I2) dxdy .

Let r be so small that 0<r<s—(1/2). Then from Lemma 2.5 we obtain
[Diallg-=ClDial=Cllal j+s-

If we put m=k, s=1—(r/2) in Lemma 2.16, then the integral containing b is
smaller than C||b||% (1 -2y, Which proves the lemma.

Lemma 4.8. Let k be an integer 20, s>1/2, b=(by,..., by), b; be real-
valued and

Au(x) = S (D;; a(x) —th(x—y)> F(b(X) —Jlj(x-y)>u(x —y)dy.

Then we have ||Au| S C||F|giqllall(1+b]l2) |ulls where C=C(k, s, N)>0, Q
is an open set containing the convex hull of

{é(.x)_“yb(LJ’_) —<Xx, y< +oo} and Fe#'(Q).

Proof. For a function f(x), we put
Jory)=LE=E=D, p) =)

It is easily seen that of(x, y)/dy +f'(x, ¥)=—(1/y)(f(x, y)—f'(x)). Using the
formula

F(E)-F(b')=$ {S:%CEHI —0b")dt} (5,~5))
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(we write this in the form F(b)—F(b')= Z Fyb;—b})), we can write Au in
the form

— —_ N N
Au=F(b") S (D’;W)u(x —-y)dy+2XAu=Bu+3 Aju
1 1
A= (DyECI=AE=I) N 6, ey
First we assume that k=0. Then we have

Aju= ga(x)F u(x y)dy +ga(x —y)F; (—%Ej+5}>u(x—y)dy.

For O<r<l1,

2i=bl S (8 e +1y) — b)) |

_.<_§_11b;-(x+zy)—b;-(x)lltyl-fltmyIf-ldt

SCIDbjllg-(1+1y D7yt
By choosing r,p and g such that O<r<1/2,2<p<o,(1-r)g<1l and
(1/p)+(1/q)=1, we obtain from Corollary 2.6

-+ oDy tuGe—»lay S I+ D1 i Juls, < Clull,
and from Lemma 2.5
IDb;lar SCIDb,, SClbyl5.  sup [u(0)] SCllull.
Therefore we have
|44(0)| S C sup | |15, ul Ja()
+Csup |yl f{| 0, =21 E=N g5 )

}dy.

Using Lemma 4.4, we have |[4;ul| <Csup |F}| ||la] ||bjll,lull,. Next we assume
that k>0. From (4.7) we see that

a(x)—a(x—y)_ _ 1 _ _ —1a(x)—a(x—y)
opel¥)=abizy) y{( 1)kt (x — ) + ko “ b

This and b;— b= — y(8,b,;+ b};) show that
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Aju = (" l)k
X S{(— 1)ka®) (x —y) +ka';-1“_(x-)‘_“f(x_‘:l_)}ﬁj(ay5,.+ B)u(x—y)dy .

By Lemmas 4.4 and 4.5, we have

[Ajull Csup |Fi{(I1b;l1 412+ 16711/2) la® ] sup |ul
+C sup ‘Fj| lallk- 11Dl 1+ ||b'j|lo+1)5uP Jul
sCsup IFjI Ilallkllbjllzllulls-

Applying Lemma 4.3 to Bu we have for any k=0
4.9) | Aul] £ C sup |F(b")| Ilallkllulls+C;N sup |F | llallllbjll2llulls,
which proves the lemma.
If F has the form F(z)=z,--zyG(Zp 4 1,---» Zy)» then
sup |F(b")| = (sup |b1])-+-(sup |by|) sup |G|

and

M , 0G .
(ITsup |b,.|)sup1—a-; for M+1<jsN
sup |F;={ ! i
(I1 sup |6]]) sup |G| for 1sj=M.
i+j

Using (4.9) and sup |b}| < C| bj||,, we have

Lemma 4.10. Let k be an integer 20, d=(d,,..., dy), d; be real-valued

and
Au(x) = S(Dryc M}
y
« 1] 2:x) = bi(x=y) 6(4x)=dte=y))
1 y ¥y

u(x—y)dy.

Then we have

lAull £ CliGllgrayllalllbyllz:Iball2(1+ldll) ulls,

where C=C(k, s, M, N)>0, Q is an open set containing the convex hull of
{(d(x)—d(x—p))|y|—0<x,y<+ o0} and GeZ'(Q).

Lemma 4.11. Let m be an integer 22, s>1/2, b=(by,..., by), b; be real-
valued and

Au(x) = Sa(X) —a(y) F(b(x):‘l;’(.l’) )u(y)dy )

x—y x
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Then we have
Al < CILF | gmeall@llm(L+ D1 N0l
where C=C(m, s, N)>0, Q is an open set containing the convex hull of
{(b(x)—b(y)/(x—y)| —0<x, y< + o0} and F € "(Q).
Proof. Note that ||Au|,<C(]|Au| + |D™Aul)). Putting k=0 in Lemma
4.8 and noting that m =2, we have

[ Aull £ CIIF || gmgyllallm(1+ b1 )™ ulls -

After the replacement of y by x—y, m-times differentiation with respect to x
under the integral sign and the partial integration, D™Au(x) can be written in
the form

m

D" Au(x) = % ( " ) g {D';D;'-k(aF(E))}u(x—y) dy =3 ( ,’\’f )Aku(x) ,

Au(x) =§(D';D;"-ka)F(5)u(x—y>¢v
+3 Sa%{-,(B)(DﬁD?-kEJ-)u(x—y)d_v

1

+, % (@ppoa)pra) 11 (DpDYE, utx—y)dy
Jj=1

J,n,p,q
where J, n, p and g move in the set such that
1£JEm,
pj§k5 qjém_k’ pj+qj§m_1s (Oéjé'])s
1§nj§Na Iépj+qj9 (1§]§J)3
Potqot+--+p;tq,=m

(4.12)

and F’-P-9-%(z) is the linear combination of (0/0z)*F(z), |¢|<J. We put Au
—~—~
=Au+ A u+ Agsu.  Since DPkG=Dmkq, applying Lemma 4.8 to A, u, we
have
[ Ay ull = ClIF || g1y [ D™ *all(1+ DIl 2) llulls
SC|Fgmllalln(t+1161m)"lulls-

From Lemma 4.10 we have

N0
Il =3 C[2E] | 1omtb il (1+ 1) ful,
T 10Zjllav®@

SClF | gmeyllall (1 + 151" lulls -

We may carry out the estimate for 4,;u under the assumption that
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(4.13) pit+4q.:2pit+q; 1=5j=J.

When po+qo+p;+4q; =2, we see from (4.12) that p;4+q;=m—2 for 2<j<J.

Using (4.7), we have for 2< j<J
IngDchjEnj, é sup |D1+pj+qunj’ é C”bn_j“ 1+p,+gj+1 =< C”bnj”m .

Hence
J ~ ~
I=|(D%Dia) I1 (D§:Diib, ) F’:"-r-(b)|
i=1
< C|D¥D%d| | D5 Db, | 15,154, ]l sup [F7m224(B)] .

When po+4qo+p;1+91<2, by (4.13) and p;+q;=1 for j=1 we have py+4qo=0,
pj+q;=1for j=1. Moreover from (4.12) it follows that J=m. If m=3 then

\Dy:DLib, | < Cllb, I3 £Cllb, ln for j22.
If m=2 then J=m=2 and
I C(sup |a|)| D5 Désb,,| | Dy2DEb,,,| sup |Fmr-4(b)|
< C|D} Db, | | DyDEb,, | llal, sup |[F-mr4(b)] .
By Lemma 4.5 we have
I 4ksull = ClIF || gmeyllallm(1 + 101 )" lulls.
This completes the proof.

The same consideration as in the derivation of Lemma 4.10 from (4.9)

leads to the following lemma.

Lemma 4.14. Let m be an integer 22, s>1/2, b=(b;,..., by), b; be real-

valued and

Au(x)=S<IMI aj(x)—a;(y) )F(b(x)—b(y)>u(y)dy .

i=1 x—=y x=y

Then we have
”Au”mécllFHQ’"(ﬂ)(I];_l[ llajllm) L+ 1Bl lulls

where C=C(m, s, M, N)>0, Q is an open set containing the convex hull of
{(b(x)=b(y))/(x—y)| —o0<x, y<+ o0} and F € Z™(Q).

Lemma 4.15. Let m be an integer =2,5>1/2 and A=A(a, b) be the
operator defined in the above lemma. Then we have
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”A(als bl)u_A(aZ’ bz)u”m
SC|Fllgm+1y(1+llatlm+ la®l )M A+ 161
+ 122 W)"(la* — @[l + 16" — B2[|m) el

where C=C(m, s, M, N)>0, Q is an open set containing the convex hull of
{(B*x)=b*()/(x—y)| —o<x, y< + 0, k=1, 2} and F € ™" 1(Q).

