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On Versality for Unfoldings of
Smooth Section Germs

By

Shyaichi Izumiya*

§0. Introduction

In this article, we consider unfoldings of smooth section germs. The
unfolding, which is introduced by René Thom, is an important notion to de-
scribe any situations in which qualitative picture of the object with a change of
the parameters on which the object depends. The idea is an analogue to the
deformation theory of singularities of complex varieties for real smooth cases.
Hence, it can be thought as smooth families of section germs.

It turns out in many cases the study of all possible unfoldings leads to that
of a single one, from which all others can be obtained. Such an unfolding, in
some sense the largest one, should give all the essentially distinct bifurcation
with respect to given equivalence relation; it is the versal unfolding.

In recent years, “the versality theorem”’ for categories of unfoldings of
smooth map germs relative to some equivalence relations have been proved
([3], [4], [8]). Now, we say that the versality theorem holds if the algebraic
notion of “infinitesimal versality’’ is the sufficient condition of the notion of
“versality’’. But as the category of unfoldings of smooth vector field germs
relative to coordinate transformations, there are examples for which ‘the
versality theorem’” cannot hold ([1]).

In this paper, we will single out the class of categories of unfoldings of
smooth section germs of smooth vector bundles relative to various equivalence
relations for which “the versality theorem’’ hold.

As applications of the main theorem, we have “versality theorems’” for
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categories of unfoldings of smooth map germs ([3], [4], [8]) and the category
of G-unfoldings of G-invariant function germs relative to G-right equivalence
(Theorem 4.6). These are theorems which are alrcady proved by many authors.
Since our proof is a bit of an extension of Mather’s method, it is slightly different
of those of [2], [3] and [8]. The main theorem unifies not only these theorems
but also gives new informations about many other categories. For example,
these are the category of G-unfoldings of equivariant map germs relative to
G-contact equivalence (Theorem 4.7) and the category of unfoldings of smooth
section germs which are solutions of a linear partially differential equation,
(for example, harmonic function germs), relative to some equivalence relations.
(Theorems 4.4 and 4.5).

In Section 1, we will construct the category of A-unfoldings of section
germs relative to the equivalence relation which is given by a subpseudo-group
of the pseudo-group of local smooth fibre bundle automorphisms. Our main
theorem is Theorem B, which will be formulated in Section 1 and proved in
Sections 2 and 3. In Section 4, we will give some applications of Theorem
B.

In this paper, smooth means class C*.

§1. Formulations

In this section, we will construct the category of A-unfoldings and formulate
the main theorem.

Let M be a smooth manifold. We consider a smooth vector bundle E(M)
over M with the fibre V(M) and the set I'f(M) of local smooth sections of
E(M).

Let I'4(M) be a subset of I'g(M) and 2(M) be the pseudo-group of local

diffeomorphisms on M.

Definition 1.1. Let %y(M) be a subpseudo-group of 2(M)x 2(E(M)).
Then, we say that ¢(M) is essential if for any (h, H) € ¥x(M), H covers h.

We now have a definition of ¢;-equivalence for germs of elements of I'4(M)
as follows.

Definition 1.2. Let o: (M, a)~(E(M), b) and ¢': (M, a’)—(E(M), b") be
germs of elements of I'§(M) at a and a’ respectively. We say that ¢ and ¢’ are
@r-equivalent (and we write 0~ ,, ¢”) if there exists a germ (h, H) of elements of
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Gg(M) at (a, b)e M x E(M) with (h(a), H(b))=(a’, b") such that Hog=¢"oh.

Since we shall only consider germs throughout this article, we assume that
M =R" and every germs are defined at the origin.

Notations.

I'¢(n)={c|o: (R", 0)—E(R"); germ of elements of I'4(R")}.
T'd(n)g={cel'4(n)|o(0)=(0, 0) e R" x V(R")= E(R™)} .
@e(n)={(h, H)|(h, H) is a germ of elements of ¥ (R") at (0, 0) e R" x E(R")} .

Definition 1.3. By an r-dimensional A-unfolding of o e I'{(n), we mean a
smooth map germ

Z: (R"x Rr, (0, 0)) — (E(R™), 0)
such that

i) Z,el4(n) for any ue(Rr, 0), (where we define X,(x)=2Z(x, u) and
u € (R, 0) means that u is a point of R" near the origin),
i) X,=o.

Then we will construct the category of A-unfoldings.

Definition 1.4. Let X: (R"x R", (0, 0))—(E(R"), 0) be a A-unfolding of
g e '4(n), and f: (Rs, 0)—(R", 0) be a smooth map germ. We say that

Q: (R"x Rs, (0, 0)) — (E(R"), 0)
is an induced A-unfolding from X by f if it is defined by
Q(x, v)=Z(x, f(v)) for any (x, v)e(R"x R*, (0, 0)).

We write Q=f*2.

Definition 1.5. Two A-unfoldings X, Q: (R"x R, (0, 0))—(E(R"), 0) of
g € I'{(n), are said to be ¥ -equivalent when there exists a map germ

(h, H): (Rr, 0) — %g(n)

with the following properties:

(1) (11;\{'{)(0)=1,

(i) (h, H): (R"x E(R")x R, (0, 0, 0)) — (R" x E(R"), (0, 0))

defined by (h:\fi) (x, y, w)y=(h(u)(x), Hu)(y)) for (x,y, u)e(R"x
E(R")x R, (0, 0, 0)) is a smooth map germ,

such that H(u)eX,=Qch(u).
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Definition 1.6. Let X: (R"xR’, (0, 0))—(E(®R"),0) and Q:(R"xRs,
(0, 0))—>(E(R"), 0) be A-unfoldings of o € I'#(n)y. A %g-morphism from Q to
X is a pair @=((h, H), f) where (h, H): (Rs, 0)>%(n) and f: (Rs, 0)—(R", 0)
are smooth map germs such that f*¥ and Q are % -equivalent by (h, H). We
write @: Q—-X.

In the above way, we have constructed the category of A-unfoldings of a
germ of elements in I'§(M) relative to ¥z-equivalence. The versal A-unfolding
is defined as follows.

Definition 1.7. Let X: (R*x R, (0, 0))—(E(R"), 0) be a A-unfolding of
gel'4(n),. Then X is said to be a versal A-unfolding of o relative to %y when
for any A-unfolding Q of ¢ there exists a z-morphism @: Q—X.

Remark. A versal A-unfolding of o relative to % has every information
as A-unfoldings of ¢ relative to the %g-equivalence. Hence, if we study the
bifurcation of singularities of ¢ in I'#(n) with respect to %g-equivalence, it is
enough to seek for a versal A-unfolding.

Now we have the influential candidate which characterize the versal A-
unfolding of ¢ € ['4(n), relative to Z;.

We will formulate as follows: Let 6(n) be the set of germs of smooth vector
fields at the origin of R*. We remark that for any & € 8(n) there exists a unique
smooth map germ ¢: (R"x(—e¢, &), (0, 0))—(R", 0) with ¢,€ 2(n) and ¢y=1
such that d/d(¢,)|,-o=¢ by the existence theorem for ordinary differential
equations. Now, we define the “tangent space” 0%(n) corresponding to %g(n)
as follows:

700 = {(& 1) €0(n) x O(EM)|= ~&- (k)= and
= 4 ()l o for (b, H)) € F5() and (ho, Ho)=1{ .

In general 6%(n) does not have any useful algebraic structure even for R-linear
space structure.
Let CP(R", E(R")) be the space of smooth map germs R"— E(R") at the
origin.
If 0 e IT'4(n), we let
do: (TR", n,;1(0)) — (TE(R"), n~1(0))

denote the tangent map germ of o, then the following diagram commutes:
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(TR", n;'(0)) 4> (TE(R"), n71(0))
(R, 0) -  (ER",0).

For any £e€6(n), we can regard as doofe CP(R", E(R")), and for any
n € 8(E(n)), we can also regard as neo € CY(R"», E(R™)).
We define

T,: 0(n) x O(E(n)) — CZ(R", E(R"))
by
T (&, n)=doof +neo.

Since E(R")~R" x V(R"), we have a decomposition CF(R", E(R"))~ CF(R", R")
DCYR", V(R™) and let wn,: CP(R", E(R"))—CZ(R", V(RR")) be the canonical
projection. We let T,=m,oT..

Definition 1.8. We say that
T3 =T,l0%(n): 0%(n) — CF(R", V(R"))
is an infinitesimal map of ¢ relative to %r.

If 6%(n) is an R-linear subspace of 6(n) x 8(E(n)), the infinitesimal map of
o is an R-linear map.

We now assume that

Assumption (x). 7w, (I'#(n)) is an R-affine subspace of CF(R", V(R"))
(i.e. for any o, w e n,(I'4(n)), {to+(1—t)w|te R} cn (I'4(n))).

Remark. For any o eI'{(n),
Cg(R", V(R")),= { 1eCF(R", V(R")|c= % (/D=0 for
f: (R x (—ee), (0, 0)) — V(R") such that
fiemy(T4(@) and fo=my(o)}

is an R-linear subspace of CP(R", V(R")) which is independent of the choice of
o. Hence, we can denote it as C4(R", V(R")).

Now, we consider the inclusion map
C4{(R", V(R")) — CZ(R", V(R")),

then it induces the following injective linear map;
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Cg(R", V(R")/(C4(R", V(R") nm,CT(R", V(R"))) —
CZ(R", V(R"))/m,C3(R", V(R"))

where m, denotes the maximal ideal of the ring of smooth function germs at
OeR". (cf. Definition 1.10).

Since dimg (CF(R", V(R")/m,CP(R", V(R")))=dimg V(R"), there exist
ai,...,ase C4(R", V(R")) whose images are basis of
C4(R", V(R")/(CAR", V(R")) n m,CP(R", V(R"))) over R.

Let Z: (R"x Rr, (0, 0))—(E(R"), 0) be a A-unfolding of oel'4(n),, then
0Z/ou;| R"x0e C4(R", V(R™). Hence, V,=<{0X/du;|R"xO0,..., 0X/ou;| R" x 0,
ay,..., dgyg is an R-linear subspace of C4(R", V(R")).

Definition 1.9. Let X: (R*"x R, (0, 0))>(E(R"), 0) be a A-unfolding of

gel4(n),. Then X is said to be an infinitesimally versal A-unfolding of o

relative to 9y if

Ci(R", V(R")) = T7(0%(n) + V5.

If 8%(n) is an R-linear subspace of 8(n) x 0(E(n)), then we have the following
proposition.

Proposition A. Let 6 € ['4(n), which satisfies the following condition:

dimg(C3(R", V(R") + T7(0%(n)))/ T3 (0%(n)) < + 0.

If Z: (R"x Rr, (0. 0))—>(E(R"), 0) is a versal A-unfolding of o relative to
@, then X is infinitesimally versal.

Proof. Let TZ(0%(n)4=T%(0%n)) n C4R", V(R"), then
dimg C3(R", V(R™)/TZ(0%(n)" =dimg (C§(R", V(R")+ T7(0£(n)))/ T7(0%(n))
=g < + .Hence, there exist b,...., b,e C4(R", V(R")) such that {b,},..., {b,}
generate C4(R", V(R™)/T2(0%(n))* over R.