Proof. Note that
(4.16) A(a', bYu— A(a?, b= g Lo Atat (1= 1)a?, tbt+(1—-)b?)udt
=S dtSGud_v
0
where

G=3 (al—a?) T] {td)+ (1= D@3} F' + (1= F?)

k=1

+1ﬁ1{ta F(1- z)aZ}ﬁ (,b1+(1 0B (i) |
5=2(x) = (y) 5B —b(y)

x— x—y

Since

I A(a®, bYu— A2, bPul, = H S: dtS

S

the required estimate is obtained from Lemma 4.14.

|m

Remark 4.17. The above two lemmas hold also for m+r, m=2, 0<r<1.
If we define the translation operator T, zeR!, by T,f(x)=f(x+z) then
it is clear that T,A(a, blu=A(T,a, T,b)T,u. Since T,A(a, b)u—A(a, bu=
A(T,a, T,b)T,u— A(a, b)T,u+ A(a, b)(T,u—u), by Remark 2.8, Lemma 4.14 and
(4.16) we have

M
”Au"m+r§C”F"9m“(9) ].;.[ “aj”m+r(1 + ”b”m+r)m+1”u”s+r’

This combined with (4.16) leads to the estimate

"A(als bl)u_A(aZ, b2)””m+r
é C"F”.ﬂm“'z(ﬂ)(l + ”al ”m+r+ ”a2”m+r)M(1 + ”bl ”m+r+ ”bz”m+r)m+1
X ([lal _a2||m+r+ " b!— b2”m+r) ”u”s+r .
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4.2, Operators of the Form (4.2).

Lemma 4.18. Let m be an integer 21, h>0 and

=) (D= Y00

Then
M
llAullméCllFHgm(mI;I(Ila,-llm+Hb,-lll)(l + 1wt gl el
where C=C(m, h, M, N)>0, Q is an open set containing

{f____gcx)yf_(li) —oo<x,y<+oo} and Fe#™(Q).

Proof. Put
1) =\ | 52k ar-
If v=1 then Ix)=Z[|(x £ ih)"! | lul| = C|u|. Since
12l | | 200 ay,

by Hausdorff-Young’s inequality, we have

ez ap|,, Mol Le,  III=Clullv] .
1

From

M ;) b, (»)
2 Xx—y+ih

w5 (122 + | 200 | ) sup

we obtain
Mo
Jul| < CCla |l + 64 D{LT -Gyl + 15,00} 1P laogey-

By the differentiation under the integral sign we can divide D™Au into two parts:
The first contains D™a, D™ f and the second D*a, D*f, k<m. The above method
is available for the first part and also for the second if we note that |Di(x—y
+ih)"Y<Clx—y=+ih|™!. Since |Au|,ZC|Au|+C|D™Aull, we obtain the
required inequality.

Lemma 4.19. Let m be an integer =1, h>0 and A=A(a, b, f, g) be the
operator defined in the above lemma. Then we have
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l4(a’, b, ', g yu— A(a?, b2, 2, g*)ul,,
SC|Fllgmei(1+ @ llm+ 1@ m+ 16+ 16%] )M
X+ N+ 121+ 197+ g2 D™
X (la' =@+ 16" =2 + 1 f* =f2lm+ 19" — g2 ) ul

where C=C(m, h, M, N)>0, Q is an open set containing the convex hull of

{ﬁg(;i_);% —oo<x,y<+oo,k=1,2} and Fe.@mﬂ(g)_

The lemma is proved by the method used for Lemma 4.15.

Remark 4.20. By the same consideration as in Remark 4.17, we have for
m=1,0<r<1,

M
At r < CIE lameso) LT lmsr 105014 At 1 e g )™l

lA(a, b, f*, g')u—A(a?, b2, [, g2l
SCIFllgm+2@ + 1@ msr+ 102 s+ 1D 1+ 162 4 )M
U e P PN ) 17 P o 1 P e (1Al S
101 =02 e+ 1 = f 2 s r + 1191 — G211 ) [l

4.3. The Operator K. Let A be an operator of the form (4.1) or (4.2)
which we write in the form Au(x)=S A(x, y)u(y)dy. Since

[_a%, A}”nga—i*’%)A(x’ y)}u(y)dy

(% +_Q_> a(x)—a(y) _a'(x)—a(y) , d'(x)=0a(x)
0 .

o) x—y x—y

kl

<__ _5_> a(x)—b(y)_ a'(x)-b'(y)
ox = Jy

we see that [0/0x, A] is the sum of operators of the form (4.1) or (4.2). If
A(x, y) and u depend on ¢, then [d/0t, A]u=S (0A(x, y)/ot)u(y)dy. Hence
[0/ot, A] is the linear combination of operators of the form (4.1) or (4.2).

Note that log (1 +z)=2zf(z) where f(z) is holomorphic in z, Rez> —1 and

x—ytih x—y *ih

|a_(xgc):_:l(y_)‘ < sup @' (x)| SCllall 455

1

l%.é%(la(x)l+|b(y)|)§C(||a|ls+||b||s), s>

By (3.5) and (3.7) we see that, if X and b are small in Hs, then A; can be written
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in the form (4.1) or (4.2) where u is replaced by du/dy. This situation leads us
to the following

Definition 4.21. Let 0<r=<s,0=t<s. L(r,s;t) is the totality of M
satisfying the following conditions: 1) M =M(P; P(J)) is the linear operator
depending on P=(Pj,..., P;) where P; is the real-valued function, J is the subset
of {1,..., k}, P())=(P;,,..., P;) if J={jy,..., j;} and we write M=M(P; 0) if J
is empty. 2) There exists d=d(M, t)>0 such that if d,>0, P, P°ec Hs, ||P|,,
POl = do, [P, PPN, <d then [M(P; P(Nul= Clul,, |M(P; P(J)u
—M(P°; PO(N))u|,ZC|P—P° |lu|, for ue H* where C=C(r, s, t, d, dy) > 0.
Ly(r, s; t) consists of M € L(r, s; t) such that | M(P; P(J)u|,=C||P|s lull,-

Lemma 4.22.

1) L(r, s; t), Lo(r, s; t) are algebras.

2) Lg(r, s; t) is a two-sided L(r, s; t)-module.

3) If f is smooth in a neighbourhood of 0eR* then the operator M
defined by M(P; Pyu=f(P)u belongs to L(s, s; t) for 1/2<t<s, 1<s.

4) M(P; P)=(1+P;+P,isgnD)tel(s, s;t) for 1/]2<t<s.

Proof. 1) and 2) are trivial. 3) follows from Lemma 2.11 and Remark
2.12. It remains to show 4). Let Py, P,eH!. Then by Remark 2.10,
|(Py+P, isgn Dyu|,<C|P|,|ul,, Hence if P, and P, are small in H¢, then
we have (a) |M(P; Pu|,=Cl|lu|,, Note that T,u(x)=u(x+z)=exp (izD)u(x)
and [T, P;]=(P{(-+2)—P)T,. Since T,Mu—Mu=[T, Mlu+ M(T,u—u)
=—-M[T,, M~ IJMu+ M(T,u —u) and

[T, 14+ Py +P; isgn D]=(Py(- +2)—P)T,+(Py(- +2)—P,)T, isgn D,

we have (b) | T,Mu—Mu|,=C||T,P—P|,|ull,+C|T,u—u|,, From Remark 2.8
it follows that (¢) |Mu|,.,.=Clul,., if O<r<1, P,, P,e H'**. Using (c¢) in
place of (a) we have (b) with ¢+ r, which leads to (c) with t+2r. Repeating this
procedure, we have |M(P; P)u|,ZC|ull, This, combined with M—M,
=—MM1— Mg )My, M=M(P; P) and M,=M(P°; P°, shows that
IM(P; Pyu—M(P°; POYu|,<C||P—PO|, [ul,, The proof is complete.

By the facts stated in the beginning of this article and Lemmas 4.14, 4.15,
4.17-4.20 we have

Lemma 4.23. Let m be an integer =2,0=r<1 and 1/2<s,t=<1. Then
for the operators A; defined by (3.5) and (3.7),
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A(X; X)) eLy(l+s+r, m+r; 1+1), j=1,2
A{(X,b; X, b)ye Lo(l+r, m—1+r; 1), j=3,4,7,8
Aib; O)eLy(1+s+r, m+r;0), j=5,6.

Lemma 4.24. Let m be an integer =3 and 0<r<1. Then

K,=K,(X, b; X, b)e Ly(2+r, m+r; 3).