We now define

Q: (R*x R4, (0, 0)) — (E(R"), 0)
by
Q(x, v)=(x, Ty(0)+v;b(X)+ -+ +v,by(x))

for any (x, v) e (R" x R4, (0, 0)), then Q is an infinitesimally versal A-unfolding
of ¢ relative to %;.

Since X' is a versal A-unfolding of ¢ relative to %, there exists a %g-mor-
phism ¢: Q—2X. Hence, by the direct computation and the definition of the
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infinitesimal versality, X is an infinitesimally versal A-unfolding relative to %,.
Q.E.D.

In general, we say that “‘the versality theorem™’ holds if the converse of the
above proposition holds.

We need a condition about the differential structure of R" (i.e. local ring
on R") in order to characterize the category of A-unfoldings for which ‘*‘the
versality theorem’’ holds.

Let C2(R") be the local R-algebra consisting of smooth function germs at
aeR". We denote mP(R") the unique maximal ideal in C?(R"). For the
convenience, we denote m,=mg(R").

Definition 1.10. Let R(n) be a sub R-algebra of CP(R"). Then R(n) is
said to be of finite type if there exist p,,..., p, € R(n) such that P*(CZ(RF)) = R(n).
Here, P: (R", 0)—(R¥, a) is defined by P(x)=(p;(x),..., p(x)) and P*: C®(R*)
—C¥(R") is defined by P*(h)=hoP.

Now, we let Z.rg(M) be the pseudo-group consisting of local smooth
fibre bundle automorphisms, then it is the maximum essential subpseudo-group
of 2(M)x 2(E(M)). We denote the ‘‘tangent space’’ corresponding to
HLurF(M) by 0¢(n). Then 0¢(n) is naturally a CP(R")-module: the action of
CZ(R™) on 0F(n) is defined by h(X, X+ Y)=(hX, hX+hY) for he CG{R") and
(X, X+Y)e0g(n). Itisevident that CF(R", V(R") is also a CF(R")-module.
Because R(n) is a sub R-algebra of CF(R"), 8¢ (n) and CP(R", V(R")) are natural-
ly R(n)-modules.

Definition 1.11. We say that a triple (I'f4(n), ¥g(n), R(n)) is essential if
the following conditions hold:

(1) TI'4(n) satisfies Assumption (*),

(2) @4(R")is an essential subpseudo-group of 2(R") x 2(E(R")),

(3) R(n)is a sub R-algebra of CF(R") of finite type such that

(@) (CH(R", V(R"))) g is a finitely generated R(n)-module and T¢(6%(n))
=(C§(R", V(R"))gr(w for any g e I'f(n),

(b) 6%(n) is a sub R(n)-module of 6¢(n),

(c) the infinitesimal map T¢: 0%(n)—{C{R", V(R")>g, is an R(n)-
homomorphism for any o € ['4(n).

Then, our main theorem is the following.

Theorem B (The versality theorem). Let (I'4(n), %g(n), R(n)) be the
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essential triple. Let 6 € I'§(n), which satisfies the following condition:
dimg(C§(R", V(R"))>r(m)/(CH{R", V(R")) + T7(0%(n))) < + 0.

If X is an infinitesimally versal A-unfolding of o relative to %y, then X is

versal relative to %g.

For the proof of Theorem B, it is enough to prove the following uniqueness
theorem.

Theorem 1.12 (The uniqueness theorem). With the same hypotheses of
Theorem B, if X and Q are infinitesimally versal A-unfoldings of o relative to
Gy with the same dimension, then these are %g-isomorphic.

If we assume the statement of Theorem 1.12, we can prove Theorem B as
follows.

Proof of Theorem B. Let X be an r-dimensional infinitesimally versal A-
unfolding of ¢ € I'§(n), relative to ¥z. Let Q be any A-unfolding of ¢ whose
dimension is s.

We now define

Q*: (R*x R, (0, 0)) — (E(R"), 0)
by
Q*(x, u, v)=(x, Tp(Q) (x, v) —7y(0) + 1y(Z) (x, 1))

for any (x, u, v) e (R* x R"*s, (0, 0)). Since 7n,(I'4(n)) is an R-affine space, Q*
is a A-unfolding of ¢ and @ is induced from Q* by the canonical inclusion i:
(Rr, 0)—(Rr+s, (0, 0)).

We also define

Z*: (R*x R, (0, 0)) — (E(R™), 0)
by
Z*(x, u, v)=2(x, u)

for any (x, u, v) e (R"* x R"*s, (0, 0)). Then X* is the A-unfolding of ¢ which
is induced from 2 by the canonical projection.
Since X is an infinitesimally versal A-unfolding of ¢ relative to %z, Q* and
Z* are infinitesimally versal A-unfoldings of ¢ relative to %;. Because Q* and
2* have both (r+s)-dimension, these are %g-isomorphic by Theorem 1.12.
Hence, there exists a ¢z-morphism from Q to Z. This completes the proof.
Q.E.D.
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We will prove Theorem 1.12 in Section 2 and Section 3.

§2. Preliminaries

In this section, we will prepare some tools in order to prove Theorem 1.12

2-A) Ordinary differential equations.
Let &: (R"xR' xR, (0,0, 0))>(E(R"), 0) be an (r+1)-dimensional A-

unfolding of o € I'f(n),.

For any given elements by,..., b, € C{(R", V(R")), let

) F ) p

X= Zi=1€i(x, u, v, t)’m + Zj=1l’]j(x, u, v, t)a—ul
X% w0, ) 2+, u, 0, 1)L
I=1'1 s Y%y Uy avl s Y%y Us at

be a germ of vector fields on R* x R" x RS x R at the origin. We now define

@ ()= st e + Thes( Tl g (P0G + T 5~ (@0,

0 5
Tl G (P 0) 5o + Tty g + Doty gy

where (y4,..., y5) is a coordinate of V(R") about the origin. Let

’ 0 s ’
Y=%ri(x, y, u, v, I)W + X i1 (X, v, u, 0, t)’m

¥ ’ a ’ a
+ 25, s u, v, ’)737 + 21t (%, ys u, 0, 1) 0,
J
' 0
+C (-x9 ya u, v, t)'ﬁ

be a germ of vector fields on E(R") x R" x B4 x R at the origin. We also define

(Yo@)' = D1 fi g + Ttos (i@ ,0), w0, )+ Tavibh) 50—
0 0 0

+ 2= — ou, + 21T Do, + T

Lemma 2.1. Suppose there exist germs of vector fields X on R*xR"
xRi1x R and Y on E(R")x R"xR2x R at the origin such that the following

conditions hold:
1) 2(X)=(Y-P)"

(2) There exist - 1), 15, T €MCP(R")

éieerSO(Rn+r+l) (l=15
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(j=1,...,r;1=1,..., q), and 2, e m,CF(R"*str+1) (k=1,..., s) such that

X= R 4, 0) g + it ) 5 + Bl ) 5o + 5
i J

and

— S N0 s ) 0 " 0
Y=3%108i(x, u, v) x; + i1 A(x, v, u, ) N + 2y j(u, 2) ﬁ—uj
0 0
q i,
IR
(3) If we denote X, =3 1= &(x, u, 1)0/0x; and Yiun=2h=1Ax, y,u,
1) 0/0yy, then
(Xtusy Xtuny+ Yiun) €0%(n) for any (u, He(R" xR, (0, 0)).
Then, @4 and &, are Yg-isomorphic for sufficiently small t>0.
Proof. Let ¢/x, u, v, s) be the integral curve of X on R*xR"xRI1xR
which passes through (x, u, v, s) at t=0.
Let y,(x, y, u, v, s) be the integral curve of Y on E(R")x R" x R?x R which

passes through (x, y, u, v, s) at t=0.
Since both coefficient of 8/dt of X and Y are 1, then

O(R"x R"x R1x {0})cR" x R" x R x {t}
and
Y(E(R")yx R x R1x {0}) = E(R") x R" x R4 x {1}
as germs. Hence,
¢, | R" xR xR1x{0}: R"xR"x R1x {0} — R"x R" x R1x {t}
and
V| EERM) x R"x R1x {0} : E(R") x R" x R1 x {0}
— E(R")x R"x R x {t}

are local diffeomorphisms for sufficiently small > 0.
By the condition (2), we can write
ox, u, v, 0)=(h(x, u, 1), f(u, t), g(u, 1), 1) and
Vx, y, u, v, 0)=((h(x, u, t), H(x, y, u, t)), f(u, t), g(u, v, 1), 1).
The relation @'(X)=(Y-®)' guarantees that the following diagram commutes

as germs:
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E(R") L(u_.t)’ﬂ(u.t)))E(Ru)
(%)..I ,[(I?GJ:)"
R" _ B, ey > Rn
for any (u, 1)e (R"x R, (0, 0)). By the definition of 0¢(n), we can appreciate
that (h,, H,,) is a family of elements of ¥x(n).
Since &, e m,CF(R"*"*1) and 4, e m,CP(R"*2*r*1), we have
h(x,0=x and H(x,y, 0)=(x, y).
Hence, ((h,, H,), f;) is the @g-isomorphism between @, and &,. This com-
pletes the proof. Q.E.D.
2-B) The local R-algebra R(n).
Let A" be a sub R-algebra of C%(R") for any neN. Let f: (R", a)—
(Rr, b) be a smooth map germ. We define an R-algebra homomorphism
f*: C3(RP) — Co(RY)
by
S*(h)=hef.
Definition 2.2. Let f: (R", a)—(R?, b) be a smooth map germ such that
f¥(AD) < A2, We say that f¥*A2— A" has Property (W) if the following holds:
Let M be a finitely generated A?%-module. Suppose that

dimg M/ f*(mP(RP) N A))M < + o0, then M is a finitely generated Aj-module
via f*.
For any non-negative integer r, we define
Cj?(,,)(R"*’) =R(n) ®rCF(R").

Then, we can regard CgZ,(R"*") as a sub R-algebra of CFP(R"*r). Let
. (R**r, (0, 0))—(R", 0) be the canonical projection, then we have

T*(CF(R")) = CRm(R™™).
The following lemma is “the preparation theorem’’ for R(n).
Lemma 2.3, 7%*: CP(R")—Cg,(R"*") has Property (W).

Proof. Since R(n) is of finite type, there exist p,,..., p,€ R(n) such that
P*(CP(R*¥))=R(n). We now define

m: (R, (0, 0)) — (R, 0)

as the canonical projection. We also define
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i: CP(R") — CRRM® rCT(R")

by i(f)=1®pgf. Then, we may consider that m}(m,)=i(m,) in C3, o)\(R**").

By Malgrange’s preparation theorem (cf. Mather [5]), 7} has Property (W).
It follows that i has also Property (W).

Since P*: C®(RF)—R(n) is surjective, then P*®1: CP(R*)®z CP(R")
—CRm(R"*7) is surjective. It has also Property (W).

It is clear that the composition of maps which have Property (W) has
Property (W). Hence, n*=(P*®1)ci has Property (W). This completes the
proof. Q.E.D.