Proof. By the above lemma we see that
Biy(X, b; X, b)=—isgnDe "Plp + A;—Ab e Lo(1+r, m+r; 1),
B,(b, b,; 0)=isgn Db, + As— Agb, € Lo(2, 2; 0).
Therefore
M(b, by; b, b)=(1+B,)"'eL(2,2;2),
My(b, by; b, b)=B,(1+B,) 1eLy2,2;2).
From (3.9) it follows that
BiX, b; X, bye Ly2+r, m+r; 3), j=1,2,
B,(X, b, b,; X, b, b,)e Lo(2, 2; 2).

Hence M;(X, b, b,; X, b, b,)=(1+B;)teL(2,2;2). In the same way as in
the proof of Lemma 4.22 we see that M;e L(2+r, 2+r; 2). Consequently
we see from (3.8) that K, € Ly(2+r, m+r; 3). The proof is complete.
Remark 4.25. 1t is easily seen from the above proof that
KX, b, b,; X, b, b)eLy(2+r,24+r;2), 0=r<l1.
Assuming that X depends also on ¢, we define
AjpdX,..., 060LX, b,..., 0Lb; X, b), 1=5j<8, 0=k, 1,
(by X,..., 0¥0LX we denote the derivatives 0701X, p<k, q <1), inductively by

0 0
Ajos0=Ags Agou=| s Apois 121 Appa=| oy dpaeri) k21,120,
We have seen that A4, can be written in the form of the linear combination of
operators of the type (4.1) or (4.2). After this is done, there is no necessity to
regard 0?01X in A;,; as the derivatives of X. Hence we replace 0202X by X»4.
By the results of the preceding two articles we have



72 HIDEAKI YOSIHARA

Lemma 4.26. Let in be an integer 22 and 0=<r<1. Then
A (X0, Xk, b,..., 0Lb; X0, b)e Lo(2+7, m+r; 2).
Since K is rational in 4; and [R, ST] =[R, S]T+S[R, T], [R, 1+ T)71]
=(1+T) [T, R](1+T)! hold for operators R, S and T, we define
K, iX,..., 0k0LX, b,..., 0Lb; X, D)

by the formula used for the definition of 4;,, and replace 6701X in K, by X7 1.
By the same consideration as in the proof of Lemma 4.24 we have

Lemma 4.27. Let m be an integer 23 and 0<r<1. Then

Ky (X%,..., X* b,..., 0Lb; X, b)e Lo(2+r, m+r; 3).

Corollary 4.28. For any integer m=3,
M(X,Z, b; X, Z, b)={1+Z,+Z,K(X, b; X, b)}"' € L(m, m; 3).
Proof. Since K(X, b; X, b)= —itanh(hD)+ K,(X, b; X, b) € L(3, 3; 3)

we have M (X, Z, b; X, b)=Z,+Z,K(X, b; X, b)e Ly(3, 3;3). Hence M
=(1+M;)"teL(3, 3; 3). Since

0 _ 0 1 e 0 ”}
[W’ M]- M[-a—;, M JM— M{le+ Z, K+ Z{H, K, |fu,
we have by the above lemma

| Mul < C||Mu”3+C”-£C—MuH3
<ClIMuls+C|[ Lo M Jut o] sClul

if X, Z, b are in H* and small in H3. In the same way as in the proof of Lemma
4.22 we see that M € L(m, m; 3).

§5. Reduction to the Quasilinear System

We shall reduce the system (1.6) to the quasilinear system such that the
unique solvability of the initial value problem for this system assures one for
that system and the successive approximation is available for this system. For
the usual procedure for the reduction to the quasilinear system, see [9], Chapter
I, Section 7.2, Chapter V, Section 1.7 and [10].
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5.1. Quasilinearization. In quasilinearizing the system
5.1 (1+X1x)X1"+X2x(1+X2")=0, Xp=KXy,

we use the commutators in order to single out the principal parts of operators.
Put F,=[8/0% K]X,. Since P"Q=QP"+Y¥1 (?)[P, 01,P*/ holds for
operators P and Q where [P, 0], =[P, Q] and [P, Q,+,=[P, [P, Q1«), k=1,
we have

: ; j i . k ;
00t K=Koje + 3 (1)K, podt 2o+ 3 (K ) o 00008
1
k

+2 < Iq( )21',([’) )Kx.p,qﬁf"l’a_i‘q.

1

In virtue of Lemma 4.27 the operator K, ,,0%7 is of order O if all functions
contained in the kernels are in H™ for the sufficiently large m, therefore we use
the notations

Fio=Fo(X,..., 01X), Fy=F(X,..., 3I0kX, 0i*1X,), j=0, k1.
In the precise form,
i

(Fpo(x0,..., x50 =3 (1)K, , o(X°0,..., X0 Xj-p+10,
J T p 1,p.0 1

ij(Xoo,__., Xjk, X{+1.0) — Zi: (;;)Kl,p,o(Xoo,..., XpO)ag‘c_X{—p-*l,O
(5.2)

k .

Zl ( q )Kl,n,q(XOO,..., X04)pk=a ) i+1.0

k k zj J K 00 h— iep+1.0
1 <q> 1 (p) I,p,q(X seeny Xp‘l)ax le p+1,

where in K, ,; we omit b,..., dlb; X, b. From (5.1) we obtain
(5.3) OJokX ,, =K0ojokX | ,+F, .

Put
(5.4) Y=X,, Z=X,, W=(X, Y, Z), W=(X, Y,).

From (5.1) it follows that
(5.5) —gt—{(l +Z)VY +Z,(1+ VO =Y 2 +(1+Y,)Z+(14+2))Y,,+Z,Y,,=0.

From (5.3) and (3.8) we obtain

X2tx=KX1tx+F01(X9 Xx’ Xlt)
= —isgn DX, +i(sgn D—tanh (I1D))%X1,+Kl—é,a?X”+F01 .
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This yields the equation

(5.6) Zy=—isgnDZ,+Fyo(X, Z, X))

By the elimination of Z,, from this and (5.5), we have

57 Zy=—{1+Y,)(—isgn D)+ Y} (1 + Y,)For0+ (1 +Z,)Y;,+Z,Y,,} .

In virtue of (5.3) with j=2, k=0 we have Y,,=K(X)Y,+F,o(X, X,, Y)
=f,(W, W}), therefore the substitution of Y,, in (5.7) by f, and Z,, in (5.6) by
the right-hand side of (5.7) lead to the equations

(5-8) Y2t=f2(I/V: W:), Z1:=f3(W, W:): ZZt=f4(VVa W;)-

Remark 5.9. If functions X, Y, Z satisfy the equations (5.8), then

Zy,=—isgnDZ,+Fy0(X, Z, X{,),
(5.10

L1427, +Z,(1+ Y} =O0.

Let us now proceed to the equation for ¥;. From (5.1) we have (0/0f)?-
{1+X,)Y,+X,,(1+Y,)}=0. Replacing X,,, by Y, and X,, by Z,, we obtain
(1 +Z[)Yltt+ZZY21t+ Y1 Y1x+(1 + Yz)Y2x+2yvt . Z,=0. By (5.3) With ]=3, k=0
we have Y,,=K(X)Yi,+F;30(X, X,, Y, ¥,). Eliminating Y,, from these
equations, we obtain

Yie=—(+Z;+Z,K) (Y1 Y1+ (1 + Y2) Yo+ Z,F30+2Y,- Z)).
By (5.3) with j=k=1, we have Y,,=K(X)Y;,+F,,(X, X,, Z, Z,, Y;). Hence
the above two equations yield
(5.11) Yip=—1+4+Z,+Z,K)"{Y, +(1+ Y,)K} Y,

—(A+Z +Z, Ky {1+ Y)F (1 +Z,F30+2Y,- Z,} .

Using the identity

(A+Z,-Z,K(1+Z,+Z,K)

=(1+Z,2+Z3~Z,{[K, Z,]+[K, Z,]K+Z,(1 + K?)},

we obtain
(5.12) (A+Z,+Z,K) ' ={(1+Z)*+Z3}"'(1+ Z, - Z,K)+ 0(X, Z)
where

X, Z)
={(1+Z,)*+Z37'Z,{[K, Z,]+[K, Z,]K+Z,(1+K)} 1+ Z; + Z,K)™1.
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The identity

(1+Z, - Z,K) {Y, +(1+ Y,)K}
=(1+Z)Y,+Z,(1+ )+ {1+ Z)(1+ Y;) - Z,Y;}K
—Z,{[K, Y]+ (1+ ) (K2 + ) +[K, Y;]1K},

(5.11) and (5.12) lead to the equation
Yio=—{(1+Z)*+ 23" {1+ Z )Y, +Z,(1+ Y>)
H(A+Z)A+Y)—-Z,Y)K}Y  +

Noting that (1+Z,)Y, +Z,(1+Y,)=0 and K= —isgn D+i(sgn D—tanh (hD))
+K,, and replacing Y,,, Z,, and Z,, in the above equation by f,, f3 and fy,
respectively, we can write the equation for Y; in the form

(5.13) Yip=—a(—isgn D)Y,, +f1(W, W)= —alD|Y, +f,(W, W?)
where a={(1+Z)(1+Y,)—-Z, Y} {1 +Z,)*+2Z3}".
Remark 5.14. Since Y=X,, and Z=X,, we observe that

((+Z,P+ 23}
= {(1 '}'*X-lx)2 +X%x}—1/2(—X2x, 1 +X1x) * (le 1 +X2tr)
=N-(X,+(0, 1))=—N-grad p.