Corollary. Let M be a finitely generated Cg,(R"*")-module. Let N
be a CR,(R"*")-submodule of M and A be a finitely generated Cy(Rr)-sub-
module via 7*.

Then

(&) M=N+A+n*(m)M
implies

(b) M=N+A.

Proof. Let M'=M|N be the quotient CR,(R"*")-module and P: M—>M’
be the canonical projection, then M’ is a finitely generated Cg,,(R"*")-module.
By the condition (a), we have M'=P(A)+zn*(m,)M’. Since A is a finitely
generated CZ(R")-module, then dimp M'/n*(m)M’'<+o00. By Lemma 2.3,
M’ is a finitely generated CP(R")-module. Hence, we have M’'=P(4) by
Nakayama’s lemma (cf. [5]). This completes the proof. Q.E.D.

§3. Proof of the Uniquness Theorem

In order to prove Theorem 1.12, we need some lemmas.
Let 2, Q: (R*x R, (0, 0))—(E(R"), 0) be A-unfoldings of e l'4(n),. We
define

@2,: (R"x Rr, (0, 0)) — (E(R"), 0)
by
DL (x, u)=(x, tmy(Q) (x, u)+(1 = O)ny(Z) (x, u))

for any (x, u)e (R*x R, (0, 0)) and te[0, 1]. Since n,(I'4(n)) is an R-affine
space, $¢, is a A-unfolding of ¢ for any ¢ [0, 1].
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Definition 3.1. In the above situation, suppose that ¥ and @ are infini-
tesimally versal A-unfoldings of ¢ relative to ¥;. We say that ¥ and Q are
linear versally homotopic relative to % if @3, are infinitesimally versal relative
to ¢ for any te[0, 1].

Lemma 3.2. For the proof of Theorem 1.12, it is enough to prove the

statement of Theorem 1.12 for A-unfoldings X and Q which are linear versally
homotopic relative to Y.

Proof. Let X: (R"x R, (0, 0))—(E(R"), 0) be an infinitesimally versal A-
unfolding of o relative to %, then

Ce(R", V(R")=T7(0%(n)"

)
Ou,

ox
ou,

Since dimg CP(R", V(R™)/T4(0%(n))1=p=r+gq, if necessary by the coordinate
change, we may assume

+

lR”XO...., R"x0, al,...,aq>R.

CH(R", V(B")=T3(05(n)"

oz " ) "
+<5u1 'R x 0,..., au., Rmx0, as+1,...,ap>n.

We fix elements cy,..., c,€ C§(R", V(R")) such that {c,},..., {c,} are R-
basis of C4(R*, V(R")/T?(0%(n))A. If necessary by the coordinate change,

we may assume
Co(R, V(R™) =T (0% (m)"

oz 0z
+<cl, du, lR"xO,..., T

Rrx 0, agyqs.--» a,,> .
s R

C4(Re, V(RY) = T2OH) + (e1, e 22 [R7X0,...,a,)

CA(R", V(R™))=T2(O4(m) A +<{C1ree €pot k.
We now define
30: (R x R, (0, 0)) — (E(R"), 0)
by

2008, )= (%, my (@) + Tierhs (o | R7 0 ) () + T lepryiia ().

Since n,(I'4(n)) is an R-affine space, X° is a A-unfolding of . Moreover, X°
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and X are linear versally homotopic relative to %;.

Since ¢, € C4(R", V(R")), there exist £ e T?(0%(n))* and 1;eR (i=1,..., p)
such that ¢, =3, A4(0%/0u;|R"x0)+ X ., Aa;+&  If A,=0, then
¢, €{0Z[0u, | R" x0,..., a,yg+ T5(0¢(n))*. Hence, we have C§(R", V(R"))
=TZ(0(n))*+ {0Z/0u, | R"x0,..., a,>g. This contradicts to
dimg, C4(R", V(R")/T%(6(n))A=p. Hence, 1,#0 and let sign (4,)
=g (i.e. e, ==%1).

We also define

X1 (R*x Rr, (0, 0)) — (E(R™), 0)
by

(x, u)= <x, ny(a)(x)+£1ulc,(x)+z¥=2ui<%‘R" « o>(x)

+ Zf=s+1uiai(x)>-
Then X! is the A-unfolding of ¢ which is linear versally homotopic to X° relative
to '(gE'
By repeating this procedure, we can define A-unfoldings
27 (R"x Rr, (0, 0)) — (E(R™), 0) (j=1,...,p)
by
Zi(x, u)=(x, ny(0) (x)+ iy giuici(x)+ ).

such that ¥/ and ZJ~! are linear versally homotopic relative to %;. In this
situation, we say that Z is piecewise linear versally homotopic to X relative to
G,

With the same argument, Q is piecewise linear versally homotopic to
Qr: (R"x R, (0, 0))—(E(R"™), 0) which is defined by

Q7(x, u)=(x, ny(0) (x)+ Xi-, eiuici(x)) .
Then, there is a @z-isomorphism
d=(1, f): Qrxxr
which is defined by
f: R >R"; f(uy,..., u)=((e1/e)ur,..., (6p/e)Ups Upirs...r Uy)
and 1€ ¥%;. This completes the proof. Q.E.D.

By the above lemma, we only consider the case that ¥ and Q2 are linear ver-
sally homotopic A-unfoldings of o.
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We now define
&: (R"xR"xR, (0, 0, 0)) — (E(R™), 0)
by
O(x, u, 1)=(x, my(P%,) (x, u)).

Then @ is an (r+ 1)-dimensional A-unfolding of ¢ such that &(x, u, 0)=2(x, u)
and P(x, u, 1)=Q(x, u).