Therefore {(1+ Z,)?+ Z3}'/2a is the gradient of the pressure in the inner normal
direction on the free surface.

Remark 5.15. 1If X, Y, Z satisfy the equations (5.8), (5.13) and (1+Z,)Y;
+Z,(14Y,)=0, then the equation (5.11) holds.

The required quasilinear system has the form

Xtt: Y,
(5.16) ( Yiu+a(W) DY, =f(W, W}),
Y2:=f2(W, W;), Z,=f3(W, W;), Zz:=f4(W, W)

where
a(W)=a(¥, Z)={(1+Z) 1+ Y) - Z, Y} {1+ Z,* + 23},
f2=KY;;+F3(X, X, Y),

fa=={0+Y)(—isgn D)+ Y} " H{(1 + Y)Fo,0(X, Z, X,)
+(L+Z)Y +Zo (W, WD},
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. 0
Foro=i(sgn D—tanh (hD)-2-X , + Ky 2= X, + Fou(X, Z, X 1),
(5.17) Jfa=—isgn Dfs(W, W)+ Fo10(X, Z, X1,),
fi=—a(W)(isgn D—itanh (hD)+K1)~a—aJ—C-Y1

+Z,{(1+Z,)*+Z3Y[K, Y ]+[K, YL]1K+(1 + Y,)(K2+1)}

0
el

=Z{(1+Z,)*+Z3}"H[K, Z,1+[K, Z,1K+Z,(K*+ 1)}
X (14 Z; +Z,K) 1Y, +(1+ L) K},
—(1+Z,+Z,K) {1+ Y,)F (X, X,, Z, Z,, Y})
+2,F50(X, X, Y, Y)+2Y,-Z;},

(in the last term Y,,, Z,, and Z,, are replaced by f,, f; and £,

respectively),

| K=K(X)= —itanh (hD)+ K,(X).

Though f depends on W, W, b and h, we omit b and /i in the notations.

5.2. Properties of a(W) and f(W,W,). In solving the initial value
problem for the system (5.16) we need only the properties of a and f which will
be shown in this article. The explicit form (5.17) of a and f will play an im-
portant role in dealing with the original problem (1.6) and (1.7).

Lemma 5.18. There exists ¢o>0 such that if s=2, dy>0 and
(5.19) W=(0, Y, Z)e Hs, [W|s=co, Wl =do,
then for a=a(W)=a(Y, Z)

1) a'=a—-1€eHs

2) |a'|fes<], ie., 0<e;ZaZle,

3) lla, IDI'"?Ju|| SCyllull-yj2, ueH™ Y2

4) |la, |DIJull =C,llull, ueH°

5) Ila, (1 +ID)Tul SCsllull,—;, ueH™, 251<s
6) for W°=(0, Y°, Z°) satisfying the condition (5.19)

la(W)—a(WO)| ;= C|W—- WOl

wheree;=ej(cg)>0, j=1, 2, 3, C;=Cyco)>0, j=1, 2, C3=Cs(co, do, 5)>0 and
C=C(CQ, do, s)>0.

Proof. From Lemma 2.5 it follows that
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IW)N=CIIW|,=Cco.

Since a(0)=1, we can choose ¢, so small that a(W) is everywhere defined, i.e.,
(1+Z,)*+2Z3>0 and 2) holds for some e;. Let QcR#* be the closed ball of
radius Cc, with the center at the origin. Since

1 da _ o
oawj(tW+(l HWo)dt

a(W)—a(W0)=§(WJ.—W9)S

it follows from Lemma 2.11 and Remark 2.12 that
la(W)—a(WO)|, = Cllall gm+s o1 + W, + [ WO | W—-WO,, 2=<r<s<m.

This proves 6). Putting W%=0 we see that a’=a — | € H® in virtue of a(0)=1.
Noting that [a, P(D)]=[a’, P(D)] and ||a’|,=C, (C depends only on ¢,), we see
by Lemma 2.14 that 3), 4) and 5) are valid. The proof is complete.

Lemma 5.20. Let ¢, be the constant chosen in Lemma 5.18, 0<T < o0,
s=2 and

(5.21) w=(0, Y, Z)e CX([0, T], H*),
WDz co, WO Sdo, IW(DI,=d, 0St<T.

Then

1) a—1eC\[0, T], H).
2) |a|=Cud.
3) |la, IDIV*Ju| =Csd|ull -/, ueH Y2,

where a,=(0/0t)a(W), C;=C/(co)>0, j=4, 5.

Proof. 1t follows from Lemma 5.18, 6) that|a(W (1)) — a(W(t)|| S Cl|W(2)
— W(ty)|ls, which proves that a—1eC°([0, T], H). Note that a,(W(1))
=3§ da(W(t))/oW;- oW (1)/ot. This gives

la, (WO S (sup | S5-| ) WIS CIWI, < Cud

and
lall, = Cllalgme2@( L+ WO HIWDI,,  2sr<ssm,
in virtue of Lemma 2.11 and Remark 2.12. Using Lemma 2.14, 4) we have
Ila,, |DI"V?Jull < Cllallsllul-1 /2= Csdlull-1)2 .

Since
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a (W@ -a W) =3 55 (W(t)){anm i)}
+3 G P ) 555 @)} 75 )
we have |a(W(®)—a (Wt )|;SCI|W({@)—W(ty)|,, which proves that ag,e
CO([0, T], H%). The proof is complete.

Lemma 5.22. There exists a small positive constant c, such that if m is
an integer =3,0<T <0, dy>0 and be H™?, |bl3=co, [|Dllm+1=do,

(5.23) W, Wi e CA[0, T1, H™), [W(D)|s=co,
” W(t)”médOs ” W;(t)"médO’ Oété T,

then

) f=fw, wy=f(w, w, bye C°([0, T1, H™),
1f (W, WOl SKk(IW 2+ WiI2)12,
2) for WO, WY satisfying (5.23),
If W, W) —f(WO, W) uS CUW— WO+ | W= WP l|.0)

where k=k(cy, dy, m)>0 and C=C(cy, dy, m)>0.
Proof. We see from (5.2) and (5.17) that

fi=K(X)Y1,+Fyo(X, X, Y)
=K(X’ b’ X, b)Y1t+2K1,1,O(X5 Xb b, X: b)Yl +K1,2,0(X1 Xt’ },s ba X: b)Xlt'

Hence Lemma 4.27 shows that 1) and 2) are valid for f,. Asto
f3=—{0+Y)(—isgnD)+Y}™*
x{(1+ Y)Fo10(X, Z, X1+ (1 + YY1, +Z5 15},

first of all, note that {(1+ Y,)(—isgnD)+Y,} '=isgn D(1+Y,+Y, isgnD)!
€ L(m, m; 1) by Lemma 4.22. Since

Foro={isgn D—itanh (hD)+ K (X, b; X, b)} X,

+K1,0,1(X9 Zs b: bx; X: b)Xlt’

we see by Lemmas 2.15 and 4.27 that F,,, has the properties 1) and 2). Since
Hm™ is an algebra, we see in virtue of Definition 4.21 that 1) and 2) hold for f;.

Similarly 1) and 2) hold for f,=—isgnDf;+Fy,,. For the operators oc-
curring in the definition of f; we see that

a(Y, Z), Z,{(1+Z,)*+Z3}"* e L(m, m; 1) by 4.22, 3);
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{i sgn D—i tanh (hD)+ K, (X, b; X, b)}-2- € L(3, m; 3) by 215 and 4.27;

[K, Y,1=—i[sgn D, Y,]+[isgn D—itanh (hD)+ K (X, b; X, b), Y;]
€ Lo(2, m; 3) by 2.14, 2.15 and 4.27;

1+K(X, b; X, b)?=1+{—itanh (hD)+K,}?
={1-—tanh? (hD)} —itanh (hD)K, —iK, tanh (hD)+ K2
€ L(2, m; 3) by 2.15 and 4.27;

{14+Z,+Z,K(X, b, b,; X, b, b))} 1eL(2, 2; 2) by 4.25;
{1+Z,+Z,K(X, b; X, b)}"*e L(m, m; 3) by 4.28.

These combined with the already proved properties of f,, f5 and f, show that 1)
and 2) hold for f;. The proof is finished.

5.3. Transformation of Initial Values. Suppose that X is a solution of the
initial value problem:

(5.24) Xo=KX)X 1, (1+X1)X 10+ X5,(1+X5,)=0, 120,
(5.25) X=U, X,,=V, t=0.

We shall determine the initial values of W=(X, Y, Z) and W,=(X,, Y;,) att=0
for the system (5.16) from U and V by means of (5.4) and (5.24). Since X,,
=K(X)X,, and Z=X,, we put X,,=K(U)V and Z=U,, t=0. From (5.3)
with j=1 and k=0 we obtain

(5.26) Xy =K(X)X ,+F;0(X, X).
This combined with the second equation in (5.24) shows that
I+ X1+ X0 K(XNX = — X5, — X5, F1o(X, X))

Therefore we put

Yi=—{1+Z{+Z,K(X)}"1Z,{1+F,o(X, X))}, t=0.
In view of (5.26) we put Y,=K(X)Y;+F{o(X, X)), t=0. In view of Y=X,,
and Y,,=K(X)Y;,+F,0(X, X,, Y), we have

0=2-{(1+ X, )Y, + X, (1 + V)
=(14+X )Y+ X, (KYy,+ Fy0)+ Y X 11 + (1 + Y2) X,

Hence we put
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Y,=-{1 +Z1+ZzK}_l{Zzeo(X, X, Y)

2 o
F YA X+ (L4 Yy 5Ky 120,

Thus the transformation of U and Vinto Wand Wj;, t=0, is as follows:

X=U, X,=V, X,=KU)V, Z=U,,
Yi=—{1+Z,+Z,K}7'Z,{1 + F (X, X))},

Y2=KY1+F10(X5 X!)a
(5.27)
Y, =—{1 +Zl+ZzK}_1{Zzeo(X’ X, Y)

2
> AR AT S M

Remark 5.28. For values of Wand W, at t=0 defined by (5.27) we have
(1+ZI)Y1 +Zz(1+Y2)=0,
0 0
(1 +ZI)Y1t+ Zz{KYlt"f'on(X, Xt’ Y)} + Yl”a?X“'i‘ (1 + Yz)_ajc_th =0 .

In Section 6 it will be shown that the initial value problem for the system
(5.16) is uniquely solvable if the initial values are small. Hence in solving the
problem (1.6) and (1.7) we need the following lemma.

Lemma 5.29. There exists ¢o>0 such that if m is an integer =3, dy>0

and
beH™, UeH™ /2, VeH™, |b|3=5cy, [Ul3=¢,
[Bllms  NUllmscrr2yy 1V IIm=Sdo

then by (5.27) U, V are transformed into W, W, t=0, such that
XeHm(/2 X, eH™ Y, ZeHm (/2 Y, eH"1
and

1 X N+ 12y T WX ellm 1Y = c1/2) F 1 Z 1= 172+ 1 Yiell =1
SCUUmsqy2y+ 1V 1)

where C=C(cy, do, m)>0.

Proof. Using Remark 2.10, Lemma 4.27 and the definition of F;, we
obtain the lemma by the same consideration as in the proof of Lemma 5.22.
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§6. Unique Existence Theorems

In this section we shall show the unique solvability of the initial value
problems for the quasilinear system (5.16) and the original (1.6). Throughout
this section we assume that every function is real-valued.

6.1. Preliminaries. We use the notations:

W=(X, Y,2), W'=(X,Y,), A=A(D)=1+ID, D=1L

a=a(W)y=a(Y, Z)={(1 +Z)(1 + Vo) = Z, Y} {(1 + Z, )+ Z3}~1, a,=g—‘,’.

In view of the identity
a|D|=-1-A-"(a|D| + |Dla)Am + 1 +-L-A="(a| D] - |D|a) A
—A—A""[a, A"]|D|

we introduce the operators

G=G(W)=-1-(a|D|+|Dla)+2

G, =G (W)= A""G(W)A™

6 { . _. 1 - .
G,=G (W)=A——A""[a, |D]]A"+A""[a, A"]|D|

| Gi=G,(W)= 4. G(W) =1 (@|D|+|Dlay).

Assumption 6.2. Let A=1+C,, m be an integer =2, d,, d>0,
W=(0, Y, Z)e C'([0, T], H?) n C°([0, T}, H™),
IWOl2=co, IWDn=do, [IW(D2=d, 01T

where ¢y, C,=C;(c,) are constants occurring in Lemma 5.18.

Lemma 6.3. Under Assumption 6.2,

1) a|D|=Gm—Gr’n
2) (G"s U)=(H, GU)* (Gmu’ U)m=(u’ va)ma u,ve Hm

3) (G, ), = % %(GmAu, Amy) — %(G,A’"u, Amy), weCN([0, T], H™*Y)

4) elIDIV2ul>+ |ul> =(Gu, u)Sey(e, || IDI'2ul®+ [ul?), ues
5) (G, w)| =d(Ceer' +C5)(Gu, u), ues
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6) for W°=(0, Y°, Z°) satisfying conditions in 6.2 and —m+1=<s<m,
Gyl S (14+Cs+ Ca+Cs) [l

HGW(W) = GL(WOull, < C(| Y= YOlu+ 2= Z°() 4|
1G(W)ulls-1 =Clluls,
HGOW)— G(WO)uls— S CUI Y= YOl + 12— Z°),) uls

where e;, C;, j=1,2,3 are constants occurring in Lemma 5.18, C,, Cs in
5.20, C=C(cq, dy, m)>0 and e,=max {e,e7!, 1+2C,}.

Proof. Since a—1€ CY([0, T], H') by Lemma 5.20, H! is an algebra and
(u, v),,=(A™u, A™v), we have 1), 2) and 3) in virtue of (6.1). Note that
(Gu, w)=—(alDlu, u)+-(IDlau, u)+i(u, u)

=(alDlu, u)+ A(u, u)
=(alD|"/?u, |D|'u)+([a, |DI"/?]|D|'?u, u)+Au, u).

Therefore from Lemma 5.18 we obtain

(Gu, w)Ze, || ID['2u]?+(A—Cy) [u]?,
(Gu, w) S e, ID|'?ul+(A+Cy) [u]®.

These prove 4). Similarly we have by Lemma 5.20

I(Gu, w)|=|(a,|D|"/?u, |D|*/*u)+(La,, |D|/*]|D|*/?u, u)|
S Cud| IDIV?ul?+ Csd|| IDI*2u -y 2 lu]
Sd(Caert +Cs) (el IDI2ul2+ [[u]?).

Hence we have 5) in virtue of 4). Since ||u|,,=||A™u|, by Lemma 5.18 we have
IIGinullméillullm+é—ll La, |D{]A™u| + || [a, A™][Dlu]
élllullm+%02ll/1"'ull +Csll [Dfu] -1

(24 5Ca+C3)lul,
which proves the first inequality of 6). Using Lemma 2.14, 3) and 4) we have

H{GW(W)— Gi,,(W")}uIImé%ll La(W)—a(W°), |D|14™u]|
+ | [a(W)—a(W°), 4] |Dlu| = Clla(W)—a(WO)| | ull-

Since |a(W)—a(W9)|,. 2 C(|Y-Y°||,,+ |Z—Z°|,,) in virtue of Lemma 5.18, 6),
we have the second inequality of 6). We obtain the inequalities for G=
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27Y(a|D|+|D|a)+ 4 if we show that

lau|=Clully  [[{a(W)—a(WO}u| < Cla(W)—a(WO)|mluls,
—m=Zs<m.

Note that a’=a—1e H", (Lemma 5.18) and HS, s>1/2, is an algebra, (Remark
2.10). For 1/2<s<m we have

lauls=C(A+lla’ll9 lul ;= CA+ @]l lulls
{a(W)— a(Wulls= Clla(W) — a(WO)|llull; .

For 0<s<1/2, from Lemma 2.14 it follows that

laul;=Cl(1+1D[)au] = Cllau| +C|[IDI% aJul +ClalDl°u|
= C(sup |a]) [lull + Cllall s ulls- 1 + C(sup |al) [luls
SCA+la'llm) flulls

and in the same way

{a(W)—a(WO)}ul ;= Clla(W)— a(WO)l|lull;.
For —m=s<0, by the above results we have

I(au, V)| =|(u, av)| = |ulllav] - = Cllull(1+la’[) o] .
Hence the duality between H® and H~s shows that
laul ;= C(A+lla’ll) llulls-

It is easily seen that

{a(W)—a(W)}ull;= Cla(W)—a(WO)| ullul.
Thus the proof is finished.

6.2. Linear Equations. Consider the initial value problem:

(6.4 Uy—e2u+Au=f, 0=Zt<T
(6.5) u=uy, U,=u,, t=0.

Let B, C be Banach spaces. We denote by #(B, C) the Banach space consisting
of linear continuous operators from B to C.