We let

C4(Rm*+1, V(R")) = CReny(R"™ 1) @ g () {CE(R", V(R"))) r(n)-

It may be regarded as a C%,(R"*"*!)-submodule of CF(R", V(R"). Since
(CE(R", V(R")) g is afinitely generated R(n)-module, then C4R+r+1, V(R™)
is finitely generated over CR,(R"*r*1).

We denote by f(n+r+ 1) x G(E(n)+r+ 1) the set of pairs (X, Y) of smooth
vector field germs along 7, and mg,,, at origins respectively, where w,: (R"
xRr*1, (0, 0))—(R", 0) and mg,,: (E(R") x R*1, (0, 0))—(E(R"), 0) are canoni-
cal projections.

We also define

0g(n+r+1)= CRmyB™ ™ DR gy 0F(1)

then it is a Cg,,(R"'r*!)-module, because 6%(n) has an R(n)-module structure.
We may regard 0%(n+r+1) as a CRm(R"*r*1)-submodule of fn+r+1)x
O(E(n)+r+1).
Next, we construct a homomorphism between these modules as follows:
d.®: TR"x R™*' — TE(R")
by

dxdi((xoy U), (Ll, t))= d(@(u,t))xo(v) .
Let

fiy: CF(R™ 1, TE(R"))=Cg(R" !, E(R") x E(R"))
=C80(Rn+r+l, E(Rn) XR" X V(Rn)) —_— CSO(Rn+r+1, V(Rn))

be the canonical projection. We define
Tp: O(n+r+1) x G(E(n)+r+1) — CP(R"*r*1, V(R"))
by
Te(X, Y)=7(d,Po(X, idgr+1)+ Yo(P, idge+1)) .
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See the following diagram :
TR"x R+t __*® | TE(R")
(X,idRgr+ 1)T TY
R x Rr+t _(&1RY | p(Re) x Rr+1
Then, we define a Cg,,(R"*"*1)-homomorphism

T5: 05(n+r+1) — C4R™*1, V(R™)
by
TS=Tol0%(n+r+1).

Since dimg {C§(R", V(R")rem/(C4(R", V(R™))+ T4(0%(n))) < + o, there
exist by,..., bye (CH(R", V(R"))> g such that

(#) <(C4(R", V(R r(my=Co(R", V(R") + T7(0%(n)) +<bys..., br-

Lemma 3.3. m,C4R* 1, V(R") =m, T50%(n+r+1))
n < 0P 0P

Bu " G Ayseees Ay bl’mbs>mrcg(nr+l)'
Proof. Since X is infinitesimally versal relative to %z,
C4(Re, V(R™) = TL(0Um) +Vs.
Hence, by the formula (¥), we have
(CHR", VIR rem =T 5(0F(1)+ Vs +<by,..., bo-

Let he C4(R**1, V(R")), then h|R"x0e{CHR", V(R")> g and there
exist (X, Y)e0%(n), &, nj, meR (i=1,...,r; j=1,...,5; I=1,..., q) such that

h|R"x0=T3(X, Y)+ X i=1&; —g% R*x0+ Xy pma;+ 25=1n;b; .

We now let
r g r 62 q S
A =h—T%(X, Y)_Zi=1fi‘a“u—_ -2l ma—X5-11n;b;,

then h'e C4(R*+1, V(R") and h'|R"x0=0. Hence, by the Hadamard’s
lemma, we have the following:

C4(Rw++1, V(R") = T§(0%(n+r+1))

06 30 ~
(G s G v gy b ) 1, CYRTH, VIR)).
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Then,
CH R+, V(RY) = T3(0F(n+ 7+ 1))
0P 0P A n+r+1 n
+<8u1 e G ey bl,...,bs>cg(Rm)+m,ﬂ AR V(R

Hence, we can apply the corollary of Lemma 2.3 to this situation. Then,
we have the following:

CaER, VIR =TE0L 7 1)
+<6u1 ’al""’aq’ bn---,bS>C8°(R'+l).

This completes the proof. Q.E.D.
We now have tools to prove Theorem 1.12.

Proof of Theorem 1.12. Because [0, 1] is compact and @ is linear versal
homotopy between 2 and @, it is enough to prove &, and @, are ¥p-isomorphic
for sufficiently small 1>0.

Since ®(x, 0, £)=0a(x), then dd(x, 0, £)/0t=0. Hence, 0®/0t e m,C4(R+r+1,
V(R")), then there exist (X, Y)e0g(n+r+1), & em, (I=1,..., m) and N5 Lk
em, CP(R+Y) (j=1,...,r; k=1,..., s+¢q) such that

5@
“a =31 ETe(X, YD)+ 25 j—5— g(p + 251 Cuby + 23t eap—s -

There are «!e CPR* 1) and tte CP(R* ' ++1) (i=1,...,n;¢=1,...,q)
such that

. 0
X;=2%1 Kf"g;"
and
0
Yl= IK’ +Z a ay” 9

where (yy,..., y,-) denotes a coordinate of V(R") about the origin.
Let &=3%1 & x} and A, =37, ], then & emCHR™1), 1€
er(G)O(Rn+q’+r+ 1) and
0d _ g< " 0 6 )
I _Ta' 2i=1€ia ; H 161 ax +z; 1)~

+ 2= 1’1156 + 281 Cubi+ 251 Liars -

We now define
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X= i (=80 e + e (=) 50 + DR (L) 55— + 47
i ] d
and
=S'n _— 0 ’ 0 r —H _L
Y=31",(-¢) o, +2504 3y, +25=1(=n;) ou,

0 0
sta( __ Y v
+EE(- L) 5o+ 5
then these are vector field germs at origins which satisfy the conditions of Lemma
2.1.
Hence, @, and @, are ¥;-isomorphic for sufficiently small t>0. This com-
pletes the proof. Q.E.D.