Lemma 6.6. Let 0<g 0<T< o0, —0<s<+ow and AeC[0, T],
L(Hst, HY). If uge H*Y, u, e HS and fe C[0, T], H%), then there exists
the unique solution u of (6.4), (6.5) such that

ue CI([0, T], Hs*17J), j=0,1,2.
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Proof. We shall obtain u as the limit of the sequence u/, j=0, such that
u°=0 and u/, j=1, is a solution of

uj,—etu = —A(ui~1+f, 0Zt<T,

wi=uy, ul=u,, t=0.

Since the solution v of v, —&?v,, =g can be written in the form

_ sin g|&|t t sin g|&[(z—s)
5(0) = (cos el¢lp(0) + 2l 5, (0)+ So sin elld=9) y(s)ds,

it is clear that
t
901+ 1D S C{ 10Ol + 10O+ gl e}, 05T,

These combined with the assumption on A(¢) show that u/ is defined and con-
verges to u, which is the required solution. The uniqueness of u is easily proved.
The proof is complete.

Next consider the initial value problem:
6.7) U+ G, (Wu=f, 0Zt<T,
(6.8) u=uy, Uy=u;, t=0.
Lemma 6.9. Let m be an integer =2 and the assumption 6.2 hold. If

uge H™(/12) y, e H™, fe C°([0, T], H™) then there exists the unique solution
u of (6.7), (6.8) such that

ueCi([0, T], H™W/2-0U/2) j=0,1, 2.
Moreover u satisfies the estimate
(6.10) Iu(t)lm§e°'\/alu(0)lm+sz eI f(s) | mds
where C=2"1d(C,e7'+C;) and
lu@|Z=llulZ+ell 1D 2ullz + | ullZ .
Proof. The proof is divided into three steps.
Step 1: Let ue CX[0, T], H™*!) satisfy the equation (6.7) and put
E,(u(1))*=lu 1% +(GA™u, A™u).

Then

L L 1) = (trr, )+ (GA™U, A" +1(G A, Am)
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= (f, )+ (GoAmu, A"u)
S1F il 4l A(Cae7* + Cs) (G A", Au)
in virtue of Lemma 6.3. Therefore for ¢ such that E,(u(f)) >0,

L E () S 1 f I+ CEn(ult).

Since E,(u(t)) is continuous in t we have
En(u(0) Se“E,u(O) + |’ e f()]ds
0

Using [u(0)],, < E,(u(f) <\/e4 |u(?)|,, (sec Lemma 6.3, 4)), we obtain (6.10). Let
u be the solution stated in this lemma. Since ¢s*u € C3([0, T], H™*!) and

(6.11) (9s*)y + G (@s*u) = @ox f — 0% G u + G, (@s*u)

@s+u satisfies the estimate obtained in the above if we replace f by the right-hand
side of (6.11). By Lemma 2.3

@a*tt — il mt (1/2y + [ (@s*1),— U, ,,—0, 6—+0.

Hence
|@s*u(t)|m— [u(D)]m, 06— +0,
los* fllm=1fllms l@s*f—flm™0, 6—+0.

By the simple calculation we have
I@s*Gmtt = Gu(@5%1) | = | A™(@5* A" GA™u) — GA™(@ 5*u) |
|
= | Cosx, a1DsgnD Amu+ L9, (D], al Amu—L1ID], @] (pp A7)
Lemmas 2.3, 2.4 and 5.18, 4) show that this is bounded when 0Zt<T and
0<d<1, and tends to zero when 6— +0. Consequently we have the estimate

(6.10), which assures the uniqueness of u.
Step 2: Let 0<e<1 and consider the initial value problem

(6.12) Uy — &0+ G (W)r=g, O0Zt<T
(6.13) v="0g, U,=0;, t=0

where vy e H™2, v, e H"*1 and g € CO([0, T], H™1). It follows from Lemma
6.3, 6) that

(6.14) G,,€ CX[0, T], £ (Hs, Hs"1)). 1<s<2m.
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Since 1=<m+2=<2m in virtue of m=2, putting s=m+1 in Lemma 6.6 we see
that there exists the unique solution v=1v# of (6.12) and (6.13) such that

ve C/([0, T], H™*2~J), j=0,1,2.

Put E, . (0(1))* = llv,llZ+1+ &[|vgll7s s +(GA™ v, A™+10).  Since A™1(Gypyy
—G,)=2"a, |D|?]A™=2"1a, (1+|D|)?>-2|D|]A™, in virtue of Lemma 5.18
we have

(A7 (Gs = G, A™10)
<(FILA+1DD2, alams] + (D), aldwo] )4+ o]

=(5C3+Co) 1ol 0l -

We have

LG Epis 0)?

= (Vg V)me1 82 (Vss Vi) e +(GA™ v, AmH1p,) +—é—(GtA'”“v, Am+1p)
=0y — 2V + G105 V)it +—%—(G,A"‘“v, Amtip)
=(g+G i1V —Guls V) mi1 +—é—(G,A’"+1v, Amtiy)
S19lm+1Ems1,(0(D) + CEpiy (0(D)?.
Therefore
61 By, o) Se By 1, 00)+ g 15
Since

Epi1,,(0(0)2=v1]12+1 + & voxll 241 + (GA™ 0o, AmH1pg)
Slodzei+lvollzez+eq(er ]| IDIV2A™ tug||2 4 [ A+ 0o 2) ,

there exists a constant C independent of 0<g<1, 0=<¢t< T such that
(6.16) levs(®)llm+ 1 =C, O<e<l, 0ZtZT.
Let O<e, <1 and put v=v2—v%. Then

{vt,+va=82v§x—-5zvgx, 0=:<T
v=0, =0, t=0.

Applying the estimate (6.10) to v, we have

|v(t)lm§e”§; le2vt, — 5202, | nds < eSTCT (e +9)..
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Hence there exists u such that, when eé— +0,
vi(t)->u(f) in H™*A/2, p()—ut) in H™

uniformly in 0<t<T. These, combined with (6.14) and (6.16), show that
g2t —»0 in H™ G,*—>G,u in Hm /2

uniformly in 0=¢<T. By the equation v, =&2v%, + G,v*+f, we see that
v, —u, in Hm™(1/2) yniformly in 0=<t=T.

Consequently u € Ci([0, T], H™"(1/2)-0i/2) j=0, 1, 2, and u is the solution of

Up+Guu=g, 0=t=T

u=vy, u,=0y, t=0.

(6.17) {

Step 3: Let 0<d<1 and put vy=@s*uy, V;=@s%U;, g=@sxf. Then by
the step 2, there exists the unique solution u® of (6.17). Putting w=u?—u?® and
applying the estimate (6.10) to w, we have

(Ol €7 Jes (10531 = @oriny i+ (e1+ DIl @rito— @pritoliecs ) 2

+( 19s2r—pualnds), 0se<T.
0

Lemma 2.3 and the argument as in the step 2 show that when d— +0, the limit
u of u? exists and u is the required solution, which completes the proof.

Now consider the initial value problem:
(6.18) uy+a(W)|Dlu=f, 0=t=T,
(6.19) u=uy, u,=u;, t=0.

Theorem 6.20. Under Assumption 6.2, if uoe H**(/2 y, e H™ and f
€ C([0, T], H™), then there exists the unique solution u of (6.18) and (6.19)

such that ue Ci([0, T], H™U2=UI2), j=0,1,2. Moreover u satisfies the
estimate

(6.2 (0|0 S2s U@l + . XIS s

where |u(t)|2=|lu |z +e ]| IDI*?ulZ+ulz and C=1+C;+271C,+C5+(d[2)
x (Coe7t+Cs).

Proof. Using a|D|=G,,— G|, we write (6.18) in the form
(6.22) Uy+Gu=f+Gu.
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The solution u will be obtained as the limit of the sequence u/, j =0, such that
u®°=0 and u/, j=1, is a solution of
{ ul,+Guul = f+Gpui~!
w=uy ui=u,, t=0.

Since G,, e Co([0, T], £(H™, H™) by Lemma 6.3, it follows from Lemma 6.9
that u/, j=1, is uniquely defined and

ui e CK[0, T], H"*(1/2=(k/2)) |k=0,1,2.
By the estimate (6.10) and Lemma 6.3 we have

WO = w Dl SC | 11/(9) = w16 |uds SC | 10/(5) = w4(5) s,
JO 0
which assures the existence of the required solution u. Applying the estimate
(6.10) to the solution u of (6.22) we have in virtue of Lemma 6.3

eVl S eu W)+ || o1 1(5) Inds
+(1 +C+te+ ca> g; e=C5|u(s)|, ds
where C=(d[2)(C,e7!+ Cs). Therefore we have
e uDln =7 1O lwexp (14 C, + 4G+ G )
{1 e exp {(14C+ 40+ C5) -9,

which gives (6.21). The proof is complete.
6.3. Quasilinear System. We use the notations:
W=(X, Y, Z), W=(X, Yy), Y\ O)Z=IY\l%+elIDI'2Y,7+1Yl7,

IW=IW®)L=IWD)Z+ W@ +ell |DIY2Y, 17
= XIZ+1X N2+ Y117 +e D2 Y15+ 1 Yo 2 + 1 Y2ll2+ 1 ZI17
We shall consider the initial value problem for the quasilinear system (see
(5.16)):
X,=Y
(6.23) Yi.+a(W)|D|Y,=f,
Yo=fos Zy=f3 Zy=f4.
To simplify the notations we write the initial condition at t=0 in the form

(6.24) wO)=W=(X, ¥,2), wWi0)=W,=(X, 1,,).
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Theorem 6.25. Let ¢, be so small that Lemmas 5.18 and 5.22 hold, m be
an integer =4 and be H™! ||b|3<¢c,. If W, I:I;: satisfy the conditions;
W, Wi, IDI'2Y, e H" and |W|3<co,

then we can choose T >0 such that the initial value problem (6.23) and (6.24)
has the unique solution W such that

X e CX([0, T], H"), Y,, Ze CX([0, T], H"),
Y, e CI([0, T], Hm*(/2-G2)y, j=0, 1,2,  |W(t)|s<co, O0<t<T.

Proof. The proof is decomposed into several steps.
Step 1: Take d, d,, dy, dy and d,, such that

”b”m+1 é dOs “ I;i’/.”m§ dOs H W;Hmé dO’ ” W;||3§ d]
(6.26) d;j=Q2+Je){IWIF+IWil3+e,llIDIV2Y, 33172, j=3,m,
dy<d,, d,<d, d={d}+kj(cj+d})}'/?

where ko= k(co, max (cq, d,), 3) is the constant occurring in Lemma 5.22. Now
we shall estimate the solution W satisfying the conditions,

” W(t)“3§005 “ W;(t)||3§d17 “ W(t)“médO’ ” W;(’)”médm Oété T.

We see that |Y(O)|3+I1ZOIZ= IWOI3=c3, IYOIZ+ IZOIZS [WD)IZ<d3
and in virtue of Lemma 5.22

1YOIZ+IZDI3= 1Y DI+ 1(Yae Z)13
sdi+ 1 f(w, wl3
Ld?+ k¥ +dP)=d>.

Therefore we can use (6.21), which gives
VO S e 1Yyl + | e 1,0, Wil
< Jea IWO).,eC + k(co, do, m)S;eC”‘“IW(s)Imds
in virtue of Lemma 5.22. For Y,, Z we have
(Y0, ZO)= 10, ZO)+ (| (£, £ £l
<|WO)l,,+k SO \W(s)|.ds .
Since

d
5 A XDt (X, X)h =X+ X, X)p=(X+Y, X)),



90 HIDEAKI YOSIHARA
SIX+ Y[l Xl S2AW @Ol (X5 XDl s

we have
06 X)W Ol +2 (] Wlads.

Hence
W@l Xy XD+ [ (Vo Z) et Vil
<2+1/23) IW(O)]eC +(2+2k)S; eCaD|W(s)|ds ,

which gives the estimate

W (D)= (2 ++/e4) IW(O)],y €xp (kpyt) =y, €XP (Kpnt)
where Kk, =2+ 2k(co, do, m)+ 1+ C; +271C, + C3+271d(Che;1 + Cs), C,
=C5(co, dy, m). Replacing m by 3 we have

WDl <(2+/es) IW(0)]5 exp (kst)=d exp (k3t)

Where k3 =2+2k0+ 1 + Cl +2_1C2+ C3 +2_ld(C4eI1 + Cs), C3 = C3(Co, Co, 3)
Step 2: Put

—min {-L log 4, L 1og %o &ﬂ}
T =min {k3 log 4 T log 4 (5k)d, |
Since 0<d;<d,, 0=d,,<do, 0<co—|W| 3, 0<k, ks, k,, we see that 0< T < co.
By S we denote the totality of W satisfying the following conditions:

(6.27) W, W,, |D|'/2Y; € C°([0, T], H™),
IWEO=Wissco—1Wls IWiOlsSds, 1WOInZdo,
IWiDlm=do

(Y0, Z(M)s=d, |[W()|;=d;exp (k;1), j=3,m
for 0ZILST, W(O)=W.

(6.28)

We denote by M(W?°) the solution W of the initial value problem,

X, +X=X4Y°
(6.29) { Yyu+a(WO)|D|Y, =f,(W°, W)

You=faWO, W), Zy=fy(WO, W), Zyy=fu(W°, W)
630  WO)=W, Wi0)=W,.
We shall show that if W°e S then W=M(W%eS. Since

WOl S IWO=W 5+ Wlls=<co,
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it follows from (6.28) that Y°, Z° satisfy Assumption 6.2 and in virtue of Lemma
5.22 the right-hand sides of (6.29) belong to C°([0, T], H™). Therefore by the
integration and Theorem 6.20 we see that the initial value problem (6.29) and
(6.30) has the unique solution W satisfying the condition (6.27). In the same
way as in the step 1 we obtain

Wl =d;exp(k;t), j=3, m.
By the definition of T we have for 0<t<T

<d,, j=m

WO IWO1LSIWOLSd e (0] 25707
=Y1 JT

Since W°e S, we have

IYidl3+ (Vo ZDIZS T+ 1S OVS, WEI3
< A3+ I OB S+ (3 +dD) =,
W -Wwiss( |-&wo| a sl awiols+ 10, 215 a
<[ Wi+ kol W1} drS T +kody) S o= W ;.

Consequently We S, which means that M is the mapping from S to itself.
Step 3: Put Wo(f)=W, 0<t<T. Then X°=Y°=0, |W°())|, =Wl
édo:‘

[Wo@)| ;=12 +e,l| | DI'/2Y |3/

SQCHVe)UW 3+ W2 +ei| [DIV2YL]13) 2 =d; < djexp (k;t), j=3,m.
We see that WO satisfies (6.27) and (6.28), i.e., W°e S. The result of the step 2
shows that Witl=M(W/), j=0, are defined and W/eS. Note that W
=WIit1—Wi, j=1, is the solution of
X+ X=X/-X/"14+Yi-Yi™!

Yy +a(WHD|Y,=f (Wi, Wi)—fL(Wi™!, Wit
—(a(W/)~a(Wi™1))|D|Y{

Yo =fo(Wi, Wi —fo,(Wi™t, wi™t)

Zio=frxWi, W= fon (Wi~ WiTY), k=1,2,

wW(0)=0, W,0)=0.

(6.31)

Since m—12=3 and WJe S, we have in virtue of Lemma 5.18 with s=m—1,

I{a(Wh) = a(Wi=1)} DI Y{llm-1
=CllaWi)—a(W/ Dllm-1 | Yl n S CIWI = Wity [ W],
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Therefore, in virtue of Lemma 5.22, we see that H™ '-norms of the right-hand
sides of (6.31) are smaller than C|WJ(t)— Wi~(¢)|,,—, where C is independent
of j. In the same way as in the step 1, we have
1Y), Z@) -1 + (X @)y X1+ Y1 (Dl
gcg’ \Wi—Wi-1),_ . ds.
0

Therefore we obtain
[Witl() = Wi()|,-1 =C St [Wi(s) = WiX(s)|y—1ds .
0

This means that there exists W such that

W’ W;s ,D’UZYI ECO([Os T]s Hm-l), sup le(l)_ W(t)’m—l_)o’ j—’@ .
0=<t=T

Noting that Wi*!=M(WJ)e S and letting j— oo we see that (X7,, Y},, Z%) con-

verges in H™ ! and Y/, converges in Hm~1=(1/2),  Hence

{ Xu=Y, Yiut+a(W)IDIY,=f,(W, W}),
Y2r=f2(VV; W;), th=f2+j(W9 W;)a j=12,

XeC¥[0, T], H™Y), Y,, ZeCY([0, T], H"Y),
(6.32) Y, e Ci([0, T], Hm1*(/2=G/2)) j=0, 1,2,
IW®ls<co, (YLt), Z(D)ls=d .
Step 4: We shall show that W is the solution required in this theorem,
i.e., in (6.32) we can replace m—1 by m. Noting that W/*'=M(W/)e S and
using Lemma 5.22 we have

” Wj(t)”mé dOs “ er’(t)”mé dOs I Wi(t)lmé dm €Xp (kmt) s

6.33) . . . ;
( { ”X{t(t) Hm + ” Y{tt(t) “m—(l/Z) + ” Yﬁt(t)nm + ” Z{(t) ”mé C

where C>0 is independent of ¢ and j. Since any bounded sequence in a Hilbert
space is weakly precompact, each sequence occurring in (6.33) has a weak-
limit. By the result of the step 3, they have the strong-limits if m is replaced by
m—1. Hence for any fixed ¢,