§4. Applications

Here, we give some applications of Theorem B.

A) The case R(n)=Cg(R").

A-1) E(M)=M x Re.

A-1-a) We let

Ge(M)=R(M)={(h, h x L)| h is a local diffeomorphism on M and Lis a
parallel transformation on R?}

and I'{(M)=T$(M), then ¥ -equivalence of elements of I'#(n) is exactly the
right equivalence of smooth map germs (R", 0)—(R>, 0).
It is clear that the infinitesimal map of a smooth map germ f: (R", 0)—
(Rp, 0) relative to £ is given by the differential map of f:
df: 8(n) — CZP(R", R?).
The image of df is the CF(R")-submodule of CF(R", R?) which is generated
by (of[0x; (i=1,..., n). We write it J(f) and call it Jacobian module of f.
Hence, (C3(R*, RP), 2(n), CT(R")) is essential.
A A-unfolding of f is the ordinary unfolding which has defined by Mather
([4]). Then we have the following theorem.
Theorem 4.1 (Thom-Mather-Zakalyukin [4], [8]). Let F:(R"x R, (0, 0))
—(Re, 0) be an unfolding of smooth germ f: (R*, 0)—(R?, 0).
If
C3(R", RO)=J(f)+V,

then F is a versal unfolding of f relative to %.
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A-1-b) We let
Ge(M)=sLwrf (M)={(h, H)| H is a local bundle automorphism
which covers h.}

and I'f(M)=T§(M), then the % -equivalence of elements of I'f(n) is the -
equivalence of smooth map germ (R", 0)—(R", 0) which has been introduced
by Mather. (See Section 2 in [5]. The definition of the # -equivalence is not
given as above, but it has been implicitly shown in [5] that 2 -equivalence is
cquivalent to the above Z.r¥-equivalence.) By this reason, we write wr% (1)
=J"(n, p).

The triple (CF¥(R", RP), £ (n, p), CF(R™)) is clearly essential.

By thc easy calculation, it is proved that the image of the infinitcsimal map
of f: (R", 0)—(R», 0) relative to £ (n, p) is given by

J(O+f*(m,)CF(R", Rp).

Theorem 4.2 (Martinet [3], Golubitsky-Schaeffer [2]). Let F: (R"x R,

(0, 0)—(Rr, 0) be an unfolding of a smooth map germ f: (R", 0)—(Rr, 0). If
CER", R)=J(f)+f*(m,)CF(R", R?)+ Vp,
then F is a versal unfolding of f relative to .

A-2) ER")=R"xR".

Let @(R")=%(R")={(h, hxh)|h is a local diffeomorphism on R"} and
T{R")=Tg(R"), then two elements f, g € ['§(n), is ¥-equivalent if and only if
there exists invertible germ h: (R", 0)—(R", 0) such that hiof=goh.

In this case, 0%(n)=0(n) and the infinitesimal map

T;: O(n) — CF(R", RP)
of f relative to % is given by
Ty (&) =dfed+&of.

It is clear that 0(n) is a C§(R")-module, but T, is not a C§(R")-homomor-
phism. Hence, (CF(R", R"), €(n), CT(R")) is not essential.

In fact, there exists the example for which the versality theorem cannot hold.
(Belitskii [1].)

A-3) EM)=T(M).

In this case, I'f(n) is the set of vector field germs on R" at the origin. The

most natural equivalence relation between germs of vector fields is the smooth
equivalence.
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If we let (M)={(¢, dd)| ¢ is a local diffeomorphism on M}, then the
%r-equivalence is the smooth equivalence between vector field germs.
For any & e I'f(n)=0(n), the infinitesimal map

Tg: B(n) — CBO(R", ToR")
is given by Lie derivative:
T(m)=Ly.
Since Lie derivative is not a CP(R")-homomorphism, then (I'P(n), %r(n),
Cy(R™)) is not essential.

In fact, it is known that the versality theorem does not hold for the category
of unfoldings of vector field germs relative to smooth equivalence. (See [1].)

A-4) EM)= Q T*(M).

In this case, I'§(n)=QP(n) is the set of germs of differential p-forms.

Let go(M)={(¢, Atdp)| ¢ is a local diffcomorphism on M}, then the
¥,-equivalence on Q¢(n) is the smooth equivalence between germs of differ-
ential p-forms.

By the same reason as the case of vector field germs, (Q°(n), %o(n), CP(R™))
is not essential.

But, we have not known the example for which the versality theorem cannot
hold. Itis conjectured that there exists the example of differential form for which
the versality theorem cannot hold.

A-5) E(M)=@® T*(M) (k<dim(M)).

In this case, Pfkk (M)=TI%(M) is the set of local Pfaffian systems.

For any w=(w;,..., o) € Pf, (M), there exists the local coordinate system
(U, (x4,..., x,,)) and smooth functions a/ :U—-R (i=1,..., k; j=1,...,n) such
that

wi(xl""3 xn)=z,}=1 alt:(x)dxj'

Definition 4.3. We say that x, € U is a singular point of w if rank (ai(x,))
<k.

The most natural equivalence relation between germs of Pfaffian systems is
the equivalence relation which is given by coordinate transformations on M.
The same reason as the case A-4), this equivalence relation cannot make the
essential triple.

But, if only pay attention to singularities of Pfaffian systems, it is enough to
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consider the equivalence relation which preserve rank of (aj(x)) and make the
essential triple.