W), Wi, Y ), IDI'V2Y,(1), X (1), Z()eH™, Y (t)eH™ /2.
Taking the inferior limits of sequences in (6.33) we see that

(6.34) {IIW(t)I!médo, IWiOllm=do, W(O)lm=dyexp (knt),

XDl + 1 Y1l O - 1/2) + 1 V2Dl + 1 2D = C
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For 0=t,<t<T, we have
t .
[Wi(r)— Wf(to)ltmégr Wil ndt=(t—15)(do +2C).
(4]

Taking the inferior limit we have |W(t)— W(to)|.S(t—1to)(do+2C). Hence
We C°([0, T], H™). Similarly we see that X,e C°([0, T], H™). By X,=Y,
we have X e C3([0, T], H™). Since m—122, (Y, Z) satisfies Assumption 6.2
in virtue of (6.32) and (6.34). Hence by Theorem 6.20 there exists u?, 6>0,
such that

ud, +a(W)|D\ul=f(W, ps#W;), 0=1=T,

w(O0)=Y;, u}(0)=Y,,

weCi([0, T], HmtW2=G/2)y  j=0,1,2.

Using (6.21) we have
@)= Ol SC {1, (Ws 0 W) —f1(W, 9pn W)
<c S; @4 W= @t Wil dims0, & 6= +0.
On the other hand,
40 = VoDl SC . 1LOF, 02 W) ~f, W, W)l
<Cl 10 W= Wil 1di=0, 3-+0,

Therefore Y, € C/([0, T], H**(1/2)=(i/2)), j=0, 1. Thus we proved that W,
W;e C%[0, T], H"). Consequently, in virtue of Lemma 5.22, f(W, W))
€ CO([0, T], H™), by means of which we see that Y, e C°([0, T], H™(1/2)) and
Y, Z,€ C°([0, T], H™). The proof is complete.

Remark 6.35. In the step 2 we defined T by
do _CO—HWﬂs}
dm, (] +k0)d1 ’

(For d, dg, dy, d5 and d,, see (6.26) and for ks, k, see the end of the step 1.)
Putting d, =./d; we see that T—oo if d, d,,—0, i.e. the initial values, W, V’I\;,
tend to zero.

4, L

d3 ’ km log

— min I
T =min {K log

6.4. Nonlinear Equations. Consider the initial value problem:
(6.36) I+ X)X 10+ X (1 4+ X5,)=0, X5 =KX,,, 05t=T,
(6.37) X=U, X,=V, t=0.
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Theorem 6.38. Take c, be so small that Lemmas 5.18, 5.22 and 5.29 hold.
Let m be an integer =5 and be H™, ||b||3=c,. There exists >0 such that if

UeH™ /2, VeH™, |Ul4eun=0, |VI[1=0

then there exists T >0 such that the initial value problem (6.36) and (6.37) has

the unique solution

X e CY([0, T, H™) n CX([0, T], H™ (/).

Proof. Existence. Define W, W, t=0, by (5.27). Then it follows from
Lemma 5.29 that we can take 6 >0 so small that W, W;, t=0, satisfy the con-
ditions of Theorem 6.25 if m is replaced by m—1. Therefore by Theorem 6.25
we have the solution W of the system (6.23) such that

X e CX([0, T], H™Y), Y,, Ze CY([0, T], H™1),
Y, e CI([0, T], Hm+a/=02), j=0, 1, 2,

for some T>0. It is clear that X satisfies (6.37). We have (1+Z,)Y,
+Z,(1+Y,)=0,t=0, by Remark 5.28 and 0d/0t{(1+Z,)Y,+Z,(1+Y,)}=0,
0<t<T, by Remark 59. Hence (1+Z,)Y,+Z,(1+7Y,)=0,0<t<T. Since
Y=X,, it remains to show that Z=X,, X,,=KX,,, 0<t<T, and X has the
required differentiability. Since Y=X,, and

(6.39) Y,,=f,=KY,;,+F,y(X, X,, Y),

we have (X,,—KX,,),,=0,0<t<T. On the other hand, it follows from (5.27)
that X,,—KX,,=0, (X,,—KX,),=Y,—KY, —F (X, X,)=0, t=0. Thus X,,
=KX, 05t<T. Differentiating this, we have

Y,=KY;+Fo(X, X))
Y2u=KYiu+F30(X, X, ¥, 1)
Yo,=KY,+F (X, Xpy X Xty X1ar)
Xt =KX 0z +Fo1 (X, Xy, X10).

(6.40)

By Remark 5.9,
Zy=—isgn DZy+Fo1o(X, Z, X1,)
= —isgn DZ,,+ (i sgn D—i tanh (hD)+ K )2 X 1, + Foy(X, Z, X,)

. 0
=—isgn D(Z, _Xlx)t+K73;X1t+FOI(X’ Z, X1).

From this we obtain
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(6.41) Zyy=—isgnD(Z;— X, ), +KY,+F(X, X, 2,2, Yy).

Using (6.40) we have

(642) (Z,—X,)=—isgnD(Z,—X,)+Fo((X,Z, X;)—Fo,(X, X,, X))
By Remark 5.15,

0=(14+Z) Y14 +ZoKY 14+ ZyF 30+ Y1 Y1+ (1 + Y)KY  + (1 + Y)F +2Y.Z,
=(1+Z)Y1u+ 2, Y04+ Y1 Y1+ (1 + V) (KYy,+ Fyy) +2Y,Z,.

Since

0= {(1 +Z1)Y1 +Zz(1 + Yz)}n
=(14+Z)Y14+Z, Y04+ Y121+ (1 + Y,)Z,, +2Y,Z,,

we have

0=Y1(Z1x— Y1)+ (1 +Y,)(Z,,—KY,—Fy,)
=Y1(Z, = X10ut(1+Y)(—isgn D)(Z; — X 1,)y
={Y;+(1+Y)(—isgn D)} (Z; — X ,),

where we used (6.41). Thus (Z,—X,,),=0,0=t<T. In virtue of (5.27),
Z,—X,=0,t=0. By Remark 5.28 and (6.39),

(A+Z)Y+Z, Y0+ Y1 X 1+ (1 + Y2) X 50, =0, £=0.

On the other hand,

{A+Z)Y+Z,(0+ V) =+ Z )Y, + Z, Yo, + Vi Z1,+ (1 + Y,)Z,,=0.
Therefore, Y(Z,— X ), +(1+Y,)(Z,—X,,),=0, t=0. Putting t=0 in (6.42),
we have (Z,—X,,),=—isgnD(Z,—X ), t=0. Thus (Z,—X,,),=0, t=0.
Consequently, Z; — X,=0,0=t<T. Since Z,—X,,=0, t=0, (6.42) gives

t
Zy=X0= |, (Fou(X, Z, X1~ For(X, X Xi0}dt
We have
t
12~ Xasllu-2 S € 122~ Xl

which shows that Z,— X,,=0, 0<t<T. Thus we have proved that X satisfies
(6.36), (6.37). Since X, X,=ZeCY([0, T], H™ 1), we see that X € C'([0, T],
Hm™). Since X,,=Y, € C([0, T], H™(1/2)) and

X2n=Y,=K(X)Y; +Fo(X, X))
=K(X3 b’ X5 b)Y1+K1,1,0(X9 th b: X’ b)Xlt
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we see by Lemma 4.27 that X,,, € C%([0, T], H™(1/2)),

Uniqueness. Put W=(X, X,, X,). By the estimate as in the end of the
step 2 of the proof of Theorem 6.25 we see that

1w -woss{ |- wa| d
Si(dy+kod)<co—[W(O)l5, 0=t<T,

in virtue of the definition of T. Let X° be a solution of (6.36), (6.37) and put
Wo=(X°, X9, X9). Itis easily seen that if |WO(f)|;=c, then WP is a solution
of (6.23) having the properties stated in Theorem 6.25 where m is replaced by
m—1. Since Wo0)=W(0), |W(0)||3;<c, we see that |[W(1)||3Z¢e, 0511y
for sufficiently small t,>0. By Theorem 6.25 we have WO(r)=W(t), 0=5t<t,.
Since [|[W(ty)|3<co, we see that [|[WO(f)|3=¢o, toSt<to+1t, for small ¢, >0.
Hence WO(r)=W(t), 0<t<t,. Repeating this procedure we see that WO(t)
=W(@), 05t<T,ie., X°(t)=X(t), 0£t<T. The proof is complete.

Remark 6.43. By Remark 6.35 we see that T—oo if U—0 in H™(1/2)
V-0 in H™.
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