One of the candidate of such an equivalence relation is given by the follow-
ing essential pseudo-group:

2M)={(h"1, ® H*)|H is a local vector bundle automorphism on TM

which kcovers h}.
A-6) For any vector bundle E(M), let
D: I'g(n) — I'g(n)

be a linear partially differential operator.

Let I'B(n)»=D"Y(w) for w e I'§(n), then CY(R*, V(R"))=D"1(0).

Generators of CP(R", V(R")) over C¥(R") are given by e;: R—-V(R")
(i=1,..., dim (V(R"))) which are defined by e(x)=(0,..., 0, i, 0,...,0) for any
x e (R, 0). Since e, e CR(R", V(R")) for any i, then

CR(R", V(R™)) ¢z mny=CT(R", V(E").

Hence, for the essential pseudo-group %z(M) which satisfies conditions in

Definition 1.11, the following versality theorem holds.

Theorem 4.4. Let 6 € ['2(n)g such that
dimg CZ(R"V, (R")/(CRR", V(R")+ T7(0%(n))) < + 0.

Let X: (R"xRr, (0,0)— (E(R"),0) be a D-unfolding of o. If
CE(R", V(R™) = T2(6%(n))+ Vs, then X is versal D-unfolding of o relative to %.

For example, let E(M)=M xR and D=4 be a Laplace operator (i.e.
A=0%]0x3 + -+ + 02/0x2), then I'f(n)? is the set of germs u e CF(R") which are
solutions of the Poisson’s equation du=g. In this case, C4(R")=mr,(471(0)) is
the set of harmonic function germs at the origin.

Theorem 4.5. Let f be a germ of solutions of Poisson’s equation Af=g
such that dimgp CP(R")/J(f)<+ 0. Let F be a A-unfolding of . If CE§(R")
< J(f)+ Vg, then F is a versal A-unfolding of f relative to .

When g =0, then the above theorem seems to be applied for the qualitative
study of phenomenons which are described by Harmonic function’s potentials.

B) The case R(n)=C§(R").

Here, let G be a compact Lie group which acts linearly on B* and C§(R")
be the set of germs of smooth G-invariant functions at the origin.
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B-1) E(M)=M xRr (M : G-manifold).

B-1-a) We let

G (M)=Rg(M)={(h, hx L)| h is a “local’’ equivariant diffeomorphism of
M and L is a parallel transformation.} .

(Here, G acts on RP trivially).

Let I'4(n) be the set of G-equivariant section germs of E(R"), then it is the
set of G-invariant map germs (R", 0)—»Rr. We write it C§(R", R?). In this
case, the %s-equivalence on C§(R", RP) is the G-right equivalence between G-
invariant map germs.

The infinitesimal map

T,: 0g(n) — C§(R", Rr)
of f relative to % is given by
T,(&)=df*¢,

where Gg(n)={& € O(n)| &(gx)=Tg-{(x) for any x € (R”, 0) and g € G}.

By the theorem of Schwartz ([7]), C§(R") is the sub R-algebra of CZ(R")
of finite type. Since C§(R", RP)~C§(R") x C§(R™) x --- x C§(R"), then (C§(R",
Rr), Z:(n), C§(R™)) is essential.

If we denote the set T;(0g(n)) by Js(f), then we have the following theorem.

Theorem 4.6. (Poénaru [6]). Let F be a G-unfolding of fe C§(R", Rp).
If C§(R", RP)=J;(f)+ Vg, then F is a versal G-unfolding of f relative to
%G.

B-1-b) % M)=ALurl (M)={(h, H)|H is a ‘“local’”’ G-vector bundle
automorphism on M x R? which covers h.}. (Here, G acts on RP linearly).

Let R" be a G-vector space. Let I'#(n) be the set of G-equivariant section
germs at the origin, then it is the set of G-equivariant map germs: (R", 0)—R?.
We write it CZ(R", R?).

In this case, the % -equivalence on CZ(R", RP) is the equivariant -
equivalence between G-equivariant map germs. By this reason, we denote
Aut§ (n)=H(n, p).

Proposition 4.7. CZ(R", R?) is a finitely generated C§(R"™)-module.

Proof. Let(Rr)* be a dual of R?, G also acts on (RP?)* linearly, for(g - w)(v)

=w(g~'v) for any we (RP)* and ve R?. We consider the diagonal action on
R" x (RP)*,
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If fe CZ(R", Rr), it induces f'e C{ o(R"x(RP)*) by f'(v, w)=w(f(v)).
Since C§ o,(R" x (RP)*) is the subring of C% o)(R" x (RP)*) of finite type (see
[7]), there exist py,..., p, € C% o) (R"x (RP)*) such that P*(CP(R¥)=C%,,-
(R" x (Rr)*). Then, we have f'(v, w)=H(p,(v, W),..., p(v, w)) for somec He
C?(R¥).

Since /' are linear for w, we have the following:

fllo, wy=2%, ai(H)P(u,U)aw(Pi)(u,O)(W),

where 0; denotes the derivative associated to i-th variable.
We can consider 0,(p;).,0)(w) as elements of CZ(R", R?). This completes
the proof. Q.E.D.

It is clear that (CE(R", RP), o'¢(n, p), CG(R")) is essential.

Theorem 4.7. Let F be a G-unfolding of an equivariant map germ
f: (R", 0)—~(Rr, 0).

If C3(R", RP)=Jg(f)+f*(m,)CF(R", R°)n C§(R", RP)+ Vi, then F is a
versal G-unfolding relative to A,

C) The case R(n)=R.

In all above case, if we take finite jet spaces, then the versality theorems
always hold.
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